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Dirac particles tunneling from BTZ black hole
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Abstract

We calculated the Dirac particles’ Hawking radiation from the outer horizon of BTZ black hole via tunneling formalism. Applying WKB
approximation to the Dirac equation in (2 + 1)-dimensional BTZ spacetime background, we obtain the radiation spectrum for fermions and
Hawking temperature of BTZ black hole. The results obtained by taking the fermion tunneling into account are consistent with the previous
literatures.
© 2008 Elsevier B.V. All rights reserved.

PACS: 04.70.Dy; 03.65.Sq

Keywords: Tunneling; Hawking radiation; BTZ black hole
Hawking [1] discovered the thermal radiation of a collaps-
ing black hole using the techniques of quantum field theory
in curved spacetime. Since the Hawking radiation relates the
theory of general relativity with quantum field theory and sta-
tistical thermodynamics, it is generally believed that a deeper
understanding of Hawking radiation may shed some lights on
seeking the underlying quantum gravity. Since then, several
derivations of Hawking radiation have been proposed. The orig-
inal method presented by Hawking is direct but complicated to
be generalized to other spacetime backgrounds. In recent years,
a semi-classical derivation of Hawking radiation as a tunnel-
ing process [2] has been developed and has already attracted a
lot of attention. In this method, the imaginary part of the action
is calculated using the null geodesic equation. Zhang and Zhao
extended this method to Reissner–Nordström black hole [3] and
Kerr–Newman black hole [4]. Angheben et al. [5] also proposed
a derivation of Hawking radiation by calculating the particles’
classical action from the Hamilton–Jacobi equation, which is
an extension of the complex path analysis of Padmanabhan et
al. [6]. Both of these approaches to tunneling used the fact that
the tunneling probability for the classically forbidden trajectory
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from inside to outside the horizon is given by

(1)Γ = exp

(
− 2

h̄
Im I

)
,

where I is the classical action of the trajectory. The crucial
thing in tunneling formalism is to calculate the imaginary part
of classical action. The difference between these two meth-
ods consists in how the classical action is calculated. For a
detailed comparison of the Hamilton–Jacobi method and the
Null-Geodesic method, one can see [7].

In this Letter, we extend the tunneling method presented
in [8] to calculate the Dirac particles’ Hawking radiation from
(2+1)-dimensional BTZ black hole. Although many works [9–
15] have been contributed to the Hawking radiation of BTZ
black hole using the tunneling method, they all considered the
scalar particles’ radiation. Starting with the covariant Dirac
equation in curved background, we calculate the radiation spec-
trum and Hawking temperature by using the WKB approxima-
tion.

The BTZ black hole solution is an exact solution to Einstein
field equation in a (2 + 1)-dimensional theory of gravity with a
negative cosmological constant Λ = −1/l2:

(2)S =
∫

dx3√−g (R + 2Λ).
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The BTZ black hole is described by the metric [16]

(3)ds2 = −N2 dt2 + 1

N2
dr2 + r2(Nφ dt + dφ

)2
,

where

(4)N2 = −M + r2

l2
+ J 2

4r2
, Nφ = − J

2r2
,

with M and J being the ADM mass and angular momentum
of the BTZ black hole, respectively. This metric is stationary
and axially symmetric, with two killing vectors (∂/∂t)μ and
(∂/∂φ)μ. The line element (3) has two horizons which is deter-
mined by the equation

(5)N2 = 1

l2r2

(
r2 − r2+

)(
r2 − r2−

) = 0,

where r+ and r− are defined by

(6)r2± = Ml2

2

[
1 ±

√
1 − J 2

M2l2

]
.

We have assumed the non-extremal condition Ml > J , so that
r+ and r− correspond to the outer event horizon and the inner
event horizon respectively which is similar to the Reissner–
Nordström spacetime. In the extremal case Ml = J , the two
horizons coincide. In the present Letter, we mainly consider
the non-extremal case. A brief comment regarding the extremal
case appears at the end of this Letter.

Now we calculate the Dirac particles’ Hawking radiation
from the BTZ black hole. We consider the two component mas-
sive spinor field Ψ , with mass μ, obeys the covariant Dirac
equation

(7)ih̄γ aeμ
a ∇μΨ − μΨ = 0,

where ∇μ is the spinor covariant derivative defined by ∇μ =
∂μ + 1

4ωab
μ γ[aγb], and ωab

μ is the spin connection, which can be
given in terms of the tetrad e

μ
a . The γ matrices in three space-

time dimensions are selected to be γ a = (iσ 2, σ 1, σ 3), where
the matrices σk are the Pauli matrices. According to the line
element (3), the tetrad field e

μ
a can be selected to be

e
μ
0 =

(
1

N
,0,−Nφ

N

)
,

e
μ
1 = (0,N,0),

(8)e
μ
2 =

(
0,0,

1

r

)
.

We use the ansatz for the two component spinor Ψ as fol-
lowing

(9)Ψ =
(

A(t, r,φ)

B(t, r,φ)

)
exp

[
i

h̄
I (t, r, φ)

]
.

In order to apply WKB approximation, we can insert the ansatz
for spinor field Ψ into the Dirac equation. Dividing by the ex-
ponential term and neglecting the terms with h̄, one can arrive
at the following two equations

(10)

{
A(μ + 1

r
∂φI ) + B(N∂rI + 1

N
∂t I − Nφ

N
∂φI) = 0,

A(N∂ I − 1 ∂ I + Nφ

∂ I) + B(μ − 1∂ I) = 0.
r N t N φ r φ
Note that although A and B are not constant, their derivatives
and the components ωμ are all of the factor h̄, so can be ne-
glected to the lowest order in WKB approximation. These two
equations have a non-trivial solution for A and B if and only if
the determinant of the coefficient matrix vanishes. Then we can
get

(11)N2(∂rI )2 − 1

N2

(
∂t I − Nφ∂φI

)2 + 1

r2
(∂φI )2 − μ2 = 0.

Because there are two killing vectors (∂/∂t)μ and (∂/∂φ)μ in
the BTZ spacetime, we can separate the variables for I (t, r, φ)

as following

(12)I = −ωt + jφ + R(r) + K,

where ω and j are Dirac particle’s energy and angular mo-
mentum respectively, and K is a complex constant. Insert it to
Eq. (11) and solving for R(r) yields

(13)R±(r) = ±
∫

dr

N2

√(
ω + jNφ

)2 + N2

(
μ2 − j2

r2

)
.

As discussed in the Hamilton–Jacobi method [17,18], one so-
lution corresponds Dirac particles moving away from the outer
event horizon and the other solution corresponds the particles
moving toward the outer event horizon. The probabilities of
crossing the outer horizon each way are respectively given by

Pout = exp

[
− 2

h̄
Im I

]
= exp

[
− 2

h̄
(ImR+ + ImK)

]
,

(14)Pin = exp

[
− 2

h̄
Im I

]
= exp

[
− 2

h̄
(ImR− + ImK)

]
.

To ensure that the probability is normalized, we should note that
the probability of any incoming classical particles crossing the
outer horizon is unity [18]. So we get ImK = − ImR−. Since
ImR+ = − ImR− this implies that the probability of a particle
tunneling from inside to outside the outer horizon is given by

(15)Γ = exp

[
− 4

h̄
ImR+

]
.

The imaginary part of R+ can be calculated using Eq. (13). In-
tegrating the pole at the horizon leads to the result (see [7,18]
for a detailed similar process)

(16)ImR+ = π

2κ
(ω − ω0),

where κ = (r2+ −r2−)/(l2r+) is the surface gravity of outer event
horizon and ω0 = jΩ+ with Ω+ = J/(2r2+) is the angular ve-
locity of the outer event horizon. This leads to the tunneling
probability

(17)Γ = exp

[
−2π

κ
(ω − ω0)

]
,

which is consistent with the previous literatures (a recent dis-
cussion appeared in Ref. [15]). It should be noted that the higher
terms about ω and j are neglected in our derivation and the
expression (17) for tunneling probability implies the pure ther-
mal radiation. The higher terms of the tunneling probability
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can arise from the energy and angular momentum conserva-
tion. In [15], the authors obtained the emission rate Γ = eSBH

when taking the back reaction into account and argued the re-
sult offers a possible mechanism to explain the information loss
paradox.

From the emission probability (17), the fermionic spectrum
of Hawking radiation of Dirac particles from the BTZ black
hole can be deduced following the standard arguments [19,20]

(18)N(ω, j) = 1

e2π(ω−ω0)/κ + 1
.

From the tunneling probability and radiant spectrum, Hawking
temperature of BTZ black hole can be determined as

(19)T = κ

2π
= 1

2πl2r+
(
r2+ − r2−

)
.

At last, we present a brief comment regarding the extremal
case Ml = J . In the extremal case, the two horizons coin-
cide, i.e., r+ = r−. The factor N2(r) is of order two in terms
of power series expansion near the horizon, namely N2(r) ∼
(r − r+)2, which is very different from the non-extremal case
where N2(r) ∼ (r − r+). Then the integral (13) is divergent.
This yields a diverging real component in the action while no
imaginary part presented, which implies that the extremal black
hole cannot emit particle in order to avoid the creation of naked
singularity. Then we argue that Hawking temperature for ex-
tremal BTZ black hole is just zero. The result for the extremal
black hole do not violate the cosmic censorship.

In summary, we have calculated the Dirac particles’ Hawk-
ing radiation from BTZ black hole using the tunneling formal-
ism. Starting with Dirac equation, we obtained the radiation
spectrum and Hawking temperature of BTZ black hole by using
the WKB approximation. The results coincide with the previous
literatures. Whether the method presented in this Letter is also
valid for other background spacetime is interesting to investi-
gate in the future.
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