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INTRODUCTION 

In this paper we develop a fixed-point theorem for a general class of non- 
linear operators which are frequently encountered in the theory of Ordinary 
Differential Equations. ‘The theorem is then applied to prove the existence of a 
periodic solution of a system of quasi-linear ordinary differential equations. 
As is often done, the problem of showing that a fixed point exists is reduced to 
proving that a certain compact convex subset of a Banach space B is mapped 
into itself by the operator and then applying the Schaudcr fixed-point theorem 
(see e.g. [I], Chapt. 12). However, we do not make the a priori assumption of 
the existence of such a set, but instead postulate the existence of a closed 
invariant subset .& (which need not be convex or compact) in a Banach 
space I!? which contains i3. The existence of an invariant compact convex 
subset of B is then deduced by applying a result used in the Theory of 
Optimal Control. This result is due to D. Blackwell [2], In Theorem 1.2 we 
show that under certain relatively weak assumptions our result can be used to 
acertain the existence of fixed points which would not be immediately 
obtainable using Schauder’s theorem since the requisite convexity conditions 
are absent. 

1. So as to keep to a minimum the introduction of definitions in the 
course of proving Theorems 1.1 and 1.2 we shall first set down some nota- 
tional conventions, definitions and three hypotheses. 

(1) U(t) will always stand for a compact subset of En which may possibly 
be dependent on some parameter t. The norm in En will be denoted by the 
symbol jl . II . 

(2) The symboll,[O, 1] will represent the set of all vector-valued measur- 
able functions from [0, I] -* L 2~ whose Euclidean norms are square integrable. 
The norm in this Banach space will be denoted by !I * i:L, . 

(3) The symbol C[O, 1] will represent the set of all continuous vector- 
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valued functions from [0, l] + En. The norm of this Banach space will be 
denoted by /: * ilc and defined as follows: 

1; r$ ;Ic = sup{li p)(t) /I : 0 < t < 1). 

(4) Let A’ denote the family of all vector valued measurable functions m 
satisfying the condition that m(t) E L;(t) a.e. for t E [0, 11. C will denote the 
family of all continuous vector valued functions from [0, I] + U(t). 

(5) Let X be any family of functions in C[O, 11. Then .%? will stand for 
the closure of X in the topology of CIO, I]. 

(6) Let E be any measurable subset in [0, I]. Then p(E) will denote the 
Lebesgue measure of E. 

(7) U(t) may be considered as a mapping from [0, l] into the collection 7 
of all compact subsets of En. This collection can bc made into a metric space 
(7, d) by means of the Hausdorff metric (see e.g. [3], p. 131). We shall make 
the assumption that l!(t) is a continuous mapping from [0, l] into (T, d). 

REMARK 1.1. The set G == (JoGtQ1 U(t) is compact in the usual topology 
of E”. 

PROOF. First of all notice that the function (diameter 15(:‘(t)) is a continuous 
function of t. Hence U is a bounded subset of En. Since U is bounded in En, 
to prove that it is compact, it is only necessary to show that every Cauchy 
sequence of points {m} in U has its limit in U. Thus let {y,} C CT converge to 
some point y,, . Each subscript n corresponds to some t, in [0, l] such that 
yn E U(t,J. We select a subsequence {tn,} which converges to t, in [0, I]. But 
this implies by the continuity of l,:(:(t) that {U(tJ} -+ V(t,,) in the space (T, d). 
Hence y,, E U(t,,) C U for otherwise U(t) would not be continuous at t, . 

Letg: [0, I] x En --j En and f : [0, I] + En be continuous. Let A denote 
the mapping from L,[O, l] -+ CIO, l] defined by the integral equation 

44 =fW + /;.dE, P)(S)) 6 4 EJqO, 11, 0 <t :; 1. (1-l) 

Because of the assumptions made concerningg,f, and U(t) it is evident that d 
is a completely continuous operator from .A! in L,[O, I] into CIO, I]. 

H 1 . A maps A! into itself. 

H 2 . U(t) is a fixed compact set for all t in [0, l] and this set is homeo- 
morphic to a compact convex set K in En. 

KEMARK 1.2. Since A%‘ is closed and bounded in L,[O, I], A is completely 
continuous on .A’ and G is compact in En we can conclude that 
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A(.AqCA(A)C.M. ‘21 I orcover A(&) is by the Ascoli-Arzela theorem 
compact in C [Cl, l] since A(&) is prccompact (see e.g. 141). 

-- 
LEMMA 1.1. rJ HI holds then A(M) is a compact convex subset of CIO, I]. 

PROOF. The compactness was justified in Remark 1.2. Thus we need prove 
only convexity. For any m E ./I define the mapping Q : &I + CIO, I] which 
is given by the integral equation 

Q(m) (‘1 = w(t) = (g(s, m(s)> 4 rnE.44, O\<t<l. U-2) 

Notice that w(0) = 0 for each w E Q(d), 
Let 0 < t, < t, < 1 and define the set of points 

R(t, , t2) = 1 ff’ g(s, m(s)) ds: m E A/. 
,* 1 1 

By a result of Blackwell [2] R(t, , tJ is compact and convex for each pair 
(tl , tJ. In particular this means that given any two points Y, and ~a in R(t, , tz) 
and any CL E [O, l], then there exists an m E .H such that 

I 

to 
g(s, m(s)) ds = (1 - a) yI + ~a. 

h 

Consider the dense set of points D in [0, l] which is given by the relation 

.9 = {i2-9, i=O,l,..., 2n, n = 1, 2,..., (1.4) 

and for each n the intervals 

and 

jin = [(i - 1) 2-n, i2-“), i = I,..., 2” - 1 

J> = [(2” - 1) 2-“, 11. (1.5) 

Notice that for n fixed the sets J,“, i = l,..., 2”, form a disjoint partition of 
[0, l] and if n > fi then the sets {Jan} are refinements of { Jifl}. 

Let 6 = Q(6) and z = Q(G). Let OL E [0, I] and 0 < t, < t, < 1. Then 
according to Blackwell’s result there exists an m E .M such that 

s 

h 
c!d &, W)) ds 

to 
+ (1 - a) I::,@, E(s)) ds 

tl 
= 

I g(s, m(s)) ds = w(h) - w(td 
t? 
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Hence for each integer n there exists a function m, in A such that 

01G(i2-n) + (1 - a) G(i24) - {afi((i - I) 2-9 + (1 - a) W=((i - 1) 2-“)) 

= Wn(i2-n) - w,((i - 1) 24) = ji” ~(4 m,(s)) 6 i = 1, 2 ,..., 2”. 
(i-1)2-" 

(1.6) 

For i = I Eq. 1.6 implies that 

aG(2-“) + (1 - a) a(23 = Wn(2+). 

Using this fact as the first step in an induction argument we deduce that for 
each n 

ak%(i2-n) + (1 - a) Z(i2P) = w,(i2-n), i = 1, 2 ,..., 2”. (1.7) 

Since Q(A) = A(A) - {f) it follows that Q(A) is a uniformly equi- 
continuous family of functions because the same is true of A(A). Thus we 
can select a subsequence {w,,} C {We} which converges in C[O, l] to a con- 
tinuous function w in Q(A). We claim that at each point of ~3 the function 
w satisfies the equation w(i2”) = &(i2+) + (1 - a) z(i2-“). This is conse- 
quence of (1.7) and the fact that by our construction 

w,,(i2+) = w,(i2-n) if n, 3 n. 

Since the points {i2-“} are dense in [0, l] it follows from continuity that 

W(t) = aE(t) + (1 - a)=(t), O<t<1. (1.8) 

We now select G and z in Q(A) and a? E [0, I]. By virtue of what has 
just been shown we can find for each integer n functions En and G* in Q(A) 
and We in Q(M) such that 

and 

a&(t) + (1 - a) En(t) = w,(t) (1.9) 

The sequences {rZn} and {z,J are Cauchy sequences in C[O, 11. Hence 
given any E > 0 there exists n,(r) such that 11 L%~ - En ]/a < Q and 
II % - 7Z,, /Ia < l for n, m > no(e). From this and Eq. (1.9) it follows that 
{w,J is. a Cauchy sequence in CIO, 11 with a limit in Q(A) and this limit 
satisfies the inequality 



This shows that 

and hence that Q(d) is convex. But A(.&) = {f} -k Q(.,&+‘), which proves -- 
that A(..&) is also convex. 

THEOREM 1.1. The integral equation (1 .I), subject to the hypotheses of 
Lemma I.1 has a fixed point in A. 

PROOF. &’ is closed in L,[O, l] and A(k) C &Y by H, . Hence the closure 
of A(&‘) in CIO, I] is also in A, i.e., A(&) C &‘. This leads to the inclusion 
relation 

A(A(dA!)) c A(&!) c .4(&q. (1.11) 

Thus the mapping A restricted to rZ(&) satisfies the conditions of 
Schaudcr’s theorem and hence there exists at least one fixed point of A in 

4-4. 
The hypothesis HI is unfortunate in that it is harder to verify than one 

which left the set of continuous functions from [0, l] + U invariant. How- 
ever, this difficulty can be overcome if we assume that U(t) satisfies H, . 

LEMMA 1.2. Assume U(t) is a fired compact set U in En which is homeo- 
morphic to a compact convex set K is E n. Then C is dense in Jz‘ in terms of the 
metric I! * II=, . 

PROOF. The proof of this lemma rests on a result of Dugundji [SJ. We 
paraphrase it for our proof: 

Let F be a continuous function from a cIosed set F on [0, l] into En. Then 
there exists a continuous extension of v, #, such that d([O, 11) C convex hull 

of v(F). 
Let q bc a continuous function from a closed set F in [0, l] into U, and let q 

be a homeomorphism of IJ’ -+ K. Then the composite function 
Z/J == q .C : P - K is continuous. Applying Dugundji’s result we can find a 
function Y which extends $ continuously to [0, l] and whose range is in K. 
But then the function q5 given by the composition q-l . Y is a continuous 
extension of p; to [0, l] whose range is in U. 
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Now let m E A’. Then by Lusin’s theorem (see e.g. [6]) given any E > 0 
there exists a closed setF in [0, l] such that p( [0, l] - F) < E and m restricted 
to F is continuous. By what we have just shown w-e can extend m on [0, l] to a 
continuous function iI& whose range is in G. This function satisfies the 
inequality 

< 2E{SUp II X Ii2 : XE U>. 

But II is compact in IP and hence the above supremum is finite. Since l is 
arbitrary this shows that C is dense in ~4’ and concludes the proof. 

THEOREM 1.2. [f H, is satisfied then the hypotheses H, can be weakened to 
the statement that A(C) C C. Cinder these conditions Eq. (1.1) will have a fixed 
point in C. 

PROOF. To prove the theorem ae only need to show that A(A) C .A! and 
apply Theorem 1.1. To do this notice that because of Lemma 1.2 given any 
m E A’ there exists a sequence {vn} C C which converges in the mean square 
norm to m. Hence {9)1~} converges in measure to m (see, e.g., [6]). Since [0, l] 
has finite measure this implies there exists a subsequence {TV,} C (rpn} which 
converges a.e. to m on [0, 11. Then since g is continuous 

MS, P?~,WI + dsj m(s)) 
a.e. on [0, I]. This in turn implies, because of the Lebesgue dominated con- 
vergence theorem, that 

If(t) + ,:A+ %&N dj --+-f(t) + j$ m(s)) ds 

pointwise on [0, 11. The set U is compact and by H, for each t in 

PI 11 f(t) + s:&+, P)&N d . s 1s in U, hence it follows that A(m) EA. 

2. We shall now apply Theorem 1.1 to prove the existence of periodic 
solutions for a class of quasilinear differential equations. 

Consider the equation 

ff = A(t) x + g(x, t), (2.1) 

where A(t) is a continuous matrix periodic of period one. x is an n-vector and 
g : En x El -+ En is continuous and periodic of period one in t. Related 
to system (2.1) are the two systems 

9 = 44~ + Am(t), 9, (2.2) 
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where m E .X, and the homogeneous system 

p : A(t) y. (2.3) 

System (2.3) has a fundamental solution /l(t) with /I(O) =- I the n x 71 
identity matrix. In terms of this fundamental solution all solutions of (2.2) 
can be expressed in the form 

~(4 z- d(t) [y(o) +- j: @(s)g(m(s), S) A] 
H Assume the monodromy matrix rl( 1) associated with the system (2.3) 

has k characteristic roots equal to one. 
For each m E .k! consider the unique solution of (2.2) given by the equation 

z(t) = A(t) [(I - A( l))-l d( 1) 11 k](s) g(m(s), s) ds 

+ j: W4 g(m(4,4 ds] . (2.5) 

Equation (2.5) defines a nonlinear continuous mapping H : JZ + C[O, 11. 
Some properties of H: 

PROPERTY 1. For m EJ? the image g = H(m) satisfies the relation 
z(0) = 2( 1). 

PROOF. By direct substitution in Eq. (2.5). 

PROPERTY 2. If m E J? is periodic of period one then z = H(m) is also 
periodic of period one. 

PROOF. Again by substitution in (2.5) we have 

Z(t + 1) = n(t) [2(1) + f: W4&44, ') ds] 

= 4) [a(O) + j: Ws)g(m(s), s) d’] = x(t) 

since by property one a(O) = z(l). 

PROPERTY 3. Let m E A. Then H(m) = a is of bounded variation on any 
finite interval. 

PROOF. H(m) = z is absolutely continuous on any finite interval and such 
functions are of bounded variation. 
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Let P[O, l] denote the closed subspace of C[O, 1] consisting of all functions 
periodic of period one. A consequence of property two above is that if 
v E P[O, 1] is substituted into Eq. (2.5) in place of m E .k’ then H(p) is 
periodic of period one and hence If : P[O, I] --f P[O, I]. A fixed point of this 
mapping will be equivalent to the existence of a periodic solution with period 
one of Eq. (2.1). 

Let OL and p denote the sequences of continuous vector-valued mappings 
from El .- l ET1 defined as follows: 

~,,...~,(t) = (sin 2nTiit ,..., sin 27ri,t), 

ij=1,2 ,..., j=l,..., n. 

bi,...in(t) = (cos 2?ri (t) ,..., cos 2+(t)), 

ij = 0, 1,2 ,..., j = 1,2 ,..., n. (2.6) 

It is evident that the set 01 u /3 defined by (2.6) forms a Schauder basis for 
the Banach space L,[O, I]. That is each cp E L,[O, I] has a unique representa- 
tion +I in terms of the basis (2.6). By a result of Carleson [7] g(t) = p)(t) 
a.e. on [O,l] and @(t + 1) 1 G(t) for all t in El. Moreover if in Eq. (2.5) 
we replace p by its periodic extension @ then because of Carlson’s result 
H(q) = H(g) on [0, 1] and by property two H(G) is a periodic function of 
period one. 

Thus we have uniquely extended the functions H&M) to periodic functions 
of period one. Denote this extension by A(,&?). 

H,g . Assume that J’X is invariant under II. 

THEOREM 2.1. If the hypotheses H, and H, hold then there exists a periodic 
solution of (2.1) of period one. 

PROOF. It is evident from the definition of the family &’ and the form of 
Eq. (2.5) that H(A) is a uniformly equicontinuous set of functions in CIO, 11. 
Hence by the Ascoli-Arzela theorem [4] H(d) is compact. If m E .&’ is a 
fixed point of H it follows that m E CIO, 11. Also H(m) = H(G) =: m on the 
interval [0, 11, and by property 2 the extension A(&) of H(m) is periodic of 
period one on El. We claim that if m is a fixed point in .M of the mapping H 
then A(&) = & and hence & will be a periodic solution of (2.1). 

To see this notice that by property two +z is periodic, and by property 
three m is of bounded variation on [0, 11. Hence using a result of Dirichelet 
(SW, c.g., Hobson [8] Section 446) ti is a continuous periodic function of 
period one which coincides with m on [0, I]. Since an\ t in El can bc repre- 
sented uniquely in the form t 7 + n, 0 $6 7 << 1, n == & 1, = 2 ,.,., we 
can write the following equation 

@h(t)) = I?(&(, + n)) = H(m(7)) = m(7) = fi(~ + n) = k(t), (2.7) 

409/23/3-v 
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which shows that A is a fixed point of I? and hence a periodic solution of 
Eq. (2.1)). 

1’0 prove the existence of a fixed point of H in A! we first show that 
Ii is convex and compact. Let F(A) denote the mapping from 
A -+ C[O, l] defined by the equation 

uQ) = j ’ A--‘(~) &, &)) ds, p E d&v. 
0 

(2.8) 

The mapping F satisfies the conditions of Lemma 1.1. Hence F(A) is a 
closed convex set in CIO, 11. C onsider the two continuous linear mappings 
from C[O, I] into itself which are defined by the equations: 

z(t) = A(t) [(I - A(l))-’ A(l) w(1) f w(t)] (2.9 
and 

w(t) = A-‘(t) z(t) - z(l). (2.10) 

Denote (2.9) by z = W(w) and (2.10) by w = Z(z). By direct substitution 
it is clear that WZ = I = ZW (here I is the identity mapping in CIO, l]), 
and W(F(A)) = H(A). I-I ence, since W is a closed mapping (being linear -- - 
and a homeomorphism onto), W(F(.A!) = H(A). 

Because F(M) is a compact convex set in CIO, 11, I?(A) will be also, due 
to the fact that W is linear and continuous. 

The proof used in Theorem 1.1 can now be applied to show that I. has a 
fixed point in A which from the above discussion is equivalent to proving 
the existence of a periodic solution of (2.1). 

REMARK 2.1. Carleson’s result was used in the proof of Theorem 2.1 
to show that the Fourier expansion of a function on [0, 11 coincides with the 
function a.e. on [0, 11. Hence if g(t, y) is continuous in both variables and 
$(t) represents the Fourier expansion of $(t) on [0, l] then 

ids, d(s)) = & d(s), 
a.e. on [0, l] and 

jr A-‘(s) g(s, d(s)) ds =;I 1: A-‘(s) g(s, 4(s)) ds. 
0 

THEOERM 2.2. Suppose H, holds and that H, is replaced by H, and the 
statement that N(C) C C, then Eq. (2.1) has a periodic solution of period one in C. 

PRWF. The proof is a consequence of the fact that if H, holds then by 
Lemma 1.2 the family C is dense in .A? in terms of the /I . /iLr topology. From 
this fact we can show as was done in the proof of Theorem I .2 that 
H(M) C M, i.e., that H, holds, and then we apply Theorem 2.1. 
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