female, 88.0% were white, and the mean age was 42 (SD = 12.5). Migraine sufferers reported higher rates of lifetime cases of arthritis (32.7% vs. 20.6%; p < 0.001) and gastroesophageal reflux disease (23.3% vs. 11.9%; p < 0.001), and higher rates of depression in the past year (43.7% vs. 25.7%; p < 0.001) than their matched controls, as well as higher rates of hypercholesterolemia and hypertension (both p < 0.001). Migraine sufferers had higher rates of emergency rooms visits (22.8% vs. 12.9%; p < 0.001) and hospitalizations (11.9% vs. 7.5%; p < 0.001) in the past six months, reported lower scores on both physical (44.8 vs. 49.2; p < 0.001) and mental (44.5 vs. 48.3; p < 0.001) components of the SF-8, and had greater overall work impairment due to health (20.6% vs. 12.1%; p < 0.001) than their non-migraine counterparts. CONCLUSION: Migraineurs have higher proportions of comorbid conditions, use more health care resources, miss more time from work, and experience worse health-related quality of life than non-migraine sufferers. These results highlight the importance of providing adequate care for these patients, to treat not only migraines, but also comorbid conditions.

THE IMPACT OF CHRONIC INSOMNIA ON PRODUCTIVITY IN THE US, FRANCE, AND JAPAN

Martin M1, Cure S1, Gilletoaeu J1, Walsh J1, Leger D1, Uchiyama M2, Kobayashi M2, Morin C2

1Innovus, Ubridge, Middlesex, UK, 2Sanofi-Aventis, Bagneux, France. 3Sleep Medicine and Research Centre, St. Lukes Hospital, St Louis, MO, USA, 4Centre du Sommeil et de la Vigilance de l’Hôtel Dieu, Paris, France, 5Nihon University School of Medicine, Tokyo, Japan, 6Crecon Research and Consulting Inc, Shibuya-ku, Tokyo, Japan, 7Laval University, Quebec City, Quebec, Canada

OBJECTIVES: To measure the impact of chronic insomnia on productivity, comparing good sleepers (GS) to chronic insomniacs (CI) in three countries. METHODS: A questionnaire measuring various aspects of chronic insomnia was developed and tested. Sample selection through on-line panels in the US and France, an off-line panel in Japan, aimed to obtain a minimum of 400 GS and 800 CI per country. Questions on time lost from work (past month) measured the effect on productivity. Likert scales (0–10) assessed effects on concentration, productivity at work and daily life. CI were identified using the Insomnia Severity Index (ISI)1 and an insomnia history of >6 months. Non-treated CI with an ISI-score between 8–14, co-morbid insomniacs were excluded. RESULTS: For the US and France 478 and 998 GS and 820 and 860 CI were included respectively, and 506 GS and 405 CI for Japan. 387, 243, and 202 CI were treated in US, France and Japan respectively. CI miss significantly (p < 0.001) more hours and days of work than GS in the US and France. This was not observed in Japan. Significant better concentration (p < 0.01; 0.010; 0.005), productivity at work (p = 0.04; <0.0001; 0.0005) and effects on daily life (p < 0.003; <0.0001; 0.0005) were found for treated CI compared to non-treated CI in the US, France and Japan respectively. Differences were significant (p < 0.001) when comparing GS to CI in all countries. CONCLUSION: Discussion: The small sample and missing data (hours/days worked) may have affected Japanese results. CI in all countries showed similar patterns on the Likert scales. Treated CI patterns approached GS patterns while continuing to show effects of chronic insomnia. CONCLUSION: Chronic insomnia is associated with losses in days and hours worked, reduced concentration productivity at work, a negative effect on daily life. Treated CI show significantly less impact of chronic insomnia on concentration, productivity at work and impact on daily life.