Laplacian coefficients of trees with a given bipartition

Weiqi Lin, Weigen Yan *

School of Sciences, Jimei University, Xiamen 361021, China

A R T I C L E I N F O

Article history:
Received 13 April 2010
Accepted 11 January 2011
Available online 12 February 2011
Submitted by S. Kirkland

AMS classification:
Primary: 05C15
05C16

Keywords:
Laplacian coefficient
Bipartition
Perfect matching

A B S T R A C T

Let G be a graph of order n and $\mu(G, \lambda) = \sum_{k=0}^{n} (-1)^k c_k \lambda^{n-k}$ the Laplacian characteristic polynomial of G. Zhou and Gutman [19] proved that among all trees of order n, the kth coefficient c_k is largest when the tree is a path and is smallest for a star. In this paper, for two given positive integers p and q ($p \leq q$), we characterize the trees with a given bipartition (p, q) which have the minimal and second minimal Laplacian coefficients.

© 2011 Published by Elsevier Inc.

1. Introduction

Let G be a graph with n vertices and $A(G)$ the adjacency matrix of G. The characteristic polynomial of G is defined as $\phi(G, \lambda) = \det(\lambda I_n - A(G))$, where I_n is the unit matrix of order n. It is well known [3] that if T is a tree with n vertices, then

$$\phi(T) = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^k m_k(T) \lambda^{n-2k},$$

(1.1)

where $m_k(T)$ equals the number of matchings with k edges of T, and $\lfloor \frac{n}{2} \rfloor$ denotes the largest integer no more than $\frac{n}{2}$.

Gutman [5] introduced a quasi-ordering relation “\geq” on the set of all forests (acyclic graphs) with n vertices: if T_1 and T_2 are two trees with n vertices and with characteristic polynomials in the form...
The Laplacian-like energy of graph G, then

\[T_1 \geq T_2 \iff m_k(T_1) \geq m_k(T_2) \tag{1.2} \]

for all $k = 0, 1, \ldots, \lfloor \frac{n}{2} \rfloor$. If $T_1 \geq T_2$ and there exists a j such that $m_j(T_1) > m_j(T_2)$, then we write $T_1 > T_2$.

The Laplacian polynomial $\mu(G, \lambda)$ of G is the characteristic polynomial of its Laplacian matrix $L(G) = D(G) - A(G)$, that is,

\[\mu(G, \lambda) = \det(\lambda I_n - L(G)) = \sum_{k=0}^{n} (-1)^k c_k(G)\lambda^{n-k}. \tag{1.3} \]

The Laplacian matrix $L(G)$ has non-negative eigenvalues $\mu_1 \geq \mu_2 \geq \ldots \geq \mu_{n-1} \geq \mu_n = 0$ [4]. It is easy to see that $c_0(G) = 1$, $c_1(G) = 2|E(G)|$, $c_n(G) = 0$, $c_{n-1}(G) = n\tau(G)$, where $\tau(G)$ denotes the number of spanning trees of G. If G is a tree, coefficient $c_{n-2}(G)$ is equal to its Wiener index $W(G)$, which is the sum of distances between all pairs of vertices, that is,

\[c_{n-2}(G) = W(G) = \sum_{u,v\in V(G)} d(u, v). \]

The Laplacian-like energy of graph G is defined as follows [11]:

\[\text{LEL}(G) = \sum_{k=1}^{n-1} \sqrt{\mu_k}. \]

Zhou and Gutman [19] proved that for any tree T of order n and for any k, $c_k(K_{1,n-1}) \leq c_k(T) \leq c_k(P_n)$ ($0 \leq k \leq n$), where $K_{1,n-1}$ and P_n are the star and the path of order n, respectively. Mohar [12] presented a different proof of this result and proposed the problem “how to order trees by the Laplacian coefficients”. Ilić [6] proved that among n-vertex trees with fixed diameter d, the caterpillar $C_{n,d}$ (see Fig. 1) has minimal Laplacian coefficients. Ilić and Ilić [8] characterized the trees with k leaves which simultaneously minimize all Laplacian coefficients. They proved that graph $S(n, k)$ has minimal Laplacian coefficients among all trees with n vertices and k leaves, where $S(n, k)$ is a tree of order n with just one center vertex v and each of the k branches of T at v is a path of length $\lceil \frac{(n-1)}{k} \rceil$ or $\lfloor \frac{(n-1)}{k} \rfloor$. They also proved that $S(n, n - 1 - p)$ has minimal Laplacian coefficients among vertices trees with p vertices of degree two. Stevanović and Ilić [14] showed that among all connected unicyclic graphs of order n, the kth coefficient c_k is largest when the graph is a cycle C_n and smallest when the graph is the star $K_{1,n-1}$ with an additional edge between two of its pendant vertices. Zhang et al. [18] investigated a partial ordering of trees with diameters 3 and 4 by the Laplacian coefficients. Some related work on Laplacian coefficients can be found for example in [2,7,9,13].

The subdivision graph $S(G)$ of a graph G is a graph obtained by inserting a new vertex (called the subdivision vertex) on each edge of G. If G has n vertices and m edges, then $S(G)$ has $n + m$ vertices and $2m$ edges.

![Fig. 1. Trees $C_{n,d}$ and $D(p, q)$.](image)
Let G be a connected bipartite graph with n vertices. Hence its vertex set can be partitioned into two subsets V_1 and V_2, such that each edge joins a vertex in V_1 with a vertex in V_2. Suppose that V_1 has p vertices and V_2 has q vertices, where $p + q = n$. Then we say that G has a (p, q)-bipartition $(p \leq q)$. Denote by Ψ_n the class of trees with n vertices, each of which has a (p, q)-bipartition $(p + q = n)$. Consider a star $K_{1,p}$ with $p + 1$ vertices and attach $q − 1$ pendent edges to a non-central vertex of the star $K_{1,p}$. The resulting tree with $p + q$ vertices has a (p, q)-bipartition. Denote the resulting tree by $D(p, q)$ (see Fig. 1). Obviously, $D(p, q) \in \Psi_n$. Call $D(p, q)$ to be a double star. If $q \geq p \geq 3$, suppose that $B(p, q)$ is the tree obtained from $D(p − 1, q)$ by attaching a pendent edge to one of the vertices of degree one which join the vertex of degree q in $D(p − 1, q)$ (see Fig. 2). If $q \geq p = 2$, we assume that $B(2, q)$ is the tree obtained from the path P_4 by attaching $q − 2$ pendent edges to an end vertex of P_4 (see Fig. 2).

In this paper, we prove the following results.

Theorem 1.1. Let p and q be two positive integers and $p + q = n$. Let T be a tree with n vertices and with Laplacian polynomial in the form (1.3) and $T \in \Psi_n$. Then

1. $c_k(T) \geq c_k(D(p, q))$ for every $k \leq n$, where all equalities hold if and only if $T \cong D(p, q)$.
2. $LEL(T) \geq LEL(D(p, q))$, where equality holds if and only if $T \cong D(p, q)$.
3. $W(T) \geq W(D(p, q))$.

Theorem 1.2. Let p and q be two positive integers such that $q \geq p \geq 2$, and let T be a tree with a (p, q)-bipartition such that $T \not\cong D(p, q)$. Then

1. $c_k(T) \geq c_k(B(p, q))$ for every $k \leq n$, where all equalities hold if and only if $T \cong B(p, q)$.
2. $LEL(T) \geq LEL(B(p, q))$, where equality holds if and only if $T \cong B(p, q)$.
3. $W(T) \geq W(B(p, q))$.

2. Proofs

In order to prove the main results, we need to introduce some lemmas as follows.

Lemma 2.1 [19]. Let G be a bipartite graph with n vertices and m edges and let $S(G)$ be its subdivision graph. Then $\phi(S(G), \lambda) = \lambda^{m−n} \mu(G, \lambda^2)$. Hence $m_k(S(G)) = c_k(G)$.

Given a graph G and an edge uv, we denote by $G − uv$ (resp. $G − u$) the graph obtained from G by deleting the edge uv (resp. the vertex u and edges adjacent to it).

Lemma 2.2 [3]. Let T be a tree with n vertices and $e = uv$ an edge of T. Then

$$\phi(T) = \phi(T−uv) − \phi(T−u−v).$$
Proof. We prove this result by induction on T and Lemma 2.5.

Hence, by Lemma 2.3,

$$T = \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} b_i x^{n-2i}, \quad \phi(T_2) = \sum_{i=0}^{\lfloor \frac{n}{2} \rfloor} b'_i x^{n-2i},$$

respectively. Then $T_1 \succeq T_2$ if and only if $b_0 - b'_0 = 0$ and $(-1)^i (b_i - b'_i) \geq 0$ for $i = 1, 2, \ldots, \lfloor \frac{n}{2} \rfloor$; and $T_1 \succ T_2$ if and only if $T_1 \succeq T_2$ and there exists a $j \in \{1, 2, \ldots, \lfloor \frac{n}{2} \rfloor\}$ such that $(-1)^j (b_j - b'_j) > 0$.

Lemma 2.6. Let T and T' be two trees with n vertices. Suppose that uv (resp. $u'v'$) is a pendant edge of T (resp. T'), u (resp. u') is a pendant vertex of T (resp. T'), $d(v) = 2$, $d(v') = 2$, and w (resp. w') is another neighbor of v (resp. v'). Let $T_1 = T - vw$, $T_2 = T - v - w$, and $T_1' = T' - v'w'$, $T_2' = T' - v' - w'$. If $T_1 \succeq T_1'$ and $T_2 \succeq T_2'$, then $T \succeq T'$, with equality if and only if $T_1 \simeq T_1'$, $T_2 \simeq T_2'$.

Proof. By Lemma 2.2,

$$\phi(T) = \phi(T - vw) - \phi(T - v - w) = (x^2 - 1) \phi(T_1) - \phi(T_2),$$

$$\phi(T') = \phi(T' - v'w') - \phi(T' - v' - w') = (x^2 - 1) \phi(T_1') - \phi(T_2').$$

Hence

$$\phi(T) - \phi(T') = (x^2 - 1) \left(\phi(T_1) - \phi(T_1') \right) - \left(\phi(T_2) - \phi(T_2') \right).$$

Suppose that

$$(x^2 - 1) \left(\phi(T_1) - \phi(T_1') \right) = \sum_{i \geq 0} a_i x^{n-2i} \quad \text{and} \quad \phi(T_2) - \phi(T_2') = \sum_{i \geq 0} b_i x^{n-2i}.$$

Then if $T_1 \succeq T_1'$ and $T_2 \succeq T_2'$, $a_0 = b_0 = 0$ and $(-1)^i a_i \geq 0$ and $(-1)^i b_i \geq 0$ for $i \geq 1$. Hence $(-1)^i (a_i - b_{i-1}) \geq 0$ for $i \geq 1$. Note that

$$\phi(T) - \phi(T') = \sum_{i \geq 1} (a_i - b_{i-1}) x^{n-2i}.$$

Hence, by Lemma 2.3, $T \succeq T'$.

If $T_1 \succ T_1'$ and $T_2 \succeq T_2'$, then there is at least one k such that $(-1)^k a_k > 0$. Hence $(-1)^k (a_k - b_{k-1}) > 0$. By Lemma 2.3, $T \succ T'$. Similarly, if $T_1 \succeq T_1'$ and $T_2 \succ T_2'$, then $T \succeq T'$. The lemma thus follows. □

Lemma 2.5 [1]. Let G be a tree. Then G has a perfect matching if and only if $o(G - w) = 1$ for all $w \in V(G)$, where $o(G - w)$ denotes the number of odd components of $G - w$.

Lemma 2.6. Let T be a tree with n ($n \geq 2$) vertices and u is a vertex of T. Let $S(T)$ be the subdivision graph of T. Construct a new graph T' from $S(T)$ by adding a new vertex v and a new edge joining two vertices u and v. Then T' has a perfect matching.

Proof. We prove this result by induction on n.

If $n = 2$, $T = P_2$ and $T' = P_4$. Then T' has a perfect matching and the lemma holds. If $n = 3$, $T = P_3$ and $T' = P_6$ or $T' = T_6$ (see Fig. 3). Obviously, both P_6 and T_6 have a perfect matching.

We assume inductively that the theorem holds if the number of vertices of a tree is less than n. Let $d(u) = k$ ($k \geq 1$), and w_1, w_2, \ldots, w_k be the neighbors of u in T, and w'_1, w'_2, \ldots, w'_k be the subdivision vertices on the edges uw_1, uw_2, \ldots, uw_k (see Fig. 3). By induction, all $S(T_1) + w_1w'_1,$
$S(T_2) + w_2w'_2, \ldots, S(T_k) + w_kw'_k$ have a perfect matching. Suppose that M_i is the perfect matching of $S(T_i) + w_iw'_i$. Then $M = M_1 \cup M_2 \ldots \cup M_k \cup \{uv\}$ is a perfect matching of T'. Hence the lemma holds. □

Let F_n be a tree with n vertices obtained by adding a pendent edge to each vertex of the star $K_{1, \frac{n}{2} - 1}$, where n is even and $K_{1, \frac{n}{2} - 1}$ is the star with $\frac{n}{2}$ vertices. Let B_n be a tree obtained from F_{n-2} by attaching a P_2 to the 2-degree vertex of a pendent edge, and L_n is obtained from F_{n-4} by attaching two P_2 to the 2-degree vertex of a pendent edge, M_n is obtained from F_{n-2} by attaching a P_2 to a 1-degree vertex to form a path of length 6. Trees F_n, B_n, L_n and M_n are illustrated in Fig. 4.

Lemma 2.7 [15]. Let T be a tree with n vertices which has a perfect matching, and $T \not\leq F_n, B_n, L_n, M_n$. Then

$$T > L_n > B_n > F_n \quad \text{or} \quad T > M_n > B_n > F_n,$$

where L_n and M_n are incomparable.

Lemma 2.8. Let T be a tree with n vertices and T' a spanning subgraph (resp. a proper spanning subgraph) of T (T' can be disconnected). Then $T \geq T'$ (resp. $T > T'$).

Lemma 2.9. Let T be a tree with n vertices which has a perfect matching. Then there exists a tree T_1 which is a subgraph of T, such that

$$T \geq T_1 \cup kP_2$$

for $0 \leq k \leq \frac{n}{2}$, where T_1 is a tree with $n - 2k$ ($0 \leq k \leq \frac{n}{2}$) vertices and with a perfect matching.

Proof. We prove this by induction on n. It is easy to see that n is even.

If $n = 2$ or $n = 4$, it is trivial to verify the lemma.
We assume inductively that the lemma holds for all trees which have a perfect matching and have the number of vertices less than \(n \). Let \(T = v_0v_1v_2 \ldots v_{l-1}v_l \) be the longest path in \(T \). If \(v_1 \) has other neighbors \(u_1, u_2, \ldots, u_m \) \((m \geq 1)\) different from \(v_0 \) and \(v_2 \). Since \(P \) is a longest path, we know all \(u_i \)'s are pendant vertices of \(T \). Then \(a(T - v_1) = m + 1 \geq 2 \). By Lemma 2.5, this contradicts the fact that \(T \) has a perfect matching. Hence \(d(v_1) = 2 \).

Let \(T' = T - v_0 - v_1 \). So \(V(T') = n - 2 \). Since \(d(v_1) = 2 \), it is easy to see that \(T' \) also has a perfect matching. By induction, \(T' \supseteq T_1 \cup tP_2 \), \(0 \leq t \leq \frac{n - 2}{2} \), where \(T_1 \) is a tree with \(n - 2 - 2t \) vertices and has a perfect matching. By Lemma 2.8, \(T \supseteq T' \cup P_2 \supseteq T_1 \cup (t + 1)P_2 = T_1 \cup kP_2 \), \(0 \leq k \leq \frac{n}{2} \).

Hence the lemma holds. \(\square \)

Lemma 2.10 [13]. Let \(G_1 \) and \(G_2 \) be two \(n \)-vertex graphs. If \(c_k(G_1) \geq c_k(G_2) \) for \(k = 1, 2, \ldots, n - 1 \), then \(\text{LEL}(G_1) \geq \text{LEL}(G_2) \). In particular, if there exists a \(j \) such that \(c_j(G_1) > c_j(G_2) \) for \(1 \leq j \leq n - 1 \), then \(\text{LEL}(G_1) > \text{LEL}(G_2) \).

Lemma 2.11. Suppose that \(T \) is a tree with a \((2, q)\)-bipartition such that \(T \ncong D(2, q) \). Then \(c_k(T) \geq c_k(B(2, q)) \) for \(0 \leq k \leq n \), with all equalities if and only if \(T \cong B(2, q) \).

Proof. By (1.2) and Lemma 2.1, it suffices to prove that \(S(T) \succ S(B(2, q)) \) for any tree \(T \ncong D(2, q) \). \(B(2, q) \) with a \((2, q)\)-bipartition. Note that if \(q = 2 \), then there exists only one tree with a \((2, 2)\)-bipartition. If \(q = 3 \), there exist exactly two trees \(D(2, 3) \) and \(B(2, 3) \), which have a \((2, 3)\)-bipartition. If \(q = 4 \), there exist exactly two trees \(D(2, 4) \) and \(B(2, 4) \), which have a \((2, 4)\)-bipartition. Hence we may assume that \(q \geq 5 \). Since \(T \) is a tree with a \((2, q)\)-bipartition and \(T \ncong D(2, q) \), \(T \ncong B(2, q) \), \(T \) must have the form shown in Fig. 5, where \(a \geq 2, b \geq 2, a + b + 1 = q \).

Let \((V_1, V_2) \) be the bipartition of \(T \) with \(|V_1| = 2 \) and \(|V_2| = q \). We proceed by induction on \(q \) and assume that the lemma holds if \(|V_2| < q \). For \(S(T) \) (see Fig. 5), by Lemma 2.2,

\[
\phi(S(T)) = \phi(S(T) - uv) - \phi(S(T) - u - v) = (x^2 - 1)\phi(S(T')) - x(x^2 - 1)^{b-1}\phi(T_1),
\]

where \(T' \) is a tree with a \((2, q - 1)\)-bipartition, \(S(T') \) is the subdivision graph of \(T' \), and \(T_1 \) is a tree with \(2a + 4 \) vertices. By Lemma 2.2,

\[
\phi(S(B(2, q))) = \phi(S(B(2, q)) - wz) - \phi(S(B(2, q)) - w - z) = (x^2 - 1)\phi(S(B(2, q - 1))) - x(x^2 - 1)^{q-3}\phi(P_6).
\]

By Lemma 2.4, it suffices to prove that \(S(T') \succ S(B(2, q - 1)) \) and \(T_1 > (q - b - 2)P_2 \cup P_6 \). We distinguish the following two cases:

1. **Case 1.** \(b = 2 \).

Then \(T' \cong B(2, q - 1), S(T') \cong S(B(2, q - 1)) \). Note that \(a + b + 1 = q \). Then \(q - b - 2 = a - 1 \). It is not difficult to see that \(T_1 \) contains a proper spanning subgraph \((a - 1)P_2 \cup P_6 \). By Lemma 2.8, \(T_1 > (q - b - 2)P_2 \cup P_6 = (a - 1)P_2 \cup P_6 \).
Case 2. \(b > 2 \).

Then \(T' \not\cong B(2,q-1) \) and \(T' \not\cong D(2,q-1) \). By induction, \(S(T') > S(B(2,q-1)) \). Similarly, we can show that \(T_1 > (q-b-2)P_2 \cup P_6 = (a-1)P_2 \cup P_6 \).

Hence the lemma follows. \(\square \)

Now we are in the position to prove the main results.

Proof of Theorem 1.1. Obviously, (2) is immediate from (1) and Lemma 2.10. Note that, for any tree \(T \) with \(n \) vertices, the Wiener index \(W(T) = \varphi(T) \). So (1) implies (3). Hence it suffices to verify the first assertion.

Let \(D = D(p,q) \). By Lemma 2.1, it suffices to prove that \(m_k(S(T)) \geq m_k(S(D)) \), with all equalities if and only if \(T = D \). By (1.2), we only need to prove that \(S(T) \geq S(D) \), for any tree \(T \) with a \((p,q)\)-bipartition, with equality if and only if \(T = D \). Without loss of generality, we assume \(p < q \). If \(p = 1 \), then \(T = D(1,q) = K_{1,n} \). So \(S(T) = S(D) \) and the theorem holds. Hence we may now assume that \(2 \leq p \leq q \), and proceed by induction on \(n = p + q \).

Let \(P = v_1 v_2 \ldots v_l \) be a longest path in \(T \). Let \((V_1, V_2) \) be the bipartition of \(T \) (see Fig. 6) with \(|V_1| = p \) and \(|V_2| = q \). Let \(V_{11} \) denote the set of pendant vertices incident with \(v_2 \) in \(T \). Assume that \(|V_{11}| = k \). Note that \(v_1 \notin V_{11} \). So \(k \geq 1 \). Without loss of generality, we assume \(v_1 \notin V_2 \). If \(V_{11} \subseteq V_1 \), then \(T = K_{1,p} \), which contradicts the fact that \(q > 2 \). Then \(1 \leq k < p - 1 \). Let \(T_a = T - (V_2) \cup V_{11} \) be the tree obtained from \(T \) by deleting all vertices in \(V_2 \) \cup V_{11} \).

In the subdivision graph \(S(T) \) (see Fig. 6), the corresponding longest path is \(\hat{\mathcal{T}} = v_1 \hat{v}_1 v_2 \hat{v}_2 \ldots \hat{v}_{l-1} v_1 \), where the vertices \(\hat{v}_i \)’s \((i = 1, 2, \ldots, l - 1)\) are those subdividing the edges of \(T \). By Lemma 2.2,

\[
\phi(S(T)) = \phi(S(T) - \hat{v}_1 v_2) - \phi(S(T) - \hat{v}_1 v_2) = (x^2 - 1)\phi(S(T)) - x(x^2 - 1)^{k-1}\phi(T_1),
\]

where \(T' \) is a tree with a \((p - 1, q)\)-bipartition, \(S(T') \) is the subdivision graph of \(T' \), and \(T_1 = S(T_0) + \hat{v}_1 v_2 \) is a tree with \(2n - 2k - 2 \) vertices, \(1 \leq k \leq p - 1 \).

For \(D(p, q) \), let \(V'_1 \) and \(V'_2 \) be the bipartition of \(D(p, q) \) with \(|V'_1| = p \) and \(|V'_2| = q \). Let \(Q = u_1 u_2 u_3 u_4 \) be the longest path in \(D(p, q) \). In the subdivision graph \(S(D) \), the corresponding longest path is \(\hat{Q} = u_1 \hat{u}_1 u_2 \hat{u}_2 u_3 \hat{u}_3 u_4 \). Without loss of generality, we assume \(u_1 \in V'_1 \). Then we have

\[
\phi(S(D)) = \phi(S(D) - \hat{u}_1 u_2) - \phi(S(D) - \hat{u}_1 u_2) = (x^2 - 1)\phi(S(D')) - x(x^2 - 1)^{p-2}\phi(F_{2n-2p})
\]

where \(D' \) is a double star with a \((p - 1, q)\)-bipartition and \(S(D') \) is the subdivision graph of \(D' \). By Lemma 2.4, it suffices to prove that

\[
S(T') \geq S(D') \quad \text{and} \quad T_1 \geq F_{2n-2p} \cup (p - k - 1)P_2,
\]

with all equalities if and only if \(T' \cong D'(p-1,q) \), \(T_1 \cong F_{2n-2p} \cup (p - k - 1)P_2 \).

By induction, \(S(T') \geq S(D') \), with equality if and only if \(T' \cong D'(p-1,q) \). Now we prove \(T_1 \geq F_{2n-2p} \cup (p - k - 1)P_2 \).

By Lemma 2.6, \(T_1 \) has a perfect matching. By Lemma 2.9, there exists a tree \(T_3 \) with \(2n - 2p \) vertices, which has a perfect matching, such that

\[
T_1 \geq T_3 \cup (p - k - 1)P_2, \quad 0 \leq p - k - 1 < n - k - 1.
\]
By Lemma 2.7, we have $T_3 \succeq F_{2n-2p}$. Hence

$$T_1 \succeq T_3 \cup (p - k - 1)P_2 \succeq F_{2n-2p} \cup (p - k - 1)P_2.$$

It is easy to see that $T_1 \simeq F_{2n-2p} \cup (p - k - 1)P_2$ and $T' \simeq D'$ if and only if $T \simeq D(p, q)$. Note that $T' \simeq D'$. If $T \simeq D(p, q)$, then T has the structure depicted in Fig. 7, such that T has a (p, q)-bipartition and $T \not\simeq D(p, q)$. Hence $S(T)$ has the structure depicted in Fig. 7, where $k = p - 2$. At this time T_1 (see Fig. 7) contains a proper spanning subgraph $F_{2n-2p} \cup (p - k - 1)P_2$. By Lemma 2.8, $T_1 \succeq F_{2n-2p} \cup (p - k - 1)P_2$. By Lemma 2.3, if $T \not\simeq D(p, q)$, then $S(T) \succ S(D(p, q))$.

Then the theorem has been proved.

Proof of Theorem 1.2. Similarly to the proof of Theorem 1.1, (2) and (3) are immediate from (1). Hence it suffices to show that (1) holds.

Let $B = B(p, q)$. By (1.2) and Lemma 2.1, it suffices to prove that if T is a tree with a (p, q)-bipartition such that $T \nless D(p, q)$, then $S(T) \succeq S(B)$ with equality if and only if $T \simeq B(p, q)$.

By Lemma 2.11, the theorem holds if $p = 2$. Hence we may assume that $q \geq p \geq 3$ and proceed by induction on $n = p + q$. If $p = q = 3$, that is $p + q = 6$, there exist exactly three trees $D(3, 3), B(3, 3)$ and P_6, each of which has a $(3, 3)$-bipartition. It is easy to see that $S(P_6) \succ S(B(3, 3)) \succ S(D(3, 3))$.

The theorem holds if $p + q = 6$.

Let $P = v_1v_2 \ldots v_1$ be a longest path in T. Let (V_1, V_2) be the bipartition of the vertex set of T (see Fig. 6) with $|V_1| = p$ and $|V_2| = q$. In the subdivision graph $S(T)$ (see Fig. 6), the corresponding longest path is $\hat{P} = \hat{v}_1 \hat{v}_2 \hat{v}_3 \ldots \hat{v}_{k-1} \hat{v}_{k-1} v_1$. Let V_{11} denote the set of pendent vertices incident with v_2 and $|V_{11}| = k$. Let $T_a = T - \{v_2 \cup V_{11}\}$. Let V_{12} denote the set of pendent vertices incident with v_{k-1} and $|V_{12}| = r$. Let $T_b = T_a - \{v_{k-1} \cup V_{12}\}$. We distinguish the following two cases:

Case 1. $V_1 \subseteq V_1$.

Note that $1 \leq k \leq p - 2$ (If $k = p, T = K_{1,p}$, contradicting the fact that $q \geq 3$. If $k = p - 1, T = D(p, q)$, also a contradiction.). By Lemma 2.2,

$$\phi(S(T)) = \phi(S(T) - \hat{v}_1 v_2) - \phi(S(T) - \hat{v}_1 - v_2) = (x^2 - 1)\phi(S(T')) - x(x^2 - 1)^{k-1}\phi(T_1),$$

where T' is a tree with a $(p - 1, q)$-bipartition, $S(T')$ is the subdivision graph of T', and $T_1 = S(T_a) + \hat{v}_2 v_3$ is a tree with $2n - 2k - 2$ vertices, $1 \leq k \leq p - 2$.

For $B(p, q)$, let V_1' and V_2' be the bipartition of $B(p, q)$ with $|V_1'| = p$ and $|V_2'| = q$. Let $Q = u_1u_2u_3u_4u_5$ be the longest path in $B(p, q)$ (see Fig. 2). In the subdivision graph $S(B)$ (see Fig. 8), the corresponding longest path is $\hat{Q} = u_1 \hat{u}_1 u_2 \hat{u}_2 u_3 \hat{u}_3 u_4 \hat{u}_4 u_5$. Note that $u_1 \in V_1'$.

Then

$$\phi(S(B)) = \phi(S(B) - \hat{u}_1 u_2) - \phi(S(B) - \hat{u}_1 - u_2) = (x^2 - 1)\phi(S(B')) - x(x^2 - 1)^{p-3}\phi(M_{2q+2}),$$

where B' is a tree with a $(p - 1, q)$-bipartition and $S(B')$ is a subdivision graph of B'. By Lemma 2.4, it suffices to prove that

$$S(T') \succeq S(B') \quad \text{and} \quad T_1 \succeq M_{2q+2} \cup (p - k - 2)P_2,$$

with all equalities if and only if $T' \simeq B'(p - 1, q), T_1 \simeq M_{2q+2} \cup (p - k - 2)P_2$.

By induction, $S(T') \succeq S(B'),$ with equality if and only if $T' \simeq B'(p - 1, q)$.

Now we prove $T_1 \succeq M_{2q+2} \cup (p - k - 2)P_2$.

Fig. 7. $T, S(T)$, and T_1.

W. Lin, W. Yan / Linear Algebra and its Applications 435 (2011) 152–162
By Lemma 2.6, T_1 has a perfect matching. Moreover, $T_1 \not\cong F_{2n-2k-2}$. (If $T_1 \cong F_{2n-2k-2}$, then $T = D(p, q)$, a contradiction.) Note that $T_1 = S(T_a)+\hat{v}_2v_3$, i.e., T_1 is a tree obtained from the subdivision graph of T_a by adding a pendant edge to some non-subdivision vertex. Hence $T_1 \not\cong B_{2n-2k-2}, L_{2n-2k-2}$.

Lemma 2.6 implies that T_1 has a perfect matching. By Lemma 2.7, $T_1 \geq M_{2n-2k-2}$. Note that $M_{2q+2} \cup (p-k-2)P_2$ is a spanning subgraph of $M_{2n-2k-2}$. Hence $M_{2n-2k-2} \geq M_{2q+2} \cup (p-k-2)P_2$ for $k+2 \leq p$. Then

$$T_1 \geq M_{2q+2} \cup (p-k-2)P_2, \quad 0 \leq p-k-2 < n-k-1.$$

It is not difficult to see that $T_1 \cong M_{2q+2} \cup (p-k-2)P_2$ and $T' \cong B'$ if and only if $T \cong B(p, q)$. Since $T' \cong B'$ and $T \cong B(p, q)$, T has the structure depicted in Fig. 9, such that T has a (p, q)-bipartition. Hence $S(T)$ has the structure depicted in Fig. 9, where $k = p - 3$. At this time T_1 (see Fig. 9) contains a proper spanning subgraph $M_{2q+2} \cup (p-k-2)P_2$. By Lemma 2.8, $T_1 > M_{2q+2} \cup (p-k-2)P_2$. By Lemma 2.3, $S(T) > S(B(p, q))$ if $T \not\cong B(p, q)$.

Case 2. $v_1 \in V_2$.

If $v_1 \in V_1$, we can use the same method as in the case 1 to prove that if $T \not\cong B(p, q)$, then $S(T) > S(B(p, q))$. Hence we may assume that $v_1 \in V_2$. If $k = q, T = K_{1, q}$, contradicts the fact that $p \geq 3$. If $k = q - 1, T = D(p, q)$, also a contradiction. Hence $1 \leq k \leq q - 2$.

In the subdivision graph $S(B)$ (see Fig. 8), we have $u_6 \in V_2$, then

$$\phi(S(B)) = \phi(S(B)-u_2\hat{u}_6)-\phi(S(B)-u_3\hat{u}_6) = (x^2-1)\phi(S(B'')) - x(x^2-1)^{q-3}\phi(P_4)\phi(F_{2p-2}),$$

where B'' is a tree with a $(p, q - 1)$-bipartition and $S(B'')$ is the subdivision graph of B''.

It is not difficult to see that $T \not\cong B(p, q), T' \not\cong B'(p, q - 1)$ (If $T \cong B(p, q), T' \cong B'(p, q - 1)$, then $v_1 \in V_2, v_1 \in V_2$, a contradiction). By induction, $S(T') > S(B'')$. Now we prove that $T_1 \geq F_{2p-2} \cup (q-k-2)P_2 \cup P_4$.

Note that, $1 \leq r = |V_{12}| \leq q - 2$. (If $r = q$, we have, $T = K_{1, q}$, contradicts the fact that $p \geq 3$. If $r = q - 1$, we have $T = D(p, q)$, also a contradiction.) Particularly, $k + r \leq q - 1$.

There exists a path $P_4 (R = \hat{v}_1v_1\hat{v}_2v_3) \in T_1$ (see Fig. 10). By Lemma 2.8, it is easy to see that, $T_1 \geq T_3 \cup (r - 1)P_2 \cup P_4$, where $T_3 = S(T_b)+\hat{v}_2v_3$ is a tree with $2n-2r-2k-4$ vertices. By Lemma 2.6, T_3 has a perfect matching. Now we need to prove that $T_3 \geq F_{2p-2} \cup (q-k-r-1)P_2$. By Lemma 2.9, there exists a tree T_4 with $2p-2$ vertices, which has a perfect matching, such that

$$T_3 \geq T_4 \cup (q-k-r-1)P_2, \quad 0 \leq q-k-r-1 < n-k-r-2.$$
By Lemma 2.7, \(T_4 \succeq F_{2p-2} \). Hence

\[
T_3 \succeq T_4 \cup (q - k - r - 1)P_2 \succeq F_{2n-2q-2} \cup (q - k - r - 1)P_2.
\]

Then

\[
T_1 \succeq F_{2p-2} \cup (q - k - 2)P_2 \cup P_4.
\]

By Lemma 2.4, \(S(T) \succ S(B) \) if \(T \not\cong B(p, q) \). Hence (1) has been proved.

3. Concluding remarks

We characterized the trees with a given bipartition \((p, q)\) which have the minimal and second minimal Laplacian coefficients. One of the referees told us that, in [9], authors proved the following result: Let \(w \) be a vertex of the non-trivial connected graph \(G \) and for non-negative integers \(p \) and \(q \), let \(G(p, q) \) denote the graph obtained from \(G \) by attaching pendent paths \(P = vv_1v_2 \ldots v_p \) and \(Q = uwu_1u_2 \ldots u_q \) of lengths \(p \) and \(q \), respectively, at vertex \(w \). If \(p > q > 1 \), then \(c_k(G(p, q)) \leq c_k(G(p + 1, q - 1)) \) for \(k = 0, 1, \ldots, |V(G(p, q))| \). Note that the transformation \(G(p, q) \rightarrow G(p - 2, q + 2) \) keeps the bipartition sizes the same and simultaneously decreases the Laplacian coefficients. By this result, we can perhaps consider the problem to characterize the tree with a given bipartition which has maximal Laplacian coefficients. But this seems to be difficult. Li and Zhou [10] determined the bipartite unicyclic graph with a given bipartition which has the minimal energy. A similar problem is to consider the Laplacian coefficients of bipartite unicyclic graph with a given bipartition. We leave these problems for future study.

Acknowledgements

We are grateful to the referees for providing many friendly and helpful revising suggestions. In the first version of this paper, we only characterized the tree with a given bipartition \((p, q)\) which has the minimal Laplacian coefficients. One of the referees hoped that we could obtain the tree with a given bipartition which has the second minimal Laplacian coefficients. Based his (or her) suggestions, we add Theorem 1.2 in this version of this paper.

References

