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a b s t r a c t

We present a numerical algorithm for the construction of efficient, high-order quadratures
in two and higher dimensions. Quadrature rules constructed via this algorithm possess
positive weights and interior nodes, resembling the Gaussian quadratures in one
dimension. In addition, rules can be generated with varying degrees of symmetry,
adaptable to individual domains. We illustrate the performance of our method with
numerical examples, and report quadrature rules for polynomials on triangles, squares,
and cubes, up to degree 50. These formulae are near optimal in the number of nodes used,
and many of them appear to be new.
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1. Introduction

Numerical integration is a well-studied area in numerical analysis, and classical tools such as Gaussian quadratures
are widely used in many fields of science and engineering. Gaussian quadratures have several desirable properties such
as positivity of weights, symmetry, and are optimal for integrating polynomials in one dimension: an n-point Gaussian rule
is exact for all polynomials of degrees up to 2n − 1, and no n-point rule is exact for all polynomials of degree 2n. Since
each quadrature node in one dimension contributes two parameters (one for the coordinate, and one for the weight), it
is expected that 2n functions require an n-point quadrature rule to integrate exactly. Indeed, it can be shown that, in one
dimension, Gaussian quadratures can be generalized to a broad range of functions including polynomials, smooth functions
and functions with end-point singularities, and effective numerical algorithms have been developed for the construction of
these quadratures (see, for example, [1–3]).
The situation in higher dimensions is considerably more complex. While the interval is the only connected compact

subset of R1, regions of Rn(n > 1) come in an infinite variety of shapes, each with its own symmetries. It is expected
that efficient quadratures in Rn should be studied separately for each individual region. Indeed, extensive effort has been
devoted to the study of quadratures on several two and three-dimensional domains including triangles, squares, cubes,
tetrahedra, and a number of formulae have been found for integrating polynomials accurately up to moderate degrees (see,
for example, [4–8]). However, the theory of numerical integration in dimensions greater than one is far from complete.
For instance, the minimum number of nodes required for integrating a given number of functions on a given domain is
yet unknown. Furthermore, previous methods largely rely on the detailed analysis of symmetric properties of associated
integration domains, and are, therefore, limited in its applicability to each particular geometric shape.
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In this paper, we present a numerical algorithm for the construction of quadrature rules on regular regions in two
and higher dimensions. This method combines a node elimination scheme and the least squares Newton’s method, and
is effective in generating quadratures of moderate to high orders (up to 50). The resulting formulae have positive weights
and interior nodes, resembling the Gaussian quadratures in one dimension. In addition, our algorithm is applicable to the
construction of quadratures of all types of symmetries, with the degree of symmetry being a user-defined feature. We
illustrate our method with numerical examples for the triangle, square, and cube. Many of the reported formulae use a
lower number of nodes than any formula previously published.
The paper is organized as follows. We introduce mathematical and numerical preliminaries in Section 2, and develop

analytical apparatus to be used by the algorithm in Section 3. We describe in detail the algorithm in Section 4, and present
numerical results in Section 5. Finally, Section 6 contains conclusions and discussions.

2. Mathematical and numerical preliminaries

In this section, we collect elementary mathematical and numerical facts relevant to the development of the algorithm of
this paper.

2.1. Quadratures

A quadrature in Rd is a formula of the form

n∑
i=1

wif (xi) ≈
∫
Ω

ω(x)f (x)dx, (1)

whereΩ is the integration region in Rd, f is an integrand defined onΩ , and ω is the weight function. The points xi ∈ Rd are
typically called quadrature nodes, andwi quadrature weights.
Typically, quadratures are designed such that (1) is exact for a pre-selected set of functions {φ1, . . . , φm}. Thus, an n-

point quadrature with nodes x1, x2, . . . , xn and weightsw1, w2, . . . , wn that integrates exactly φ1, . . . , φm must satisfy the
system of equations

∫
Ω

ω(x)φ1(x)dx∫
Ω

ω(x)φ2(x)dx

...∫
Ω

ω(x)φm(x)dx


=


φ1(x1) φ1(x2) . . . φ1(xn)
φ2(x1) φ2(x2) . . . φ2(xn)
...

φm(x1) φm(x2) . . . φm(xn)



w1
w2
...
wn

 . (2)

Clearly, given the weight function ω and the integration region Ω , the number n of quadrature nodes depends upon
the numberm of the functions to be integrated. Therefore, a classical problem in numerical integration is to determine the
minimumnumber n of nodes in (2) and the corresponding coordinates andweights. Quadratures that achieve theminimum
n are considered optimal, and in one dimension, the optimal quadratures are the so-called generalized Gaussian quadratures
which use exactly dm/2e nodes to integrate φ1, . . . , φm (with dxe denoting the smallest integer that is greater or equal to
x) [2,3].
The existence of generalized Gaussian quadratures in one dimension seems to suggest that the optimal quadratures in Rd

should involve dm/(d+1)e nodes for integratingm functions, since each d-dimensional node contributes d+1 parameters.
However, no such theorem has been established for d greater than 1, to the best of the authors knowledge. In order to
differentiate quadratures that integrate the same set of functions with different number of nodes, we introduce the term
efficiency in this paper, which is defined as

E =
m/(d+ 1)

n
, (3)

where n is the number of nodes, m is the number of functions, and d is the dimension of the Euclidean space. Obviously,
each generalized Gaussian quadrature in one dimension has E = 1. In the remainder of the paper, we call quadratures with
value E close to 1 efficient.

2.2. Tensor product rules

Tensor product rules are a class of two- and higher-dimensional quadratures that are constructed based on one-
dimensional quadratures. In this section, we outline a possible construction of such rules, as well as identify their
deficiencies. For simplicity, we assume that the functions to be integrated are polynomials and that the integration region is
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the standard square S in R2 with boundaries x = ±1 and y = ±1. The construction of tensor product rules on other regions
in Rd (e.g. rectangles, cubes, triangles, and tetrahedra, etc.) and for other separable functions is similar.
As is well known, monomials of the form xiyj form a basis for polynomials in R2. Suppose that we are to integrate on the

square all monomials xiyj up to the degree 2p− 1 (i.e., 0 ≤ i+ j ≤ 2p− 1). Defining t1, t2, . . . , tp and v1, v2, . . . , vp as the
nodes and weights of the p-point Gaussian quadrature on [−1, 1], we know that (t1, v1), (t2, v2), . . . , (tp, vp) integrates all
monomials t j for all j less than 2p. Let

{qi,j ∈ S|qi,j = (ti, tj), i = 1 . . . , p, j = 1, . . . , p}

be the p2 grid points in S and let

{wi,j|wi,j = vivj, i = 1 . . . , p, j = 1, . . . , p}

be the corresponding weights, we can easily verify that (q1,1, w1,1), (q1,2, w1,2), . . . , (qp,p, wp,p) form a quadrature that
integrates all monomials xiyj for 0 ≤ i+ j < 2p on S. This p2-point quadrature is a typical tensor product rule on S of order
2p− 1.
Although tensor product rules are relatively easy to construct, they are suboptimal in terms of efficiency. For example,

the p2-point tensor product rule constructed above yields

E =
p(2p+ 1)/3

p2
=
2p+ 1
3p

, (4)

since there are p (2p + 1) monomials in the set. Clearly, the efficiency of a two-dimensional tensor product rule tends to
2/3 as p increases. Similar analysis show that the efficiency of tensor product rules in three dimensions tends to 1/3, with
E becomes even lower in higher dimensions.

2.3. Least squares Newton’s method

Newton’s method is a classical tool for solving equations of the type

F(x) ≡

f1(x)...
fn(x)

 = 0, (5)

where F : Rm → Rn is typically nonlinear. Newton’s method approximates the solution of (5) via a sequence of vectors xk
given by the formula

xk+1 = xk − JĎ(xk)F(xk), (6)

where k > 0, x0 is an initial estimation of the solution, J : Rm → Rn is the Jacobian (or the Fréchet derivative) of F, given by
the formula

J(x) =


∂ f1
∂x1

(x) . . .
∂ f1
∂xm

(x)

...
∂ fn
∂x1

(x) . . .
∂ fn
∂xm

(x)

 , (7)

and JĎ(x) is the pseudo-inverse of J at x. Whenm 6= n, (6) is referred to as the least squares Newton’s method.
It is well known that Newton’s method has second-order convergence under certain conditions. In Theorem 2.1 below,

we summarize this fact under the constraint that is relevant to our paper. We refer the reader to [9] for additional details.

Theorem 2.1. Suppose that F : Rm → Rn (m ≥ n) is a function and ξ ∈ Rm satisfies the condition

F(ξ) = 0. (8)

Furthermore, suppose that F is continuously differentiable in an ε-neighborhood nε(ξ) = {x|‖x − ξ‖ < ε} of ξ, and that J(x)
defined by (7) has full row rank for all x in nε(ξ). Let xk be defined by (6), and let hn be given by the formula

hn = xn − ξ. (9)

Then, there exist ε > ε̃ > 0, δ > 0 and integer Nε̃,δ ≥ 0, such that if ‖x0 − ξ‖ < ε̃, then

‖hn+1‖ ≤ δ‖hn‖2 < ‖hn‖

is true for all k ≥ Nε̃,δ .
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2.4. Singular Value Decomposition

In this section, we summarize the Singular Value Decomposition method (or SVD) (see, for example, [10]), which will be
used in Section 3.3 for the computation of basis functions.

Theorem 2.2. Suppose that A is an n×mmatrix. Then there exists a matrix factorization

A = USV ∗,

such that U is a unitary n× p matrix, V is a unitary m× p matrix, and S = [sij] is a diagonal real matrix of size p× p such that
sii ≥ si+1,i+1 ≥ 0 for all i = 1, . . . , p− 1.

The diagonal entries sii of S are called the singular values of A, and the columns of U and V are referred to as the left and
right singular vectors of A, respectively.

3. Analytical apparatus

In this section, we provide the analytical apparatus relevant to the construction of the quadratures of this paper. We
first study the action of certain orthogonal transformations on point sets in Rd in Section 3.1, and analyze quadratures that
are invariant under such transformations in Section 3.2. We then introduce formulae for the construction of symmetric and
non-symmetric basis functions in Rd in Section 3.3. Finally, we introduce a pivoted Gram–Schmidt procedure to be used in
Section 4 for the selection of an initial quadrature.

3.1. Symmetric point sets and S-generators

As is well known, the symmetry group G of Ω ⊂ Rd is the set of all orthogonal linear transformations of Rd that map
Ω onto itself. A subset S ⊆ G is called a symmetry subgroup of Ω if S is itself a group. We say that two points x1, x2 in
Ω are S-symmetrically related if there exists an element s ∈ S such that x2 = sx1. We call the set of all points that are
S-symmetrically related with x the orbit of x, and denote it by OS

x .
If for each point x in X ⊂ Ω , all S-symmetrically related points are also in X, then we say that X is S-symmetric (or

invariant with respect to S). It can be easily seen that any S-symmetric setX is a union of distinct orbits. Suppose that the
setB contains only one and only point from each orbit contained inX. Then we say thatB is an S-generator ofX. Thus, all
S-symmetric setsX can be expressed asX =

⋃
x∈B OS

x , whereOS
xi

⋂
OS

xj = ∅ for all xi ∈ B, xj ∈ B and xi 6= xj. Obviously,
many possibleB’s may exist for an arbitraryX. For example,Xmay be partitioned geometrically based on the location of
its elements withinΩ .

Example 3.1. Consider the standard triangle T with the vertices(
−1,−1/

√
3
)
,
(
0, 2/
√
3
)
and

(
1,−1/

√
3
)
. (10)

The symmetry group of T is a dihedral group (often named D3) which consists of six elements: reflection about the three
medians (denoted by A, B, C), and rotations about the center by 0, 2π/3 and 4π/3 radians (denoted by E, D, F, respectively,
among which E is the identity transformation). The symmetry group D3 mentioned above has six subgroups, which are
S1 = {E}, S2 = {E, A}, S3 = {E, B}, S4 = {E, C}, S5 = {E,D, F}, and S6 = {E, A, B, C,D, F} = D3, respectively. The smaller
triangles T6 (bounded by the bottom edge, the vertical median and the median bisecting the angle at the lower-right vertex
of T , see Fig. 1), T3, and T2 are examples of the S6-, S5-, and S2-generators of T , respectively.

3.2. S-symmetric quadratures

The primary purpose of this section is Theorem 3.2, which shows that an S-symmetric quadrature is completely
determined by its configuration on any S-generator of the integration region.
Suppose thatΩ ⊆ Rd is the integration region, G is its symmetry group, and S is a symmetry subgroup of G. We say that

a p-point quadrature whose nodes have coordinatesX = {x1, . . . , xp} and weightsW = {w1, . . . , wp} is S-symmetric (or
invariant under the action of S) ifX is an S-symmetric point set, and all points inX that are S-symmetrically related (see
Section 3.1) have the same weight.
Clearly, an S-symmetric quadrature (X,W) is completely determined by its nodesXB that lie in a single S-generatorB

of Ω . In other words, the construction of an S-symmetric quadrature on Ω is equivalent to the design of a corresponding
quadrature on B such that XB = X

⋂
B = {xi, . . . , xn} andWB = {w1, . . . , wn} satisfy the Eq. (2) on B. Theorem 3.2

below summarizes this fact; the corresponding S-symmetric quadrature X on the original integration region Ω is then
obtained via the formula

X =
⋃

xi∈XB

OSxi , (11)

with nodes belonging to the same orbit OSxi assuming the same weightwi.
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Fig. 1. The standard equilateral triangle T and some of its symmetric generators: an S2-generator T2 (i.e., triangle ACF), an S5-generator T3 (i.e., triangle
AOC), and an S6-generator T6 (i.e., triangle BOF).

Theorem 3.2. Suppose that XB = {xi, . . . , xn} andWB = {w1, . . . , wn} is an n-point quadrature onB , an S-generator of Ω ,
such that∫

B

φj =
∑

xi∈XB

wi φj(xi), (12)

is accurate for all φj (j = 1, 2, . . . ,m) defined onΩ . Then, the S-symmetric p-point quadrature satisfies the equation∫
Ω

φj =
∑
xi∈X

wi φj(xi), (13)

for all j = 1, . . . ,m if the nodesX = {x1, . . . , xp} are given by the formula

X =
⋃

xi∈XB

OSxi , (14)

and all weights belonging to nodes in the same orbit are equal.

Proof. Let φ be an arbitrary function in {φj} (j = 1, 2, . . . ,m) defined onΩ . Due to properties of the group action of S, we
have ∫

Ω

φ =
∑
g∈S

∫
g(B)

φ =
∑
g∈S

∫
B

g−1 ◦ φ =
∑
g∈S

1
det(g)

∫
B

φ, (15)

with det(g) being the determinant of the orthogonal transformation g . On the other hand,

∑
xi∈X

wi φ(xi) =
∑
g∈S

 ∑
xj∈XB

wj φ(g(xj))

 =∑
g∈S

 ∑
xj∈XB

wj (g−1 ◦ φ(xj))

 , (16)

which may be rewritten as

∑
g∈S

 ∑
xj∈XB

wj (g−1 ◦ φ(xj))

 =∑
g∈S

1
det(g)

 ∑
xj∈XB

wj φ(xj)

 =∑
g∈S

1
det(g)

∫
B

φ. � (17)

3.3. Orthogonal basis functions and symmetry

Althoughmany classes of functionsmay be of interest, we focus, in this paper, on quadratures that integratemultivariate
polynomials, and select φ1, . . . , φm to be a basis for all polynomials up to a certain degree on Ω ⊂ Rd. The solution of (2)
then gives a quadrature that integrates all polynomials accurately up to that degree onΩ .
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A natural basis for polynomials on Rd is the set of monomials of the form xm11 · x
md
2 · · · x

md
d . However, monomials tend to

be poorly conditioned even when the orders are moderate. Thus, orthogonal polynomial basis are often used.
For regions that are cartesian products of (orthogonal) intervals including rectangles, squares, cubes, orthogonal

polynomial basesmay be constructed via tensor product of one-dimensional orthogonal polynomials. For other simple two-
and three-dimensional regions such as triangles and tetrahedra, explicit formulae for orthogonal polynomials are a classical
research topic, with many forms available. For example,

Km,n(u, v) = Pm

(
2u+ v + 1
1− v

)
·

(
1− v
2

)m
· P2m+1,0n (v) (18)

(0 ≤ m, n ≤ d and m + n ≤ d) constitute a well-known orthogonal basis for all polynomials of degrees at most d on the
right angle triangle TR with vertices (−1,−1), (−1, 1) and (1,−1) (see [11]), where P

α,β
n denotes the nth degree Jacobi

polynomial corresponding to parameters α and β , and Pm denotes the mth degree Legendre polynomial. Via a change of
coordinates, orthogonal bases may be obtained for related geometries.

Example 3.3. By changing coordinates

u = x−
y
√
3
−
1
3
, v =

2y
√
3
−
1
3
, (19)

and substituting (19) into (18), we obtain

K̄m,n(x, y) = Pm

(
2u(x, y)+ v(x, y)+ 1

1− v(x, y)

)
·

(
1− v(x, y)

2

)m
· P2m+1,0n (v(x, y)), (20)

which form an orthogonal basis on the standard equilateral triangle T (see (10)).

Remark 3.4. Orthogonal bases for functions other than the polynomials may be constructed via Gram–Schmidt orthogo-
nalization or Singular Value Decomposition, either numerically or symbolically.

3.4. A pivoted Gram–Schmidt algorithm

In this section, we present a pivoted Gram–Schmidt algorithm, which will be used in Section 4 for the selection of an
initial quadrature. Unlike the classical Gram–Schmidt algorithm, which returns an orthonormal basis of the span of a given
vector set with each basis vector generally not a member of the original set, the Pivoted Gram–Schmidt algorithm returns a
subset of the original vectors to form the basis. In this section, we assume that π = {q1, . . . , qm} ⊂ Rn is a set ofm column
n-vectors, and thatm is no less than n. Denoting by k the dimension of the span of π and by ‖ · ‖ the l2-norm of a vector, we
outline the algorithm below.

Algorithm 3.5 (Pivoted Gram–Schmidt). Given π = {q1, . . . , qm} ⊂ Rn, the following algorithm computes the dimension k
of π , and returns the indices p1, p2, . . . , pk and an ordered sequence Q = {qp1 , qp2 , . . . , qpk} of vectors such that qpj ∈ π
for all j, that qp1 has the largest 2-norm among all vectors in π , and that qpj+1 has the largest projection in the orthogonal
complement of span (qp1 , . . . , qpj) for all 1 ≤ j ≤ k− 1.
pi = i for 1 ≤ i ≤ m
for i = 1 : m do
Determine µwith i ≤ µ ≤ m so ‖qµ‖ = maxi≤j≤m‖qj‖
if ‖qµ‖ 6= 0 then
qµ ↔ qi; pµ ↔ pi
for j = i+ 1 : m do
qj = qj − (qTj qi)qi/‖qi‖

end for
end if

end for
k = i− 1

The complexity of the algorithm is O(nmk). In our implementation, a re-orthogonalization step is used to ensure numer-
ical stability.

4. Construction of quadratures of varying symmetries

In this section, we present a numerical algorithm for the construction of a class of quadratures that use as few number
of nodes as possible to integrate a given set of functions on domains in two and higher dimensions. The algorithm
is a combination of the node elimination algorithm, and the least squares Newton’s method. A primary advantage of
our algorithm is its flexibility in handling higher-dimensional quadratures and their symmetries,with a majority of the
quadratures obtained having desirable properties such as positivity of weights and interior nodes.
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4.1. Node elimination algorithm

Observation 4.1. Suppose that Ω ∈ Rd is an integration region in d dimensions and that φ1, . . . , φm are functions defined onΩ .
Suppose further that x1, x2, . . . , xn andw1, . . . , wn are nodes and weights of an n-point quadrature for integrating φ1, . . . , φm,
and that the nth weight wn ∼ ε is small. Then, x1, w1, . . . , xn−1, wn−1, xn and wn = 0 may be considered as an approximate
solution to (2) with precision O(ε), as long as φj’s are relatively smooth and are normalized properly.

The implication of the above observation is that the nodes x1, . . . xn−1 and the weightsw1 . . . , wn−1 may be considered
as an (n− 1)-point quadrature that integrates the requested functions approximately (to precision O(ε)). Using these values
as an initial approximation for the least squares Newton’s method for solving (2), we will obtain an accurate (n − 1)-
point quadrature, provided that the approximate solution is close enough to the true solution for the Newton’s method
to converge. The process of repeated elimination of ‘‘unnecessary’’ nodes in order to obtain a sequence of quadratures with
fewer and fewer nodes is described in the algorithm follows.

Algorithm 4.2 (Node Elimination). Given a set ofm functions φ1, . . . , φm and an n-point quadrature with nodes and weight
x1, . . . , xn andw1, . . . , wn, respectively, the following algorithm computes a k-point quadrature x1, . . . , xk, w1, . . . , wk for
integrating φ1, . . . , φm where k is no greater than n.
1: for k = n : 1 do
2: reorder xj andwj for j = 1 : k in increasing order of the ‘‘significance index’’ sj
3: for i = 1 : k do
4: run least squares Newton’s method to eliminate ith node (xi andwi)
5: if Newton’s method succeeds then
6: save new nodes, weights to x1, . . . , xk−1, w1, . . . , wk−1;
7: goto line 11
8: end if
9: end for
10: return x1, . . . , xk, w1, . . . , wk
11: end for
In our experiments, the ‘‘significance index’’ sj (line 2 above) for each quadrature node is computed via either

sj = wj
m∑
i=1

φ2i (xj), j = 1, . . . , k, (21)

or

sj =
m∑
i=1

φ2i (xj), j = 1, . . . , k, (22)

which essentially compute the (weighted) norms of the column vector (φ1(xj), . . . , φm(xj))T in (2). Our experience shows
that the node elimination algorithm is insensitive to the exact form of sj, and the elimination process typically continues
successfully until the number of quadrature nodes is extremely close to the expected valuem/(d+ 1) (see Section 2.1).

Remark 4.3. Algorithm 4.2 is essentially a depth-first search algorithmwith the ‘‘search’’ operation carried out by the least
squares Newton’s method, and the order of the search between sibling nodes determined by the reordering scheme. With
each successful descent on the search tree via the execution of lines 6–7, a quadrature with one fewer nodes is created, and
the search for a quadrature with still fewer nodes starts. Special considerations such as location of the nodes, positivity of
weights, and symmetry may be incorporated into the reordering scheme as well. For instance, preference of nodes that lie
within the boundary of the domain may be formulated as assigning a negative number to sj if xj is outside.

Remark 4.4. There is no guarantee that the Newton’s method will continue to converge as the number of quadrature nodes
decreases. This, in combination with the fact that the number of nodes required by the optimal quadrature in two and
higher dimensions is generally unknown, complicates the issue of determining what the final quadrature should be. In our
experiments, we have found that random restarts with different initial quadratures (see Section 4.2 below) sometimes help
reduce the number of nodes used by the final quadrature. As can be seen in Section 5, our final quadratures typically use
one or two nodes more than the expected optimum in two and three dimensions.

4.2. The initial quadrature

In this section, we present a method for the construction of the initial quadrature, which is needed to bootstrap
the Newton’s method in the node elimination algorithm. As is well known, Newton’s method is sensitive to the initial
approximation, and converges only when the approximation is close to a true solution. In this section, we show that the
initial quadrature constructed using the pivoted Gram–Schmidt method (see Section 3.4) from certain tensor product rules
provides a stable initial approximation for our algorithm.
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As is seen in Section 2.2, a pd-point tensor product rule with nodes x1, . . . , xn and weights w1, . . . , wn (n = pd) on
Ω ⊂ Rd may be constructed from a p-point one-dimensional generalized Gaussian quadrature integratingΦ1,Φ2, . . . ,Φ2p
accurately. The resulting tensor product rule is accurate for all functions in the set

π = {fi1,i2,...,id(x1, x2, . . . , xd)|fi1,i2,...,id(x1, x2, . . . , xd) = Φi1(x1)Φi2(x2) · · ·Φid(xd)},

with i1, i2, . . . , id = 1, . . . , 2p.
Suppose that φ1, . . . , φm is a basis of π and that pd � m. Defining anm× pd matrix A = (aj,k) =

√
wk φj(xk) such that

A =


√
w1φ1(x1)

√
w2φ1(x2) . . .

√
wlφ1(xl) . . .

√
wpdφ1(xpd)

√
w1φ2(x1)

√
w2φ2(x2) . . .

√
wlφ2(xl) . . .

√
wpdφ2(xpd)

...
...

...
...

√
w1φm(x1)

√
w2φm(x2) . . .

√
wlφm(xl) . . .

√
wpdφm(xpd),

 (23)

we can see that rows of A are orthonormal. Furthermore, there exist m columns of A indexed by s1, . . . , sm such that they
form a basis for the column space of A. In other words, As, them bym sub-matrix of A given by the formula

As =


√
ws1φ1(xs1)

√
ws2φ1(xs2) . . .

√
wsmφ1(xsm)

√
ws1φ2(xs1)

√
ws2φ2(xs2) . . .

√
wsmφ2(xsm)

...
...

...
√
ws1φm(xs1)

√
ws2φm(xs2) . . .

√
wsmφm(xsm)

 (24)

is invertible. In addition, it can be shown (see Theorem 4.5 below) that certain choices of s1, s2, . . . , sm lead to quadratures
with bounded weights. The reader is referred to [12] for a proof of this theorem, which was presented in a slightly different
form.

Theorem 4.5. Suppose that Ω ∈ Rd contains at least m points, and that functions φ1, . . . , φm are defined and integrable on
Ω . Suppose further that A is defined by (23) and that xs1 , xs2 , . . . , xsm are the m points selected by the pivoted Gram–Schmidt
procedure given in Algorithm 3.5. Then, the system (2) has a unique solution xs1 , xs2 , . . . , xsm , w1, . . . , wm, and there exists a
positive constant ε < 1 such that wk satisfies the condition

|wk| ≤ 1+ ε (25)

for all k = 1, . . . ,m.

Remark 4.6. The estimate ofwk in Theorem 4.5 is actually a pessimistic one. In our experiments,wk’s are not only bounded
as indicated above but also significantly smaller. Nevertheless, a more detailed quantification of the magnitude of the wk’s
is beyond the scope of this paper. The boundedness ofwk implies that constructed quadratures are numerically stable.

Remark 4.7. The user-defined parameter p, which determines the order of the one-dimensional generalized Gaussian
quadrature, can be varied according to the specific needs of the application. In addition, we usually supplement the tensor
product rules with additional points on the medians and at the center of the integration region to artificially introduce
special nodes in the initial quadrature.

5. Numerical results

We have implemented in Fortran the numerical algorithms presented above, and obtained quadratures for a number of
two- and three-dimensional regions to double precision accuracy. In this section, we present results related to integration
of polynomials on the triangle, the square, and the cube.
We first present results for the standard triangle T in R2. As is shown in Example 3.1, the symmetry group G of T has six

subgroups S1 through S6, each of which imposes a certain symmetry on its point sets. For example, point sets that are S2- (or
S3-or S4-) symmetric possess reflective symmetry, point sets that are S5-symmetric possess rotational symmetry, and point
sets that are S6-symmetric possess both rotational and reflective (or total) symmetry. We show in Fig. 1 the S6-, S5-, and S2-
generators (the right triangle BOF , the equilateral triangle AOC , and the right triangle ACF , respectively) that we have used
in our program; they are the domain Ω in the construction of totally symmetric, rotationally symmetric and reflectively
symmetric quadratures on T , respectively.
A summary of the three types of quadratures is given in Table 1, where the degree (up to 50) of each quadrature is listed

in columns labelled d, and the total numbers of quadrature nodes required by the final quadratures under each symmetry
category are listed in columns labelled n2 (reflectively symmetric), n3 (rotationally symmetric), and n6 (totally symmetric),
respectively. All quadratures reported in this table have positiveweights and interior (or boundary) nodes only. Quadratures
of this type typically require more nodes than those that possess either negative weights or exterior nodes.
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Table 1
A summary of the total number of nodes required by three types of symmetric quadrature rules on T : reflectively symmetric, rotationally symmetric, and
totally symmetric (i.e., both rotationally and reflectively symmetric). For each degree d between 1 and 50, the total number of nodes on T for each of the
three types is listed under n2 , n3 , and n6 , respectively. For degrees 11 through 30, theminimumnumbers of nodes frompreviously known totally symmetric
rules are listed in column p. Quadratures with underlines are apparently new.

d n2 n3 n6 d n2 n3 n6 p d n2 n3 n6 p d n6 d n6

1 1 1 1 11 27 27 28 28 21 85 87 87 93 31 181 41 309
2 3 3 3 12 32 33 33 33 22 95 93 96 100 32 193 42 324
3 4 6 6 13 35 36 37 37 23 102 102 103 106 33 204 43 339
4 6 6 6 14 41 42 42 42 24 110 111 112 118 34 214 44 354
5 7 7 7 15 48 46 49 54 25 119 118 120 126 35 228 45 370
6 11 12 12 16 52 52 55 58 26 127 129 130 138 36 243 46 385
7 13 12 15 17 58 58 60 61 27 137 136 141 145 37 252 47 399
8 16 16 16 18 65 66 67 73 28 148 147 150 154 38 267 48 423
9 19 19 19 19 71 72 73 73 29 157 156 159 166 39 282 49 435
10 24 24 25 20 79 78 79 85 30 168 168 171 175 40 295 50 453

Table 2
Efficiency of the quadrature rules summarized in Table 1. For each degree d between 1 and 50, efficiency of the quadratures of reflective symmetry, of
rotational symmetry, and of total symmetry are listed under columns e2 , e3 , and e6 , respectively.

d e2 e3 e6 d e2 e3 e6 d e6 d e6

1 1.000 1.000 1.000 16 0.981 0.981 0.927 31 0.972 46 0.977
2 0.667 0.667 0.667 17 0.983 0.983 0.950 32 0.969 47 0.983
3 0.833 0.556 0.556 18 0.974 0.960 0.945 33 0.972 48 0.965
4 0.833 0.833 0.833 19 0.986 0.972 0.959 34 0.981 49 0.977
5 1.000 1.000 1.000 20 0.975 0.987 0.975 35 0.974 50 0.976
6 0.849 0.778 0.778 21 0.992 0.969 0.969 36 0.964
7 0.923 1.000 0.800 22 0.968 0.989 0.958 37 0.980
8 0.938 0.938 0.938 23 0.980 0.980 0.971 38 0.974
9 0.965 0.965 0.965 24 0.985 0.976 0.967 39 0.969
10 0.917 0.917 0.880 25 0.983 0.992 0.975 40 0.973
11 0.963 0.963 0.929 26 0.992 0.977 0.969 41 0.973
12 0.948 0.919 0.919 27 0.988 0.995 0.960 42 0.974
13 1.000 0.972 0.946 28 0.980 0.986 0.967 43 0.973
14 0.976 0.952 0.952 29 0.987 0.994 0.975 44 0.974
15 0.944 0.986 0.925 30 0.984 0.984 0.967 45 0.975

The quadratures that are totally symmetric on the triangle have been studied extensively, and results for relatively high
orders are available (see, for example, [5,8]). In the column p of Table 1, we summarize quadratures of this type that are
previously known for degrees 11 through 30. As can be seen, most of our quadratures (denoted by underlines) between
degrees 15 and 30 use at least one node fewer than those previously published, with some saving as many as eight nodes.
For degrees higher than 30, the authors have failed to find comparable rules (i.e., rules that are totally symmetric, and have
only positive weights with interior or boundary points). Finally, in Table 2, we calculate the efficiency E (to three digits) of
the quadratures listed in Table 1. These results show that our rules have relatively high values of E, with E above 0.90 for
all quadratures of degrees 10 and above, and with some as high as 0.99. A comparison of the quadratures that integrate the
exact same set of polynomials but have different degrees of symmetry indicates that rules designed with fewer symmetric
constraints tend to require fewer nodes in general.
In Table 3, we summarize results for non-symmetric quadratures on the standard 2 by 2 square in R2 up to degree 24.

These quadratures are designed without any symmetry considerations. As before, the degree of each quadrature is listed
under the column d. For each degree, the expected minimum number of nodes dm/(d + 1)e (see Section 2.1) is listed
under the column theo, and the total number of nodes of the final quadrature we constructed is listed under n. As in the
case for the triangle, all quadratures reported in this table have positive weights and interior (or boundary) nodes only.
Although the formulae are designed to be non-symmetric, many of the final quadratures show a certain degree of symmetry,
primarily due to the inherent symmetry of the integration region. As can be seen, the efficiency of these quadratures is, again,
high. Typically, our rules use at most one additional node than what is expected. In several cases (noted by asterisks), our
quadratures use even fewer nodes than expected.
A summary of the results for non-symmetric quadratures on the standard 2 by 2 by 2 cube in R3 up to degree 15 is

included in Table 4. Quadratures reported in this table are constructed with no symmetric requirements imposed, and use
interior (or boundary) nodes only. The degree of each quadrature is listed in row d, and the expected number of nodes is
listed in row theo. The total number of quadrature nodes needed by the final quadrature computed by our algorithm for each
degree is listed in row n. Except for the final rule for degree 14, which contains one negative weight, all other quadratures
listed here possess positive weights only. Again, although the formulae are designed to be non-symmetric, many of the final
quadratures show a certain degree of symmetry. As can be seen, the efficiency of these quadratures is relatively high with
most rules using at most two nodes more than expected. For degrees 7, 9, and 11, the quadratures that we have constructed
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Table 3
A summary of the results for non-symmetric quadratures on the square for degrees up to 24. For each degree listed under d, the expected number of nodes
is listed under theo, and the total number of nodes of the final quadrature is listed under n. Asterisks denote quadratures that use fewer nodes (n) than
expected (theo).

d theo n d theo n

1 1 1 13 35 35
2 2 3 14 40 40
3 4 4 15* 46 45
4 5 6 16 51 52
5 7 7 17 57 57
6 10 10 18 64 64
7 12 12 19 70 71
8 15 16 20 77 78
9* 19 18 21 85 85
10 22 22 22 92 93
11 26 27 23 100 101
12 31 31 24 109 109

Table 4
A summary of the results for non-symmetric quadratures on the cube for degrees up to 15. For each degree listed under d, the expected number of nodes is
listed under theo, and the total number of nodes of the final quadrature is listed under n. The quadrature with 173 nodes has one negative weight. Asterisks
denote quadratures that use fewer nodes (n) than expected (theo).

d 1 2 3 4 5* 6 7 8 9* 10 11* 12 13 14 15

theo 1 3 5 9 14 21 30 42 55 72 91 114 140 170 204

n 1 4 6 10 13 22 28* 42 54 74 90 116 141 173n 206

Table 5
A 13-point non-symmetric quadrature of degree 5 on the standard cube.

x y z Weight

0.0000000000000000 0.0000000000000000 0.0000000000000000 1.6842105263157894
0.8154162179225410 0.7011590353030981 −0.3318720618376825 0.5580769304856384
−0.8154162179225410 −0.7011590353030981 0.3318720618376825 0.5580769304856384
0.3354972826749644 0.8137174023181656 0.7014073204272666 0.5595478790816522
−0.3354972826749644 −0.8137174023181656 −0.7014073204272666 0.5595478790816522
−0.7204688849769894 0.3858783453882358 0.7737500597784259 0.5832800882215720
0.7204688849769894 −0.3858783453882358 −0.7737500597784259 0.5832800882215720
0.8786392187683029 −0.0478015313848859 0.7016942379029152 1.3916991226476483
−0.8786392187683029 0.0478015313848859 −0.7016942379029152 1.3916991226476483
0.6649493200879981 −0.8971504092175344 0.1401078571029694 0.4898898395473991
−0.6649493200879981 0.8971504092175344 −0.1401078571029694 0.4898898395473991
−0.0103664220183517 −0.6588164031477778 0.9124254221056255 0.4750600560080839
0.0103664220183518 0.6588164031477778 −0.9124254221056255 0.4750600560080839

use one or two nodes fewer than that is expected by the theoretical argument. It should be noted that the constructed
quadratures for the cube use a significantly lower number of nodes than corresponding tensor product rules. For example,
a tensor product rule of degree 15 needs at least 512 nodes, while our rule uses just over 200 nodes.
A sample 13-point quadrature of degree 5 on the cube is listed in Table 5, and sample quadratures for the triangle of

degrees 10, 30, and 50 are tabulated in Tables 6–8, respectively. As is mentioned in Section 3.1, all symmetric quadratures
are uniquely determined by their configuration on its symmetric generators. Therefore, only nodes that lie within the
corresponding S-generators are listed in Tables 6–8; all remaining nodesmay be generated via actions of the group elements
in S6, S2 and S5, respectively (see Example 3.1).
Finally, we show in Figs. 2 and 3 two sample nodal configurations, with Fig. 2 showing the 453 node quadrature listed in

Table 8, and Fig. 3 depicting a 109 node quadrature of degree 24 on the square. Both figures show a certain resemblance of
those of Gaussian quadratures in one dimension, with nodes distributedmore densely near the boundaries of the integration
region than in the center.

6. Conclusions

We present a numerical algorithm for the construction of highly efficient, high-order quadratures in two and higher
dimensions. This method combines the least squares Newton’s method and a node elimination scheme, and generates
a sequence of quadratures that use fewer and fewer number of nodes. The resulting quadratures possess desirable
properties such as positivity of weights, and interior nodes, resembling Gaussian quadratures in one dimension. Symmetry,
a considerably richer subject in quadrature construction for higher-dimensional regions, is integrated naturally into the
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Table 6
A reflectively symmetric quadrature of degree 10 with a total number of 24 nodes on T . Only the generating 14 nodes on either the generator triangle T2
or the median are listed.

x y Weight

0.1551275866992061 0.3926587334507982 0.05567338455800167
0.9252314250365582 −0.5241973822167591 0.00896962036448401
0.1384253518864596 0.8231152771873217 0.02240118142259882
0.3609812845058779 0.0267765158868186 0.06089917117558221
0.5812005281770837 0.0484050181187623 0.03108755935951332
0.3458850891448130 0.4561437111102405 0.03146650526166210
0.4510519110813880 −0.3059662347573659 0.06246416621868210
0.6893778940829133 −0.5226600964300047 0.02582709676771077
0.7634762995170715 −0.3046970738749675 0.03178319217145733
0.2563805151012611 −0.5238003914950184 0.03640547863919981
0.0000000000000000 0.7059408419246426 0.03498602106696763
0.0000000000000000 1.0463216388186550 0.01202119786551837
0.0000000000000000 0.0240306520799389 0.07686209708916766
0.0000000000000000 −0.3100722765497620 0.07278083120266070
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Fig. 2. A 453-point totally symmetric quadrature of degree 50 on the equilateral triangle T .
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Fig. 3. A 109-point quadrature of degree 24 on the standard square.
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Table 7
A rotationally symmetric quadrature of degree 30 with a total number of 168 nodes on T . Only the generating 56 nodes on either the generator triangle T3
or the median are listed; the remaining 112 nodes may be obtained via rotations of these nodes by 2π/3 and 4π/3.

x y Weight

0.8272205847965533e−1 −0.2086440937022876e−1 0.8225724599112734e−2
0.6460592016667458e+0 −0.1557198950752971e+0 0.3425246656362368e−2
0.5912391719771670e−1 0.1039914752424664e+1 0.6743805221766848e−3
0.7357619003526131e+0 −0.1341845875173481e+0 0.1261438394384131e−2
0.5761546120269558e+0 −0.5136250806556518e−1 0.4918794158057610e−2
0.1994087632082849e+0 0.9377211520122531e−2 0.8224000212730418e−2
0.8765562348681995e+0 −0.4557367380756145e+0 0.1937869814215937e−2
0.1386237601227312e+0 0.8232066932267047e+0 0.2818999309598719e−2
0.8771274146530530e+0 −0.3783875453696646e+0 0.9936867294932528e−3
0.8367393599650243e+0 −0.3732813894029767e+0 0.2291488485753811e−2
0.9530921218500234e−1 0.1518657794513243e+0 0.9584455083925919e−2
0.3150312065314394e+0 0.2258787078498025e−1 0.8253156910035582e−2
0.6538072391711382e+0 0.5766254583042341e−2 0.1591561151450938e−2
0.7836086212486449e−1 0.9114490338273592e+0 0.2625273142248666e−2
0.5333723933200066e+0 −0.1420835800669319e+0 0.6576713150961314e−2
0.2113485001639861e+0 0.7021528320464188e+0 0.3441276278660254e−2
0.4201764494776592e−1 0.1007798049850320e+1 0.1802891190698994e−2
0.6955339994886459e+0 −0.1292191897482428e+0 0.3466499998769438e−2
0.4127226449687541e−1 0.8325715025940558e+0 0.4341724718219735e−2
0.1156522714200305e+0 0.7358780895538129e+0 0.4962835559191245e−2
0.4469844656691110e+0 −0.2382953838781011e−2 0.7398503863311476e−2
0.3529921026374059e+0 0.1578080210271638e+0 0.8023583585428551e−2
0.2460258923508316e+0 −0.1400047139425037e+0 0.9876856647926293e−2
0.9668893072398800e+0 −0.5375235554130982e+0 0.5589691156993659e−3
0.5330742228948119e+0 −0.2572390264377685e+0 0.6986365093669510e−2
0.6377880380051988e+0 −0.3605731102565961e+0 0.5630106441409166e−2
0.2985565943246146e+0 0.5504747584405043e+0 0.4032405218823953e−2
0.5627080639457788e+0 0.1630690759145039e+0 0.1820674630472769e−2
0.4861035354319526e+0 0.9943388269681425e−1 0.6268653378145729e−2
0.1241089996082145e+0 0.3341243654933032e+0 0.9280637865480141e−2
0.6642540651500375e+0 −0.2597847118974944e+0 0.5571424237523911e−2
0.5987333241573769e+0 0.3050210764280144e−1 0.4182326597878419e−2
0.2197532948080663e+0 0.1798196888453294e+0 0.9050760263478505e−2
0.2698852497770884e+0 0.6708183810109211e+0 0.1690915977597697e−2
0.3958421104006370e+0 0.3804317735351793e+0 0.4393772842367057e−2
0.9158780779011614e+0 −0.5245150065313966e+0 0.1507411066409142e−2
0.2558634471266385e+0 0.3251482772651994e+0 0.8206004882495090e−2
0.1838917766755212e+0 0.8193255390401215e+0 0.1507119774858036e−2
0.1974375794859356e+0 0.6013855940274377e+0 0.5765437083136701e−2
0.7584770267556704e+0 −0.2670670580928476e+0 0.3703392584101807e−2
0.3469765078485344e−1 0.4734263841039434e+0 0.8715934043390202e−2
0.4976940838283434e+0 0.2037394989534461e+0 0.4453198965263726e−2
0.3870703164854328e+0 0.2699318755098380e+0 0.6579627058432091e−2
0.9288658345029073e+0 −0.4725350228450654e+0 0.9516599016618329e−3
0.2889458004352184e+0 0.4416175187348937e+0 0.6362435785130976e−2
0.4645516229515598e+0 0.3330077787895797e+0 0.1913354619710829e−2
0.3650914806280184e+0 0.5055382016363809e+0 0.1857174714166686e−2
0.7473303039531310e−1 0.6275958705543054e+0 0.7084040821689384e−2
0.3924863580876331e+0 −0.1272914050208924e+0 0.8993525759622909e−2
0.1619393302508105e+0 0.4863704550920276e+0 0.7900965369909250e−2
0.1935821149964777e−1 0.1100542011523507e+1 0.6685162557274974e−3
0.7609746208061138e+0 −0.3765326388259521e+0 0.4547482851553974e−2
0.8060584904241093e+0 −0.2621917384930423e+0 0.1659224167519006e−2
0.1114826626855052e+0 0.9415786826470525e+0 0.1417990273592256e−2
0.8581107053895953e−3 0.1139838338986214e+1 0.1916747284979650e−3
0.2769231349292084e−2 0.9429639395524531e+0 0.3108419351734294e−2

algorithm, where the degree of symmetry of the quadrature is a user specified parameter. Using this algorithm, we have
constructed quadratures for polynomials on the triangle, the square and the cubewhich aremore efficient than any formulae
previously known. Many of the rules we report here appear to be new. The quadratures obtained also have corresponding
interpolation schemes, which will be reported separately.
Although our method has generated satisfactory results in two and three dimensions, the approach is experimental in

nature. Theoretical analysis on the optimality of higher-dimensional quadratures would be highly desirable.
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Table 8
A 453-point totally symmetric quadrature of degree 50 on the equilateral triangle T . Only the generating 84 nodes on either the S6-generator T6 or the
median AF (see Fig. 1) are listed; the remaining nodes may be obtained via group action of S6 .

x y Weight

0.0000000000000000 0.2666577779779638 0.0021904046082402
−0.1124313701772454 −0.5757525283461596 0.0004571095646746
−0.9256882209861061 −0.5384865283035131 0.0003948881417073
−0.2969210611797281 −0.1914654083296075 0.0035934111950642
−0.7077745499764682 −0.5373048839112955 0.0014910742851108
−0.9090720752703281 −0.5758662830537718 0.0001796728471361
−0.1777622292035842 −0.5690214644458064 0.0010125558476824
−0.6335800721605949 −0.5366591781602346 0.0017069127169250
0.0000000000000000 1.1490520500034340 0.0000240796957403
−0.4863915034605701 −0.4155825311049862 0.0036927130629621
−0.6796097231116817 −0.5049563709243417 0.0022489391525853
−0.8098785802816203 −0.4918608972661665 0.0019524312574849
0.0000000000000000 −0.5438415613297470 0.0010866799154497
−0.1019729166748508 −0.3126684717312953 0.0055988347396351
−0.6390531355140903 −0.4645670361930981 0.0028924669217577
−0.5484885696606917 −0.5367126451543023 0.0020380484585475
−0.2874329156493009 −0.4872277196540656 0.0034261098541603
−0.2585357538056598 −0.5747616861659614 0.0006135145701974
−0.8529331149785352 −0.5564898875850632 0.0008654202070143
−0.0691175320963452 −0.4791693406122051 0.0036671947134331
0.0000000000000000 −0.3091843545841412 0.0028026432284100
−0.0561154156396137 −0.3784066674034268 0.0054349341984383
−0.2439741392754361 −0.5231979844239280 0.0028351957640421
−0.2732507888320513 −0.4002538935543359 0.0045746103628843
0.0000000000000000 −0.5100624385517909 0.0015952659260343
−0.1662720547195513 −0.4936068218349784 0.0035621046832988
−0.9378927147457812 −0.5600651349094425 0.0005077140943325
−0.1193050675401607 −0.4320087923635920 0.0045268556007289
−0.9015110856568858 −0.5656968032429866 0.0005764758688778
−0.3204953594372978 −0.2702437615902795 0.0057986412207422
−0.5910420443956919 −0.5034192605577299 0.0026551803851187
−0.2175146254032372 −0.4484982152285935 0.0042618143181478
−0.1580090779826294 −0.1554764764590674 0.0061410787717774
−0.3419299642831888 −0.4450361891196334 0.0041577749997957
−0.5034831466244999 −0.3621869683337191 0.0045714943165212
−0.7229666416869851 −0.5604125298441649 0.0011784033012900
−0.8341041276554126 −0.5289512235160428 0.0014219896538536
−0.4522096929495317 −0.5343810876810189 0.0023860085586204
−0.8909150874538825 −0.5407589630878091 0.0010070034152583
−0.4379356663313332 −0.4593112313803924 0.0037609206282914
−0.5479900871398830 −0.4581933023157792 0.0034952452756601
−0.2088545582629160 −0.3065381028776907 0.0058926392977540
−0.1965326162646397 −0.5500033153935602 0.0021761510975303
−0.3402642556071983 −0.5367398993353952 0.0025597503150258
−0.3033412114126202 −0.3419129259938245 0.0053360452230413
−0.4953529428186446 −0.4999352242884132 0.0030890849879669
−0.0549674992365703 −0.1511683414760968 0.0071328535685235
−0.7964198114498382 −0.5587073875420177 0.0010810483517258
−0.7725262143408313 −0.5309351704947155 0.0017544886347878
−0.2212226571925028 −0.2311104433727553 0.0061494904649466
0.0000000000000000 −0.4373547401936403 0.0023575565603961
−0.6331072992422112 −0.5606190171869835 0.0013783891229758
0.0000000000000000 0.7621026989631550 0.0018290788738495
−0.3840758657118736 −0.5018046405596390 0.0033652181243651
−0.5317084125284348 −0.5606640458276943 0.0015184413550438
−0.1751172055153042 −0.3756408245656322 0.0055587775921145
−0.3006341397609248 −0.5609358364702884 0.0017601404353050
−0.1086869220568949 −0.5289106688491748 0.0031341293249895
−0.4111397082995238 −0.3222783448212513 0.0056365508134121
0.0000000000000000 1.1168066855539390 0.0001973796391634
−0.6917837628935971 −0.5741103522607572 0.0005799858664965
0.0000000000000000 0.8822615489186989 0.0013607360815822
−0.9795356262898514 −0.5737698773740506 0.0001521977184470
−0.9509031506431555 −0.5738751156319078 0.0002400849357944
−0.1119510482835352 −0.2368429502002873 0.0067581925200909
−0.3921825162734547 −0.3911914123606699 0.0051393423392662
−0.4870384654434685 −0.5741255207957627 0.0006951734036825
−0.7432058368831903 −0.4903886875105679 0.0024993080895095

(continued on next page)
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Table 8 (continued)

x y Weight

0.0000000000000000 0.5649064689901148 0.0026503828818360
−0.6939356748620450 −0.4403471863506789 0.0030717948054284
−0.5941680920408391 −0.5741825739834173 0.0006352303361032
0.0000000000000000 0.4631499494550457 0.0030076725635797
−0.5916869526417282 −0.4084779816408744 0.0042759500648291
−0.4222627055622458 −0.5595603013208083 0.0017369109423123
0.0000000000000000 −0.2332573579986706 0.0033989953518860
0.0000000000000000 0.6675997901497540 0.0022934322638873
−0.7777797118015541 −0.5739813147120367 0.0005221250706383
0.0000000000000000 −0.0618585703169292 0.0038540006507433
0.0000000000000000 1.0083409893504060 0.0007889526686353
−0.3747333122781531 −0.5738641446709915 0.0007706843098833
0.0000000000000000 −0.5727911592067401 0.0004930816413700
−0.0779889206854663 −0.5602379116800536 0.0018435234238175
0.0000000000000000 0.1276641504717413 0.0037992680605946
−0.8496556980932881 −0.5734944598728055 0.0004876127244490
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