On a Theorem of Dubins*

VICTOR KLEE

University of Washington, Seattle, Washington

Submitted by Ky Fan

Dubins [1] has proved that if E is a real linear space, K is a convex subset of E which is linearly closed and linearly bounded, and M is a flat of finite codimension n in E, then each extreme point of $K \cap M$ is a convex combination of $n + 1$ extreme points of K. (Here and later, the $n + 1$ points are not required to be distinct.) His proof, designed to include other material as well, is rather circuitous. We record here a more direct proof which applies also to unbounded sets and to faces of arbitrary finite dimension.

Recall that by “factoring out” the largest flat contained in a linearly closed convex set C, the extremal structure of C can be described in terms of the extremal structure of a linearly closed convex set K which contains no line (1.2 of [2]). One of our tools is the following result (2.5 of [2]).

(1) If a finite-dimensional linearly closed convex set K contains no line, then $K = \text{conv} (\text{ext } K \cup \text{rext } K)$; that is, K is the convex hull of its extreme points together with its extreme rays.

Another tool is a well-known theorem of Carathéodory (p. 35 of [3]).

(2) If X is a subset of an n-dimensional space, then each point of the convex hull of X is a convex combination of $n + 1$ points of X.

Combining (1) and (2), we obtain a result which is familiar when K is linearly bounded or is a convex cone.

(3) If K is an n-dimensional convex set which is linearly closed and contains no line, then each point p of K is

- a convex combination of $n + 1$ extreme points of K or
- a convex combination of n points of K, each an extreme point or in an extreme ray of K.

PROOF: We assume without loss of generality that K lies in an n-dimen-
sional linear space E and that $p = 0$, the origin of E. By (1) and (2) the point p can be expressed in the form

$$ p = \sum_{0}^{m} \alpha_{i} x_{i} \quad \text{with} \quad m \leq n, \sum_{0}^{m} \alpha_{i} = 1, \alpha_{i} > 0, $$

and

$$ x_{i} \in \text{ext } K \quad \text{for} \quad 0 \leq i < k \quad \text{while} \quad x_{i} \in \text{ext } K \quad \text{for} \quad k \leq i \leq m. $$

We may assume that among all such expressions for p, the representation (*) has the smallest value of m, and that among those with this value of m, (*) has the smallest value of k. If $m < n$ the representation (*) is of the second sort described in (3), while if $k = 0$ it is of the first sort. Thus we may assume that $m = n$ and $k \geq 1$, while $x_{0} = u + \beta y$ where $\beta > 0$ and the ray $u + [0, \infty][y$ is an extreme ray of K. Then $u \in \text{ext } K$ and we have

$$ p = 0 = \alpha_{0}(u + \beta y) + \sum_{1}^{n} \alpha_{i} x_{i}. $$

Let N be the set of all points of the form $\sum_{1}^{n} \mu_{i} x_{i}$ with $\mu_{i} < 0$. From (2) in conjunction with the minimality of $m(= n)$ it follows that the set $\{x_{0}, \ldots, x_{n}\}$ does not lie in any $(n - 1)$-dimensional subspace of E. Hence the points x_{1}, \ldots, x_{n} form a basis for E and the set N is open. Clearly $u + \beta y \in N$. If $u \in N$ then $0 \in \text{conv } \{u, x_{1}, \ldots, x_{n}\}$, contradicting the minimality of k. If $u \notin N$, then the boundary of N includes the point $u + \gamma y$ for some $\gamma \in]0, \beta[,$ and $u + \gamma y$ is a positive combination of some $n - 1$ of the points x_{1}, \ldots, x_{n}. But then 0 is a convex combination of these $n - 1$ extreme points together with the point $u + \gamma y \in \text{ext } K$, and the minimality of m is contradicted. This completes the proof.

For a point p of a convex set K, let K_{p} denote the union of all open segments in K which have p as an inner point. Then K_{p} is a convex subset of K, and is in fact the smallest face of K which includes p (see [1]). The face K_{p} is zero-dimensional if and only if p is an extreme point of K, and K_{p} is one-dimensional when p is an inner point of an extreme ray of K.

Theorem. Suppose E is a real linear space, K is a convex subset of E which is linearly closed and contains no line, M is a flat of finite codimension n in E, and p is a point of $K \cap M$ for which the face $(K \cap M)_{p}$ has finite dimension j. Then p is

- a convex combination of $n + j + 1$ extreme points of K or
- a convex combination of $n + j$ points of K, each an extreme point or in an extreme ray of K.
Proof: We assume without loss of generality that \(p = 0 \), whence \(M \) is a linear subspace of \(E \). Let \(S \) denote the union of all lines \(T \) through 0 for which 0 is an inner point of \(K \cap T \). Then \(S \) is a linear subspace of \(E \) and \(S \cap M \) is the linear hull of the face \((K \cap M) \). Since this face is of dimension \(j \) while \(M \) is of codimension \(n \), the subspace \(S \) is of dimension \(\leq n + j \). The set \(K \cap S \) is linearly closed and contains no line, whence (3) applies to yield an expression of \(p(=0) \) in the form \(0 = \sum_{i=1}^{m} \alpha_i x_i \) with \(\sum_{i=1}^{m} \alpha_i = 1 \), \(\alpha_i > 0 \), and \(m = n + j + 1 \) with all the \(x_i \)'s in \(\text{ext} (K \cap S) \) or \(m = n + j \) with all the \(x_i \)'s in \(\text{ext} (K \cap S) \cup \text{ext} (K \cap S) \). Now let

\[
y_i = \left(-\alpha_i/(1 - \alpha_i) \right) x_i = \sum_{h \neq i} \left(\alpha_h/(1 - \alpha_i) \right) x_h \in K,
\]

and suppose \(x_i \) lies in an open segment \([u, v] \) joining two points \(u \) and \(v \) of \(K \). Since \(y_i \) is a negative multiple of \(x_i \), elementary computation produces points \(u' \in y_i, v' \in y_i \) such that \(0 \in [u', u] \) and \(0 \in [v', v] \). But then \(u, v \in S \) and \([u, v] \subseteq K \cap S \). This completes the proof, for it shows that if \(x_i \) is an extreme point (resp. in an extreme ray) of \(K \cap S \), then \(x_i \) has the same relationship to \(K \).

When \(j = 0 \) and \(K \) is linearly bounded, the above result reduces to Dubins’s theorem [1]. This special case (as in [1]) does not require the lemma (3), but only the well known special case of that lemma for bounded \(K \).

References