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Abstract

A graph is called subpancyclic if it contains a cycle of length � for each � between 3 and the circumference of the graph. We show
that if G is a connected graph on n�146 vertices such that d(u)+d(v)+d(x)+d(y) > (n+10/2) for all four vertices u, v, x, y of
any path P = uvxy in G, then the line graph L(G) is subpancyclic, unless G is isomorphic to an exceptional graph. Moreover, we
show that this result is best possible, even under the assumption that L(G) is hamiltonian. This improves earlier sufficient conditions
by a multiplicative factor rather than an additive constant.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

During the last 50 years, a key issue in the vast literature on cyclic properties of graphs has been the development
of sufficient conditions to guarantee the existence of certain cycles in graphs. Most of these conditions involve the
neighborhood of single vertices, pairs of (nonadjacent) vertices, or larger sets of (mutually nonadjacent) vertices.
Typical examples (see e.g. [2]) are the well-known minimum degree condition �(G)�n/2 (where n is the number of
vertices of the graph G), due to Dirac, for the existence of a hamiltonian cycle in G, and its subsequent generalizations
to all pairs of nonadjacent vertices having degree sum at least n (Ore), and other sets of vertices meeting some degree
condition. These conditions have in common that the average degree in all conditions is bounded from below by
(roughly) the same function of n, namely n/2. Even if one adds certain conditions to the graph, e.g. that the graph
is highly connected or 1-tough, these bounds cannot be improved considerably, but at most by a small constant. A
similar phenomenon is often encountered in other chains of subsequently improved results guaranteeing certain cyclic
properties of graphs. We omit the details, but stress the common feature of the results in this area of graph theory. In
contrast to this, the main result of this paper involves a degree condition on sets of four vertices along a path on four
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vertices, which improves earlier results on smaller sets along shorter paths considerably. The best previously known
result guarantees the same conclusion with a lower bound on the degree sum of sets of three vertices along a path on
three vertices which is roughly the same as our lower bound for four vertices. Hence the lower bound on the average
degree in the condition is decreased by a factor rather than a small constant. A small drawback is that we have to
exclude some exceptional graphs from the conclusion, but this is unavoidable since the previously known result is best
possible (in the sense that the lower bound cannot be decreased without excluding some exceptional graphs). We refer
to the next sections for the details, and start with some useful definitions, notation and related results.

2. Preliminaries

We use Bondy and Murty [2] for terminology and notation not defined here and consider finite simple graphs only.
Let G be a graph. We denote by V (G) and E(G) the vertex set and the edge set of G, respectively. Let H be a subgraph
of G. If S is a subgraph of H , then the degree of S in H , denoted by dH (S) (or just d(S) if H =G), is defined to be the
degree sum of the vertices of S, i.e., dH (S) = ∑

u∈V (S) dH (u). With c(G) we denote the circumference of G, i.e., the
length of a longest cycle of G, and with �(G) the set of all different cycle lengths of cycles in G. G is called pancyclic
if �(G) = [3, |V (G)|] = {3, 4, . . . , |V (G)|}. G is said to be subpancyclic if �(G) = [3, c(G)] = {3, 4, . . . , c(G)}. By
the length of a path we refer to the number of edges on this path.

Define

�i (G) = min{d(P ) : P is a path of length i − 1 in G}.
Obviously �(G) = �1(G). As introduced in [1], let fi(n) be the smallest integer such that for any graph G of order
n with �i (G) > fi(n), the line graph L(G) of G is pancyclic whenever L(G) is hamiltonian. Van Blanken et al. [1]
proved that f1(n) has the order of magnitude O(n1/3). If we do not impose the condition that L(G) is hamiltonian, the
following degree condition results guaranteeing subpancyclicity have been obtained. We note here that pancyclicity
cannot be guaranteed by these conditions.

Theorem 1. Let G be a connected graph of order n. If G satisfies one of the following conditions:

(i) [10] �2(G) > (
√

8n + 1 + 1)/2 and n�600;
(ii) [11] �3(G) > (n + 6)/2 and n�76;

(iii) [11] �4(G) > (2n + 16)/3 and n�76,

then L(G) is subpancyclic and the bounds on �i (G) are all sharp.

Here sharpness means that the bounds cannot be lowered without excluding some exceptional graphs from the
conclusion.

Concentrating on sufficient degree conditions for the line graph itself in order to guarantee subpancyclicity, Trommel,
et al. showed a consequence of Theorem 1(i) in this respect for large line graphs.

Corollary 2 (Trommel et al. [8]). Let G be a line graph with order n > 100577. If

�(G) = �1(G) > (
√

8n + 1 − 3)/2,

then G is subpancyclic.

As a first exercise, we show that we can obtain the following analogous consequences of Theorem 1(ii) and (iii) by
using similar arguments as in the proof of Corollary 2.

Corollary 3. Let G be a line graph with order n > 2775. If G satisfies one of the following conditions:

(i) �2(G) > (n − 2)/2;
(ii) �3(G) > (2n − 2)/3;

then G is subpancyclic.
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Proof. Let G = L(H) be a line graph with order n > 2775 and satisfying one of the conditions (i) and (ii) of Corollary
3. Since

n >

(
75

2

)
,

|V (H)|�76. If H is a tree, then G is subpancyclic. If H is not a tree, then n = |E(H)|� |V (H)|�76. Note that
�i (H) = �i−1(G) + 2(i − 1) for i = 3, 4. We obtain that either �3(H) = �2(G) + 4�(n − 2)/2 + 4�(|V (H)| + 6)/2
or �4(H) = �3(G) + 5�(2n − 2)/3 + 6�(2|V (H)| + 16)/3. Hence H satisfies the conditions of Theorem 1 and so
G = L(H) is subpancyclic. �

Theorem 1 shows that the graphs in [4,7,9] are pancyclic.
Rather than looking at line graphs, one could consider the larger class of so-called claw-free graph and ask for similar

degree conditions guaranteeing subpancyclicity. One such result related to Theorem 1 has appeared in [8].

Theorem 4 (Trommel et al. [8]). Let G be a claw-free graph on at least 5 vertices. If �(G) >
√

3n + 1 − 2, then G is
subpancyclic and the bound is sharp.

More recently, Gould and Pfender improved Theorem 4 by considering a degree sum condition on pairs of nonadjacent
vertices instead of a minimum degree condition, as follows.

Theorem 5 (Gould et al. [5]). Let G be a claw-free graph on at least 5 vertices. If d(u) + d(v) > 2
√

3n + 1 − 4 for
any pair of vertices u, v with uv /∈ E(G), then G is subpancyclic and the bound is sharp.

3. Main result of this paper

We turn back to degree conditions on the graph G for guaranteeing the subpancyclicity of its line graph L(G). We
will show that we can considerably decrease the lower bound in the best known degree condition for this by excluding
one class of exceptional graphs. In fact, Theorem 6 below shows that when we exclude an exceptional graph, the
lower bound on the degree sums of the vertices along 4-paths which ensures that its line graph is subpancyclic can be
improved roughly from 2n/3 to n/2. Moreover, this bound is then almost the same as the bound on degree sums of the
vertices along 3-paths (comparing the statements in Theorem 1).

Theorem 6. Let G be a connected graph of order n�146. If

�4(G) > (n + 10)/2,

then L(G) is subpancyclic unless G is isomorphic to the exceptional graph F defined below. Moreover, the bound on
�4(G) is sharp, even under the assumption that L(G) is hamiltonian.

The exceptional graph F is defined as follows: let n ≡ 1 (mod 3), and let C1, C2, . . . , C(n−1)/3 be (n − 1)/3 edge-
disjoint cycles of length 4. Now F is obtained from those cycles such that C1, C2, . . . , C(n−1)/3 have exactly one
common vertex in F and E(F) = E(C1) ∪ E(C2) ∪ · · · ∪ E(C(n−1)/3). Obviously |V (F)| = n and �4(F ) = (2n +
16)/3 = f4(n), by Theorem 1.

Using similar arguments as in the proof of Corollary 3, we obtain the following consequence of Theorem 6.

Corollary 7. Let G be a line graph with order n > 10440. If �3(G) > (n − 2)/2, then G is subpancyclic unless G is
isomorphic to the line graph of F .

4. Proof of Theorem 6

Before we present our proof of the main result, we introduce some additional terminology and notation, and state a
number of preliminary results.
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By a circuit of a graph G we will mean an eulerian subgraph of G, i.e., a connected subgraph in which every
vertex has even degree. Note that by this definition (the trivial subgraph induced by) a single vertex is also a circuit.
If C is a circuit of G, then E(C) denotes the set of edges of G incident with at least one vertex of C and we let
UP4(C)={P : P is a path of length 3 in C}. We write �(C) for |E(C)| and �(C) for |E(C)|. The distance dH (G1, G2)

between two subgraphs G1 and G2 of H is defined to be min{dH (v1, v2) : v1 ∈ V (G1) and v2 ∈ V (G2)}. The diameter
of a connected subgraph H , denoted by dia(H), is defined to be max{dH (u, v) : u, v ∈ V (H)}. By Ck we denote a
cycle of length k. For any subgraph H of G, let N(H) = ⋃

u∈V (H) N(u).
Harary and Nash-Williams [6] characterized those graphs with line graphs that are hamiltonian. One can easily prove

a more general result (see, e.g., [3]).

Theorem 8 (Broersma [3]). The line graph L(G) of a graph G contains a cycle of length k�3 if and only if G contains
a circuit C such that �(C)�k��(C).

Before we present our proof of the main result, we start with a useful technical lemma that will avoid ending up in
too many subcases.

Lemma 9. If G is a graph of order n which satisfies the conditions of Theorem 6 but whose line graph L(G) is
not subpancyclic, then G contain neither a circuit C0 with �(C0)�k��(C0) nor a cycle of length k + 1, where
k = max{i : i ∈ [3, c(L(G))]\�(L(G))}.

Proof. Assume G is a graph satisfying the conditions of Lemma 9. It follows from Theorem 8 that G does not contain
a circuit C0 with �(C0)�k��(C0). We claim that G does not contain a cycle of length k + 1. Suppose to the contrary
that G has such a cycle C. Note that [3, �(G)] ⊆ �(L(G)). Hence k��(G) + 1. Since �4(G) > (n + 10)/2�78,

�(C) = k + 1��(G) + 2��4(G)/4 + 2 > (n + 26)/8�21. (4.1)

We are going to derive a contradiction, and start with the following claim.

Claim. G does not contain a cycle C′ with �(C)/2 < �(C′)�k.

Proof of Claim. Suppose otherwise that C′ is a cycle of G such that �(C)/2 < �(C′)�k. Note that in
∑

P∈UP4(C) d(P ),

every edge in E(C′) is counted at most 8 times. Hence, by (4.1) and �4(G)�(n + 10)/2�78,

�(C′)�
∑

P∈UP4(C′)
(d(P ) − 8)/8 + �(C′)

�(�4 − 8)�(C′)/8 + �(C′) = �4�(C
′)/8

��4�(C)/16

�k + 1.

On the other hand, �(C′)�k. Thus L(G) contains a Ck , a contradiction. This completes the proof of Claim. �

By Claim, C has no chord. Since �4 �78, C cannot be a hamiltonian cycle of G. Let u be a vertex in V (G)\V (C).
Since G does not contain a circuit C0 with �(C0)�k��(C0), u is adjacent to at most three vertices of C. By (4.1), we
obtain the following:

�(C)�3|V (G)\V (C)| + �(C) = 3(n − �(C)) + �(C) < (11n − 26)/4. (4.2)



L. Xiong, H.J. Broersma / Discrete Applied Mathematics 154 (2006) 1453–1463 1457

On the other hand, since C has no chord,

�(C)�
∑

P∈UP4(C)

(d(P ) − 8)/4 + �(C)

�(�4 − 8)�(C)/4 + �(C)

= (�4 − 4)�(C)/4

�(n2 + 28n + 52)/64,

which contradicts (4.2) and n�146. This completes the proof of Lemma 9. �

We now present the proof of Theorem 6.

Proof of Theorem 6. We will prove the theorem by contradiction.
Assuming G is a graph of order n which satisfies the conditions of Theorem 6 but whose line graph L(G) is not

subpancyclic, we define

k = max{i : i ∈ [3, c(L(G))]\�(L(G))},
so this k is the same as in Lemma 9.

By the definition of k, L(G) contains a cycle Ck+1 of length k + 1. Hence, by Theorem 8, we obtain that G contains
a circuit C with �(C)�k + 1��(C). By Lemma 9, �(C) = k + 1. Since C is a circuit, there exist edge-disjoint cycles
D1, D2, . . . , Dr such that C =⋃r

i=1 Di and we assume that these cycles are chosen in such a way that r is maximized.
By Lemma 9, it suffices to consider the case that r �2. Hence,

|V (Di) ∩ V (Dj )|�2 for {i, j} ⊆ {1, 2, . . . , r}. (4.3)

It is easy to verify that (4.1) also holds here.
Let H be the graph with V (H) = {D1, D2, . . . , Dr} and DiDj ∈ E(H) if and only if V (Di) ∩ V (Dj ) �= ∅. Since

C is a circuit, H is connected. Without loss of generality, we assume that D1 and Dr are two vertices of H such that

dH (D1, Dr) = dia(H). (4.4)

Hence, any element of {D1, Dr} is not a cut vertex of H , so C1 = ⋃r
i=2 Di and Cr = ⋃r−1

i=1 Di are two circuits of
G. Let

E1(Di) = E(Di) ∩ E(Ci) and E2(Di) = E(Di)\E1(Di)

and

V1(Di) = V (Di) ∩ V (Ci) and V2(Di) = {u, v : uv ∈ E2(Di)},
where i ∈ {1, r}.

For any path P of C, let d2(P ) = d(P ) − dC(P ). Since �(Ci)��(C) − |E2(Di)| = k + 1 − |E2(Di)|,
|V2(Di)| − 1� |E2(Di)|�2, (4.5)

where i ∈ {1, r}. Otherwise �(Ci)�k��(Ci) which contradicts Lemma 9.
Since �(Ct )��(C) − |E2(Dt )| + |E(Ds)\E(C)|,

|E(Ds)\E(C)|� |E2(Dt )| − 2, (4.6)

where {s, t} = {1, r}. Otherwise �(Ct )�k��(Ct ) which contradicts Lemma 9.
Before we turn to a case distinction, we need one more claim.

Claim 1. Let P be a path of length 3 in Ds . Then

dC(P ) > (n + 14)/2 − |E2(Dt )| (4.7)
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and

|E2(Dt )|�2|V2(Dt )|/3 and dC(P ) > (n + 14)/2 − 2|V2(Dt )|/3, (4.8)

where {s, t} = {1, r}.

Proof of Claim 1. Let P be a path of length 3 in Ds . Then

|E(Ds)\E(C)|�d(P ) − dC(P ).

Hence be (4.6) and �3(G) > (n + 10)/2,

dC(P ) > (n + 10)/2 − (|E2(Dt )| − 2),

i.e., (4.7) is true.
By (4.5) and (4.7),

dC(P ) > (n + 16)/2 − |V2(Dt )|. (4.9)

In order to obtain (4.8), it suffices to prove the following assertion.

Each component of C[E2(D1) ∪ E2(Dr)] is a path of length at most two. (4.10)

Suppose to the contrary that there exists a t ∈ {1, r} and a path P0 = u0v0x0y0 of Dt such that {u0, v0, x0, y0}
⊆ V2(Dt ). By (4.9), dC(P0) > (n + 16)/2 − |V2(Ds)| where {s, t} = {1, r}. Since dC(P0) = 8,

|V2(Ds)| > n/2�78. (4.11)

Hence there exists a path P ′
0 = u′

0v
′
0x

′
0y

′
0 in Ds such that u′

0v
′
0 ∈ E2(Ds) and {x′

0, y
′
0} ∩ V1(Dt ) = ∅. By (4.9),

dC(P ′) > (n + 16)/2 − |V2(Dt )|. (4.12)

For any x ∈ NC(x′
0) ∩ NC(y′

0), C − x has at least a nontrivial component, denoted by Qx , which does not contain
any vertex of Ds (otherwise �(C′)�k��(C′), where C′ = C − {xx′

0, xy′
0, x

′
0y

′
0}, a contradiction).

It is easy to see that

|V (Qx)|�3. (4.13)

Otherwise �(C′)�k��(C′), where C′ = C − Qx , a contradiction.
Let B denote the cut-vertex set of NC(x′

0) ∩ NC(y′
0) such that for any x ∈ B, C − x has a nontrivial component,

denoted by Qx , which does not contain any vertex of V (D1) ∪ V (Dr). Set

� = |NC(x′
0) ∩ NC(y′

0)|.
Obviously,

|{Qx : x ∈ B}| = |B|�� − 1. (4.14)

Using (4.11), (4.13) and (4.14), we obtain

dC(x′
0) + dC(y′

0) = |NC(x′
0) ∪ NC(y′

0)| + |NC(x′
0) ∩ NC(y′

0)|
�

{
n − (|V2(D1)| + |V2(Dr)| − 4) + 1 if ��1,

n − (|V2(D1)| + |V2(Dr)| − 2 + 3(� − 1)) + � if ��2,

�n − (|V2(D1)| + |V2(Dr)|) + 5

�n − n/2 − |V2(Dt )| + 5

= (n + 10)/2 − |V2(Dt )|,
which contradicts (4.12) and dC(u′

0) = dC(v′
0) = 2. This implies that assertion (4.10) is true. Hence (4.8) also holds.

This completes the proof of Claim 1. �
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For convenience, we now introduce the following notation.

S = {x, y, x′, y′},
Ni = {u ∈ V (C) : |NC(u) ∩ S| = i},
M1 = ((NC(x) ∩ NC(y)) ∪ (NC(x′) ∩ NC(y′))) ∩ N2,

M2 = N2\M1,

ni = |Ni | and mi = |Mi |.
Obviously,

n2 = m1 + m2. (4.15)

We will complete the proof by deriving contradictions in the following three cases.
Case 1. dia(H)�2.
This implies that V (D1) ∩ V (Dr) = ∅.
We can take two paths P = uvxy and P ′ = u′v′x′y′ of length 3 in D1 and Dr respectively with {uv, u′v′} ⊆

E2(D1) ∪ E2(Dr) and {x, x′} ⊆ V1(D1) ∪ V1(Dr) such that V (P ) ∩ V (P ′) = ∅.
We now prove three claims in order to get contradictions.

Claim 2. |N3 ∪ N4|�1, i.e., n3 + n4 �1.

Proof of Claim 2. Suppose otherwise that |N3 ∪ N4|�2, say, w, w′ ∈ N3 ∪ N4. Obviously,

w, w′ ∈ (NC(x) ∩ NC(y)) ∪ (NC(x′) ∩ NC(y′)).

Without loss of generality, we assume that wx, wy ∈ E(C). Hence C′ = C − {wx, wy, xy} is a circuit with �(C′) =
�(C) − 3�k��(C′), a contradiction. This completes the proof of Claim 2. �

Claim 3. Each element of M1 is a cut vertex of C.

Proof of Claim 3. Suppose otherwise that there exists a vertex w ∈ M1, say, w ∈ NC(x) ∩ NC(y) ∩ N2, which is not
a cut vertex of C. Hence C′ = C − {wx, wy, xy} is a circuit with �(C) − 3 = �(C′)�k��(C′), a contradiction. This
completes the proof of Claim 3. �

Let W1 denote the cut vertex set of C in M1 such that for any z ∈ W1, C − z has a nontrivial component which does
not contain any element of S. Every vertex of M1 is in W1 except when it is a cut vertex such that deleting it creates
two components which contain {x, y} and {x′, y′}, respectively; in the exceptional case, dia(H)�3. Hence at most two
vertices of M1 are not in W1 (in case of two they are in NC(x) ∩ NC(y) ∩ N2 and NC(x′) ∩ NC(y′) ∩ N2, respectively,
note that in this case, dia(H)�4), i.e.,

|W1|�m1 − 2. (4.16)

Similarly, we obtain

if N3 ∪ N4 ∪ M2 �= ∅ then |W1| = m1. (4.17)

Claim 4. If m2 �3, then for any pair of vertices {w, w′} of M2, a cycle of C[{w, w′} ∪ ((NC(w) ∪ NC(w′)) ∩ S)]
which does not contain the possible edge ww′, is a nontrivial cut set of C, i.e., deleting it creates at least two nontrivial
components of C.

Proof of Claim 4. Otherwise, C[{w, w′}∪ ((NC(w)∪NC(w′))∩S)] has a cycle C′ which does not contain ww′, such
that �(C′′)�k��(C′′) where C′′ = C − C′, a contradiction. This completes the proof of Claim 4. �

Let W2 denote the cut vertex set of C in M2 such that for any vertex y ∈ W2, C − y has a nontrivial component
which does not contain any element of S. By Claim 4, every vertex in M2 is in W2 except at most two vertices, w0, w00
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(say); in this exceptional case, deleting the edges of (∪u∈S{w0u, w00u}) ∩ E(C) we will get exactly one component of
C that does not contain any element of S (In fact, the component is nontrivial if m2 �3). Hence we obtain

|W2|�m2 − 2. (4.18)

In a similar way, we obtain

if n3 = 1 then |W2|�m2 − 1, (4.19)

and

if n4 = 1 then |W2| = m2. (4.20)

For y ∈ W1 ∪ W2, take one nontrivial component of C − y which does not contain any element of S, denoted by
Qy . Then it is easy to see that

|V (Qy)|�3. (4.21)

Otherwise �(C′)�k��(C′), where C′
y = C − Qy . We also obtain

|{Qy : y ∈ W1 ∪ W2}| = |W1 ∪ W2|. (4.22)

If N3 ∪ N4 �= ∅ then, using Claims 1–4 and (4.17) up to (4.22), we obtain

dC(S) =
∣∣∣∣∣

4⋃
i=1

Ni

∣∣∣∣∣ + n2 + 2n3 + 3n4

�
{

n − (|V2(D1)| + |V2(Dr)| − 4 + 3n2) + n2 + 3 if n4 = 1,

n − (|V2(D1)| + |V2(Dr)| − 5 + 3(n2 − 1)) + n2 + 2 if n2 �2, n3 = 1,

n − (|V2(D1)| + |V2(Dr)| − 5) + 3 if n2 �1, n3 = 1,

�n − (|V2(D1)| + |V2(Dr)|) + 8.

If N3 ∪ N4 = ∅ then, using Claims 3, 4 and (4.15), (4.16), (4.18), (4.21), (4.22), we obtain

dC(S) =
∣∣∣∣∣

4⋃
i=1

Ni

∣∣∣∣∣ + n2 + 2n3 + 3n4 =
∣∣∣∣∣

4⋃
i=1

Ni

∣∣∣∣∣ + n2

�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n − (|V2(D1)| + |V2(Dr)| − 5 + 3(m1 − 2) + 3(m2 − 2)) + m1 + m2 if m1 �2, m2 �3,

n − (|V2(D1)| + |V2(Dr)| − 5 + 3(m1 − 2)) + m1 + 2 if m1 �2, m2 �2,

n − (|V2(D1)| + |V2(Dr)| − 5 + 3(m2 − 2)) + 1 + m2 if m1 �1, m2 �3,

n − (|V2(D1)| + |V2(Dr)| − 5) + 3 if m1 = 1, m2 �2,

n − (|V2(D1)| + |V2(Dr)| − 6) + 2 if m1 = 0, m2 �2,

�n − (|V2(D1)| + |V2(Dr)|) + 8.

Hence we conclude that

dC(S)�n − |V2(D1)| − |V2(Dr)| + 8. (4.23)

On the other hand, by (4.8), dC(P ) + dC(P ′) > n + 14 − 2(|V2(D1)| + |V2(Dr)|)/3. Hence

dC(S) > n + 6 − 2(|V2(D1)| + |V2(Dr)|)/3. (4.24)

Using (4.23) and (4.24), we obtain

|V2(D1)| + |V2(Dr)| < 6,

which contradicts (4.5).
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Case 2: dia(H) = 1 and |V (D1) ∩ V (Dr)| = 1.
Then H is a complete graph.
Let V (D1) ∩ V (Dr) = {y}. We will consider the following two subcases.
Subcase 2.1: |V (Di)|�5 for i ∈ {1, r}.
Hence, we can take two paths P = u′v′x′y′ and P ′ = u′′v′′x′′y′′ of length 3 in D1 and Dr , respectively, such that

{uv, u′v′} ⊆ E2(D1) ∪ E2(Dr) and V (P ) ∩ V (P ′) = ∅. By (4.10), |V (P ) ∩ V1(D1)|�1 and |V (P ′) ∩ V1(Dr)|�1.
Using similar arguments as in Case 1, we derive a contradiction. We omit the details.

Subcase 2.2: There exists a Di (i ∈ {1, r}), say D1, such that |V (D1)| = 4.
We will prove that in this case G�F . To see this, we need the following three claims.

Claim 5. |V (Dr)| = 4.

Proof of Claim 5. Suppose otherwise that |V (Dr)|�5. Hence by (4.10), we can take a path P ′ = u′v′x′y′ in Dr such
that u′v′ ∈ E2(Dr), y /∈ {x′, y′} and |{x′, y′} ∩ V2(Dr)|�1. By (4.5), we can take a path P = uvxy in D1 such that
{uv, vx} = E2(D1).

In a way similar to Claims 2, 3, we obtain

n3 = n4 = 0 and n2 �1. (4.25)

By (4.7),

dC(P ) + dC(P ′) > n + 14 − |E2(D1)| − |E2(Dr)|. (4.26)

If |E2(Dr)| = 2 or 3, then by (4.26),

dC(S) > n + 6 − |E2(D1)| − |E2(Dr)|�n + 1. (4.27)

On the other hand, by (4.25),

dC(S) =
∣∣∣∣∣

4⋃
i=1

Ni

∣∣∣∣∣ + n2 + 2n3 + 3n4 �n + 1,

which contradicts (4.27).
If |E2(Dr)|�4, then using (4.8), we obtain |V2(Dr)|�3|E2(Dr)|/2�6. This implies that by (4.5),

|V2(D1)| + |V2(Dr)|�9. (4.28)

On the other hand, using (4.25), we obtain

dC(S) =
∣∣∣∣∣

4⋃
i=1

Ni

∣∣∣∣∣ + n2 + 2n3 + 3n4

�n − (|V2(D1)| + |V2(Dr)| − 8) + 1

= n − |V2(D1)| − |V2(Dr)| + 9,

implying that by (4.24),

|V2(D1)| + |V2(Dr)| < 3(9 − 6) = 9,

which contradicts (4.28). This completes the proof of Claim 5. �

Claim 6. |V (Di)| = 4 for i ∈ {1, 2, . . . , r}.

Proof of Claim 6. Suppose otherwise that there exists a Di (i ∈ {2, 3, . . . , r − 1}), say D2, such that |V (D2)| �= 4. If
|V (D2)| = 3, then C′ = C − D2 is a circuit with �(C′)�k��(C′), a contradiction. Hence |V (D2)|�5, and D2 plays
the same role as Dr in this subcase since |V (D1) ∩ V (D2)| = 1. In a way similar to the proof of Claim 5, we obtain a
contradiction which completes the proof of Claim 6. �
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Claim 7. |V (Di) ∩ V (Dj )| = 1 for {i, j} ⊆ {1, 2, . . . , r}.

Proof of Claim 7. Suppose otherwise that there exists a pair of {i, j} such that |V (Di) ∩ V (Dj )| = 2, then by Claim
6 there exists a triangle C3 in Di ∪ Dj . Thus, C′ = C − C3 is a circuit with �(C′)�k��(C′), a contradiction. �

By Claims 6 and 7, C�F . We claim that dC(u) = d(u) for any u ∈ V (C). Suppose otherwise that there exists a
vertex x ∈ V (C) such that dC(x) < d(x), then Ci =C −Di (x /∈ V (Di) unless x =y) is a circuit with �(Ci)�k��(Ci),
a contradiction. This settles our claim. Since G is connected, V (G) = V (C) and G�C�F .

Case 3: dia(H) = 1 and |V (D1) ∩ V (Dr)| = 2.
Then again H is a complete graph.
Let V (D1) ∩ V (Dr) = {u, v}. Hence there exist four paths P1, P2, P3, P4 such that D1 = P1 ∪ P2, Dr = P3 ∪ P4,

and V (Pi) ∩ V (Pj ) = {u, v} for {i, j} ⊆ {1, 2, 3, 4}.
In order to derive contradictions, we first prove the following two claims.

Claim 8. |(V (Ps) ∪ V (Pt )) ∩ V (Di)| = 2 for any pair of {s, t} ⊆ {1, 2, 3, 4} and i ∈ {2, 3, . . . , r − 1} .

Proof of Claim 8. Suppose otherwise that |(V (Ps) ∪ V (Pt )) ∩ V (Di)| �= 2 for some pair of {s, t} ⊆ {1, 2, 3, 4} and
some i ∈ {2, 3, . . . , r − 1}, say D2, such that |(V (Ps) ∪ V (Pt )) ∩ V (D2)| �= 2. By the fact that r is maximized, it
follows that |(V (Ps) ∪ V (Pt )) ∩ V (D2)|�1. Hence let D′

1 = Ps ∪ Pt , D
′
r = (D1 ∪ Dr) − (Ps ∪ Pt) and D′

j = Dj for
j ∈ {2, 3, . . . , r − 1}. Let H ′ be a graph with vertex set V (H ′) = {D′

1, D
′
2, . . . , D

′
r}, D′

iD
′
j ∈ E(H ′) if and only if

V (D′
i ) ∩ V (D′

j ) �= ∅. Obviously, H ′ is a complete graph. Note that D′
1 and D′

2 in H ′ play the same role as D1 and Dr

in H , respectively. Since |V (D′
1) ∩ V (D′

2)|�1, we derive contradictions in a similar way as in the proof of Case 1 or
2. �

Claim 9. {u, v} ⊆ V (Di) for i ∈ {2, 3, . . . , r − 1}.

Proof of Claim 9. Suppose otherwise that there exists a Di , say D2, such that |{u, v} ∩ V (D2)|�1.
If |{u, v} ∩ V (D2)| = 1, say, u ∈ V (D2), then by (4.3) there exist two paths Ps and Pt such that V (Ps) ∩ V (D2) =

V (Pt ) ∩ V (D2) = {u}, where s ∈ {1, 2} and t ∈ {3, 4}. This contradicts Claim 8.
If {u, v} ∩ V (D2) = ∅, then we claim that there exists a Pi , i ∈ {1, 2, 3, 4}, such that |V (Pi) ∩ V (D2)| = 0

or 2. Suppose otherwise that |V (Pj ) ∩ V (D2)| = 1 for j ∈ {1, 2, 3, 4}, then there exist four edge-disjoint cycles
C1, C2, C3, C4 in D1 ∪ D2 ∪ Dr such that D1 ∪ D2 ∪ Dr = C1 ∪ C2 ∪ C3 ∪ C4 which contradicts the maximality of r .
Thus, |V (Pi) ∩ V (D2)| = 0 or 2. Without loss of generality we assume that |V (P1) ∩ V (D2)| = 0 or 2. By (4.3) and
{u, v} ∩ V (D2) = ∅, there exists an s ∈ {3, 4} such that |V (Ps) ∩ V (D2)|�1; if |V (P1) ∩ V (D2)| = 2 then, by (4.3),
|(V (Ps)∪V (P2))∩V (D2)|�1which contradicts Claim 8; if |V (P1)∩V (D2)|=0 then, |(V (Ps)∪V (P1))∩V (D2)|�1
which contradicts Claim 8. This completes the proof of Claim 9. �

It follows from Claim 9 that there exist 2r (=dC(u) = dC(v)) edge-disjoint paths P1, P2, . . . , P2r such that C =⋃2r
i=1 Pi and V (Pi) ∩ V (Pj ) = {u, v} (i �= j).
Hence by (4.10), we obtain the following:

|V (Pi)|�5 for i ∈ {1, 2, . . . , 2r}. (4.29)

Now it is easy to verify that

|E2(D1)| + |E2(Dr)|�4 + min{4, |{i ∈ {1, 2, . . . , 2r} : |V (Pi)| = 5}|}. (4.30)

By (4.5), there exist two paths P ′
1 and P ′

2 of length 3 in D1 and Dr , respectively such that each path contains exactly
one vertex in V1(D1) ∪ V1(Dr). Let u, v denote two such vertices in P ′

1 and P ′
2, respectively, i.e., u ∈ V (P ′

1) ∩ V1(D1)

and v ∈ V (P ′
2) ∩ V1(Dr). Then by (4.7), dC(P ′

1) + dC(P ′
2)�n + 14 − |E2(D1)| − |E2(Dr)|. Hence

dC(u) + dC(v) > n + 2 − |E2(D1)| − |E2(Dr)|. (4.31)
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If there exists a pair {i, j} such that |V (Pi)|�3 and |V (Pj )|�4, then C′ = C − (Pi ∪ Pj ) is a circuit with
�(C′)�k��(C′), which contradicts Lemma 9. Hence we obtain

{(i, j) : |V (Pi)|�3 and |V (Pj )|�4} = ∅. (4.32)

Without loss of generality, we can assume that |V (P1)|, |V (P2)|, . . . , |V (P2r )| is an increasing sequence and Di =
P2i−1 ∪ P2i for i ∈ {1, 2, . . . , r}.

We need one more claim.

Claim 10. If |V (P1)| = 2, i.e., uv ∈ E(C), then r �4.

Proof of Claim 10. Suppose otherwise that r = 2 or 3. By (4.29) and (4.32), |V (Pi)| = 5 for i ∈ {2, 3, . . . , 2r}. Since
n�146, there exists a vertex x of C with dC(x)�d(x) − 1. Hence there exists a circuit C′ such that �(C′)�k��(C′),
where C′ = C − (Pi ∪ P1) (Pi �= P1, and x /∈ V (Pi) unless x ∈ {u, v}), which contradicts Lemma 9. This completes
the proof of Claim 10. �

Finally, we will obtain some inequalities which contradict (4.30).
If 3� |V (P1)|�5 then, using (4.32), we obtain

dC(u) + dC(v)�n − 2 − |{i ∈ {1, 2, . . . , 2r} : |V (Pi)| = 5}|. (4.33)

Combining (4.31) and (4.33) yields an inequality that contradicts (4.30).
If |V (P1)| = 2, i.e., uv ∈ E(C), then using (4.29) and (4.32), we obtain that |V (Pi)| = 5 for i�2, and

dC(u) + dC(v)�n − |{i ∈ {1, 2, . . . , 2r} : |V (Pi)| = 5}|. (4.34)

Using (4.31), (4.32), (4.34) and Claim 10, we obtain

|E2(D1)| + |E2(Dr)| > 2 + |{i ∈ {1, 2, . . . , 2r} : |V (Pi)| = 5}| = 2 + (2r − 1)�9,

which contradicts (4.30).
This completes the proof of the first conclusion of the theorem. We now prove that the results in Theorem 6 are best

possible in the sense that the condition �4(G) > (n + 10)/2 cannot be relaxed, even under the condition that L(G) is
hamiltonian. To see this, we construct a graph G0 as follows:

Let s=(n−2)/2(n ≡ 2 (mod 4)) and letV (G0)={u1, v1, u2, v2, . . . , us, vs, x, y} andE(G0)=⋃s
i=1 {xui, uivi, viy}.

Clearly G0 is a graph with �4(G0) = s + 6 = (n + 10)/2. Theorem 8 implies that L(G0) is hamiltonian and 3s − 1 ∈
[3, �(G0)]\�(L(G0)), which implies that L(G0) is not (sub)pancyclic. This completes the proof of Theorem 6. �
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