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Abstract

This work presents a new software, the Sensor Placement (S-PLACE) Toolkit , for computing at which locations to install contam-

inant sensors in water distribution systems to reduce the impact risks. The S-PLACE Toolkit has been designed to be user-friendly,

suitable for both the professional and the research community, programmed in Matlab utilizing the EPANET software library, with

a modular software architecture to make it extensible. The use of the software is illustrated using benchmark networks which

capture different types of real network topologies.
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1. Introduction

The problem of deciding where to install water quality and contamination sensors within water distribution net-

works, for enhancing monitoring and security capability, has been widely investigated within the last decade by the

hydro-informatics and the water distribution systems research community (Hart and Murray, 2010). In most works,

sensor placement is formulated as the optimization problem of selecting, out of all the feasible locations, a finite sub-

set of nodes where sensors should be installed, in order to minimize one or more objectives (e.g. risk), with respect to

certain impact metrics (e.g. number of people infected) (Ostfeld et al., 2008, Eliades and Polycarpou, 2010).

Various challenges have been identified in research, which affect the sensor placement solutions such as: the uncer-

tainties in the system parameters, the stochastic demands, the solution methodology and its computational feasibility,

the sensor inaccuracies, the impact metrics and the risk objectives selection, the contamination scenario selection and

the use of mobile sensors (Comboul and Ghanem, 2013, Afshar and Mariño, 2012, Dorini et al., 2010, Weickgenannt

et al., 2010, Krause et al., 2008, Preis and Ostfeld, 2008, Perelman and Ostfeld, 2013, 2010, Eliades et al., 2010).

Currently, the Threat Ensemble Vulnerability Assessment and Sensor Placement Optimization Tool (TEVA-SPOT

v2.5) is the state-of-the-art in water distribution sensor placement software Murray et al. (2010) and is a powerful
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tool for the water distribution industry. The tool is based on the EPANET software engine, and utilizes the hydraulic

and quality solver to simulate various contamination scenarios. The sensor placement problem is formulated as a

mathematical program based on certain objective metrics and objective functions, taking into account response times

and constraints. In addition, TEVA-SPOT utilizes a graphical user interface to depict the different sensor placement

solutions.

Inspired by the usability of TEVA-SPOT, and motivated by the need of researchers in developing and comparing

different methodologies and algorithms, a new programming platform has been developed, the “Sensor Placement

Toolkit” (S-PLACE), which is implemented in Matlab’s programming language. The software has been designed

to be user-friendly, both for the academic as well as the professional community, making it easy to evaluate differ-

ent algorithms under various scenarios. In addition, through its graphical interface, it provides an intuitive way of

interfacing with the software and the network model. The software architecture is modular, and each module can

be accessed independently through stand-alone functions. Furthermore, the S-PLACE is extendible, as it allows to

add, modify or remove methods, as well as network elements, in accordance to the research objectives. For instance,

the researcher can evaluate and compare different new risk functions, optimization algorithms and scenario selection

algorithms.

The S-PLACE was developed using the “Matlab-EPANET Toolbox”, an open development platform which in-

corporates methods to assist in the simulation, optimization and control of water distribution systems, utilizing Mat-

lab’s Class structures and the EPANET software library. The Toolbox is comprised of a set of functions which are

based on the EPANET, along with other useful functions for visualization, simulation and data management. The

S-PLACE Toolkit and the Matlab-EPANET Toolbox is reliased under an open-source license and is available at

https://github.com/KIOS-Research/splace-toolkit.

The paper is organized as follows: Section 2 describes the sensor placement problem formulation. Section 3

presents the architecture of the S-PLACE Toolkit and Section 4 illustrates the use of the Toolkit through case stud-

ies using several benchmark networks which capture different types of real network topologies. Finally, Section 5

concludes the paper and future work is discussed.

2. Problem Formulation

In this section the problem of sensor placement is formulated. In general, the propagation and reaction dynamics in

water distribution networks are described by a set of hyperbolic partial differential equations, which can be discretized

using some numerical scheme in order to facilitate computational solutions (Rossman and Boulos, 1996). Following

the formulation in (Eliades and Polycarpou, 2010), let R be the set of real numbers, k the discrete time with Δt
time step, and let the state-space equations describing the contaminant propagation in a water distribution network

segmented into Nx finite volume elements to be given by

x(k + 1) = A(k; px)x(k) + φ(px, pφ) (1)

where x(k) ∈ R
Nx is the contaminant concentration vector at time k. The state matrix A(k; px) is time-varying and

depends on the distribution network topology as well as to the hydraulic parameter set px which affects water flows,

such as consumer demands, node elevations, as well as pipe lengths/diameters and roughness coefficients. Function

φ ∈ RNx corresponds to the uncontrolled contaminant injection, which depends on the hydraulics parameter set px and

the contaminant parameter set pφ, such as the contaminant concentration profile, the contaminant injection location

and the time the contamination begins. In (1) no chemical reactions of the contaminant substance are considered.

The parameters px, pφ are in general partially or nominally known, and the uncertainty in the knowledge of these

parameters may affect the final solutions. To alleviate this problem, we may consider constructing a number of

contamination and hydraulic scenarios, with the aim of capturing the variability in the real water distribution network.

Let P be the finite set of all the different hydraulic and contamination parameters considered, constructed through

some suitable function, in which upper and lower bounds of each parameter along with grid or random sampling

from within those bounds is considered. Each different hydraulic and contamination parameter set corresponds to a

scenario, and P is comprised of Np scenarios. The intuition behind using different scenarios, is to provide a more

robust solution, which may be different from the solution computed if average parameter values were considered.
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The impact damage caused to the consumers because of the consumption of contaminated water, can be estimated

with respect to certain impact metrics, such that

z(k + 1) = z(k) + fz(x(k); pz) (2)

where z(k) ∈ RNx is the impact metric corresponding and fz is a non-negative function which computes the increase of

the contamination impact, which depends on the concentration state vector and the impact parameter set pz (such as

the average water consumption per person per day or the contaminant concentration threshold above which ingestion

is harmful). In this work the Contaminated Water Consumption Volume (CWCV) is considered as the impact metric.

For each contamination scenario in P the impact in each location where water is consumed is calculated, by

simulating the operation of the distribution system for a certain time (typically a few days). Specifically, for the i-th
scenario, the quality dynamics are simulated and the impact dynamics are calculated for each consumption location;

when the simulated contaminant concentration exceeds a certain detectable threshold at the j-th sensing node (i.e. a

location where a quality sensor can be installed), the total impact is aggregated, thus computing the estimated overall

impact Ω(i, j). In this work, the (i, j)-th overall-impact corresponds to the estimated total volume of water consumed

after simulating to the i-th scenario and after considering a quality sensor monitoring the j-th sensing node. The

overall-impact matrix Ω is of size Np × Ns, where Np is the number of scenarios considered and Ns the number of the

possible sensing locations.

Finally, the optimization problem for contaminant sensor placement is formulated as a multi-objective risk-minimization

problem, where the best solutions belong to a Pareto Front with respect to certain objectives. Specifically, the multi-

objective optimization problem is formulated in this work as

Y = argmin
χ∈{1,0}Ns

{F0(χ), F1(χ;Ω), F2(χ,Ω)}, (3)

subject to |χ| ∈ X
where χ is the sensing node index, for which χl = 1 when a sensor is installed and χl = 0 when there is no sensor

installed at the l-th sensing node, and X is the set of number-of-sensors considered in the optimization. Regarding the

optimization functions: function F0 is the number of sensors (or cost if available), F1 is the estimated average impact-

risk and F2 is the estimated worst-case impact-risk. For computing the best Pareto Front solutions, the selection

of the algorithm depends on the problem size. For small problems, an exhaustive search may be computationally

feasible, whereas for larger problem other methods such as multi-objective evolutionary optimization algorithms can

be applied.

After solving the optimization problem and the Pareto Solutions set has been constructed, decision makers may

use higher-level reasoning to arrive at the final decision regarding at which nodes to install the sensors.

3. S-PLACE Toolkit Architecture

The S-PLACE Toolkit has been designed to have a modular architecture, so that it is possible to use, modify and

remove modules and algorithms depending on the problem requirements, following a plug-in approach. The S-PLACE

Tookit is based on the ‘EPANET-Matlab Toolbox’, a Matlab Class which wraps all the functionalities available by

the EPANET dynamic libraries (Rossman, 2000), along with a number of custom-made functions which facilitate its

programming.

The Toolkit extracts all the network parameters from the EPANET input file provided, which includes the network

topology, pipe lengths and diameters, roughness coefficients, node elevations and demands, characteristics of tanks,

valves, pumps, as well as quality parameters. The ‘Data Module’ communicates with EPANET and constructs an

EPANET object which will be used by the other modules. In addition, the water distribution network is plotted in the

Toolkit’s GUI.

The ‘Scenarios Construction Module’ allows the user to select the parameter bounds and sampling method, for

constructing the scenarios which will be used in the simulation module, P and these scenarios are stored in the Sce-

narios file (0-file). Next, all or some of the scenarios are simulated using the EPANET library to solve and store the

different hydraulic scenarios (h-files), corresponding to the network flows, and then to solve and store the different
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Fig. 1. The software architecture of the S-PLACE Toolkit.

quality scenarios with respect to some hydraulic scenario (c-files). As a result, the contaminant concentrations are

calculated for each node which is either a consumption node or a possible sensing node. The ‘Impact Matrix Calcu-

lation Module’ utilizes the data from the scenarios and the simulation files, to calculate the damage caused by some

contamination event. The overall-impact matrix Ω computed for all the Np scenarios and the Ns sensing nodes, is

stored in the Overall-Impact Matrix File (w-file). Finally, the “Sensor Placement Module” is used to compute the

final solutions, based on the computed overall impact matrices and the scenarios. Through the GUI, the user specifies

which method to use to solve the problem. For instance, exhaustive search methods would compute all the possible

solution combinations, and calculate the Pareto Solutions. The node solutions are depicted graphically on the map,

and are stored in the Solutions Files (y-files).

The main interface with the different modules and features is depicted in Fig. 2. The algorithms corresponding

to each module appear automatically in the drop-down menus which are indicated with the labels ‘2’ – ‘5’. To

demonstrate the plug-in method in practice, consider the following example: Suppose that the user would like to

create a new impact metric, for instance, to compute the Population Infected (PI) in the Impact Matrix Calculation

Module (‘4’ in Fig. 2). A folder ‘PopulationInfected’ should be created in the ‘./SPLACE/IMPACT/’ path of the

software, and within it create a Matlab method with the same name, ‘PopulationInfected.m’. This method should

utilize the concentration files and the scenario files in order to compute the corresponding overall impact matrix with

respect to the Population Infected metric. The method would appear automatically in the SPLACE Toolkit.

4. Case Studies

The operation of the S-PLACE Toolkit is demonstrated using different benchmark networks: the ‘Anytown’ net-

work (Walski et al., 1987) as well as networks from a research database of water distribution system models which

was recently released by Jolly et al. (2013).
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Fig. 2. The S-PLACE Toolkit Graphical User Interface is comprised of the following parts: 1) the network loading buttons, 2) the scenario

construction method, 3) the scenario simulation method, 4) the impact-matrix calculation method, 5) the sensor placement solution method, 6) the

message box, 7) the water distribution network, 8) the legend for the different network elements, 9) the graph options, 10) the results box where

each solution is depicted automatically in the graph by highlighting the selected nodes.

4.1. Illustrative Example

The ‘Anytown’ network is comprised of 22 nodes, 1 reservoir, 2 tanks, 43 pipes and 3 pumps; further model details

are available in (Walski et al., 1987). The selected parameters for the simulations are depicted in Fig. 3. A possible

contamination can occur any time within the first simulation day, and the full simulation length is 48 hours. Single-

source contamination events are considered in any node, and nodes with non-zero base-demands are considered to

be suitable locations for installing water quality sensors. The contamination event corresponds to the injection of a

contaminant at 10 mg/L for 2 hours. To capture the variability in the demands, we consider a 10% uncertainty in the

base-demands of each node. In addition, we consider that 2 samples are taken with respect to the nominal values. For

instance, for nodes 1–4, the nominal base demand is [500, 200, 200, 600] gal/min, and for the simulation purposes,

the following base-demand vectors are constructed [450, 180, 180, 540] gal/min and [550, 220, 220, 660]} gal/min,

corresponding to the lower and upper demands respectively. In addition, nodes with non-zero base demands are

considered to be suitable locations for installing water quality sensors.

Eventually, 1250 scenarios are constructed and simulated to compute the contaminant concentrations. As impact

metric, the contaminated water consumption volume is considered and the overall impact-response matrix Ω is com-

puted. Because of the small problem size, the Pareto Front solutions for the {3, 4, 5}-sensor placement problem are

computed through exhaustive search. One Pareto solution for the 4-sensor placement is depicted in Fig. 4, at nodes

χ = {‘5’, ‘7’, ‘10’, ‘19’}, for which the mean and worst-case contaminated water consumption volume is, with respect

to the 1250 simulated scenarios, F1(χ;Ω) = 25 062 m3 and F2(χ;Ω) = 138 808 m3, respectively.

4.2. Application in Realistic Networks

Next, we demonstrate the how to S-PLACE Toolkit on three realistic benchmark networks models, ‘KY3’, ‘KY5’

and ‘KY11’, acquired from the research database released by Jolly et al. (2013).



607 D.G. Eliades et al.  /  Procedia Engineering   70  ( 2014 )  602 – 611 

Fig. 3. The parameters selected for the scenarios construction of the Anytown benchmark. Two base-demand vectors have been considered with

10% uncertainty with respect to the nominal values.

Fig. 4. A Pareto Solution selected for the 4-sensor placement problem. The corresponding nodes for installing sensors are indicated on the

‘Anytown’ network graph as red circles.

The KY3 benchmark has a ‘Loop’ topology, and is comprised of 263 junctions, 349 pipes, 3 tanks and 3 reservoirs.

The {1,2}-sensor placement problem is solved when {1,2} contamination sources are considered. Intuitively, it is

expected that some of the solutions in the 1-source problem will not be optimal with respect to the 2-source problem.

This is shown in the results presented in Table 4.2, which indicate that certain solutions are more robust than others

when more than one sources are considered. For instance, if one sensor is to be installed, a decision maker might prefer

selecting node ‘J-216’, as it is an optimal location for both the 1-source and the 2-source problems. In addition, a

decision maker might choose between the solutions {‘J-140’,‘J-174’} or {‘J-174’, ‘J-178’}, which are Pareto solutions

for both the 1-source and the 2-source problems.

The next case-study examines the benchmark network KY5, which has a ‘Grid’ topology and is comprised of 401

junctions, 496 pipes, 3 tanks and 4 reservoirs. A 20% uncertainty in the base-demands of each node is considered, and

3 samples are selected for each base-demand, thus constructing 32250 scenarios. In this case-study, when considering

the scenarios without uncertainties and with 20% base-demand uncertainties, the the Pareto solutions for the {1,2}-
sensor placement problem did not demonstrate significant differences, as seen in Table 2. The shared Pareto solutions

for both problems, were: for the 1-sensor placement, ‘J-135’ and ‘J-313’, and for the 2-sensor placement, {‘J-11’, ‘J-
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Table 1. Pareto solutions for the {1,2}-sensor placement problem in benchmark KY3, as computed by the S-PLACE considering average model

parameters and {1,2} contamination sources. The shared Pareto solutions for both cases are shown in bold typeface.

Contamination Sources Number of Sensors Average Impact-Risk Maximum Impact-Risk Sensor Nodes

F0(χ) F1(χ) F2(χ)

1 1 23 394 219 749 J-140

1 1 21 800 278 912 J-216
1 2 17 999 133 268 J-111, J-178

1 2 15 776 151 078 J-140, J-174
1 2 16 912 141 392 J-174, J-178

2 1 43 568 327 311 J-167

2 1 38 898 361 571 J-216
2 2 27 412 199 724 J-121, J-174

2 2 27 083 201 267 J-140, J-174
2 2 26 701 338 346 J-159, J-174

2 2 28 971 181 042 J-174, J-178

Fig. 5. The benchmark network KY3. The labels indicate the most significant nodes with respect to the Pareto solutions presented in Table 4.2.

217’}, {‘J-12’, ‘J-217’} and {‘J-208’,‘J-217’}. Note that two Pareto solutions {‘J-138’, ‘J-208’} and {‘J-135’, ‘J-208’}
which corresponded to the smallest worst-case impact-risks when 20% base-demand uncertainty is considered, do not

appear in the case of 0% base-demand uncertainty.

The final case-study examines the benchmark network KY11, which has a ‘Branch’ topology, and is comprised of

728 junctions, 846 pipes, 28 tanks and 1 reservoir. In addition, there are 15 Pressure Reduction Valves (PRV) in the

network. We consider that the contamination sensors should only be installed in locations where PRVs are currently

installed; this is a realistic constraint since PRVs are usually located at some accessible location, typically connected

to a power supply/grid and communicating through some wired, optical or wireless network. The possible sensing

nodes (i.e. the PRV locations), are selected during the scenario parameters construction phase, and the system is

simulated. As a result, the solution search-space is considerably smaller. The results are given in Table 3, for solving

the {1,...,5}-sensor placement problem exhaustively.

5. Conclusions and Future Work

The problem of water quality monitoring for security has been widely investigated within the last decade, and a

large volume of research work has been produced addressing various aspects of this problem. Software tools have

been developed for the purpose, such as the TEVA-SPOT, which is considered the state-of-the-art in its field. In this

work we demonstrate a new software tool, the Sensor Placement Toolkit (S-PLACE), whose goal is to provide an
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Table 2. Pareto solutions for the {1,2}-sensor placement problem in benchmark KY5, as computed by the S-PLACE considering average model

parameters and {0,20}% base demand uncertainty. The shared Pareto solutions for both cases are shown in bold typeface.

Base Demand Uncertainty Number of Sensors Average Impact-Risk Maximum Impact-Risk Sensor Nodes

(%) F0(χ) F1(χ) F2(χ)

0 1 25 267 492 021 J-135
0 1 28 675 463 860 J-313
0 2 17 279 305 112 J-11, J-217
0 2 17 394 233 255 J-12, J-217
0 2 17 024 450 849 J-141, J-74

0 2 17 364 253 309 J-208, J-217

20 1 24 725 569 860 J-135
20 1 28 976 567 516 J-313
20 2 16 772 305 111 J-11, J-217
20 2 16 927 278 028 J-12, J-217
20 2 17 201 269 791 J-135, J-208

20 2 18 180 268 711 J-138, J-208

20 2 16 916 283 104 J-208, J-217

Fig. 6. The benchmark network KY5. The labels indicate the most significant nodes with respect to the Pareto solutions presented in Table 2.

easy-to-use and programmable framework for developing and benchmarking different algorithms, through a modular

architecture, using the Matlab language and based on the EPANET libraries. A key feature of the new tool is the

ability to add/modify functions in a plug-in approach.

The S-PLACE Toolkit is comprised of a set of methods for creating and simulating contamination and hydraulic

scenarios, for calculating the impact damage due to a contamination event and for solving the sensor placement prob-

lem. In specific, it is possible to construct scenarios which capture the variance which may appear due to the parameter

uncertainties. The different case-studies demonstrate the use of the S-PLACE Toolkit, specifically through the use of

the ‘Anytown’ benchmark, as well as three realistic benchmark networks with loop, grid and branch topology. The
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Fig. 7. The benchmark network KY11. The labels indicate the most significant nodes with respect to the Pareto solutions presented in Table 3.

Table 3. Pareto solutions for the {1,5}-sensor placement problem in benchmark KY11, as computed by the S-PLACE considering average model

parameters.

Number of Sensors Average Impact-Risk Maximum Impact-Risk Sensor Nodes

F0(χ) F1(χ) F2(χ)

1 8 308 218 895 PRV-14

2 6 710 218 895 PRV-14, PRV-7

2 7 869 125 584 PRV-14, PRV-4

3 5 544 218 895 PRV-14, PRV-7, PRV-1

3 6 271 100 480 PRV-14, PRV-7, PRV-4

4 5 105 94 867 PRV-14, PRV-7, PRV-1, PRV-4

4 4 858 218 895 PRV-14, PRV-16, PRV-7, PRV-1

5 4 827 80 638 PRV-14, PRV-2, PRV-7, PRV-1, PRV-4

5 4 427 94 867 PRV-14, PRV-16, PRV-7, PRV-1, PRV-4

case studies demonstrate how the results may vary when the number of contamination source changes, when uncer-

tainties are considered in the hydraulics, as well as when the solutions are constrained to a finite set of possible sensing

locations at locations where pressure reduction valves are also installed.

The S-PLACE Toolkit software is released under an open-source licence and is available at https://github.

com/KIOS-Research/splace-toolkit. Future expansions will allow the consideration of multiple impacts, in-

clude the EPANET-MSX libraries for simulating multiple chemical species within the network, and improve the tools

for comparing and visualizing results from different methods.
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