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Let φ: Y → X be a morphism of finite type between locally Noetherian schemes
whose fibers have bounded dimensions. Given concretely a residual complex on X ,
we construct canonically a concrete residual complex on cY . © 2000 Academic Press

1. OVERVIEW OF CONSTRUCTIONS

We are seeking an explicit construction of residual complexes on a
scheme. Since residual complexes are built up by injective hulls of residue
fields of all points on the scheme, we need a model for injective hulls of
the residue field of each point in order to explicitly describe the cobound-
ary maps of residual complexes. Let φ: Y → X be a morphism of finite
type between locally Noetherian schemes whose fibers have bounded di-
mensions. Given an injective hull M�Ð� of the residue field κ�Ð� of each
point Ð in X and a residual complex M• on X – with additional information
that how M• is built up by the M�Ð�’s, we succeed in explicitly constructing
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a residual complex M•Y on Y – with additional information that how M•Y is
built up by some injective hulls canonically constructed from the M�Ð�’s.
In particular, for X being the spectrum of � or of a field on which a canon-
ical residual complex exists, we obtain a canonical residual complex on Y
explicitly. Due to the non-uniqueness nature of injective hulls, what we
construct is not a functor of residual complexes! However our construction
can still be regarded as a concrete realization of the functor φ! of resid-
ual complexes as defined in [4, Chap. VI, Sect. 3] with finer information.
Works of related interest are [17] of Sastry and [20, 19] of Yekutielli.

Residues are indispensable for understanding Grothendieck duality the-
ory. There are cohomology residues developed by Lipman et al. (cf. [11,
12, 10, 8, 9, 7]) and residues of differential forms of local fields developed
by Parshin et al. (cf. [15, 16, 13, 1, 20]). These residues not only provide
tools for understanding Grothendieck duality theory from different angles
but also show the richness of the theory. In this article, we will use only
the (local cohomology) residue maps for power series rings [6, Chap. 5] to
construct residual complexes.

Let X be a locally Noetherian scheme possessing a residual complex M•,
that is, a complex of quasi-coherent injective OX -modules, bounded below,
with coherent cohomology sheaves, and such that there is an isomorphism⊕

n∈�
Mn '⊕

Ð∈X
J�Ð�;

where J�Ð� is the quasi-coherent OX -module which is the constant sheaf
M�Ð�, a given injective hull of the residue field κ�Ð� over the local ring
OX;Ð, on �Ð�−, and 0 elsewhere [4, p. 304]. The existence of a residual
complex gives some constraints on X . For example, the sections on any
affine open subset of X form a universally catenary ring [4]. The residual
complex M• determines a codimension function 1X : X → �, that is, a
function 1X�Ñ� = 1X�Ð� + 1 for every immediate specialization Ñ of Ð, such
that

Mn ' ⊕
1X �Ð�=n

J�Ð� (1)

(see [4]).
Given a morphism φ: Y → X of finite type and a point 0 in Y , let Ð

be the image of 0 under φ and let κ�Ð� (resp. κ�0�) be the residue field
of OX;Ð (resp. OY;0). In Section 2, we will give a functor from the category
of injective hulls of κ�Ð� (as OX;Ð-modules) to the category of injective
hulls of κ�0� (as OY;0-modules). This functor is essentially the same as
that constructed in [6]. Given an injective hull M�Ð� of κ�Ð�, applying this
functor we get an injective hull of κ�0� which we denote by MY�0�.

Note that there is a natural defined codimension function 1Y/X on Y ,
given by

1X�Ð� = 1Y/X�0� + transcendence degree of κ�0�/κ�Ð�: (2)
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(cf. [4, Chap. V, Corollary 8.4]). If ψ: Z→ Y is a morphism of finite type,
the codimension function 1Z/Y on Z defined by

1Y/X�ψ�P�� = 1Z/Y�P� + transcendence degree of κ�P�/κ�ψ�P��;
for P ∈ Z, is the same as 1Z/X . So we will simply write 1Z for 1Z/X .

Assume furthermore that the dimensions of the fibers of φ are bounded.
Fix an isomorphism (1) for each n ∈ �, in this article we give an explicit
construction of a residual complex on Y . Our construction provides finer
information of the functor φ! of residual complexes as defined in [4, Chap.
VI, Sect. 3]. For example, we are able to answer the following question.

Question 1.1. For any point 0 in Y , denote by J�0� the quasi-coherent
OY -module which is the constant sheaf MY�0� on �0�−, and 0 elsewhere.
How do we define morphism MY�0� → MY�1� for each pair of points 0
and 1 in Y so that the induced chain of OY -modules

· · · → ⊕
1Y�0�=n

J�0� → ⊕
1Y�1�=n+1

J�1� → · · ·

is a residual complex?

The answer to this question is not obvious even for X = SpecR and Y =
SpecR�X�! Our method to construct residual complexes is down to earth in
the sense that it does not involve derived categories and that commutativity
of most diagrams is checked directly by chasing the images of elements
under various natural maps.

Without loss of generality, we assume that

Mn = ⊕
1X �Ð�=n

J�Ð�

throughout this article. We now sketch our construction in the affine case
based on which the global construction is patched. Assume X = SpecR,
Y = Spec S, and M• is the sheafification of the complex M• of R-modules
of the form

· · · δ
n−1

−→ ⊕
1�Ð�=n

M�Ð� δn−→ ⊕
1�Ñ�=n+1

M�Ñ� δ
n+1

−→· · · : (3)

By our assumption, there exist elements x1; : : : ; xn in S such that the R-
linear map R�X1; : : : ;Xn� → S sending Xi to xi is surjective. We will
construct a residual complex M•X on SpecR�X� (or on R�X� by abus-
ing the notation) from M• and construct a residual complex M•X1;:::;Xn

on
R�X1; : : : ;Xn� inductively on n from M•. We will then construct a residual
complex M•S/Ryx1;:::;xn

on S by taking a subcomplex of M•X1;:::;Xn
isomorphic

to HomR�X1;:::;Xn��S;M•X1;:::;Xn
�. Taking a direct limit of complexes of the
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form M•S/Ryx1;:::;xn
, we obtain a residual complex M•S/R on S independent of

the choice of x1; : : : ; xn.
Before giving more details on M•X , we recall some facts about prime ide-

als of R�X�. Let Ð be a prime ideal of R and κ�Ð� be the residue field of
RÐ. The prime ideals of R�X� lying over Ð correspond to the prime ide-
als of κ�Ð��X�. So every irreducible polynomial in κ�Ð��X� determines a
prime ideal of R�X� lying over Ð. Such prime ideals are exactly those which
lie over Ð and are immediate specializations of ÐR�X�. If Ñ is an immedi-
ate specialization of Ð, then ÑR�X� is also an immediate specialization of
ÐR�X�. Let 0 (resp. 1) be a prime ideal of R�X� lying over Ð (resp. Ñ) but
not equal to ÐR�X� (resp. ÑR�X�). If 1 contains 0, then 1 is an imme-
diate specialization of 0, since �R/Ð�Ñ/Ð�X� has Krull dimension two. It is
also clear that neither 0 contains ÑR�X� nor ÑR�X� contains 0. Note that
0 may be contained in none of the prime ideals of R�X� which lie over Ñ.
It may also exist an immediate specialization Ò of Ñ such that ÒR�X� is an
immediate specialization of 0. In our assumption R is universally catenary.
If ÒR�X� contains 0, then ÒR�X� is an immediate specialization of 0.

For each prime ideal Ð of R and each prime ideal 0 of R�X� lying over
Ð, we define

MX�0� x=
{
�R�X�ÐR�X�/RÐ

⊗RÐ
M�Ð�; if 0 = ÐR�X�

H1
0��R�X�0/RÐ

⊗RÐ
M�Ð��; if 0 6= ÐR�X�;

where �R�X�ÐR�X�/RÐ
(resp. �R�X�0/RÐ

) is the module of Kähler differentials of
R�X�ÐR�X� (resp. R�X�0) over RÐ and H1

0�−� is the first local cohomology
functor supported on 0R�X�0. We denote by 1 the codimension function
1SpecR characterized as in (1). Note that MX�0� is an injective hull of κ�0�
(cf. [6, Proposition 3.8]). We will construct in Section 3 canonically a short
exact sequence

0 �R�X�/R ⊗R M�Ð� MX�ÐR�X�� ⊕MX�0� 0
iÐ ⊕δÐR�X�;0

of R�X�-modules, where �R�X�/R is the module of Kähler differentials of
R�X� over R and 0 ranges over the prime ideals of R�X� lying over Ð
but not equal to ÐR�X�. Taking the direct sum of the above short exact
sequences for all prime ideals Ð of R with 1�Ð� = n, we get another short
exact sequence

0 �R�X�/R ⊗R Mn ⊕MX�ÐR�X�� ⊕MX�0� 0
⊕iÐ ⊕δÐR�X�;0

: (4)

For prime ideals Ð and Ñ with 1�Ñ� = 1�Ð� + 1, we will construct in Sec-
tion 4 canonically an R�X�-linear map

δÐR�X�;ÑR�X�: MX�ÐR�X�� →MX�ÑR�X��
such that the diagram
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�R�X�/R ⊗R M�Ð� MX�ÐR�X��

�R�X�/R ⊗R M�Ñ� MX�ÑR�X��

iÐ

iÑ

1⊗δÐ;Ñ δÐR�X�;ÑR�X�

is commutative, where δÐ;Ñ is the R-linear map M�Ð� →M�Ñ� in the com-
plex (3). Taking the direct sum of the above diagram over all prime ideals Ð
and Ñ of R with 1�Ð� = 1�Ñ� − 1 = n, we get another commutative diagram

�R�X�/R ⊗R Mn
⊕
MX�ÐR�X��

�R�X�/R ⊗R Mn+1 ⊕
MX�ÑR�X��

⊕iÐ

⊕iÑ

1⊗δn ⊕δÐR�X�;ÑR�X�

which induces canonically an R�X�-linear map

δ0;1: MX�0� →MX�1�
for each pair of prime ideals 0 and 1 of R�X� lying over Ð and Ñ but not
equal to ÐR�X� and ÑR�X�, respectively, such that the diagram

0 �R�X�/R ⊗R Mn ⊕MX�ÐR�X�� ⊕MX�0� 0

0 �R�X�/R ⊗R Mn+1 ⊕MX�ÑR�X�� ⊕MX�1� 0

⊕iÐ ⊕δÐR�X�;0

⊕iÑ ⊕δÑR�X�;1

1⊗δn ⊕δÐR�X�;ÑR�X� −⊕δ0;1 (5)

is commutative.
The composition of ⊕δÐR�X�;ÑR�X� followed by ⊕δÑR�X�;ÒR�X� in general is

not zero. To correct this defect, we define an R�X�-linear map

δ0;ÒR�X�: MX�0� →MX�ÒR�X��
for each prime ideal 0 of R�X� lying over Ð but not equal to ÐR�X� and
each prime ideal Ò of R�X� with 1�Ò� = 1�Ð� + 2 such that the diagram

⊕MX�ÐR�X�� ⊕MX�0�

⊕MX�ÑR�X��

⊕MX�ÒR�X��

⊕δÐR�X�;0

⊕δÐR�X�;ÑR�X�

⊕δÑR�X�;ÒR�X�

−⊕δ0;ÒR�X�
(6)

is commutative, where the sums range over all prime ideals Ð, Ñ, Ò with
1�Ð� = n, 1�Ñ� = n+ 1, 1�Ò� = n + 2 and all prime ideals 0 lying over Ð



an explicit construction of residual complexes 703

but not equal to ÐR�X�. The existence and uniqueness of the map ⊕δ0;ÒR�X�
follows from the exact sequence (4) and from the fact that �R�X�/R ⊗R M•
is a complex.

Let

Mn
X = �⊕MX�ÑR�X���

⊕ �⊕MX�0�� ;
where Ñ ranging over all primes of R with 1�Ñ� = n + 1 and 0 ranging
over all primes of R�X� with 1�0 ∩ R� = n but 0 6= �0 ∩ R�R�X�. From
our construction, the maps δP;Q, P;Q ∈ SpecR�X�, give rise to a complex
M•X on R�X�. The maps iÐ give rise to a canonical R�X�-linear map of
complexes

�R�X�/R ⊗R M• →M•X�−1�
which can be checked to be a quasi-isomorphism directly by diagram chas-
ing. Therefore M•X has finitely generated cohomology and hence is a resid-
ual complex on R�X�.

We will use the following conventions and notation: X, X1, X2, ... , Y, Y1,
Y2, ... denote variables and X , Y , ... denote schemes. Ð, Ñ, Ò denote prime
ideals of a base ring or points in a base scheme; Ñ (resp. Ò) is assumed to be
an immediately specialization of Ð (resp. Ñ); 0, 0X , 0Y , ... (resp. 1, 1X ,
1Y , ...) denote some prime ideals or points lying over Ð (resp. Ñ); P , Q,
... denote arbitrary prime ideals or points, not necessary those prime ideals
lying over Ð or Ñ. When we consider a ring homomorphism φ: R→ S, an
element a in R will also denote its image φ�a� in S by abusing the notation.

2. CONSTRUCTION OF INJECTIVE HULLS

Let R be a Noetherian ring and 0X be a prime ideal of R�X� x=
R�X1; : : : ;Xn� and Ð be the contraction of 0X in R. The module of
Kähler differentials ��R�X�0X

/RÐ
; d� of R�X�0X

over RÐ is free with ba-
sis dX1; : : : ; dXn. For an injective hull M�Ð� of κ�Ð�, we define an
R�X�0X

-module

det0X
M�Ð� x=

(
∧n�R�X�0X

/RÐ

)
⊗RÐ

M�Ð�

which is isomorphic to R�X�0X
⊗RÐ

M�Ð� non-canonically. The R�X�0X
-

module

H
top
0X
�det0X

M�Ð�� x= H`
0X
�det0X

M�Ð��
is an injective hull of κ�0X� [6, Proposition 3.8], where ` is the relative di-
mension of R�X�0X

over RÐ andH`
0X
�−� is the `th local cohomology functor
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supported on 0XR�X�0X
. Elements in Htop

0X
�det0X

M�Ð�� can be described
using generalized fractions [6, 2.1 and 2.2] or [11, Sect. 7][

kdX1 · · ·dXn ⊗ α
f1; : : : ; f`

]
;

where α ∈ M�Ð� f1; : : : ; f` ∈ R�X�0X
is a relative system of parameters of

R�X�0X
over RÐ, and k is an element in R�X�0X

. If ` is a positive number,
we may assume that k; f1; : : : ; f` ∈ R�X� by changing k and the relative
system of parameters f1; : : : ; f`. Generalized fractions have the following
properties:

Property 2.1 (linearity law). For ω1;ω2 ∈ det0X
M�Ð� and k1; k2 ∈

R�X�0X
,[
k1ω1 + k2ω2
f1; · · · ; f`

]
= k1

[
ω1

f1; · · · ; f`

]
+ k2

[
ω2

f1; · · · ; f`

]
:

Property 2.2 (vanishing law) [6, 2.3.i] or [11, 7.2.a]. Assume that ` > 0.
For ω ∈ det0X

M�Ð�, [
ω

f1; : : : ; f`

]
= 0

if and only if �f1 · · · f`�sω ∈ �f s+1
1 ; : : : ; f s+1

` �det0X
M�Ð� for some s ≥ 0.

In particular, for any 1 ≤ i ≤ `,[
fiω

f1; : : : ; f`

]
= 0:

If ` is positive, g1; : : : ; g` ∈ R�X�0X
, and gi is a unit for some i, we define[
ω

g1; : : : ; g`

]
x= 0:

Property 2.3 (transformation law) [6, 2.3.ii] or [11, 7.2.b]. For relative
system of parameters f ′1; : : : ; f

′
` of R�X�0X

over RÐ and ω ∈ det0X
M�Ð�,[

ω
f1; : : : ; f`

]
=
[

det�ri;j�ω
f ′1; : : : ; f

′
`

]
;

if f ′i =
∑`
j=1 ri;jfj for i = 1; : : : ; `.

Let S be an R-algebra and 0 be a prime ideal of S lying over a prime
ideal Ð of R. Assume that there exist elements x1; : : : ; xn in S such that the
R-linear map R�X� → S sending Xi to xi induces a surjection R�X�0X

→
S0, where 0X is the preimage of 0 in R�X�. The functor HomR�X�0X

�S0;−�
from the category of R�X�0X

-modules to the category of S0-modules pre-
serves injective hulls of the residue fields.
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Definition 2.4. MS/Ryx1;:::;xn
�0� is defined as the subset of Htop

0X
�det0X

M�Ð�� consisting of all elements annihilated by the kernel of the R-
linear map R�X�0X

→ S0 sending Xi to xi. The S0-module structure on
MS/Ryx1;:::;xn

�0� is given via the canonical R�X�0X
-isomorphism

MS/Ryx1;:::;xn
�0� ' HomR�X�0X

(
S0;H

top
0X
�det0X

M�Ð��
)
:

We will write Mx1;:::;xn
�0� for MS/Ryx1;:::;xn

�0� if it is clear from the context
that we are working on the R-algebra S. Note that

MX�0X� = Htop
0X
�det0X

M�Ð��:
As an injective hull of κ�0X�, every element of MX�0X� is annihilated
by a power of 0XR�X�0X

(see, for example, [14, Theorem 18.4]). Given
ω ∈MX�0X� and f̂ ∈ R�X�∧0X

, the R�X�∧0X
-module structure on MX�0X� is

defined by

f̂ω x= fω;
where f ∈ R�X�0X

is chosen such that f̂ − f ∈ 0m
XR�X�∧0X

for some m ∈ �
with 0m

XR�X�0X
ω = 0.

Let R�X;Y� x= R�X1; : : : ;Xn;Y1; : : : ; Ym� → S be an R-linear map ex-
tending R�X� → S. Denote by 0X;Y the preimage of 0 in R�X;Y�. The
induced map R�X;Y�0X;Y

→ S0 is still surjective. The canonical isomor-
phisms

det0X;Y
M�Ð� ' �∧m�R�X;Y�0X;Y

/R�X�0X
� ⊗R�X�0X

(
det0X

M�Ð�)
and

H
top
0X;Y
�det0X;Y

MX�0X��

→̃Hm+`
0X;Y

(
�∧m�R�X;Y�0X;Y

/R�X�0X
� ⊗R�X�0X

(
det0X

M�Ð�))
[6, (2.5) and (2.6)] give rise to a canonical isomorphism

H
top
0X;Y
�det0X;Y

MX�0X��→̃MX;Y�0X;Y� (7)

explicitly described by generalized fractions: kdY1 · · ·dYm ⊗
[
dX1 · · ·dXn ⊗ α
f
j1
1 ; : : : ; f

j`
`

]
�Y1 − g1�i1; : : : ; �Ym − gm�im


7→
[

kdY1 · · ·dYmdX1 · · ·dXn ⊗ α
�Y1 − g1�i1; : : : ; �Ym − gm�im; f j11 ; : : : ; f

j`
`

]
;
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where k ∈ R�X;Y�0X;Y
and g1; : : : ; gm are elements in R�X�0X

mapping to
the images of Y1; : : : ; Ym in S0, respectively. Note that Y1 − g1; : : : ; Ym −
gm is a regular system of parameters of R�X;Y�0X;Y

(resp. R�X;Y�∧0X;Y
)

over R�X�0X
(resp. R�X�∧0X

). Note also that the universal separated dif-
ferential module �̃R�X;Y�∧0X;Y

/R�X�∧0X
of R�X;Y�∧0X;Y

over R�X�∧0X
is free with

basis dY1; : : : ; dYm. We define a bijective map

H
top
0X;Y
�det0X;Y

MX�0X��
→ Hm

0X;Y
�∧m�̃R�X;Y�∧0X;Y

/R�X�∧0X
⊗R�X�∧0X

MX�0X��
by  kdY1 · · ·dYm ⊗

[
dX1 · · ·dXn ⊗ α
f
j1
1 ; : : : ; f

j`
`

]
�Y1 − g1�i1; : : : ; �Ym − gm�im


7→
 kdY1 · · ·dYm ⊗

[
dX1 · · ·dXn ⊗ α
f
j1
1 ; : : : ; f

j`
`

]
�Y1 − g1�i1; : : : ; �Ym − gm�im

 :
The canonical map

Hm
0X;Y
�∧m�̃R�X;Y�∧0X ;Y

/R�X�∧0X
⊗MX�0X�� →MX�0X�

defined to be the residue map, in the sense of [6, Chap. V] for the power
series ring R�X;Y�∧0X;Y

over R�X�∧0X
, has the form:

For k ∈ R�X�0X
, kdY1 · · ·dYm ⊗

[
dX1 · · ·dXn ⊗ α
f
j1
1 ; : : : ; f

j`
`

]
�Y1 − g1�i1; : : : ; �Ym − gm�im


7→

[
kdX1 · · ·dXn ⊗ α

f
j1
1 ; : : : ; f

j`
`

]
; if i1 = · · · = im = 1y

0; otherwise:

We now define a map, still called residue map in this article,

res: MX;Y�0X;Y� →MX�0X� (8)

so that the diagram

H
top
0X;Y
�det0X;Y

MX�0X�� MX;Y�0X;Y�

Hm
0X;Y
�∧m�̃R�X;Y�∧0X;Y

/R�X�∧0X
⊗MX�0X�� MX�0X�

res

is commutative.
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Property 2.5 (transitivity law). For variables X, Y, Z, the diagram

MX;Y;Z�0X;Y;Z�

MX;Y�0X;Y� MX�0X�

res

res

res

is commutative.

The transitivity law can be easily verified using the following formula: For
k ∈ R�X�0X

,

res

[
kdY1 · · ·dYmdX1 · · ·dXn ⊗ α

�Y1 − g1�i1; : : : ; �Ym − gm�im; f j11 ; : : : ; f
j`
`

]

=

[
kdX1 · · ·dXn ⊗ α

f
j1
1 ; : : : ; f

j`
`

]
; if i1 = · · · = im=1y

0; otherwise:

The above formula determines the residue map (8) since every element in
MX;Y�0X;Y� is a finite sum of elements of the form[

kdY1 · · ·dYmdX1 · · ·dXn ⊗ α
�Y1 − g1�i1; : : : ; �Ym − gm�im; f j11 ; : : : ; f

j`
`

]
;

where k ∈ R�X�0X
. Denote by Homc

R�X�∧0X
�R�X;Y�∧0X;Y

;MX�0X�� (resp.
Homc

R�X�0X
�R�X;Y�0X;Y

;MX�0X��) the R�X;Y�∧0X;Y
(resp. R�X;Y�0X;Y

)-
module consisting of all continuous homomorphisms from R�X;Y�∧0X;Y

(resp. R�X;Y�0X;Y
) to MX�0X� (that is, the homomorphisms annihilated by

some power of 0X;Y). Using the local duality [6, Theorem 5.9]

Hm
0X;Y
�∧m�̃R�X;Y�∧0X;Y

/R�X�∧0X
⊗MX�0X��

→̃Homc
R�X�∧0X

�R�X;Y�∧0X;Y
;MX�0X��

and the canonical isomorphism

Homc
R�X�∧0X

�R�X;Y�∧0X;Y
;MX�0X��→̃Homc

R�X�0X
�R�X;Y�0X;Y

;MX�0X��;

we define

MX;Y�0X;Y� → Homc
R�X�0X

�R�X;Y�0X;Y
;MX�0X�� (9)

to be the isomorphism which makes the diagram



708 i-chiau huang

H
top
0X;Y
�det0X;Y

MX�0X�� MX;Y�0X;Y�

Hm
0X;Y
�∧m�̃R�X;Y�∧0X;Y

/R�X�∧0X
⊗MX�0X��

Homc
R�X�∧0X
�R�X;Y�∧0X;Y

;MX�0X�� Homc
R�X�0X
�R�X;Y�0X;Y

;MX�0X��
commutative. In terms of the residue map, the map (9) sends each element
ω in MX;Y�0X;Y� to the continuous homomorphism f 7→ res�fω�.

Denote by y x= y1; : : : ; ym the images of Y1; : : : ; Ym in S. Using the
canonical isomorphism

HomR�X;Y�0X;Y
�S0;Homc

R�X�0X
�R�X;Y�0X;Y

;MX�0X���
→̃HomR�X�0X

�S0;MX�0X��
[6, 4.4., iii], we define

res−1: Mx�0� →Mx;y�0�
to be the isomorphism which makes the diagram

HomR�X�0X
�S0;MX�0X�� Mx�0�

HomR�X;Y�0X;Y
�S0;Homc

R�X�0X
�R�X;Y�0X;Y

;MX�0X���

HomR�X;Y�0X;Y
�S0;MX;Y�0X;Y�� Mx;y�0�

res−1

commutative. The notation “ res−1 ” is justified by the fact that the inverse
of res−1 is the restriction of the residue map MX;Y�0X;Y� → MX�0X� to
Mx;y�0�.

For elements x1; : : : ; xn ∈ S, we define 0x to be R�x1; : : : ; xn� ∩0. Con-
sider the directed set

IS/R;0 = �x � x = �x1; : : : ; xn� ⊆ S; R�x1; : : : ; xn�0x
= S0�

with the order defined by inclusion. For each x in IS/R;0, we choose vari-
ables X and define Mx�0� as above. Using the transitivity law (2.5), it is
easy to see that the system �Mx�0�� of S0-modules is compatible with the
isomorphisms res−1.
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Definition 2.6. MS/R�0� x= lim→ MS/R;x�0�:
The canonical map MS/R;x�0� → MS/R�0� is an isomorphism. Therefore
MS/R�0� is an injective hull of κ�0�. Note also that not only any two direct
limits (objects with the universal property) are canonically isomorphic, there
is also a canonical choice among all direct limits. MS/R�0� is defined as the
one canonically chosen as done for example in [6, p. 32].

Let X and Y be locally Noetherian schemes and φ: Y → X be a mor-
phism of finite type. Given a point 0 in Y , we denote by Ð its image under
φ. Let M�Ð� be an injective hull of κ�Ð�, we want to define canonically an
injective hull of κ�0�. Consider the directed set

JY/X;0 = ��V;U� �0 ∈ V; φ�V � ⊆ U�
of affine open subsets V of Y and U of X with the order defined by

�V1;U1� ≤ �V2;U2� if and only if V1 ⊇ V2 and U1 ⊇ U2:

Let �V1;U1� and �V2;U2� be elements in JY/X;0 with �V1;U1� ≤
�V2;U2�. Given x in I0�V1;OY �/0�U1;OX �;0, we denote by x the restrictions
of x in 0�V2;OY�, then x is in I0�V2;OY �/0�U2;OX �;0. So we may define
M0�V1;OY �/0�U1;OX �;x�0�, as well as M0�V2;OY �/0�U2;OX �;x�0�. Let X (resp. X) be
variables chosen for the elements x (resp. x). Let 0X (resp. 0X) be the
preimage of 0 under the canonical map 0�U1;OX��X� → 0�V1;OY� (resp.
0�U2;OX��X� → 0�V2;OY�) sending Xi (resp. Xi) to xi (resp. xi). There is
a bijective map

ζ0X
: M0�U1;OX ��X�/0�U1;OX �;X�0X� →M0�U2;OX ��X�/0�U2;OX �;X�0X�

given by [
kdX1 · · ·dXn ⊗ α

f1; : : : ; f`

]
7→
[
kdX1 · · ·dXn ⊗ α

f 1; : : : ; f `

]
;

where k; f 1; : : : ; f ` are the images of k; f1; : : : ; f` under the canonical iso-
morphism

0�U1;OX��X�0X
→ 0�U2;OX��X�0X

:

Given an element g in 0�U1;OX��X�∧0X
, let g be the image of g under the

canonical isomorphism

0�U1;OX��X�∧0X
→ 0�U2;OX��X�∧0X

;

it is easy to see that

ζ0X

(
g

[
kdX1 · · ·dXn ⊗ α

f1; : : : ; f`

])
= g

(
ζ0X

[
kdX1 · · ·dXn ⊗ α

f1; : : : ; f`

])
:
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The restriction of the map ζ0X
to M0�V1;OY �/0�U1;OX �;x�0� has image equal

to M0�V2;OY �/0�U2;OX �;x�0�. So we get a map

M0�V1;OY �/0�U1;OX �;x�0� →M0�V2;OY�/0�U2;OX �;x�0� (10)

which is easily seen to be an OY;0-isomorphism. The isomorphisms (10) for
different x ∈ I0�V1;OY �/0�U1;OX �;0 are compatible with the residue maps in the
following sense: Given x and y in I0�V1;OY �/0�U1;OX �;0 with x ≤ y, the diagram

M0�V1;OY �/0�U1;OX �;x�0� M0�V2;OY �/0�U2;OX �;x�0�

M0�V1;OY �/0�U1;OX �;y�0� M0�V2;OY �/0�U2;OX �;y�0�

res−1 res−1

is commutative, where x (resp. y) are the restrictions of x (resp. y) in
0�V2;OY�. Therefore the isomorphism

M0�V1;OY �/0�U1;OX ��0� →M0�V2;OY�/0�U2;OX ��0�

defined as the map making the diagram

M0�V1;OY �/0�U1;OX �;x�0� M0�V2;OY �/0�U2;OX �;x�0�

M0�V1;OY �/0�U1;OX ��0� M0�V2;OY �/0�U2;OX ��0�

commutative is independent of the choice of x ∈ I0�V1;OY �/0�U1;OX �;0. Let
�V3;U3� be an element in JY/X;0 with �V2;U2� ≤ �V3;U3�. It is easy to see
that the maps defined above form a commutative diagram

M0�V1;OY �/0�U1;OX ��0� M0�V2;OY �/0�U2;OX ��0�

M0�V3;OY �/0�U3;OX ��0�:

Definition 2.7. MY�0� x= lim→ M0�Vi;OY �/0�Ui;OX ��0�.

The canonical map M0�Vi;OY�/0�Ui;OX ��0� → MY�0� is an isomorphism.
Therefore MY�0� is an injective hull of κ�0�. Note that MY�0� depends
only on M�Ð� and the morphism φ.
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3. CONSTRUCTIONS OF iÐ AND δÐR�X�;0

The maps which we are going to construct in this section are trivial in
formalism. Let Ð be a prime ideal of R and let M�Ð� be an injective hull of
κ�Ð�.

Definition 3.1. The map

iÐ: �R�X�/R ⊗R M�Ð� → �R�X�ÐR�X�/RÐ
⊗RÐ

M�Ð�
is defined as the identity map 1M�Ð� tensorized by the functorial map

�R�X�/R→ �R�X�ÐR�X�/RÐ
:

Theorem 3.2. The map iÐ is injective.

Proof. Assume that Xs dX ⊗ αs + · · · +X dX ⊗ α1 + dX ⊗ α0 (αi ∈
M�Ð�) is in the kernel of iÐ (that is, it is annihilated by an element atXt +
· · · + a0 ∈ R�X� \ ÐR�X�). In terms of system of equations in M�Ð�,

at 0 0 · · · 0 0
at−1 at 0 · · · 0 0
· at−1 at · · · 0 0
:::

:::
:::

: : :
:::

:::
a0 a1 · · · · at 0
0 a0 a1 · · · at−1 at
0 0 a0 · · · · at−1
:::

:::
:::

: : :
:::

:::
0 0 0 · · · a0 a1
0 0 0 · · · 0 a0




αs
αs−1
:::
α0

 =


0
0
:::
0

 :

Assume that ai 6∈ Ð and aj ∈ Ð for j > i. Using row operations, we get

0 0 · · · 0 0
:::

:::
: : :

:::
:::

ai 0 · · · 0 0
0 ai;1 · · · 0 0
:::

:::
: : :

:::
:::

0 0 · · · ai;s−1 0
0 0 · · · 0 ai;s
:::

:::
: : :

:::
:::

0 0 · · · 0 0




αs
αs−1
:::
α0

 =


0
0
:::
0



for some units ai;j in RÐ. Therefore

Xs dX ⊗ αs + · · · +X dX ⊗ α1 + dX ⊗ α0 = 0:
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Definition 3.3. (cf. [2, 1.1.2.]). Let 0 be a prime ideal of R�X� lying
over Ð but not equal to ÐR�X�. Define the map

δÐR�X�;0: �R�X�ÐR�X�/RÐ
⊗RÐ

M�Ð� → H1
0��R�X�0/RÐ

⊗RÐ
M�Ð��

by

δÐR�X�;0

(
k

f
dX ⊗ α

)
=
[
kdX ⊗ α

f

]
for all k ∈ R�X�, f ∈ R�X�\ÐR�X�, and α ∈M�Ð�. Define

δÐR�X�: �R�X�ÐR�X�/RÐ
⊗RÐ

M�Ð� → ⊕H1
0��R�X�0/RÐ

⊗RÐ
M�Ð��

by δÐR�X� = ⊕δÐR�X�;0, where 0 ranges over the prime ideals of R�X� lying
over Ð but not equal to ÐR�X�.

It is easy to check that δÐR�X�;0 is well-defined using the linearity law (2.1)
and transformation law (2.3). We leave the details to the reader. The fact
that δÐR�X� is well-defined follows from the next proposition which provides
“Cousin data” for elements in �R�X�ÐR�X�/RÐ

⊗RÐ
M�Ð� and can be viewed as

a generalized version of the decomposition into partial fractions. It is also
easy to see that δÐR�X� ◦ iÐ = 0.

Proposition 3.4. Every element in �R�X�ÐR�X�/RÐ
⊗RÐ

M�Ð� of the form
�k/f �dX ⊗ α, where α ∈ M�Ð�, k ∈ R�X�, and f ∈ R�X� \ ÐR�X�, can be
written as

k

f
dX ⊗ α = k0 dX ⊗ α0 +

k1

f1
dX ⊗ α1 + · · · +

ks
fs
dX ⊗ αs

for some αi ∈M�Ð� and ki; fi ∈ R�X� satisfying the following conditions:

• degki < deg fi.

• The leading coefficient of fi is not in Ð.

• The image of fi in κ�Ð��X� is a power of an irreducible polynomial.

• The images of fi and fj in κ�Ð��X� are relatively prime if i 6= j.
Since �R�X�ÐR�X�/RÐ

is free of rank 1 with generator dX, the proposition is a
direct consequence of the following two lemmas.

Lemma 3.5. Let k ∈ R�X�, f; f1; f2 ∈ R�X� \ ÐR�X�, and α ∈ M�Ð�.
Assume f − f1f2 ∈ ÐR�X� and the images of f1; f2 in κ�Ð��X� are relatively
prime. Then there exist k1; k2 ∈ R�X�, r ∈ R \ Ð, and n ∈ � such that

k

f
⊗ α = k1

f n1
⊗ α
r
+ k2

f n2
⊗ α
r

in R�X�ÐR�X� ⊗RÐ
M�Ð�.
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Proof. There exists n ∈ � such that Ðnα = 0. Since �f − f1f2�n ⊗ α = 0,

�f1f2�n ⊗ α

=
((
n

1

)
�f1f2�n−1f −

(
n

2

)
�f1f2�n−2f 2 + · · · + �−1�n+1

(
n

n

)
f n
)
⊗ α

and hence

k

f
⊗ α

= k�f1f2�n
f �f1f2�n

⊗ α

=
(
n
1

)�f1f2�n−1k− (n2)�f1f2�n−2fk+ · · · + �−1�n+1
(
n
n

)
f n−1k

�f1f2�n
⊗ α:

So we may assume f = f1f2. Choose h1; h2 ∈ R�X� and r ∈ R \ Ð such that

h1f1 + h2f2 − r ∈ ÐR�X�;
then

k�h1f1 + h2f2 − r�n
f1f2

⊗ α

rn
= 0:

Hence there exist k1; k2 ∈ R�X� such that

k

f
⊗ α = krn

f1f2
⊗ α

rn
=
(
k1

f1
+ k2

f2

)
⊗ α

rn
:

Here is a special case: For any k ∈ R�X�, f ∈ R�X� \ ÐR�X�, and α ∈
M�Ð�, choose f1 ∈ R�X� \ ÐR�X� whose leading coefficient is not in Ð such
that f − f1 ∈ ÐR�X�. Then applying the above lemma for f2 = 1, there exist
k1; k2 ∈ R�X� and r ∈ R \ Ð such that

k

f
⊗ α = k1

f n1
⊗ α
r
+ k2 ⊗

α

r
:

Lemma 3.6. Let k; f ∈ R�X� and α ∈ M�Ð�. Assume that the leading
coefficient of f is not in Ð. Then there exist k′; k′′ ∈ R�X�, r ∈ R \ Ð such that

k

f
⊗ α = k′ ⊗ α

r
+ k

′′

f
⊗ α
r

in R�X�ÐR�X� ⊗RÐ
M�Ð� and degk′′ < deg f .

The lemma is proved by induction on the degree of k. We leave the details
to the reader. Another main result in this section is as follows.
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Theorem 3.7. The map δÐR�X� is surjective with kernel equal to the image
of iÐ.

Proof. Let 0 be a prime ideal of R�X� lying over Ð but not equal to
ÐR�X�. Any element in H1

0��R�X�0/RÐ
⊗RÐ

M�Ð�� can be written as a sum
of elements of the form [

kdX ⊗ α
f

]
;

for some α ∈ M�Ð�, k ∈ R�X�, and f ∈ R�X� \ ÐR�X�. Choose ki, fi, and
αi as in Proposition 3.4 such that

k

f
dX ⊗ α = k0dX ⊗ α0 +

k1

f1
dX ⊗ α1 + · · · +

ks
fs
dX ⊗ αs

in �R�X�ÐR�X�/RÐ
⊗RÐ

M�Ð�. If fi 6∈ 0, then δÐR�X�;0��ki/fi�dX ⊗ αi� = 0.
Assume that [

kdX ⊗ α
f

]
6= 0:

Then 0 contains exactly one of fi, say f1, and

δÐR�X�

(
k1

f1
dX ⊗ α1

)
= δÐR�X�;0

(
k1

f1
dX ⊗ α1

)
= δÐR�X�;0

(
k

f
dX ⊗ α1

)
=
[
kdX ⊗ α

f

]
;

whence the surjectivity. The kernel of δÐR�X� is equal to the image of iÐ by
Proposition 3.4 and the following lemma.

Lemma 3.8. Given ki; f ∈ R�X� and αi ∈M�Ð�. Assume that

• degki < deg f ;

• the leading coefficient of f is not in Ð; and

• the image of f in κ�Ð��X� is a power of an irreducible polynomial.

Let 0 be the unique prime ideal of R�X� lying over Ð and containing f . If
δÐR�X�;0�

∑�ki/f �dX ⊗ αi� = 0, then
∑�ki/f �dX ⊗ αi = 0.

Proof. By the vanishing law (2.2),∑
kif

s dX ⊗ αi ∈ f s+1�R�X�0/RÐ
⊗RÐ

M�Ð�
for some s ≥ 0, equivalently∑

kif
s ⊗ αi ∈ f s+1R�X�0 ⊗RÐ

M�Ð�:
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R�X�0 is a localization of RÐ�X�, so there exists h ∈ R�X� \0 such that∑
hkif

s ⊗ αi ∈ f s+1RÐ�X� ⊗RÐ
M�Ð�:

The images of f and h in κ�Ð��X� are relatively prime, so the map

µh:
κ�Ð��X�

f s+1κ�Ð��X� →
κ�Ð��X�

f s+1κ�Ð��X� ;

multiplication by h, is an isomorphism. By Nakayama’s lemma, the map

µh:
RÐ�X�

f s+1RÐ�X�
→ RÐ�X�

f s+1RÐ�X�
is also an isomorphism. Hence so is the map

µh:
RÐ�X� ⊗RÐ

M�Ð�
f s+1RÐ�X� ⊗RÐ

M�Ð� →
RÐ�X� ⊗RÐ

M�Ð�
f s+1RÐ�X� ⊗RÐ

M�Ð� :

Therefore ∑
kif

s ⊗ αi ∈ f s+1RÐ�X� ⊗RÐ
M�Ð�:

Since degkif s < deg f s+1 for each i,
∑
kif

s ⊗ αi vanishes in RÐ�X� ⊗RÐ

M�Ð�. In the localization R�X�ÐR�X� ⊗RÐ
M�Ð� of RÐ�X� ⊗RÐ

M�Ð�,∑ ki
f
⊗ αi =

∑ kif
s

f s+1 ⊗ αi = 0;

and therefore
∑�ki/f �dX ⊗ αi = 0.

4. CONSTRUCTIONS OF δÐR�X�;ÑR�X�, δ0;1, AND δ0;ÒR�X�

In this section, we will construct coboundary maps which are not trivial
in formalism.

Proposition 4.1. Let R be a Noetherian ring and Ñ be an immediate
specialization of Ð in SpecR. Then, for any n ∈ � and f ∈ R�X� \ ÐR�X�,
there exist a ∈ Ñ \ Ð, g ∈ R�X�∧ÑR�X� and h ∈ R�X�∧ÑR�X� \ ÑR�X�∧ÑR�X� such
that fg − ah ∈ ÐnR�X�∧ÑR�X�.

Proof. Let Ò1 ∩ Ò2 ∩ · · · be a primary decomposition of ÐR∧Ñ and Ði be the
associated prime of Òi. Since the image of any non-zero element of �R/Ð�Ñ
in �R/Ð�∧Ñ is a non-zero-divisor, all Ði’s are minimal over ÐR∧Ñ and the image
f of f in �R∧Ñ /Ði��X� is not zero. By Cohen’s structure theorem, for each
Ði there exist a complete regular local ring Ai ⊆ R∧Ñ /Ði and ai ∈ Ñ \ Ði such
that R∧Ñ /Ði is finite over Ai and the maximal ideal Íi of Ai is generated by
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the image ai of ai. The ring �R∧Ñ /Ði��X� is finite over Ai�X�, so there exist
hi;1; : : : ; hi;si−1; h

′
i;si
∈ Ai�X� with h

′
i;si
6= 0 such that

f
si + hi;1f

si−1 + · · · + hi;si−1f + h
′
i;si
= 0

in �R∧Ñ /Ði��X�. The polynomial h
′
i;si

can be written as anii hi;si for some hi;si ∈
Ai�X� \ÍiAi�X� and ni ≥ 0. So we can find hi;1; : : : ; hi;si ∈ R∧Ñ �X� with
hi;si /∈ ÑR∧Ñ �X� such that

f si + hi;1f si−1 + · · · + hi;si−1f + anii hi;si ∈ ÐiR
∧
Ñ �X�:

By raising to suitable power if necessary, we may assume

f si + hi;1f si−1 + · · · + hi;si−1f + anii hi;si ∈ ÒiR
∧
Ñ �X�;

for each i. Multiply the above element for various i, we get

f s + h1f
s−1 + · · · + hs−1f + a0hs ∈ �Ò1 ∩ Ò2 ∩ · · ·�R∧Ñ �X� = ÐR∧Ñ �X�;

for some a0 ∈ Ñ \ Ð, h1; : : : ; hs−1 ∈ R∧Ñ �X�, and hs ∈ R∧Ñ �X� \ ÑR∧Ñ �X�. Rais-
ing to the nth power, we may assume

f s + h1f
s−1 + · · · + hs−1f + a0hs ∈ ÐnR∧Ñ �X�:

Let a x= −a0 and g (resp. h) be the image of f s−1 + h1f
s−2 + · · · + hs−1

(resp. hs) in R�X�∧ÑR�X�, then h 6∈ ÑR�X�∧ÑR�X� and fg − ah ∈ ÐnR�X�∧ÑR�X�.

Now we can talk about “division.”

Definition 4.2. Let R be a Noetherian ring, Ñ be an immediate spe-
cialization of Ð in SpecR, M�Ñ� (resp. M�Ð�) be an injective hull of κ�Ñ�
(resp. κ�Ð�), and δÐ;Ñ: M�Ð� →M�Ñ� be an R-linear map. Given k ∈ R�X�,
f ∈ R�X� \ ÐR�X�, and α ∈ M�Ð�, choose a, g, h as in Proposition 4.1 for
some n ∈ � satisfying Ðnα = 0, we define

�k; f; α� x= g

h

(
kdX ⊗ δÐ;Ñ

(α
a

))
:

Since f �k; f; α� = kdX ⊗ δÐ;Ñ�α�, �k; f; α� is meant to be kdX ⊗ δÐ;Ñ�α�
“divided" by f . The “division" is independent of the choice of n, a, g, and
h as shown in the next proposition.

Proposition 4.3. The notations and assumptions are as above. If ni ∈ �,
ai ∈ Ñ \ Ð, gi ∈ R�X�∧ÑR�X�, hi ∈ R�X�∧ÑR�X� \ ÑR�X�∧ÑR�X� satisfy Ðniα = 0 and
fgi − aihi ∈ ÐniR�X�∧ÑR�X� for i = 1; 2, then

g1

h1

(
kdX ⊗ δÐ;Ñ

(
α

a1

))
= g2

h2

(
kdX ⊗ δÐ;Ñ

(
α

a2

))
:
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Proof. Let n = min�n1; n2�. Then a2h2g1 − a1h1g2 ∈ ÐnR�X�∧ÑR�X� and

a2h2g1 − a1h1g2

h1h2

(
kdX ⊗ δÐ;Ñ

(
α

a1a2

))
= 0:

Therefore

g1

h1

(
kdX ⊗ δÐ;Ñ

(
α

a1

))
= a2h2g1

h1h2

(
kdX ⊗ δÐ;Ñ

(
α

a1a2

))

= a1h1g2

h1h2

(
kdX ⊗ δÐ;Ñ

(
α

a1a2

))

= g2

h2

(
kdX ⊗ δÐ;Ñ

(
α

a2

))
:

To compute �k; f; α�, elements a, g, h can be taken from a larger class.

Proposition 4.4. The notations and assumptions are as above. If a ∈
Ñ \ Ð, g ∈ R�X�∧ÑR�X�, h ∈ R�X�∧ÑR�X� \ ÑR�X�∧ÑR�X� satisfy

�fg − ah�
(
kdX ⊗ δÐ;Ñ

(α
b

))
= 0

for all b ∈ Ñ \ Ð, then

�k; f; α� = g

h

(
kdX ⊗ δÐ;Ñ

(α
a

))
:

The proof is the same as that of Proposition 4.3 and is left to the reader.
As a corollary of the next proposition, the “division" can be extended to

all the module �R�X�ÐR�X�/RÐ
⊗RÐ

M�Ð�.
Proposition 4.5. Given b ∈ R, c ∈ R \ Ð, α;α1; α2 ∈ M�Ð�, k;k1; k2 ∈

R�X�, and f; f1; f2 ∈ R�X� \ ÐR�X�, then

• �k1f2 + k2f1; f1f2; α� = �k1; f1; α� + �k2; f2; α�,
• �k; f; α1 + α2� = �k; f; α1� + �k; f; α2�,
• �bk; cf; α� =

〈
k; f;

b

c
α
〉
.

If k1f2 = k2f1, then �k1; f1; α� = �k2; f2; α�.
It is straightforward to verify the proposition. The details are left to the

reader.
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Definition 4.6. Let R be a Noetherian ring, Ð and Ñ be prime ideals
of R, M�Ñ� (resp. M�Ð�) be an injective hull of κ�Ñ� (resp. κ�Ð�), and
δÐ;Ñ: M�Ð� →M�Ñ� be an R-linear map. If Ñ is an immediate specialization
of Ð, we define

δÐR�X�;ÑR�X�: �R�X�ÐR�X�/RÐ
⊗RÐ

M�Ð� → �R�X�ÑR�X�/RÑ
⊗RÑ

M�Ñ�
to be the unique R�X�-linear map satisfying

δÐR�X�;ÑR�X�

(
k

f
dX ⊗ α

)
= �k; f; α�:

If Ñ is not an immediate specialization of Ð, we define δÐR�X�;ÑR�X� to be
zero.

It is easy to see that δÐR�X�;ÑR�X� ◦ iÐ = iÑ ◦ �1 ⊗ δÐ;Ñ�. So there exists a
unique R�X�-linear map

⊕H1
Í0
��R�X�0/RÐ

⊗RÐ
M�Ð�� ⊕H1

Í1
��R�X�1/RÑ

⊗RÑ
M�Ñ��⊕δ0;1

(11)

such that

�⊕δ0;1� ◦ δÐR�X� = −δÑR�X� ◦ δÐR�X�;ÑR�X�

(see diagram (5)), where 0 (resp. 1) ranges over all prime ideals of R�X�
lying over Ð (resp. Ñ) but not equal to ÐR�X� (resp. ÑR�X�). Note that, if
0 6⊆ 1, there is an element in R�X� whose image in R�X�1 is a unit and
whose image in R�X�0 is in the maximal ideal. This implies that δ0;1 = 0.
Therefore δ0;1 6= 0 only if 1 is an immediate specialization of 0.

Assume that R possesses a residual complex

· · · δ
n−1

−→ ⊕
1�Ð�=n

M�Ð� δn−→ ⊕
1�Ñ�=n+1

M�Ñ� δ
n+1

−→· · · ;

where M�Ð� is an injective hull of the residue field κ�Ð� of the point Ð and
1 is a codimension function on R. Given prime ideals Ð and Ò of R such
that 1�Ò� = 1�Ð� + 2, there exists a unique R�X�-linear map

⊕H1
Í0
��R�X�0/RÐ

⊗RÐ
M�Ð�� �R�X�ÒR�X�/RÒ

⊗RÒ
M�Ò�⊕δ0;ÒR�X�

(12)

such that

�− ⊕ δ0;ÒR�X�� ◦ �⊕δÐR�X�;0� = �⊕δÑR�X�;ÒR�X�� ◦ �⊕δÐR�X�;ÑR�X��
(see diagram (6)), where Ñ ranges over all prime ideals of R properly be-
tween Ð and Ò; and 0 ranges over all prime ideals of R�X� lying over Ð but
not equal to ÐR�X�. Note that δ0;ÒR�X� = 0 if 0 6⊆ ÒR�X�. Since R is uni-
versally catenary, δ0;ÒR�X� 6= 0 only if ÒR�X� is an immediate specialization
of 0.

Given prime ideals P immediately specializing to Q in R�X�, we summa-
rize the map δP;Q defined in the previous and the present sections.
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• If the contraction Ñ of Q in R is the same as that of P , then P =
ÑR�X�,

MX�P� = �R�X�ÑR�X�/RÑ
⊗RÑ

M�Ñ�;
MX�Q� = H1

Q��R�X�Q/RÐ
⊗RÐ

M�Ñ��;
and δP;Q defined in Definition 3.3 satisfies

δP;Q

(
k

f
dX ⊗ α

)
=
[
kdX ⊗ α

f

]
;

where k ∈ R�X�, f ∈ R�X� \ ÑR�X�, and α ∈ M�Ñ�. In this case δP;Q is
called a coboundary map of type �0; 1�, where 0 (resp. 1) refers to the
relative dimension of R�X�P (resp. R�X�Q) over RÐ (resp. RÑ).

• If the contraction Ñ of Q in R is an immediate specialization of the
contraction Ð of P in R and P = ÐR�X�, then Q = ÑR�X�,

MX�P� = �R�X�ÐR�X�/RÐ
⊗RÐ

M�Ð�;
MX�Q� = �R�X�ÑR�X�/RÑ

⊗RÑ
M�Ñ�;

and δP;Q defined in Definition 4.6 satisfies

δP;Q

(
k

f
dX ⊗ α

)
= g

h

(
kdX ⊗ δÐ;Ñ

(α
a

))
;

where k ∈ R�X�, f ∈ R�X� \ ÐR�X�, α ∈ M�Ð�, and a, g, h are chosen as
in Proposition 4.1 for n ∈ � satisfying Ðnα = 0. In this case δP;Q is called a
coboundary map of type �0; 0�.

• If the contraction Ñ of Q in R is an immediate specialization of the
contraction Ð of P in R but P 6= ÐR�X�, then

MX�P� = H1
P��R�X�P/RÐ

⊗RÐ
M�Ð��;

MX�Q� = H1
Q��R�X�Q/RÑ

⊗RÑ
M�Ñ��:

Elements in MX�P� can be written as a sum of elements of the form[
kdX ⊗ α

f

]
;

where k; f ∈ R�X�, α ∈ M�Ð�, and the image of f in κ�Ð��X� is a power
of an irreducible polynomial (see the proof of Theorem 3.7). We choose a,
g, h as in Proposition 4.1 for some n ∈ � satisfying Ðnα = 0 and choose
g′ ∈ R�X� and h′ ∈ R�X� \ ÑR�X� such that(

g

h
− g

′

h′

)(
dX ⊗ δÐ;Ñ

(α
a

))
= 0
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in �R�X�ÑR�X�/RÑ
⊗RÑ

M�Ñ�, then δP;Q defined in (11) satisfies

δP;Q

([
kdX ⊗ α

f

])
= −

[
g′kdX ⊗ δÐ;Ñ

(α
a

)
h′

]
:

In this case δP;Q is called a coboundary map of type �1; 1�.
• If the contraction Ò of Q in R is not equal to nor an immediate

specialization of the contraction Ð of P in R, then dim�R/Ð�Ò/Ð = 2, Q =
ÒR�X�,

MX�P� = H1
P��R�X�P/RÐ

⊗RÐ
M�Ð��;

MX�Q� = �R�X�ÒR�X�/RÒ
⊗RÒ

M�Ò�:
Given an element [

kdX ⊗ α
f

]
inMX�0X�, where k; f ∈ R�X�, α ∈M�Ð�, and the image of f in κ�Ð��X� is
a power of an irreducible polynomial, for each Ñ ∈ SpecR properly between
Ð and Ò, we choose aÑ ∈ Ñ \ Ð, gÑ ∈ R�X�∧ÑR�X�, hÑ ∈ R�X�∧ÑR�X� \ ÑR�X�∧ÑR�X�
as in Proposition 4.1 for some nÑ ∈ � with ÐnÑα = 0 such that fgÑ − aÑhÑ ∈
ÐnÑR�X�∧ÑR�X�; choose g′Ñ ∈ R�X� and h′Ñ ∈ R�X� \ ÑR�X� such that(

gÑ

hÑ

− g
′
Ñ

h′Ñ

)(
dX ⊗ δÐ;Ñ

(
α

aÑ

))
= 0

in �R�X�ÑR�X�/RÑ
⊗RÑ

M�Ñ�; and choose a′Ñ ∈ Ò \ Ñ, g′′Ñ ∈ R�x�∧ÒR�X� and
h′′Ñ ∈ R�x�∧ÒR�X� \ ÒR�x�∧ÒR�X� as in Proposition 4.1 for some n′Ñ ∈ � with
Ñn
′
Ñ�α/aÑ� = 0 such that h′Ñg

′′
Ñ − a′Ñh′′Ñ ∈ Ñn

′
ÑR�x�∧ÒR�X�, then δP;Q defined in

(12) satisfies

δP;Q

([
kdX ⊗ α

f

])
= −∑

Ñ

g′′Ñ
h′′Ñ

(
g′ÑkdX ⊗ �δÑ;Ò ◦ δÐ;Ñ�

(
α

aÑa
′
Ñ

))
;

where Ñ ranges over the prime ideals of R properly between Ð and Ò. In
this case δP;Q is called a coboundary map of type �1; 0�.

5. CONSTRUCTION OF M•X1;:::;Xn

Let R be a Noetherian ring possessing a residual complex

· · · δ
n−1

−→ ⊕
1�Ð�=n

M�Ð� δn−→ ⊕
1�Ñ�=n+1

M�Ñ� δ
n+1

−→· · · ;
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where M�Ð� is an injective hull of the residue field κ�Ð� of the point Ð
and 1 is a codimension function on R. Let 1X1;:::;Xn

be the codimension
function on R�X1; : : : ;Xn� as characterized in (2). First we construct M•X .
Let P and Q be two prime ideals of R�X� such that

1X�P� = 1X�Q� − 1:

If Q is an immediate specialization of P , δXyP;Q x= δP;Q was defined in
Sections 3 and 4. If Q is not an immediate specialization of P , δXyP;Q is
defined to be 0.

Theorem 5.1. Define Mn
X x= ⊕MX�P�, where P ranges over the prime

ideals with 1X�P� = n; and define δnX x= ⊕δXyP;Q, where P and Q range over
the prime ideals with 1X�P� = n and 1X�Q� = n+ 1. Then the chain M•X of
R�X�-modules defined by

· · · δ
n−1
X−→Mn

X

δnX−→Mn+1
X

δn+1
X−→· · · (13)

is a residual complex quasi-isomorphic to �R�X�/R ⊗R M•�1�.
The fact that the chain (13) is a complex follows directly from our con-

struction. To see that the chain (13) is a residual complex quasi-isomorphic
to �R�X�/R ⊗R M•�1�, we chase elements in the following diagram

⊕MX�ÐR�X�� ⊕MX�0� 0

0 �R�X�/R ⊗R Mn+1 ⊕MX�ÑR�X�� ⊕MX�1� 0

0 �R�X�/R ⊗R Mn+2 ⊕MX�ÒR�X��

⊕iÑ

⊕iÒ

whose rows are exact. The details are left to the reader.
Coboundary maps of type �1; 0� and �1; 1� are determined by coboundary

maps of type �0; 0� and �0; 1� in the following sense.

Proposition 5.2. Let δ′XyP;Q: MX�P� → MX�Q� be R�X�-linear maps
(P;Q ∈ SpecR�X�) such that

· · · ⊕
1X�P�=n

MX�P�
⊕

1X�Q�=n+1
MX�Q� · · ·⊕δ′XyP;Q

(14)

is a complex. If δ′XyP;Q = δXyP;Q, for all P such that P = �P ∩R�R�X�, then
δ′XyP;Q = δXyP;Q for all P and Q.
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Proof. Given prime ideals P and Q with 1X�Q� = 1X�P� + 1, if P ⊆
Q, then Q is an immediate specialization of P ; if P 6⊆ Q, then δ′XyP;Q =
δXyP;Q = 0. Let 0 be a prime ideal of R�X� which does not equal to the
extension ÐR�X� of its contraction Ð in R. To prove the proposition, it
suffices to prove δ′Xy0;Q = δXy0;Q for all immediate specialization Q of 0.
Given an element 2 in MX�0�, by Theorem 3.7, there is an element ϒ in
MX�ÐR�X�� such that

δ′XyÐR�X�;P�ϒ�= δXyÐR�X�;P�ϒ�=
{
2; if P = 0;
0; if P ∩R = Ð but P 6= 0 or ÐR�X�:

Since (13) and (14) are complexes, for P ranging over all prime ideals of
R�X� except 0 with 1X�P� = 1�Ð� and Ñ ranging over all prime ideals of
R with 1�Ñ� = 1�Ð� + 1, we have

δ′Xy0;Q�2� =
(
δ′Xy0;Q ◦ δ′XyÐR�X�;0

)
�ϒ�

= −⊕
P

(
δ′XyP;Q ◦ δ′XyÐR�X�;P

)
�ϒ�

= −⊕
Ñ

(
δ′XyÑR�X�;Q ◦ δ′XyÐR�X�;ÑR�X�

)
�ϒ�

= −⊕
Ñ

(
δXyÑR�X�;Q ◦ δXyÐR�X�;ÑR�X�

) �ϒ�
= −⊕

P

(
δXyP;Q ◦ δXyÐR�X�;P

) �ϒ�
= (δXy0;Q ◦ δXyÐR�X�;0) �ϒ�
= δXy0;Q�2�:

Using the same method on the polynomial ring R�X;Y � over R�X�, we
construct a residual complex

· · · ⊕
1X;Y �P�=n

MY �P�
⊕

1X;Y �Q�=n+1
MY �Q� · · ·δnX;Y/X

on R�X;Y � from M•X . We remind the reader that MY �P� is the R�X;Y �-
module constructed from the R�X�-module MX�P ∩R�X�� (Section 2). Us-
ing the canonical isomorphism MY �P�→̃MX;Y �P�, see (7), we get a resid-
ual complex

· · · ⊕
1X;Y �P�=n

MX;Y �P�
⊕

1X;Y �Q�=n+1
MX;Y �Q� · · ·δnX;Y

;
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denoted by M•X;Y , where δnX;Y is the map making the diagram⊕
1X;Y �P�=n

MY �P�
⊕

1X;Y �Q�=n+1
MY �Q�

⊕
1X;Y �P�=n

MX;Y �P�
⊕

1X;Y �Q�=n+1
MX;Y �Q�

δnX;Y/X

δnX;Y

can: can:

commutative. In M•X;Y , the definitions of 1X;Y and MX;Y �P� are indepen-
dent of the order of X and Y , but δnX;Y depends on the order of X and Y
a priori.

Theorem 5.3. The construction of M•X;Y is independent of the order of X
and Y .

Proof. Let 0 be a prime ideal of R�X;Y � and let 0X (resp. 0Y and
Ð) be its contraction in R�X� (resp. R�Y � and R). Assume 1X;Y �0� = n.
Let Q be a prime ideal of R�X;Y � with 1X;Y �Q� = n+ 1 and let δX;Y y0;Q
(resp. δY;Xy0;Q) be the map MX;Y �0� → MX;Y �Q� in the complex M•X;Y
(resp. M•Y;X). We need to show δX;Y y0;Q = δY;Xy0;Q. Let QX (resp. QY ) be
the contraction of Q in R�X� (resp. R�Y �). If Ð 6⊆ Q ∩R, then both δX;Y y0;Q
and δY;Xy0;Q are zero. So we may assume Ð ⊆ Q ∩ R. By Proposition 5.2,
we may also assume 0 = 0XR�X;Y �. We consider the following cases and
subcases

• 0X = ÐR�X�
— Q ∩R = Ð

— Q ∩R 6= Ð

• 0X 6= ÐR�X�
— Q ∩R = Ð

— Q ∩R is an immediate specialization of Ð

— Q ∩R is neither equal to nor an immediate specialization of Ð

and continue our proof.

• First we treat the case 0X = ÐR�X�. In this case 0 = ÐR�X;Y � and

MX;Y �0� = det0:

If Q ∩R = Ð, then

MX;Y �Q� = H1
Q�detQM�Ð��:

Let �k/f �dX dY ⊗ α be an element in MX;Y �0�, where k ∈ R�X;Y �, f ∈
R�X;Y � \ ÐR�X;Y �, and α ∈M�Ð�. We claim that

δX;Y y0;Q

(
k

f
dX dY ⊗ α

)
=
[
kdX dY ⊗ α

f

]
:
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This is obviously true if QX = ÐR�X�. If QX 6= ÐR�X�,

δX;Y y0;Q

(
k

f
dX dY ⊗ α

)
= G

H

[
kdX dY ⊗ α

A

]
;

where G ∈ R�X;Y �∧QXR�X;Y �, H ∈ R�X;Y �∧QXR�X;Y � \ QXR�X;Y �∧QXR�X;Y �,
and A ∈ QX \ ÐR�X� are chosen such that fG−AH ∈ ÐnR�X;Y �∧QXR�X;Y �
for some n ∈ � with Ðnα = 0 (hence Ðn�dX ⊗ α� = 0),

G

H

[
kdX dY ⊗ α

A

]
= fG
H

[
kdX dY ⊗ α

fA

]
= AH

H

[
kdX dY ⊗ α

fA

]
=
[
kdX dY ⊗ α

f

]
:

This proves the claim and hence δX;Y y0;Q is independent of the order of X
and Y .

If Q ∩R 6= Ð, we denote Q ∩R by Ñ. In this case Q = ÑR�X;Y � and

MX;Y �Q� = detQM�Ñ�:
Let �k/f �dX dY ⊗ α be an element in MX;Y �0�, where k ∈ R�X;Y �,
f ∈ R�X;Y � \ 0, and α ∈ M�Ð�. We choose G′ ∈ R�X;Y �∧ÑR�X;Y �, H ′ ∈
R�X;Y �∧ÑR�X;Y � \ ÑR�X;Y �∧ÑR�X;Y �, and A ∈ ÑR�X� \ ÐR�X� such that fG′ −
AH ′ ∈ ÐnR�X;Y �∧ÑR�X;Y � for some n ∈ � with Ðnα = 0, and choose g ∈
R�X�∧ÑR�X�, h ∈ R�X�∧ÑR�X� \ ÑR�X�∧ÑR�X�, and a ∈ Ñ \ Ð such that Ag− ah ∈
ÐnR�X�∧ÑR�X�. Let G = G′g (more precisely the product of G′ and the im-
age of g in R�X;Y �∧ÑR�X;Y �) and H = H ′h. Then H 6∈ ÑR�X;Y �∧ÑR�X;Y �,
fG− aH ∈ ÐnR�X;Y �∧ÑR�X;Y �, and

δX;Y y0;Q

(
k

f
dX dY ⊗ α

)
= G

H

(
kdX dY ⊗ δÐ;Ñ

(α
a

))
:

This formula for δX;Y y0;Q implies that δX;Y y0;Q is independent of the order
of X and Y (see the proof of Proposition 4.3).

• Now we treat the case 0X 6= ÐR�X�. In this case

MX;Y �0� = H1
0�det0M�Ð��;

0Y = ÐR�Y �, but 0 6= 0YR�X;Y �. Elements in MX;Y �0� can be written
as a sum of elements of the form k

f1
dX dY ⊗ α
f2

 ;
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where k ∈ R�X;Y �, f1 ∈ R�X;Y � \ 0, α ∈ M�Ð�, and f2 being a relative
system of parameters of R�X;Y �0 over RÐ is chosen to be an element in
0X whose image f 2 in κ�Ð��X;Y � is a power of an irreducible polynomial.

If Q ∩R = Ð, then

MX;Y �Q� = H2
Q�detQM�Ð��:

Note that either f1 is a unit in R�X;Y �Q or the sequence f1; f2 forms a
relative system of parameters of R�X;Y �Q over RÐ. It is easy to see that

δX;Y y0;Q

 k

f1
dX dY ⊗ α
f2

 = [ kdX dY ⊗ α
f1; f2

]
:

Now we compute δY;Xy0;Q: First we compute the special case that f1 is in
R�Y � and its image f 1 in κ�Ð��X;Y � is a power of an irreducible poly-
nomial. Besides 0, there is at most one prime ideal P of R�X;Y � properly
between ÐR�X;Y � and Q such that

δY;XyÐR�X;Y �;P

(
k

f1f2
dX dY ⊗ α

)
6= 0;

namely the preimage P0 of the radical of f 1 under the canonical map
R�X;Y � → κ�Ð��X;Y �. As

δY;XyÐR�X;Y �;0

(
k

f1f2
dX dY ⊗ α

)
=
 k

f1
dX dY ⊗ α
f2

 ;
we have

δY;Xy0;Q

 k

f1
dX dY ⊗ α
f2


= −δY;XyP0;Q

◦ δY;XyÐR�X;Y �;P0

(
k

f1f2
dX dY ⊗ α

)
= −δY;XyP0;Q

([
kdX dY ⊗ α

f2f1

])
= −

[
kdX dY ⊗ α

f2; f1

]
=
[
kdX dY ⊗ α

f1; f2

]
:

Now we consider the general case. By the Gauss lemma, the image of f2
in κ�0Y ��X� is also a power of an irreducible polynomial. The images of
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f1 and f2 in κ�0Y ��X� are relatively prime, so there exist g1; g2 ∈ R�X;Y �
and r ∈ R�Y � \0Y such that

g1f1 + g2f2 − r ∈ ÐR�X;Y �:
Choose n ∈ � such that Ðnα = 0. For prime ideals P of R�X;Y � lying over
0Y but not equal to 0YR�X;Y �, we have

δX;Y yÐR�X;Y �;P

(
n∑
i=1

�−1�i+1
(
n

i

)
krn−igi1f

i−1
1

rnf2
dX dY ⊗ α

)

=


 k

f1
dX dY ⊗ α
f2

 ; if P = 0;

0; if P 6= 0.

By Proposition 3.4, there exist αi ∈ M�Ð� and ki; hi ∈ R�Y � such that the
image hi of hi in κ�Ð��Y � is a power of an irreducible polynomial and such
that

1
rn
dY ⊗ α = k0dY ⊗ α0 +

k1

h1
dY ⊗ α1 + · · · +

ks
hs
dY ⊗ αs

in MY �ÐR�Y ��. Define

ϒ0 x=
n∑
i=1

�−1�i+1
(
n

i

)
k0kr

n−igi1f
i−1
1

f2
dX dY ⊗ α

and

ϒj x=
n∑
i=1

�−1�i+1
(
n

i

)
kjkr

n−igi1f
i−1
1

hjf2
dX dY ⊗ α

for 1 ≤ j ≤ s. Then

δX;Y yÐR�X;Y �;0�ϒ0 +ϒ1 + · · · +ϒs� =
 k

f1
dX dY ⊗ α
f2

 :
For 1 ≤ j ≤ s, let Pj be the prime ideal of R�X;Y � which is the preimage of
the radical of hj under the canonical map R�X;Y � → κ�Ð��X;Y �. Besides
0, there are at most s prime ideals P properly between ÐR�X;Y � and Q
such that

δX;Y yÐR�X;Y �;P�ϒ0 +ϒ1 + · · · +ϒs� 6= 0;

namely P1; : : : ;Ps. For 1 ≤ j ≤ s and 0 ≤ ` ≤ s,
δX;Y yÐR�X;Y �;Pj�ϒ`� = 0;
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if j 6= `. By the proof in the special case above,

δX;Y yPj ;Q ◦ δX;Y yÐR�X;Y �;Pj�ϒj� = δY;XyPj ;Q ◦ δX;Y yÐR�X;Y �;Pj �ϒj�:
Therefore

δY;Xy0;Q

 k

f1
dX dY ⊗ α
f2


= −

s⊕
j=1

δY;XyPj ;Q ◦ δY;XyÐR�X;Y �;Pj
(

s∑
`=0

ϒ`

)

= −
s⊕
j=1

δX;Y yPj ;Q ◦ δX;Y yÐR�X;Y �;Pj
(

s∑
`=0

ϒ`

)

= δX;Y y0;Q

 k

f1
dX dY ⊗ α
f2

 :
If Q ∩R =x Ñ is an immediate specialization of Ð, then

MX;Y �Q� = H1
Q�detQM�Ñ��;

Q = QXR�X;Y �, but Q 6= QYR�X;Y �. Given 2 ∈ MX;Y �0�, there exists
ϒ ∈ MX;Y �ÐR�X;Y �� such that, for prime ideals P lying over ÐR�Y � but
not equal to ÐR�X;Y �,

δX;Y yÐR�X;Y �;P�ϒ� =
{
2; if P = 0y
0; otherwise.

Besides ÑR�X;Y �, prime ideals properly between Q and ÐR�X;Y � are ex-
actly those prime ideals lying over ÐR�Y � but not equal to ÐR�X;Y �. Hence

δY;Xy0;Q�2� = −
(
δX;Y yÑR�X;Y �;Q ◦ δX;Y yÐR�X;Y �;ÑR�X;Y �

) �ϒ�
= δX;Y y0;Q�2�:

If Q ∩ R =x Ò is neither equal to nor an immediate specialization of Ð,
then Q = ÒR�X;Y � and

MX;Y �Q� = detQM�Ò�:
First we consider the special case that f1 is in R�Y � and its image f 1 in
κ�Ð��X;Y � is a power of an irreducible polynomial. Choose n ∈ � such
that Ðnα = 0. We claim that in this special case there exist G1;G2 ∈
R�X;Y �∧ÒR�X;Y �, H ∈ R�X;Y �∧ÒR�X;Y � \ ÒR�X;Y �∧ÒR�X;Y �, and a ∈ Ò \ Ð such
that

f1G1 + f2G2 − aH ∈ ÐnR�X;Y �∧ÒR�X;Y �:
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Since f2 ∈ 0X \ ÐR�X�, there exist r ∈ R \ Ð and m ∈ � such that

r0m
X ∈ f2R�X� + ÐR�X�:

By Proposition 4.1, there exist A ∈ ÒR�X� \0X , G1 ∈ R�X;Y �∧ÒR�X;Y �, and
H ∈ R�X;Y �∧ÒR�X;Y � \ ÒR�X;Y �∧ÒR�X;Y �, such that

f1G1 −AH ∈ 0m
XR�X;Y �∧ÒR�X;Y �:

By multiplying G1 and A by r, we may assume that

f1G1 −AH ∈ f2R�X;Y �∧ÒR�X;Y � + ÐR�X;Y �∧ÒR�X;Y �:
Since the images of A and f2 in κ�Ð��X� are relatively prime, there exist
B;C ∈ R�X� and a ∈ R \ Ð such that

AB+ Cf2 − a ∈ ÐR�X�:
By multiplying G1 and A by B, we may assume that B = 1. Hence

f1G1 − aH ∈ f2R�X;Y �∧ÒR�X;Y � + ÐR�X;Y �∧ÒR�X;Y �
and there exist G2 ∈ R�X;Y �∧ÒR�X;Y � such that

f1G1 + f2G2 − aH ∈ ÐR�X;Y �∧ÒR�X;Y �:
By raising the above element to the nth power and replacing a (resp. H)
by an (resp. Hn), we may assume that

f1G1 + f2G2 − aH ∈ ÐnR�X;Y �∧ÒR�X;Y �:
Now we compute δX;Y y0;Q and δY;Xy0;Q. Since

�f1G1 − aH�
kdY ⊗ δ0X;ÒR�X�

 1
b
dX ⊗ α
f2

 = 0

for all b ∈ ÒR�X� \0X , by Proposition 4.4,

δX;Y y0;Q

 k

f1
dX dY ⊗ α
f2


= G1

H

(
⊕δX;Y yÑR�X;Y �;Q ◦ δX;Y yÐR�X;Y �;ÑR�X;Y �

k

f2
dY dX ⊗ α

a

)
= f1G1

H

(
⊕δX;Y yÑR�X;Y �;Q ◦ δX;Y yÐR�X;Y �;ÑR�X;Y �

k

f1f2
dY dX ⊗ α

a

)
;
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where Ñ runs over the prime ideals of R properly between Ð and Ò. Besides
0, there is at most one prime ideal P lying over Ð and properly between
ÐR�X;Y � and Q such that

δY;XyÐR�X;Y �;P

(
k

f1f2
dY dX ⊗ α

)
6= 0;

namely the preimage P0 of the radical of f 1 under the canonical map
R�X;Y � → κ�Ð��X;Y �. Therefore

δY;Xy0;Q

 k

f1
dX dY ⊗ α
f2


= −δY;XyP0;Q

 k

f2
dX dY ⊗ α
f1


−⊕ δX;Y yÑR�X;Y �;Q ◦ δX;Y yÐR�X;Y �;ÑR�X;Y �

k

f1f2
dX dY ⊗ α:

Then

δY;XyP0;Q

 k

f2
dX dY ⊗ α
f1


= f2G2

H

(
⊕δX;Y yÑR�X;Y �;Q ◦ δX;Y yÐR�X;Y �;ÑR�X;Y �

k

f1f2
dY dX ⊗ α

a

)
;

where Ñ runs over prime ideals of R properly between Ð and Ò. Hence

δY;Xy0;Q

 k

f1
dX dY ⊗ α
f2


= −f2G2

H

(
⊕δX;Y yÑR�X;Y �;Q ◦ δX;Y yÐR�X;Y �;ÑR�X;Y �

k

f1f2
dY dX ⊗ α

a

)
+a

(
⊕δX;Y yÑR�X;Y �;Q ◦ δX;Y yÐR�X;Y �;ÑR�X;Y �

k

f1f2
dY dX ⊗ α

a

)

= δX;Y y0;Q

 k

f1
dX dY ⊗ α
f2

− f1G1 + f2G2 − aH
H(

⊕δX;Y yÑR�X;Y �;Q ◦ δX;Y yÐR�X;Y �;ÑR�X;Y �
k

f1f2
dY dX ⊗ α

a

)

= δX;Y y0;Q

 k

f1
dX dY ⊗ α
f2

 :
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Now we consider the general case. Recall that there exist elements
ϒ0; ϒ1; : : : ; ϒs ∈MX;Y �ÐR�X;Y �� of the form

ϒ0 =
K0

f2
dX dY ⊗ α

and

ϒj =
Kj

hjf2
dX dY ⊗ α

for 1 ≤ j ≤ s, where K0; : : : ;Ks ∈ R�X;Y � and h1; : : : ; hs ∈ R�Y �, such
that the image hj of each hj in κ�Ð��X;Y � is a power of an irreducible
polynomial and such that

δX;Y yÐR�X;Y �;0�ϒ0 +ϒ1 + · · · +ϒs� =
 k

f1
dX dY ⊗ α
f2

 :
For 1 ≤ j ≤ s, let Pj be the prime ideal of R�X;Y � which is the preimage of
the radical of hj under the canonical map R�X;Y � → κ�Ð��X;Y �. Besides
0, there are at most s prime ideals P lying over Ð and properly between
ÐR�X;Y � and Q such that

δX;Y yÐR�X;Y �;P�ϒ0 +ϒ1 + · · · +ϒs� 6= 0;

namely P1; : : : ;Ps. For 1 ≤ j ≤ s and 0 ≤ ` ≤ s,
δX;Y yÐR�X;Y �;Pj�ϒ`� = 0;

if j 6= `. Proved in the special case above,

δX;Y yPj ;Q ◦ δX;Y yÐR�X;Y �;Pj�ϒj� = δY;XyPj ;Q ◦ δX;Y yÐR�X;Y �;Pj �ϒj�:
Therefore

δY;Xy0;Q

 k

f1
dX dY ⊗ α
f2


= −

s⊕
j=1

δY;XyPj ;Q ◦ δY;XyÐR�X;Y �;Pj
(

s∑
`=0

ϒ`

)

−⊕δY;XyÑR�X;Y �;Q ◦ δY;XyÐR�X;Y �;ÑR�X;Y �
(

s∑
`=0

ϒ`

)

= −
s⊕
j=1

δX;Y yPj ;Q ◦ δX;Y yÐR�X;Y �;Pj
(

s∑
`=0

ϒ`

)
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−⊕δX;Y yÑR�X;Y �;Q ◦ δX;Y yÐR�X;Y �;ÑR�X;Y �
(

s∑
`=0

ϒ`

)

= δX;Y y0;Q

 k

f1
dX dY ⊗ α
f2

 ;
where Ñ runs over the prime ideals of R properly between Ð and Ò.

Assume that the complex M•X1;:::;Xn−1
has been defined on R�X1; : : : ;

Xn−1� for n > 2. We define a complex

· · · ⊕
1X1;:::;Xn

�P�=n
MX1;:::;Xn

�P� ⊕
1X1;:::;Xn

�Q�=n+1
MX1;:::;Xn

�Q� · · ·
δnX1;:::;Xn

;

denoted by M•X1;:::;Xn
, on R�X1; · · · ;Xn� such that the diagram⊕

1X1;:::;Xn
�P�=n

MXn
�P� ⊕

1X1;:::;Xn
�Q�=n+1

MXn
�Q�

⊕
1X1;:::;Xn

�P�=n
MX1;:::;Xn

�P� ⊕
1X1;:::;Xn

�Q�=n+1
MX1;:::;Xn

�Q�

δnX1;:::;Xn/X1;:::;Xn−1

δnX1;:::;Xn

can: can:

is commutative, where

· · · ⊕
1X1;:::;Xn

�P�=n
MXn
�P� ⊕

1X1;:::;Xn
�Q�=n+1

MXn
�Q� · · ·

δnX1;:::;Xn/X1;:::;Xn−1

is the complex on R�X1; · · · ;Xn� constructed from M•X1;···;Xn−1
using the

above method.

Corollary 5.4. The residual complex M•X1;:::;Xn
obtained inductively on

n from M• is independent of the order of X1; : : : ;Xn.

We denote by δX1;:::;XnyP;Q the R�X1; : : : ;Xn�-linear map MX1;:::;Xn
�P� →

MX1;:::;Xn
�Q� in the complex M•X1;:::;Xn

.

6. CONSTRUCTION OF M•S/R

Let S be a finitely generated R-algebra. Assume that elements x1; : : : ; xn
generate S as an R-algebra. Then �x1; : : : ; xn� ∈ IS/R;0 for every prime
ideal 0 of S. Write x for the elements x1; : : : ; xn and X for variables
X1; : : : ;Xn chosen for x. Let I be the kernel of the R-linear map R�X� → S
sending Xi to xi. For any prime ideal 0X of R�X�, let 0 be its image in S,
there are canonical isomorphisms

HomR�X��S;MX�0X�� '
{
MS/R;x�0�; if I ⊆ 0X,
0; if I 6⊆ 0X:
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Let 1S be the codimension function on SpecS as characterized in (2). If
0X ⊃ I, then 1S�0� = 1R�X��0X�. For prime ideals P and Q of S with
1S�Q� = 1S�P� + 1, let PX and QX be their preimages in R�X�, we define

δS/R;xyP;Q: MS/R;x�P� →MS/R;x�Q�
to be the restriction of δXyP;Q: MX�PX� →MX�QX� on MS/R;x�P�. It is easy
to see that

· · · ⊕
1S�P�=n

MS/R;x�P�
⊕

1S�Q�=n+1
MS/R;x�Q� · · ·⊕δS/R;xyP;Q

denoted by M•S/R;x, is a complex which is isomorphic to the bounded be-
low complex HomR�X��S;M•�. The complex M•S/R;x has finitely generated
cohomology easily seen from the spectral sequence

ExtpR�X��S;Hq�M•�� ⇒ Hp+q�M•S/R;x�;
and hence is a residual complex.

Let y1; : : : ; ym be elements in S and Y1; : : : ; Ym be the variables chosen
for them. Then the R-linear map R�X; Y1; : : : ; Ym� → S extending R�X� →
S and sending Yi to yi is also surjective. The coboundary maps of M•S/R;x
are compatible with the residue maps in the following sense.

Proposition 6.1. With the notation above, write y for the elements
y1; : : : ; ym. The diagram

MS/R;x�P� MS/R;x�Q�

MS/R;x;y�P� MS/R;x;y�Q�

δS/R;xyP;Q

δS/R;x;yyP;Q

res−1 res−1

is commutative.

Proof. It suffices to show that the diagram

MX�PX� MX�QX�

MX;Y�PX;Y� MX;Y�QX;Y�

δXyP;Q

δX;YyP;Q

res res

is commutative since the maps in the proposition are the restrictions or
inverses of the restrictions of the maps above. By the transitivity law (2.5)
of the residue maps, we may also assume m = 1. Let[

kdY1 dX1 · · ·dXn ⊗ α
�Y1 − g1�i1; f j11 ; : : : ; f

j`
`

]
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be an element in MX;Y�PX;Y�, where k ∈ R�X�PX
and g1 ∈ R�X� maps to

the image of Y1 in S. Write

δXyP;Q

([
kdX1 · · ·dXn ⊗ α

f
j1
1 ; : : : ; f

j`
`

])
=∑

j

[
kj dX1 · · ·dXn ⊗ αj

f ′1; : : : ; f
′
`′

]
;

where f ′1; : : : ; f
′
`′ is a relative system of parameters of R�X�QX

over RQ∩R,
kj ∈ R�X�QX

, and αj ∈ M�Q ∩R�. Note that δX;Y1yP;Q is a coboundary map
of type �1; 1� obtained from δXyP;Q. Since the image of Y1− g1 in κ�PX��Y1�
generates a maximal ideal and the image of Y1 − g1 in R�X; Y1�∧QXR�X;Y1� is
invertible,

δX;YyP;Q

([
kdY1 dX1 · · ·dXn ⊗ α
�Y1 − g1�i1; f j11 ; : : : ; f

j`
`

])
=∑

j

[
kj dY1 dX1 · · ·dXn ⊗ αj
�Y1 − g1�i1; f ′1; : : : ; f ′`′

]
:

If i1 = 1,

�res ◦ δX;YyP;Q�
([

kdY1 dX1 · · ·dXn ⊗ α
�Y1 − g1�i1; f j11 ; : : : ; f

j`
`

])
=∑

j

[
kj dX1 · · ·dXn ⊗ αj

f ′1; : : : ; f
′
`′

]

= δXyP;Q

([
kdX1 · · ·dXn ⊗ α

f
j1
1 ; : : : ; f

j`
`

])
= �δXyP;Q ◦ res�

([
kdY1 dX1 · · ·dXn ⊗ α
�Y1 − g1�i1; f j11 ; : : : ; f

j`
`

])
:

If i1 6= 1,

�res ◦ δX;YyP;Q�
([

kdY1 dX1 · · ·dXn ⊗ α
�Y1 − g1�i1; f j11 ; : : : ; f

j`
`

])
= 0

= �δXyP;Q ◦ res�
([

kdY1 dX1 · · ·dXn ⊗ α
�Y1 − g1�i1; f j11 ; : : : ; f

j`
`

])
:

The S-linear map

δS/RyP;Q: MS/R�P� →MS/R�Q�
making the diagram

MS/R;x�P� MS/R;x�Q�

MS/R�P� MS/R�Q�

δS/R;xyP;Q

δS/RyP;Q
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commutative is independent of the choice of x. Since MS/R;x�P� →
MS/R�P� is an isomorphism for every prime ideal P of S, the chain of
S-modules

· · · ⊕
1S�P�=n

MS/R�P�
⊕

1S�Q�=n+1
MS/R�Q� · · ·⊕δS/RyP;Q

;

denoted by M•S/R, being isomorphic to M•S/R;x is a residual complex on S.

7. GLOBAL CONSTRUCTION

Let M• be a residual complex on a locally Noetherian scheme X . Assume
that

Mn = ⊕
1X �Ð�=n

J�Ð�

(see the notation in Section 1). Let φ: Y → X be a morphism of finite type
whose fibers have bounded dimensions. Given points P and Q of Y with
1Y�Q� = 1Y�P� + 1, we define an OY -morphism δP;Q: MY�P� → MY�Q�
as follows: If Q is not an immediate specialization of P , δP;Q is defined to
be zero. If Q is an immediate specialization of P , we choose �V;U� ∈ JY/X;Q

(see the notation in Section 2), δP;Q is defined to be the map making the
diagram

M0�V;OY �/0�U;OX ��P� M0�V;OY �/0�U;OX ��Q�

MY�P� MY�Q�

δ0�V;OY �/0�U;OX �yP;Q

δP;Q

commutative.

Proposition 7.1. The map δP;Q is independent of the choice of V and U .

Proof. It suffices to show that the diagram

M0�V1;OY �/0�U1;OX ��P� M0�V1;OY �/0�U1;OX ��Q�

M0�V2;OY �/0�U2;OX ��P� M0�V2;OY �/0�U2;OX ��Q�

δ0�V1;OY �/0�U1;OX �yP;Q

δ0�V2;OY �/0�U2;OX �yP;Q

is commutative for �V1;U1� and �V2;U2� in JY/X;Q with �V1;U1� ≤
�V2;U2�.*
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Expand the above diagram as follows:

where x = �x1; : : : ; xn� generate 0�V1;OY� as an 0�U1;OX�-algebra and
x = �x1; : : : ; xn� are the restrictions of x in 0�V2;OY�. The subdiagrams
(U), (L), and (R) are commutative by definitions. The subdiagram (D)
is also commutative easily seen from the proof of Proposition 6.1. Since
the diagonal maps in the above diagram are isomorphisms, to prove the
proposition, it suffices to prove that the subdiagram (C) is commutative.
Let X = �X1; : : : ;Xn� (resp. X = �X1; : : : ;Xn�) be the variables chosen for
the elements x (resp. x). The maps of subdiagram (C) are the restrictions
of the maps of the diagram

M0�U1;OX ��X�/0�U1;OX �;X�PX� M0�U1;OX ��X�/0�U1;OX �;X�QX�

M0�U2;OX ��X�/0�U2;OX �;X�PX� M0�U2;OX ��X�/0�U2;OX �;X�QX�;

δXyPX ;QX

δXyPX ;QX

ζPX
ζQX

where PX (resp. QX) is the preimage of P (resp. Q) in 0�U1;OX��X� (resp.
0�U2;OX��X�). So it suffices to show that the above diagram is commuta-
tive. If δXyPX;QX

is constructed from M•X1;:::;Xn−1
by a coboundary map of type

�i; j�, then δXyPX;QX
is constructed from M•

X1;:::;Xn−1
by a coboundary map

also of type �i; j�. It is not difficult to see that ⊕ζQX
◦ δXyPX;QX

◦ ζ−1
PX

gives
rise to a complex

· · · → ⊕M0�U2;OX ��X�/0�U2;OX �;X�PX� → ⊕M0�U2;OX ��X�/0�U2;OX �;X�QX� → · · · :
Since coboundary maps are determined by coboundary maps of type
�0; 1� and �0; 0� (Proposition 5.2), it suffices to prove the proposition
for coboundary maps of type �0; 1� and �0; 0�. In what follows, the
case �0; j� means that δXyPX;QX

is constructed by a coboundary map of
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type �0; j�. Let Pn−1 (resp. Pn−1) be the preimage of PX (resp. PX) in
0�U1;OX��X1; : : : ;Xn−1� (resp. 0�U2;OX��X1; : : : ;Xn−1�); let Qn−1 (resp.
Qn−1) be the preimage of QX (resp. QX) in 0�U1;OX��X1; : : : ;Xn−1� (resp.
0�U2;OX��X1; : : : ;Xn−1�); and let Ð = φ�P�.

Case �0; 1�. Elements in M0�U1;OX ��X�/0�U1;OX �;X�PX� can be written as a
sum of elements of the form k

f0
dX1 · · ·dXn ⊗ α
f1; : : : ; f`

 ; (15)

where k/f0 ∈ 0�U1;OX��X�PX
, α ∈ M�Ð�, and f1; : : : ; f` form a relative

system of parameters of 0�U1;OX��X1; : : : ;Xn−1�Pn−1
over 0�U1;OX�Ð.

Note that f1; : : : ; f` also form a relative system of parameters of
0�U1;OX��X�PX

over 0�U1;OX�Ð. The images f 1; : : : ; f ` of f1; : : : ; f`
in 0�U2;OX��X�PX

form a relative system of parameters of 0�U2;OX��X�PX

over 0�U2;OX�Ð.

ζQX
◦ δXyPX;QX

 k

f0
dX1 · · ·dXn ⊗ α

f1; : : : ; f`


= ζQX

[
kdX1 · · ·dXn ⊗ α
f0; f1; : : : ; f`

]

=
[
kdX1 · · ·dXn ⊗ α
f 0; f 1; : : : ; f `

]

= δXyPX;QX


k

f 0

dX1 · · ·dXn ⊗ α

f 1; : : : ; f `



= δXyPX;QX
◦ ζPX

 k

f0
dX1 · · ·dXn ⊗ α

f1; : : : ; f`

 :
Case �0; 0�. Let  k

f0
dX1 · · ·dXn ⊗ α

f1; : : : ; f`


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be an element of M0�U1;OX ��X�/0�U1;OX �;X�PX� as in (15). Choose ele-
ments g ∈ 0�U1;OX��X�∧QX

, h ∈ 0�U1;OX��X�∧QX
\ QX0�U1;OX��X�∧QX

, and
a ∈ Qn−1 \ Pn−1 such that f0g − ah ∈ Pm

n−10�U1;OX��X�∧QX
for some m ∈ �

satisfying

Pm
n−1

[
dX1 · · ·dXn−1 ⊗ α

f1; : : : ; f`

]
= 0;

then

δXyPX;QX

 k

f0
dX1 · · ·dXn ⊗ α

f1; : : : ; f`

 = g

h

 k

a
dX1 · · ·dXn ⊗ α
f1; : : : ; f`

 :
Let g, h, and a be the images of g, h, and a in 0�U2;OX��X�∧QX

, re-
spectively. Since h 6∈ QX0�U2;OX��X�∧QX

, a ∈ Qn−1 \ Pn−1, f 0g − ah ∈
�Pn−1�m0�U2;OX��X�∧QX

, and

�Pn−1�m
[
dX1 · · ·dXn−1 ⊗ α

f 1; : : : ; f `

]
= 0;

we have

δXyPX;QX


k

f 0

dX1 · · ·dXn ⊗ α

f 1; : : : ; f `

 = g

h

 k

a
dX1 · · ·dXn ⊗ α

f 1; : : : ; f `

 :
Therefore

ζQX
◦ δXyPX;QX

 k

f0
dX1 · · ·dXn ⊗ α

f1; : : : ; f`


= ζQX

g
h

 k

a
dX1 · · ·dXn ⊗ α
f1; : : : ; f`



= g

h

 k

a
dX1 · · ·dXn ⊗ α

f 0; f 1; : : : ; f `



= δXyPX;QX


k

f 0

dX1 · · ·dXn ⊗ α

f 1; : : : ; f `


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= δXyPX;QX
◦ ζPX

 k

f0
dX1 · · ·dXn ⊗ α

f1; : : : ; f`

 :

The map δP;Q induces an OY -linear map J�P� → J�Q�, denoted still by
δP;Q by abusing the notation.

Theorem 7.2. The chain of OY -modules

· · · ⊕
1Y�P�=n

J�P� ⊕
1Y�Q�=n+1

J�Q� · · ·;⊕δP;Q

denoted by M•Y , is a residual complex.

Proof. From our construction, Mn
Y is a quasi-coherent injective OY -

module for each n and there is an isomorphism⊕
n∈�

Mn ' ⊕
P∈Y

J�P�:

The dimensions of fibers of φ are bounded, hence M•Y is bounded below.
To show that M•Y is a complex having coherent cohomology, it suffices to
show that the restriction of M•Y on any affine open subsets of Y is a complex
having coherent cohomology. This was proved in the previous section.
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