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Abstract

We explore an area that connects classical Hausdorff topology and the Scott do-
main theory and serves as a foundation for a denotational semantics of numerical
programs.

Our key notion is that of a maximal limit space, a Ty space (X, 7) in which every
net that has a limit point has a unique limit point maximal in the specialization
order induced by 7. Maximal limit spaces combine features of Hausdorff spaces and
domains and form a bridge between those two categories. Every Hausdorff space
is a maximal limit space, and maximal limit spaces are preserved under product,
closed subspace, and function space constructions. A topological version of the
lifting construction, familiar in domain theory, makes a maximal limit space into a
compact maximal limit space. The upper powerspace construction makes a locally
compact maximal limit space into a c.b.c. domain (continuous directed-complete
partial order that is bounded-complete, i.e., any subset with an upper bound has
a least upper bound) that is pointed (has a bottom element) if the original space
was compact. C.b.c. domains are locally compact maximal limit spaces. The space
of continuous functions from a locally compact topological space to a pointed c.b.c.
domain is a pointed c.b.c. domain. The topology of pointwise convergence and the
compact-open topology are identical on such function spaces.

The upper powerspace construction is functorial and behaves well in relation to
function space formation.

1 Introduction

This paper introduces a category of topological spaces, the maximal limit
spaces, which includes classical Hausdorff spaces and bounded-complete do-
mains. Maximal limit spaces have Hausdorff-like properties, are closely related

! Thanks to Dana Hartman for her assistance in writing this paper.
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to supersober spaces, and are closed under many familiar operations on topo-
logical spaces. Upper powerspaces of pointed, locally compact maximal limit
spaces are pointed continuous, bounded-complete domains. The latter form a
Cartesian closed category.

Our principal aim in developing the theory of maximal limit spaces and
their powerspaces is to provide a domain theoretic basis for a denotational
semantics of numerical programs adequate for describing the limit as roundoff
error tends to zero [11,10]. A secondary aim is to suggest that the bridge
between classical Hausdorff spaces and domains could be exploited in order
to apply domain-theoretic ideas in mathematical analysis. Edalat [5] has
demonstrated that powerdomains are also useful in connection with fractals

2 we anticipate further applications of powerdomains

and dynamical systems;
in set-valued analysis [3]. We suggest that in analytic applications it may
also be possible to exploit the fact that the category of pointed continuous
bounded complete domains is closed under function space formation.

Scott domains, or simply domains, and their relatives form a family of
partial orders whose use in denotational semantics of computer programs
is well known [18,28]. These semantics have a topological interpretation in
terms of the Scott topology of these partial orders. In denotational seman-
tics, computable functions are continuous and programming constructs induce
continuous operations on computable functions. Scott domains have a con-
nection with more general (including more classical) topological spaces via
the Hofmann-Mislove Theorem (essentially 2.17, 2.19 and 2.21 in [9], stated
as Theorem 4.2, below), which says that the space of compact upper (i.e.,
upward-closed with respect to the specialization order) subsets of a locally
compact sober space is a domain and that a natural topology on this space
is the same as its Scott topology. (This space of upper compact sets is called
the upper powerspace.) Domains, however, are not adequate for all aspects of
denotational semantics, because in considering denotations of functions and
procedures, it is essential that the space of continuous functions between two
semantic domains also be a domain. For this reason, continuous, bounded-
complete (or c.b.c.) domains are more important than domains per se, be-
cause they have the property that the space of continuous functions between
two pointed c.b.c. domains is a pointed c.b.c. domain (essentially Theorem 3.3
in [19]).® That is, the category of pointed c.b.c. domains is cartesian closed.

In this paper, we consider a particular class of Tj spaces, the mazimal limat
spaces, a topological space (X,7) in which every convergent sequence has a
unique limit maximal in the specialization order of 7. Hausdorff spaces are
characterized by the property that convergent sequences have unique limits.
The defining property of maximal limit spaces is a natural weakening of this
unique limit property that applies to Ty topological spaces that are constructed
using natural operations. In particular,

2 We are grateful to one of the referees for pointing out the work of Edalat.
3 We use the term c.b.c. domain instead of bounded-complete domain or BC-domain because
in Gunter [8] BC-domains are algebraic, not just continuous.
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e Hausdorff spaces are maximal limit spaces;

» maximal limit spaces are closed under lifting (adding a bottom element),
products, and closed subspaces; and

e C.b.c. domains are maximal limit spaces.
Some other important properties of maximal limit spaces are the following.

e Maximal limit spaces are Tg.
e Maximal limit spaces are supersober, hence sober.

» Maximal limit spaces are bounded-complete (subsets with an upper bound
in the specialization order have a least upper bound).

* Maximal limit spaces are characterized by a weakening of the Hausdorff
separation property.

e The intersection of two compact upper subsets of a maximal limit space is
compact upper.

e The upper powerspace of a locally maximal limit space is a c.b.c. domain.

* The space of continuous functions from a locally compact space to a maximal
limit space is a maximal limit space (with the compact-open topology).

The second last result follows from the Hofmann-Mislove Theorem by the
result about intersections of compact upper sets. Maximal limit spaces seem
to be more useful in practise because their defining property is simpler and
stronger and because they have better closure properties.

We also generalize the well-known result that c.b.c. domains are closed
under forming spaces of continuous functions (essentially Theorem 3.3 in
Scott [19]) by showing that in fact the space of continuous functions from
any locally compact topological space to a pointed c.b.c. domain is a pointed
c.b.c. domain. Another interesting result about function spaces is the in the
space of continuous functions D — Y, where D is a domain and Y is any
topological space, the compact-open topology and the topology of pointwise
convergence are the same.

The fact that locally compact Hausdorff spaces can be transformed by
lifting and the upper powerspace construction into pointed c.b.c. domains,
which are both quite well-behaved (in particular, locally compact) and closed
under forming spaces of continuous functions, leads us to suggest that a useful
and systematic approach to problems involving topologically difficult function
spaces might be to start by lifting the basic spaces involved and forming
their powerspaces. Then function spaces formed later will be better behaved.
We present some basic results about the relationship between powerspace
formation and function space formation that suggest that such an approach
may be feasible. Although the Hausdorft property will be lost by the original
lifting /powerspace construction, we think that the Hausdorff-like properties of
maximal limit spaces and the better behavior of function spaces will provide
good compensation.

An example of an application involving rather difficult function spaces
(integrating path-dependent stochastic differential equations) is given in [12].

3



HoovERr

Related Work

The work most closely related to our use of powerspaces is that of Edalat
[5,6], who has used upper powerspaces, especially the upper powerspace of the
real numbers, in a number of areas of analysis, including dynamical systems,
fractals, and integration theory.

Other work relating to topological powerspaces and domains is that of
Nivat and his school [16], who use the fact that the space of closed subsets
of a complete metric space (M, d) is both a complete metric space under the
Hausdorff metric

du(C1,Cs) = max(sup inf d(z,y), sup inf d(z,y))

zeC, y€eCs yeCsy zeCy
and a directed-complete partial order (DCPO) under the partial order
CiC O, <= C; 20C,

(the same as the specialization order in the upper powerspace). We feel that
this approach has two drawbacks: the partial order and topology on the power-
space coexist but are not fully integrated; and topological limits can be used
in semantic definitions only when convergence is unproblematic. For example,
if zgp, =0, Tant1 = 1, then in the Hausdorff metric, {z,}, n € N does not con-
verge, whereas in the upper topology it converges to {0,1}. The latter seems
more reasonable in the context of computer program semantics: it means that
in the limit we do not know whether the answer will be 0 or 1, a nondeter-
ministic result. In [11] we use maximal limit spaces to model convergence of
a sequence of programs. There, the looser convergence criterion given by the
upper topology is essential.

Certain results using Nivat’s method are easily reproducible using upper
powerspaces of suitable spaces; for example [11] contains results analogous to
those of [16] on evaluation of infinitary real number expressions. Some results
by de Bakker and his collaborators on semantics of communication streams
(see [4] for a survey of their results) seem, however, to go deeper than this,
since they use certain categories of metric spaces and nonexpansive mappings
to solve domain equations. Perhaps the two approaches can be merged using
quasi-metric spaces, first noted as important by Lawvere [15]. A quasi-metric
is like a metric except that possibly d(z,y) # d(y,z). A quasi-metric d on a
space M induces a partial order by

2Ty = diy,z) =0
(same as the specialization order on the topology induced by d via z, — y
iff d(zn,y) — 0). The upper powerspace of a quasi-metric space is again a
quasi-metric space under the Hausdorff quasi-metric,

d(C, D) = sup inf d(z,y).

zcC Y€D

Smyth [24] explores quasi-metric spaces in the context of computer program
semantics. Quasi-uniform spaces, a generalization of quasi-metric spaces, are
discussed in [23,26,27]. For our intended applications, however, plain topolog-
ical spaces suffice.

Aberer [1] presents a quite different approach to denotational semantics
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involving real numbers, via combinatory differential fields.

We are grateful for advice from Achim Jung, which helped make us aware
of work that might be related to this paper. Although we have not used the
original results in it, the dissertation of Schalk [17] was useful in providing
references on powerspaces.

2 Basic Definitions

A topology T on a set X induces a partial preorder C7 on X, the specialization
(pre-) order of T, given by

ztCry < VWUeT, zeU=yel.

T is Ty iff C7 is a partial order.
In turn, a partial order C on a set D induces a Scott topology
Sc ={UCD|U=U upper, (S directed by T, SNU =10,
and | |S exists) =||S¢U},
where U is upper if € U and = C y impliesy € U. St is always T because
if y £  then z and y are separated by the Scott-open set {z | z Z z}. In
general, Sr, and 7 may not be comparable, but it is always the case that

Cs. =LC.

When (X, T) is a topological space, (N, <) is a directed set, and z,, s € N,
is a net in X, we use limit notation z, — z (or z, 7, 2 if we wish to identify
or emphasize the topology) to indicate Moore-Smith convergence in 7. That
1s:

z, >z <= YU ET (z €U —>3dsg € N (Vs€ N(so<s—z,€U))).

In a Ty topological space, the limit of a net will not in general be unique, since
z, — x and y C7 x implies z, — y.

The following definitions for the most part summarize one widespread form
of terminology, the form used in [2]. In particular, here a DCPO or domain
need not have a bottom element. This convention seems to be the most
convenient convention for topological discussions, though the reverse is best
for discussing denotational semantics, as in [8].

Definition 2.1

(i) A DCPO (directed-complete partial order) is a poset (D,C) such that
every nonempty, C-directed subset S C D has a supremum | | S € D.

(i1) A To topological space (X,7) is order consistent ([25]) iff T C Sg, (iff
for each directed S C X that has a supremum, | | S is a 7 -limit point of
S).

(iii) A DC (directed-complete topological) space is an order consistent space
(D, T) such that (D,C7) is a DCPO.

(iv) A topological space (X, T ) is a mazimal limit space if for every convergent
net z,, s € N, in X there exists a unique z € X such that

z, >z and z,oy=>yLlrz.
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We call z the mazimal limit of z,, s € S, and write £ = max-lim,¢cg x,.
(v) An H-space is a locally compact maximal limit space. We call a poset
(D,C) an H-space if (D, Sc) is an H-space.
(vi) For U a subset of a partially ordered set P, the upper set TU of U is given
by
W={yeP|IzelU((zCy)}
U is upper ifft U = TU. We define the lower set [U of U in the same way,
with J replacing C.
(vii) For z an element of a partial order (P,C), define
lz = {w | Tw is a Scott neighborhood of x}.
(Such w are usually termed way below z, but we prefer to stick to a
topological description. Note that Tw need not itself be open.)

(viii) A poset (P,C) is continuous iff for each z € P, lz is a neighborhood
basis for = in Sc. That is, if € U € S then there exists w € U N {z.

(ix) A domain is a continuous DCPO.

(x) A poset (P,C) is bounded-complete iff each nonempty S C P that has an
upper bound (lower bound) has a supremum (infimum). We say that a T
topological space is bounded-complete if it is complete in its specialization
order.

(xi) A c.b.c. domain is a domain that is bounded-complete.

(xii) A poset (P,C) is pointed if it has a least element L.

It follows easily that in a domain {z is directed and | [{z = .

Note that, by definition of C7, 7 -open sets are Cr-upper.

S, may be finer than 7 in a DC-space (X,7). For example, if (X,7)
is Hausdorff, then it is a DC-space (since all elements are Cr-incomparable),
but St is the discrete topology.

Here are some easy results, which we state without proof.

Lemma 2.2 (i) Any mazimal limit space is To.
(ii) A Hausdorff space (X,T) is a mazimal limit space.
(iii) A pointed space is compact.
(iv) The lifting
(X1, 7)) =(Xu{L}, Tu{X.})
of a DC-space (X,T), where L & X, is a pointed DC space. A similar

result holds for mazimal limit spaces, H-spaces, DCPQOs, domains and
c.b.c. domains.

(v) The Tykhonov product of a family of mazimal limit spaces (respectively
pointed H-spaces) is a mazimal limit space (respectively pointed H-space).

(vi) The product of a family of pointed c.b.c. domains is a pointed c.b.c. do-
main. O
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For products of H-spaces or c.b.c. domains, pointedness is necessary in
order to preserve local compactness or the continuity property.

We add one slightly more substantial result that shows when a topological
space is a domain.

Lemma 2.3 If a DC-space (X,7) has a neighborhood basis of sets of the
form Tz (T with respect to Cr), then (X,Cr) is a domain and T is the Scott
topology of Cr.

Proof. Since (X,7) is a DC-space, the Scott topology of T refines 7. To
show the converse inclusion, let § be a Cr-open subset of X and let y € S. Let
Ly be the set of z € X such that Tz is a neighborhood of y. Since these sets Tz
form a neighborhood basis for y, {y must be directed; hence | | {y exists. Now
clearly y J || {y and no T -open set contains y and not | ||y, so they must be
equal. Since S is Scott-open, some z € SN ly. Since S is upper, Tz C S.
Thus S contains a 7-neighborhood of y. As y was an arbitrary element of S,
S is T-open. As S is an arbitrary C7-Scott-open set, Sc, C 7. O

3 Maximal Limit Spaces and Supersober Spaces

In this section, we show that the maximal limit spaces are supersober (hence
sober) spaces that have continuous bounded pairwise maxima. Equivalently,
they are bounded-complete DC-spaces that have a continuous maximum func-
tion and satisfy a weak Hausdorff separation property. First we define the
pertinent notions.

Definition 3.1 (i) A topological space (X, 7T ) has continuous mazima if the
partial function (z,y) — z Uy is continuous (with the relative topology
on its domain of definition).

(ii) A c.b.c. space is a bounded-complete DC-space with continuous maxima.

(iii) A filter on a set X is a set F of subsets of X such that:
e 0 ¢ F;
» F,G € F implies FNG € F; and
e if Fe Fand F C G then G € F.
A filter basis on X is a set F of subsets of F that satisfies the first two
conditions. An ultrafilter on X is a maximal filter on X.

(iv) A filter F C 7 is completely prime (relative to 7)if F £ 0, 0 ¢ F, and
whenever U; € 7,1 € I, and J;c; U; € F, there is some ¢ € I such that
U, e F.

(v) A topological space (X, T ) is sober if every completely prime filter F C T
consists of all open neighborhoods of some point z € X.

(vi) A filter basis F on a topological space (X,7) converges to z € X iff F
contains a neighborhood basis for z. We denote by lim F the set of limits
of F.

(vii) A topological space is supersober if every convergent ultrafilter in it has
a unique maximal limit.
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(viii) A topological space is weakly Hausdorff if any two points z,y € X that
do not have an upper bound have disjoint neighborhoods.

By Zorn’s Lemma, every filter base can be extended to an ultrafilter.
Let ULV ={zUy |z € Uy € V,z Uy exists}.

Lemma 3.2 A topological space (X,7T) has continuous mazima iff for all
z,y € X, if ||y emists then it has a neighborhood basis of sets U NV, where
UeN; and V € N,,.

Proof. (=) Suppose that z,y € X such that z Ll y exists. Let W be a
neighborhood of z LUl y. By continuity of L, there is U € A, and V € N,
such that for ' € U and y' € V, if 2’ Uy’ exists, then 2’ Uy’ € W. But if
=y =2zeUNV,thenz=2'Uy € W; hence UNV C W.

(<) Similarly, for any two open sets U and V, U UV = UNV. Thus
if z Uy exists and W is a neighborhood of z Uy, let U € N, and V € N,
such that UNV C W. Then U x V is a neighborhood of (z,y) such that
UUuV CW. Thus, U is continuous. a

Theorem 3.3 The following are equivalent for a topological space (X,T).
(1) (X,7) is a mazimal limit space.
(ii) (X, 7)) is supersober, bounded complete and has continuous mazima.

(iii) (X, 7T) ts a weakly Hausdorff c.b.c. space.

Proof. (¢ = 4z) Let (X,7) be a maximal limit space. Every filter (not just
every ultrafilter) has a unique maximal limit. Therefore (X, 7") is supersober.

Suppose that § C X is bounded above. Let z,, s € N, be a net such that
{zs | s € N} is the set of upper bounds of S, and such that for every upper
bound y of S, {s € N | z, = y} is cofinal in N. Then each z € § is a limit of
z, since z, J z for all s € N. Therefore max-lim, z, is an upper bound of S.
On the other hand, every upper bound y of S belongs to every neighborhood
of max-lim, z,; hence y - max-lim,; ,. Thus max-lim, z, = [ |S. Therefore
(X,T) is bounded-complete.

We show now (X, 7 ) has continuous maxima. Suppose that (zs,ys), s € N
converges to (z,y), and suppose that z, Uy,, s € N, and z Ly all exist. Since
zs — z and y, — v,

max-limz, J ¢, max-limy, J y;
hence
max-lim (z, Uy,) Jz Uy.

Therefore z, | |y, — x| ]y. Thus LI is continuous.

(12 = 2) First we show that a supersober space (X,7) is weakly Haus-
dorff. If z and y do not have disjoint neighborhoods, then the set F = {U €
T |z €Uory € U} is a filter base. Extend it to an ultrafilter #. Since U
converges to both z and y, its maximal limit is an upper bound of z and y.

Therefore (X, 7T) is weakly Hausdorfl.
8
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By [7] Proposition IV.1.11, every supersober space is sober, and it is well-
known that sober spaces are DC-spaces (e.g., [22]). Since (X, 7) is bounded-
complete and has continuous maxima, it is a c.b.c. space.

(132 = i) Let z,, s € N be a convergent net in S. If z, — z,y and U € A,
V € N, then z, € UNV for sufficiently large s € N, so UNV # (). Therefore,
by the weak Hausdorff property,  and y have an upper bound. Since (X,7)
is a c.b.c. space, ¢ Uy exists and has a neighborhood basis of sets of the form
UnVv,U e N,, V&N, Hencez, —» = Uy. Thus, the set L of limits of z,,
s € N, is directed. Since L is closed and (X, 7 ) is a DC-space, | | L exists and
belongs to L. Thus | | L is the unique maximal limit of z,, s € N. a

Corollary 3.4 FEvery mazimal limit space is sober. a

The categories of supersober spaces, maximal limit spaces, and pointed
H-spaces are all closed under Tychonov products. A closed subspace of a
maximal limit space (or an H-space) is also a maximal limit space (H-space),
but the same is not true of supersober spaces, since adding a top element to
any space makes it supersober.

The following example shows that a supersober space, even if it is a domain
with its Scott topology, need not be a maximal limit space.

Example 3.5 Consider a partial order (P,C) where P = {a,b,¢,d}, a,b C
¢,d and no other order relations hold. P is a domain and is supersober in
its Scott topology but is not bounded-complete, hence is not a c.b.c. space or
a maximal limit space. It does not make any difference if we add a bottom
element to make (P,C) pointed.

This counterexample is not surprising given that a domain need not be
bounded-complete. Continuous bounded-complete domains, however, are max-
imal limit spaces.

Theorem 3.6 Any c.b.c. domain with its Scott topology forms an H-space.

Proof. Let (D,C) be a c.b.c. domain. Any set of the form Tz is compact,
since any net in it converges to z. Since St has a neighborhood basis of sets
of this form, (D, Sc) is locally compact. To show that (D, Sc) has maximal
limits, we use Theorem 3.3 and prove 3.3.ii1. Suppose that z,y € D have no
disjoint neighborhoods. Then each pair u € {z and v € {y has a upper bound,
hence a supremum u Ll v. Since {z and |y are directed,

S={ulv|uelzve ly}

is directed. | |S J z,y since it belongs to each neighborhood of z and y. In
fact | |S = z Uy since each upper bound of z and y is an upper bound of S.
Finally, for each u € {z and v € |y,

TunNTv =T(ulv)
is a neighborhood of | | S. Since S is a limit point of | | S, these sets must also

form a neighborhood basis. It follows now by Theorem 3.3 that (D,Sc) is a
maximal limit space. a
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4 Compact Sets and Powerspaces

Definition 4.1 The upper powerspace [9,22] of a topological space (X,7) is
the space (K(X),K (7)), where

K(X)={K C X | Kcompact upper}, K(7)={NU)|U €T},
and

N(U) = {K € K(X) | K CU}.

Thus, a neighborhood of K in X(X) corresponds to what we would nor-
mally call a neighborhood of K.

The upper powerspace is the topological analog of the Smyth powerdomain.
Smyth [22] showed that for w-algebraic domains the upper powerspace is the
same as the Smyth powerdomain [21]. Further results about powerspaces are
given in Schalk [17]. Here we show that the upper powerspace of an H-space
is a c.b.c. domain.

Theorem 4.2 (Hofmann and Mislove [9]) If (X,7) is a locally compact
sober space, then (K(X),2) is a domain and its Scott topology 1s K(T). If X
is also compact (in particular, if X is pointed), then (K(X), (7)) is pointed.

Proof. By [9] Corollary 2.17, (K(X), J) is a continuous partial order. By [9]
Lemma 2.21, TJ is a Scott-neighborhood of K iff K C interior(J). But that
is equivalent to N(J) being a neighborhood of K in K(7). Therefore K(7') is
the Scott topology of (X(X),2). By [9] Proposition 2.19(i), the intersection
of a D-directed family S C X(X) is compact and upper. By [9] 2.19(ii), such
an intersection is nonempty and the limit of S. It follows that (KX(X),K(7))
is also a DC-space, hence a domain. If X is compact, then it is the bottom
element of (X)), making the latter pointed. O

The unique maximal limit property of topological domains contributes the
following.

Lemma 4.3 In a mazimal limit space, the intersection of two compact upper
sets 1s a compact upper set.

Proof. Let J and K be compact upper sets. Clearly J N K is upper. Let z,,
s € N be anet in JN K. By compactness of J and K, z, has a subnet that
converges in J, which has a further subnet that converges in K. The maximal
limit of this subnet must belong to both J and K since they are upper. Hence
J N K 1s compact. a

Theorem 4.4 If(X,T) is an H-space, then (K(X), D) is a c.b.c. domain and
K(T) 1sS5. If X is also compact, then K(X) is pointed.

Proof. Everything but the “BC” part follows by Theorem 3.4, and Theo-
rem 4.2. Nowif JJK D L, J,K,L € K(X), then JN K is nonempty, compact
(by 4.3) and certainly upper; hence JN K is the least upper bound of J and K
in (K(X),2). But in a DCPO, existence of suprema of bounded pairs implies
bounded completeness. a

10
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By [14] Theorem 25, this theorem holds for locally compact supersober
spaces.
We conclude this section by observing that X is in fact a functor. Given

H-spaces X and Y and a continuous function f: X — Y, define X(f) by
K(K) =1f1K] =1{f(z) | = € K}. (4.1)
Theorem 4.5 K s a functor from H-spaces to c.b.c. domains.

Proof. Let X, Y, and Z be H-spaces, and let f : X - Y andg:Y — Z
be continuous mappings. We must show that K(f) maps £(X) — K(Y), is
continuous, and that KX(go f) = K(g) o £(f). Now K(f) maps £(X) to £(Y)
because the continuous image of a compact set is compact and the upper set of
a compact set is compact. To show that K(f) is continuous, observe that for
V C Y open, K(f)"1(N(V)) = N(f~*(V)). Because f is continuous, f~1(V)
is open. Therefore N(f~!(V)) is open, so K(f) is continuous. To show that
K preserves composition of functions, observe that for

K(go f)(K) =g o /K] = 19lf[K]] = T9[1 fIK]] = K(g) o K(F)(K).

The third equality follows because g, being continuous, is monotone. a

Since lifting X — X, is a functor from H-spaces to pointed H-spaces,
which are compact, we have the following corollary.

Corollary 4.6 X — K(X) is a functor from the category of H-spaces (which
includes locally compact Hausdorff spaces) to the category of c.b.c. domains
(both with continuous functions). O

5 Spaces and Domains of Functions

If (X,7) and (Y,S) are topological spaces, let C(X,Y") denote the space of
continuous mappings from X to Y. Order C(X,Y) by

fCg < Vz e X (f(z) C g()).

The compact-open topology on C(X,Y) is the topology given by the subbasis
of sets

N(K,U)={f | f(K)c U},

where K C X is compact, and U C Y is open. Note that we need only consider
K’s that are Cr-upper, since any continuous function f is monotone and any
open set U is Cg-upper. See Kelley [13] for a treatment of the compact-open
topology in connection with Hausdorff topological spaces. The compact-open
topology is important for the following reason.

Lemma 5.1 (i) If X is locally compact and C(X,Y) has the compact-open
topology, then the evaluation mapping e : X x C(X,Y) — Y is continu-
ous.

(ii) If D is a topology on C(X,Y) for which the evaluation mapping e con-

tinuous, then D refines the compact-open topology. O

The proofs given in [13] for Hausdorff spaces apply without modification.
11
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We need the following simple Lemma to help us show that c.b.c. domains
are preserved under function space formation.

Lemma 5.2 Let X be a topological space and let Y be a pointed DC-space.
Let U C X be open and let f : U — Y be continuous. Then the function
g: X —Y given by
9(z) = {f(a:) ifz € U;
€ otherunse.
also is continuous.

Proof. For V C Y open,

ciny L JFTHV), LGV,
J (V)_{X, if 1 el

In either case, g7' (V) is open. Hence g is continuous. O

Theorem 5.3 (i) The specialization order of the compact-open topology on
C(X,Y)isC.

(ii) If Y is a DC-space, then (C(X,Y),C) is a DC-space. If Y is pointed,
then (C(X,Y),C) is pointed.

(iii) If X 1s locally compact and Y is a mazimal limit space, then C(X,Y)
with the compact-open topology is a mazimal limit space.

(iv) If X is locally compact and D is a pointed c.b.c. domain, then the family
(C(X,D),C) is a pointed c.b.c. domain and the compact-open topology
1s the Scott topology of C.

We remark that 5.3.11i does not mean that the category of H-spaces is
closed under function space formation because the space C(X,Y) need not be
locally compact. Rather, it is a nontrivial analog of the trivial theorem that

if Y is Hausdorff then C(X,Y) is Hausdorff.
Proof.

Proof of 5.3.1: Let C¢p denote the specialization order of the compact-open
topology on C(X,Y).

Suppose that f Ceo g. Let ¢ € X and let U be any open set containing
f(z). Since {z} is compact, N({z},U) is CO-open. Since f € N({z},U),
g € N({z},U); that is g(z) € U. As U was an arbitrary open neighborhood
of f(z), it follows that f(z) Cs g. Thus f C g.

On the other hand, suppose that f C g and that f € N(K,U); that is,
for all z € K, f(z) € U. Since for all z € K, g(z) J f(z), g(z) € U.
Therefore g € N(K,U). Since this is true of an arbitrary subbasic open set
in the compact-open topology, f C¢o g. Thus C and Cgp are identical.

Proof of 5.3.ii: If Y is pointed then the bottom element of C(X,Y) is the
function Az.L. To prove that C(X,Y) is a DC-space, we need to show that
any directed family f,, s € N, of elements of C(X,Y) has a supremum f such
that f, — f in the compact-open topology. Clearly, if the function

f(z) =] fo(2)

12
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is continuous then it is | |, f,. Let U be an open subset of Y. Since U is open
and upper,

Uy =U o).

This set is open since each f, is continuous; hence f is continuous. Suppose
that for some compact K C X andopen V C Y, fI[K] C V. Let z € K. Since
fs(z) — f(z), there is s, such that for s > s, (where < is the order directing
the net), fs.(z) € V. By continuity of f,,,  has a neighborhood U, such that
fs.[Uz] € V. Since f, is monotone in s, f,[U;] C V for all s > s,. Since K is
compact, finitely many U,,,...,U,, cover K. Choose sg > sz,,...,8z,. Then
for s > sg, fo[Us, U...UU,;, ] CV, hence f,[K] C V. We have shown that
if f € N(K,V) then there is s such that for s > sq, fs € N(K,V). Since
N(K,V) is an arbitrary subbasic open set, this proves that f, — f in the
compact-open topology.

Proof of 5.3.iii: We use the characterization in Theorem 3.3. Since C(X,Y)
is a DC-space, it suffices to show that any pair of functions f,¢g € C(X,Y)
that have no disjoint neighborhoods have a supremum f LU g € C(X,Y) and
that the function f,g — (f U g) is continuous.

Suppose that f,g € C(X,Y) do not have disjoint neighborhoods. Consider
z € X. The map e, : h — h(z) is continuous because e;}(U) = N({z},U) is
a subbasic open set. If U and V are respectively neighborhoods of f(z) and
g(z), then e (U) = N({z},U) and e;*(V) = N({z}, V) are neighborhoods of
f and g respectively; hence thereis h € N({z},U)NN({z},V) = N({=z},UN
V). We have h(z) € UNV. Therefore f(z) and g(z) do not have disjoint
neighborhoods. By 3.3, they have a least upper bound f(z) U g(z). Since the
map (z,y) — z Ly is continuous, it follows that the function

h(z) = f(z)U g(z)
is continuous; it must be f Ll g.

It remains to show that the mapping (f,g) — f U g is continuous. We
show that f LI g has a neighborhood basis of sets of the form W; N W,, where
W; and W, are respectively neighborhoods of f and g. It suffices to show that
if fuge N(K,U) for some compact K C X and open U C Y then there are
W; and W, as described such that fLige W; N W, C N(K,U).

Consider z € K. Since f(z)U g(z) € U and Y is a maximal limit space,
f(z) and g(z) have respective neighborhoods V;, and V,, such that f(z) U
g9(z) € Vi, NV,, C U. By continuity of f and g and local compactness
of X, z has a compact neighborhood K, such that f € N(K,,V;,) and
g€ N(Ky, Vg

Find such K., V}, and V, , for each z € K. By compactness of K, finitely
many K, ,..., K, cover K. Let

W= N(Kz,Viz )N .. .NN(Kyz,, Vi)
and
Wy=N(Kz,, Voo )N .. .NN(Kp,, V)
W; and W, are as required.
13
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It follows that C(X,Y) is a maximal limit space.

Proof of 5.3.iv: It suffices to show that the compact-open topology has a
neighborhood basis of sets of the form Tg. The rest follows by Lemma 2.3,
5.3.1, and 5.3.1ii.

We show that if K C X is compact upper, U C D is open and f €
N(K,U), then there is ¢ € N(K,U) such that Tg is a neighborhood of f in

the compact-open topology. This is enough because if
N(Ki,Ui)N...NN(K,,Uy,)

is a basic open neighborhood of f,
g € N(K,,U;), :=1,...,n,

and Tg; is a neighborhood of f,2=1,...,n, then
glU...Ug, € N(K1,U)N...NN(K,,U,)

and
M. Uga) =T N...NTgn

is a neighborhood of f.

Suppose then that f(K) C U. Since f(K) is compact and D is a continuous
partial order, for some m there exist y1,...,ym € U such that

W = intertor(Ty1) U ... U interior(Tym)

is an open neighborhood of f(K). It follows that f~*(W) is an open neigh-
borhood of K. By local compactness of D, K has a compact neighborhood
K' C f~Y(W). For: =1,...,m, Define

(z) = {yi, if f(z) € interior(Ty;),z € intertor( K'),
I\T) = 1L, otherwise.

By Lemma 5.2 applied to the constant function z +— y; and the open set
interior(K')Nf~!(interior(1y;)), each g; is continuous. Furthermore g4, ..., gm
have a common upper bound, namely f. Hence

9(z) = |_| 9i
=1
exists and, by 5.3.111, is continuous. We have
f € N(K', W) C 19 C N(K, ).
Hence 7g is a neighborhood of f contained in N(K,U). O

The foregoing Lemma shows that the limit of a directed family of functions

?

is just the pointwise supremum. The point of maximal limit spaces (including
c.b.c. spaces and domains), however, is that all nets have a unique maximal
limit. The following Theorem characterizes that limit in C(X,Y).

Theorem 5.4 Let X be locally compact, let Y be a c.b.c. domain, and let f,,
s € N be a net of functions in C(X,Y) (not necessarily directed by C). Then
max-lim, fs (in the compact-open topology) is the function

flz) = mﬁle,ism fo(z").

14
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Here, the notation max-lim,/_,, s fs(z') denotes

max-lim f,(z'),
(=',U,s) f( )

over the directed set (M, <), where M is the set of triples (&', U, s) such that
U is a neighborhood of z, z' € U, and s € N, and

(z',U,s) <(2",V,t) <= U D Vands <t.

Proof. Since evaluation is continuous in the compact-open topology, 2’ — z
and f, — ¢ implies that f,(z') — g(z), hence g(z) C f(z). Thus, f will be
the maximal limit of f,, s € N if it is a limit at all.

First, we show that f is continuous. Fix z € X. Since Y is a c.b.c. domain,
there is y € Y such that Ty is a neighborhood of f(z). By definition of f,
there is a neighborhood V of # and s € N such that if 2’ € V and ¢ > s then
fi(z') Jy. If K C V is compact neighborhood of z, then for 2" € K,

f(z") = max—lir% fs(z') d vy,

z'—z'! s

since y itself is a limit of f,(z') over s € N and 2’ — z”. Since for each
z € X, f(z) has a neighborhood basis of sets of the form Ty, and for each such
neighborhood z has a neighborhood K such that f[K] C Ty, f is continuous.

Now we prove f; — f in the compact-open topology. Let N(K,U) be
a subbasic open neighborhood of f, K C X compact, U C Y open. By
definition of f, for each z € K there is s, € N and a neighborhood V,, of z
such that s <t and 2z’ € V, implies f,(z') € U. Since K is compact, finitely

many neighborhoods V,,,...,V,, cover K. Let s > s;,,...,8z,. Then for
t>sanda’' € K CV, U...UV,, fi(z') € U. Hencefort > s, f; € N(K,U).
Therefore f, — f in the compact-open topology. O

When X is a domain, the compact-open topology on C(X,Y’) turns out
to be very simple. First a lemma about the subbasis of the compact open
topology.

Lemma 5.5 Let X and Y be topological spaces. Let X be locally compact
with neighborhood basis of compact subsets K, and let B be a basis of open sets

for the topology on Y. Then the compact-open topology has a subbasis of open
sets of the form N(K,B), K € K, B € B.

Proof. We must show that for any K C X compact, U C Y open, and
f € N(K,U), there are n € N, K;,..., K, € K, and By,...,B, € B, such
that

fE€N(K:,B))N...N N(K,,B,) C N(K,U).

Since B is a basis, U = |J;¢; B; for some B; € B, 1 € I. Since f[K] C U, for
eachz € K, f(z) € B, for some: € I. For each z € K, choose one such B; and
call it B,. Since f is continuous, z has some compact neighborhood K, € K
such that f[K,] C B,. Since K is compact, there exist n and z;,...,z, €
K such that K; = K;,,...,K, = K;, cover K. If By = B,,...,B, =
B,,, then f € N(K,;,B;), j = 1,...,n. On the other hand, N(K;,B;) N
...N N(K,,B,) C N(K,U), since if g[K;] C Bj, j = 1,...,n, then g[K] C
9lUj=y K] € Ui, B; C U; hence g € N(K,U). =
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Corollary 5.6 If D is a domain, E is a topological space, and B is a basis
of open sets for E, then the compact-open topology on C(D, E) has a subbasis
consisting of sets of the form N(Tz, B) where z € D and B € B.

Proof. Apply the previous Lemma with X = {1z | z € D}. a

Theorem 5.7 If D is a domain and Y is any topological space, then on
C(D,Y), the compact-open topology and the topology of pointwise convergence
are 1dentical.

Proof. The compact-open topology contains the topology of pointwise con-
vergence, so it suffices to show that if f,(z) — f(z) for all z € D, then
fs — f in the compact open topology. Suppose the former. By the preceding
Corollary, it suffices to show that for each subbasic open set N(Tz,U) of the
compact-open topology such that f € N(Tz,U), fs[Tz] C U for sufficiently
large s € N. But by pointwise convergence, there is so such that for s > s,
fs(z) € U. Hence fs(Tz) C U, since f is monotone and U is upper. O

6 Powerspaces and Function Spaces

In the introduction we suggested that problems involving function spaces
might be approached by first converting the base spaces involved into c.b.c. do-
mains using the upper powerspace construction, then forming function spaces.
Although the usefulness of such an approach can be shown only by applying
it to a nontrivial problem, which is beyond the scope of this paper, we will
give some elementary results that show that this approach could conceivably
work. In particular, we will show that for X and Y H-spaces, the embedding
K:C(X,Y)— C(K(X),K(Y)) has reasonable properties.

In the following, we use TK in the sense of K(X); that is, TK = {J €
K(X)|JCK}.

Theorem 6.1 The mapping K : C(X,Y) - C(K(X),K(Y)) s a homeomor-
phic embedding.

Proof. K is trivially one to one. By Lemma 5.6, the compact-open topology
on C(K(X),K(Y)) has a subbasis of open sets of the form N(TK, N(U)). But

KTH(N(1K,N(U))) = N(K,U).

Since the inverse image of each subbasic open set is open, K is continuous.
The same applies to X 1. O

Another embedding of interest is that of C'(X, K(Y)) into C(K(X), K(Y)).
In fact, the mapping

3 : O(X,K(Y)) - C(K(X),K(Y)) by 8(f)(K)="1(K])
— 1(U{f(e) | o € K})

and the mapping
3, : C(K(X),K(Y)) > C(X,K(Y)) by ®.(F)(z) = F(1a)
16
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form a section-retraction pair in the sense of [20] (see also [2], Section 3.1.1).
That is, ¢ and ®, are continuous and ®, o ® is the identity function. It follows
that ® is a homeomorphic embedding.

Lemma 6.2 Let (X,T) be a topological space. The mapping U : K — T(UK)
defines a continuous map K(K(X)) - K(X).

Proof. First we show that if £ € X(K(X)) then U(K) € £(X).

It suffices to show that |JK is compact, since the upper set of a compact
set is compact. Let ¢ be an open cover of |[JK. For each K € K, U is an
open cover of the compact set K C X; hence there is a finite g C U such
that K C UUk. Thus K € N(UUk); hence {UUK | K € K} is an open cover
of K. Choose a finite subcover {UUk,,...,UUx,}. Since each Uk, is finite,
Uk, U...UlUk, is a finite subcover of |JK. As U was arbitrary, it follows that
UK is compact.

For any basic open set N(U), U C X open, T(UK) € N(U) iff KX €
N(N(U)). Thus U is continuous. O

Theorem 6.3 Let ® and ®, be the mappings defined above. For each con-
tinuous map f € C(X,K(Y)), ®(f) is in fact a continuous function K(X) —
K(Y), and for each continuous map F € C(K(X),K(Y)), ®.(F) is in fact a
continuous function X — K(Y'). Furthermore, ® and ®, are continuous and
®, o ® is the identity function.

Proof. ® = U o K and 9, is just composition with the continuous mapping
z +— Tz. That proves everything but the last statement. Suppose that f €
C(X,K(Y)) and z € X. Then

U fl1e] = f(=)
because f is monotone, and T f(z) = f(z) since f(z), being a member of £(Y),
is already upper. Hence

. (&(f))(z) = 1(U f[12]) = f(=).

As z and f were arbitrary, ®, o ® is the identity function. O
Corollary 6.4 The mapping ®:C(X,K(Y)) —» C(K(X),K(Y)) is a homeo-
morphic embedding. a

7  Summary

We have identified three key types of topological space that are closely related
to domains: maximal limit spaces; H-spaces; and c.b.c. domains.

A maximal limit space is a topological space (X, 7 ) in which each net has
a unique C7-maximal limit. An H-space is a locally compact maximal limit
space. A c.b.c. domain is a continuous DCPO in which each subset with an
upper bound has a least upper bound.

The key results are as follows.

(i) Maximal limit spaces are closed under liftings and products. H-spaces
are also closed under lifting and finite products. Pointed H-spaces (with
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a bottom element) are closed under arbitrary products.
(ii) The upper powerspace of an H-space is a c.b.c. domain.

(iii) The space of continuous functions C(X,Y’) from a locally compact space
(X,7T) to a maximal limit space (Y,S) is a maximal limit space in the
compact-open topology.

(iv) The space of continuous functions C(X, D) from a locally compact space
(X,T) to a pointed c.b.c. domain (D,C) is a c.b.c. domain with the Scott
topology of the pointwise order equal to the compact-open topology.

(v) Under the foregoing conditions we characterize maximal limits in the

function space C(X, D).

(vi) In the space C(Y, D) of continuous functions from a domain D to a topo-
logical space Y, the topology of pointwise convergence and the compact-
open topology are identical.

(vii) We show that the embedding C(X,Y) —» C(K(X),K(Y)) is homeomor-
phic, and that the natural mappings C(X,K(Y)) —» C(K(X),K(Y)) and
C(K(X),K(Y)) - C(X,K(Y)) form a section-retraction pair.
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