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Abstract

The construction of the C∗-algebra associated to a directed graph E is extended to incorporate a family C

consisting of partitions of the sets of edges emanating from the vertices of E. These C∗-algebras C∗(E,C)

are analyzed in terms of their ideal theory and K-theory, mainly in the case of partitions by finite sets.
The groups K0(C∗(E,C)) and K1(C∗(E,C)) are completely described via a map built from an adjacency
matrix associated to (E,C). One application determines the K-theory of the C∗-algebras Unc

m,n, confirming
a conjecture of McClanahan. A reduced C∗-algebra C∗

red(E,C) is also introduced and studied. A key tool
in its construction is the existence of canonical faithful conditional expectations from the C∗-algebra of
any row-finite graph to the C∗-subalgebra generated by its vertices. Differences between C∗

red(E,C) and
C∗(E,C), such as simplicity versus non-simplicity, are exhibited in various examples, related to some
algebras studied by McClanahan.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

Graph C∗-algebras constitute an important class of C∗-algebras, providing models for the
classification theory and a rich source of examples and inspiration. Among the most basic ex-
amples of graph C∗-algebras are the Cuntz algebras On, initially studied by Cuntz [8,9], and the
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Cuntz–Krieger algebras [10] associated to finite square matrices with entries in {0,1}. We refer
the reader to [24] for further information on this important class of C∗-algebras.

The present paper addresses the structure of a new class of graph C∗-algebras, associated to
separated graphs (E,C), where E is a directed graph and C is a family that gives a partition
of the set of edges departing from each vertex of E. (These algebras have also been recently in-
troduced by Duncan [12], with different notation, as C∗-algebras of edge-labeled graphs, which
should not be confused with the labeled graph C∗-algebras developed by Bates and Pask [5].
Our viewpoint, which was developed in [1] for the algebraic case, appears to be more flexible
and better adapted to the construction and analysis of these algebras.) It was shown in [1] how
to associate to any such separated graph (E,C) a complex ∗-algebra L(E,C), called the Leav-
itt path algebra of the separated graph (E,C). We may define the C∗-algebra C∗(E,C) of the
separated graph (E,C) as the universal C∗-envelope of L(E,C). We also introduce a reduced
version, denoted C∗

red(E,C), in the case that (E,C) is finitely separated, meaning that the parti-
tions in C consist of finite sets. To glimpse the differences and similarities between the full and
reduced graph C∗-algebras, let us mention the following facts. When we consider a separated
graph (E,C) with just one vertex and the sets in the partition C are reduced to singletons, the
full graph C∗-algebra C∗(E,C) is just the full group C∗-algebra C∗(F) of a free group F of rank
|E1|, while the reduced graph C∗-algebra is precisely the reduced group C∗-algebra C∗

r (F). On
the other hand, when we deal with a trivially separated graph (E,C) (meaning that for each
non-sink v ∈ E0, the partition Cv consists of the single set s−1(v)), then both the full graph C∗-
algebra C∗(E,C) and the reduced graph C∗-algebra C∗

red(E,C) coincide with the usual graph
C∗-algebra C∗(E) (Theorem 3.8(2)). In general, the behaviors of the full and reduced graph
C∗-algebras are quite different, as suggested by the free group C∗-algebra example above. We
consider specific examples in Section 4, for which we show that the reduced graph C∗-algebra is
simple, including in particular algebras closely related to the C∗-algebras considered by Brown
and McClanahan, see [6,20–22]. Indeed, as we show in Section 6, our examples (both reduced
and full) are Morita-equivalent to ones considered in the abovementioned papers.

We also compute, using a result of Thomsen, the K-theory of the full graph C∗-algebras of
finitely separated graphs (E,C), obtaining a formula that very much resembles the one known for
ordinary graph C∗-algebras, as stated for instance in [25, Theorem 3.2]. Namely, K0(C

∗(E,C))

and K1(C
∗(E,C)) are the cokernel and kernel of a map between free abelian groups given by

an identity minus an adjacency matrix associated to (E,C) (see Theorem 5.2).
An important ingredient in our work is the construction of a canonical faithful conditional

expectation C∗(E) → C0(E
0) for any row-finite graph E (see Section 2).

Contents 1.1. We now explain in more detail the contents of this paper. The definitions of a
separated graph (E,C) and its Leavitt path algebra L(E,C) and full C∗-algebra C∗(E,C) are
given in Subsection 1.2. We construct canonical faithful conditional expectations ΦE :C∗(E) →
C0(E

0) for all row-finite graphs E in Section 2. The reduced graph C∗-algebras C∗
red(E,C)

are introduced in Section 3, based on the conditional expectations constructed in the previous
section. Here we make use of the theory of full and reduced amalgamated free products of C∗-
algebras (see [31,32]). We show that the Leavitt path algebra L(E,C) embeds in the reduced
graph C∗-algebra C∗

red(E,C) (and thus also embeds in the full graph C∗-algebra C∗(E,C)), and
that, for a trivially separated row-finite graph E, we have C∗(E) ∼= C∗

red(E) canonically (Theo-
rem 3.8). We also exhibit a family of closed ideals of C∗(E,C), parametrized by the lattice H of
hereditary C-saturated subsets of E0 (Corollary 3.12). We show simplicity of the reduced graph
C∗-algebras C∗ (E,C) for various families of finitely separated graphs in Section 4, including
red
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the separated graphs giving rise to C∗-algebras analogous to the ones considered by Brown and
McClanahan in [6,20–22]. We also show in Proposition 4.8 that there are examples of finitely
separated graphs (E,C) for which C∗

red(E,C) is simple but the lattice of hereditary C-saturated
subsets of E0 has more than two elements, so C∗(E,C) is not simple. This example also shows
that the structure of projections in the full and reduced graph C∗-algebras can be quite differ-
ent. Section 5 is devoted to the computation of K-theory of full graph C∗-algebras. We obtain a
quite satisfying formula in Theorem 5.2, using a powerful result of Thomsen [28, Theorem 2.7].
This in particular enables us to confirm a conjecture of McClanahan on the K-theory of the C∗-
algebras Unc

m,n. The exact relationship of the reduced graph C∗-algebras C∗
red(E(m,n),C(m,n))

and the examples considered in [22] is established in Section 6. (See Example 4.5 for the defi-
nition of the separated graph (E(m,n),C(m,n)).) By using this connection and some results in
the literature, we establish that C∗

red(E(n,n),C(n,n)), for n > 1, is a simple C∗-algebra of stable
rank one, with a unique tracial state, and having minimal projections (Corollary 6.3). We end the
paper with a discussion of open problems.

Background definitions 1.2. Throughout, all graphs will be directed graphs of the form E =
(E0,E1, s, r), where E0 and E1 denote the sets of vertices and edges of E, respectively, and
s, r : E1 → E0 are the source and range maps. No cardinality restrictions are imposed on E0

and E1. We follow the convention of composing paths from left to right – thus, a path in E is
given in the form α = e1e2 · · · en where the ei ∈ E1 and r(ei) = s(ei+1) for i < n. The length of
such a path is |α| := n. Paths of length 0 are identified with the vertices of E.

Definition 1.3. (See [1, Definition 2.1].) A separated graph is a pair (E,C) where E is a graph,
C = ⊔

v∈E0 Cv , and Cv is a partition of s−1(v) (into pairwise disjoint nonempty subsets) for
every vertex v. (In case v is a sink, we take Cv to be the empty family of subsets of s−1(v).)

If all the sets in C are finite, we say that (E,C) is a finitely separated graph. This necessarily
holds if E is row-finite.

The set C is a trivial separation of E in case Cv = {s−1(v)} for each v ∈ E0 \ Sink(E). In
that case, (E,C) is called a trivially separated graph or a non-separated graph. Any graph E

may be paired with a trivial separation and thus viewed as a trivially separated graph.

The concept of a separated graph is related to that of an edge-colored graph, that is, a pair
(E,f ) where E is a (directed) graph and f : E1 → N is a function from E1 to some set N .
Given such a pair, set

Cv := {
s−1(v) ∩ f −1(n)

∣∣ n ∈ N and s−1(v) ∩ f −1(n) �= ∅}
for v ∈ E0 and C =⊔

v∈E0 Cv . Then (E,C) is a separated graph. Conversely, given a separated
graph (E,C), the map f : E1 → C such that e ∈ f (e) for e ∈ E1 is an edge-coloring of E. The
general definition of an edge-coloring allows edges with different sources to receive the same
color. However, no relations between such edges are imposed in the C∗-algebras we construct.

Definition 1.4. (See [1, Definition 2.2].) For any separated graph (E,C), the (complex) Leavitt
path algebra of (E,C) is the complex ∗-algebra L(E,C) with generators {v, e | v ∈ E0, e ∈ E1},
subject to the following relations:

(V) vw = δv,wv and v = v∗ for all v,w ∈ E0,
(E) s(e)e = er(e) = e for all e ∈ E1,
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(SCK1) e∗f = δe,f r(e) for all e, f ∈ X, X ∈ C, and
(SCK2) v =∑

e∈X ee∗ for every finite set X ∈ Cv , v ∈ E0.

Definition 1.5. The graph C∗-algebra of a separated graph (E,C) is the universal C∗-algebra
C∗(E,C) with generators {v, e | v ∈ E0, e ∈ E1}, subject to the relations (V), (E), (SCK1),
(SCK2). In other words, C∗(E,C) is the enveloping C∗-algebra of L(E,C). This C∗-algebra
exists because the generating set consists of partial isometries.

In case (E,C) is trivially separated, C∗(E,C) is just the classical graph C∗-algebra C∗(E).
For v ∈ E0 and e ∈ E1, we use the same symbols v and e for the canonical images of v

and e in C∗(E,C). This allows us to conveniently abbreviate various expressions – for instance,
if H ⊆ C∗(E,C), we can write E0 ∩ H for the set of those v ∈ E0 whose canonical images in
C∗(E,C) lie in H .

By definition, there is a unique ∗-homomorphism L(E,C) → C∗(E,C) sending the genera-
tors of L(E,C) to their canonical images in C∗(E,C). This ∗-homomorphism will be called the
canonical map from L(E,C) to C∗(E,C).

The C∗(E,C) construction also produces the C∗-algebras of edge-colored graphs introduced
by Duncan [12, Definition 6] (although he only considers edge-colorings with natural number
values). Since Duncan allows arrows with different sources to have the same color, his construc-
tion can produce the same algebra from many different edge-colorings of a given graph.

In the present paper, we mostly restrict our attention to finitely separated graphs and their
C∗-algebras.

The natural category of finitely separated graphs is the category FSGr defined in [1, Defini-
tion 8.4]. Its objects are all finitely separated graphs (E,C). A morphism from (F,D) to (E,C)

in FSGr is any graph morphism φ : F → E such that:

(1) φ0 is injective.
(2) For each v ∈ F 0 and each X ∈ Dv , there is some Y ∈ Cφ0(v) such that φ1 induces a bijection

X → Y .

Condition (2) does not imply that φ1 is injective, since it might map two different sets in Dv to
the same member of Cφ0(v).

A complete subobject of an object (E,C) in FSGr is any object (F,D) such that F is a
subgraph of E and

(3) Dv = {Y ∈ Cv | Y ∩ F 1 �= ∅} for all v ∈ F 0. (In particular, this requires that each set in C

which meets F 1 must be contained in F 1.)

(This is the specialization of [1, Definition 3.4] to FSGr.) Observe that indeed (F,D) is a com-
plete subobject of (E,C) if and only if F is a subgraph of E and D is a subset of C. In this
case, the inclusion F → E (that is, the pair of inclusions (F 0 → E0,F 1 → E1)) is a morphism
in FSGr.

Any morphism φ : (F,D) → (E,C) in FSGr induces a unique C∗-algebra homomorphism
C∗(φ) : C∗(F,D) → C∗(E,C) sending

v 
−→ φ0(v), e 
−→ φ1(e) (1.1)
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for v ∈ F 0 and e ∈ F 1, since the elements φ0(v), φ1(e) satisfy the defining relations of C∗(F,D).
The assignments (F,D) 
→ C∗(F,D) and φ 
→ C∗(φ) define a functor C∗(−) from FSGr to the
category C∗-alg of C∗-algebras. The argument of [1, Proposition 3.6], mutatis mutandis, yields
the following result:

Proposition 1.6. The functor C∗(−) : FSGr → C∗-alg is continuous. �
2. The canonical conditional expectation

In this section we define the canonical conditional expectation ΦE :C∗(E) → C0(E
0) for a

row-finite directed graph E and we show its faithfulness. We will use these conditional expecta-
tions (for various subgraphs) to define the reduced graph C∗-algebra of a finitely separated graph
(see Section 3). In the following, we identify the C∗-algebra of the edgeless graph (E0,∅) with
the function algebra C0(E

0) on the discrete set E0. Recall that the canonical ∗-homomorphism
C∗((E0,∅)) → C∗(E) is an embedding (e.g., [4, Theorem 2.1]). We thus identify C0(E

0) with
the sub-C∗-algebra of C∗(E,C) generated by E0.

Theorem 2.1. Let E be a row-finite graph. Then there exists a unique conditional expectation

ΦE :C∗(E) −→ C0
(
E0)

such that, for all paths γ, ν in E, we have

ΦE

(
γ ν∗)=

{
0 (if γ �= ν),

(
∏n

i=1 |s−1s(ei)|)−1s(γ ) (if γ = ν = e1e2 · · · en for some ei ∈ E1).
(2.1)

Moreover the conditional expectation ΦE is faithful.

Proof. Uniqueness is clear in case of existence.
Let E be a row-finite graph. The map ΦE will be defined as the composition of three maps:

ΦE = Φ3 ◦ Φ2 ◦ Φ1, each of which is a faithful conditional expectation. The first of these maps
is the canonical conditional expectation Φ1 :C∗(E) → C∗(E)α , where α : T → Aut(C∗(E)) is
the gauge action (e.g., [4, p. 1161]) and C∗(E)α is the fixed point C∗-algebra, which is the AF-
subalgebra of C∗(E) generated by all the paths αβ∗, where α,β are finite paths in E such that
r(α) = r(β) and |α| = |β|. The conditional expectation Φ1 is faithful by [24, Proposition 3.2].

The second conditional expectation Φ2 appearing in the definition of ΦE is the unique con-
ditional expectation Φ2 :C∗(E)α → D from the AF-algebra C∗(E)α to its canonical Cartan
subalgebra D, where D is the commutative diagonal AF-algebra generated by λλ∗, λ ∈ E∗.
Indeed, since every AF-groupoid is amenable (see [26, Remark III.1.2]), it follows from [26, The-
orem II.4.15] that D is the image of a unique conditional expectation Φ2 :C∗(E)α → D, which is
faithful. Observe that Φ2(λν∗) = 0 if |λ| = |ν| and λ �= ν. Indeed, since λν∗ = (λλ∗)(λν∗)(νν∗),
we have Φ2(λν∗) = (λλ∗)Φ2(λν∗)(νν∗) = 0 because D is commutative and λ∗ν = 0.

Finally, we are going to define the third conditional expectation Φ3, from the commutative
C∗-algebra D to its C∗-subalgebra C0(E

0). For this we need an explicit description of D. For
0 � r � ∞, let Er be the set of (forward) paths in E of length r , together with all paths of length
� r ending in a sink. We have truncation maps τr,s :Es → Er , γ 
→ γ [r], for r � s � ∞, where
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the truncation γ [r] of γ = e1e2 · · · is e1e2 · · · er (with γ [0] = s(γ ) and γ [r] = γ if γ is a path of
length � r ending in a sink). For r < ∞, we put on Er the discrete topology.

Observe that E∞ is precisely the projective limit of the inverse system

· · · τr,r+1−−−−→ Er
τr−1,r−−−−→ Er−1 τr−2,r−1−−−−→ · · · τ1,2−−−−→ E1 τ0,1−−−−→ E0.

We put on E∞ the inverse limit topology. A basis of compact open sets for this topology is
provided by the sets

U(λ) = {
γ ∈ E∞: γ [r] = λ

}
,

for λ ∈ Er , 0 � r < ∞. The maps τr,s are continuous, proper, and surjective, and clearly
τr,sτs,t = τr,t for r � s � t .

By [18] (see also [17]), D = C0(E
∞). We have

D = C0
(
E∞)= lim−→ C0

(
Er

)
.

We next define a positive integer nλ for each finite path λ in E. If the length of λ is zero, then we
set nλ := 1. If λ = e1 · · · et is a path of positive length, we set

nλ :=
|λ|∏
i=1

∣∣s−1s(ei)
∣∣.

Let Φt :C0(E
t ) → C0(E

0) be the map defined as follows:

Φt(f )(v) =
∑

λ∈Et , s(λ)=v

1

nλ

f (λ), (2.2)

for f ∈ C0(E
t ) and v ∈ E0.

Using that
∑

λ∈Et ,s(λ)=v
1
nλ

= 1 for every 0 � t < ∞ and every v ∈ E0, one can easily check

that Φt is a positive, contractive linear map, and clearly Φt(f ) = f for every f ∈ C0(E
0). By

Tomiyama’s theorem (see e.g. [7, Theorem 1.5.10]), we get that Φt is a conditional expectation
for all t � 0. Note that Φt is faithful for all t .

We check now that the conditional expectations Φt are compatible with the maps in the in-
ductive system. Let ιt+1,t :C0(E

t ) → C0(E
t+1) be the natural inclusion map. For f ∈ C0(E

t )

and v ∈ E0, we have

Φt+1(ιt+1,t (f )
)
(v) =

∑
λ∈Et+1, s(λ)=v

1

nλ

f
(
λ[t])

=
∑

γ∈Et , |γ |=t
s(γ )=v, r(γ )/∈Sink(E)

|s−1r(γ )|
nγ |s−1r(γ )| f (γ ) +

∑
γ∈Et , |γ |�t

s(γ )=v, r(γ )∈Sink(E)

1

nγ

f (γ )

= Φt(f )(v),

which proves that Φt+1(ιt+1,t (f )) = Φt(f ) for f ∈ C0(E
t ), as desired.
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Since every Φt is contractive and positive, we conclude that there is a unique contractive, pos-
itive linear map Φ3 :C0(E

∞) → C0(E
0) extending all Φt ’s. This map is therefore a conditional

expectation from D = C0(E
∞) onto C0(E

0). We now observe that Φ3 is faithful. Indeed since
D is a commutative C∗-algebra of real rank zero, given any positive nonzero element a in D,
there are a positive real number ε and a nonzero projection p in D such that ε · p � a. Since
Φ3(p) �= 0 for all nonzero projections p in D, it follows that Φ3 is faithful.

In conclusion, we have obtained three faithful conditional expectations Φi , i = 1,2,3, with

C∗(E)
Φ1−−−−→ C∗(E)α

Φ2−−−−→ D
Φ3−−−−→ C0

(
E0

)
and so ΦE := Φ3 ◦ Φ2 ◦ Φ1 is a faithful conditional expectation from C∗(E) onto C0(E

0).
It remains to check (2.1). Let γ and ν be two (finite) paths in E with r(γ ) = r(ν). If |γ | �= |ν|,

then Φ1(γ ν∗) = 0 and thus ΦE(γ ν∗) = 0. If |γ | = |ν| but γ �= ν then

ΦE

(
γ ν∗)= Φ3

(
Φ2

(
Φ1

(
γ ν∗)))= Φ3

(
Φ2

(
γ ν∗))= Φ3(0) = 0.

Finally, if γ = e1 · · · et is a path of length t in E, then γ γ ∗ corresponds to the characteristic
function of {γ } in C0(E

t ), and thus we get from (2.2) that

ΦE

(
γ γ ∗)= Φ3

(
γ γ ∗)=

(
t∏

i=1

∣∣s−1s(ei)
∣∣)−1

s(γ ),

establishing (2.1) also in this case. �
Definition 2.2. If E is a row-finite graph, we call the conditional expectation ΦE of Theorem 2.1
the canonical conditional expectation from C∗(E) to C0(E

0).

3. C∗-algebras of separated graphs

Assume that (E,C) is a separated graph. In this section, we develop a characterization of
C∗(E,C) as an amalgamated free product of ordinary graph C∗-algebras. This will enable us to
define the reduced graph C∗-algebra C∗

red(E,C) when (E,C) is finitely separated. We will show
that for a trivially separated row-finite graph E, the reduced graph C∗-algebra agrees with the
non-reduced one.

Set A0 = C0(E
0) = C∗(E0,∅). For each X ∈ C, consider the graph C∗-algebra AX =

C∗(EX), where EX is the subgraph of E with (EX)0 = E0 and (EX)1 = X. We have natural
∗-homomorphisms

A0 −→ AX −→ C∗(E,C)

arising from the inclusions (E0,∅) → EX and (EX, {X}) → (E,C).
Let C be a category, and consider an object C0 in C and a family (Cι)ι∈I of objects in C , with

morphisms fι :C0 → Cι. Then the amalgamated coproduct of (Cι)ι∈I over C0 is an object C

in C , together with morphisms gι :Cι → C such that gι ◦ fι = gι′ ◦ fι′ for all ι, ι′ ∈ I , which are
universal in the following sense: Given any other family of morphisms hι :Cι → D such that
hι ◦ fι = hι′ ◦ fι′ for all ι, ι′ ∈ I , there is a unique h : C → D such that hι = h ◦ gι for all ι ∈ I .
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We now show that C∗(E,C) is an amalgamated coproduct of the C∗-algebras C∗(EX). This
is the same idea (and proof) as in Duncan’s Theorem 1 [12], except that we express C∗(E,C) as
a coproduct of smaller algebras (but more of them) than Duncan uses.

Proposition 3.1. Let (E,C) be a separated graph, and consider A0 = C0(E
0) and AX =

C∗(EX) as above. Then C∗(E,C), together with the natural ∗-homomorphisms fX :AX →
C∗(E,C), is the amalgamated coproduct of the family (AX)X∈C over the C∗-algebra A0 in
the category C∗-alg.

Proof. We have to verify the universal property, so for X ∈ C let hX :AX → D be a ∗-homo-
morphism from AX to a C∗-algebra D such that all compositions A0 → AX → D give the
same map h0. We then have a family (h0(v))v∈E0 of orthogonal projections in D and a fam-
ily (hX(e))e∈X of partial isometries in D for each X ∈ C, satisfying the relations (V), (E),
(SCK1), (SCK2). By the universal property of C∗(E,C), it follows that there exists a unique
∗-homomorphism h :C∗(E,C) → D such that h(v) = h0(v) for all v ∈ E0 and h(e) = hX(e)

for all e ∈ X, for any X ∈ C. It follows that h ◦ fX = hX for all X ∈ C, and so C∗(E,C) is the
amalgamated coproduct of the family (AX)X∈C over A0. �
Remark 3.2. The same proof as above shows that L(E,C) is the amalgamated coproduct of the
family (L(EX))X∈C over the ∗-algebra L0 =⊕

v∈E0 Cv, in the category of complex ∗-algebras.

Definition 3.3. Voiculescu defined in [31] the reduced amalgamated product of a nonempty
family (Aι,Φι)ι∈I of unital C∗-algebras containing a unital subalgebra A0 with conditional ex-
pectations Φι :Aι → A0. The reduced amalgamated product (A,Φ) is uniquely determined by
the following conditions:

(1) A is a unital C∗-algebra, and there are unital ∗-homomorphisms σι :Aι → A such that
σι|A0 = σι′ |A0 for all ι, ι′ ∈ I . Moreover the map σι|A0 is injective and we identify A0 with
its image in A through this map.

(2) A is generated by
⋃

ι∈I σι(Aι).
(3) Φ :A → A0 is a conditional expectation such that Φ ◦ σι = Φι for all ι ∈ I .
(4) For (ι1, . . . , ιn) ∈ Λ(I) and aj ∈ kerΦιj we have Φ(σι1(a1) · · ·σιn(an)) = 0. Here, Λ(I)

denotes the set of all finite tuples (ι1, . . . , ιn) ∈ ⊔∞
n=1 In such that ιi �= ιi+1 for i = 1, . . . ,

n − 1.
(5) If c ∈ A is such that Φ(a∗c∗ca) = 0 for all a ∈ A, then c = 0.

The full amalgamated product ∗A0 Aι is by definition the amalgamated coproduct of the
family (Aι)ι∈I over A0 in the category of unital C∗-algebras. By (1), there is a unique ∗-
homomorphism σ :∗A0 Aι → A such that σι = σ ◦ fι for all ι ∈ I , where fι :Aι → ∗A0 Aι

are the canonical maps, and by (2) this map is surjective. We also have a canonical map
∗alg

A0
Aι → ∗A0 Aι, where ∗alg

A0
Aι denotes the algebraic amalgamated free product (which is the

amalgamated coproduct of (Aι)ι∈I over A0 in the category of unital C-algebras).
We now briefly recall the construction in [31]. Let Mι = L2(Aι,Φι) be the Hilbert A0-

bimodule given by the GNS-construction, where the action of A0 on the left is given by restricting
to A0 the canonical action of Aι on Mι. We have Mι = A0 ⊕ M0 as a Hilbert bimodule, and the
ι



2548 P. Ara, K.R. Goodearl / Journal of Functional Analysis 261 (2011) 2540–2568
Hilbert A0-module M is defined by

M = A0 ⊕
⊕

(ι1,...,ιn)∈Λ(I)

M0
ι1

⊗A0 · · · ⊗A0 M0
ιn
.

There are representations λι :Aι → L(M) corresponding to the action of Aι on terms with left
hand factor Mι, see for instance [31,16], and ∗red

A0
Aι is defined as the C∗-subalgebra of L(M)

generated by
⋃

ι∈I λι(Aι). We have a cyclic vector ξ := 1A0 in M such that a · ξ = â for all
a ∈ Aι, where â denotes the copy of a ∈ Aι in Mι ⊆ M .

If all the kernels of the GNS representations are 0, then the maps σι are isometries, and we
can identify each Aι with its image in A.

Preparation 3.4. We are now going to define the reduced graph C∗-algebra C∗
red(E,C) of the

finitely separated graph (E,C). For a C∗-algebra A, we will denote by Ã the minimal unital
C∗-algebra containing A, that is the subalgebra of the multiplier algebra M(A) of A generated
by A and 1M(A).

Set B0 = Ã0, and BX = ÃX for X ∈ C, where, as above, A0 = C0(E
0) and AX = C∗(EX).

Then the canonical conditional expectation ΦX := ΦEX
:AX → A0 constructed in Section 2

extends canonically to a conditional expectation ΦX :BX → B0 (see e.g. [7, Proposition 2.2.1]).
Since ΦX :AX → A0 is faithful, it follows that its extension to BX is also faithful. Now we
consider the reduced amalgamated product (B,Φ) of the family (BX,ΦX)X∈C . Since all the
conditional expectations ΦX are faithful, it follows from [16, Theorem 2.1] that the canonical
conditional expectation Φ :B → Ã0 is faithful.

Definition 3.5. Let (E,C) be a finitely separated graph, and let A0,B0,AX,BX be as de-
fined above, for X ∈ C. Consider the reduced amalgamated product (B,Φ) of the family
(BX,ΦX)X∈C . Then the reduced graph C∗-algebra C∗

red(E,C) is the C∗-subalgebra of B gener-
ated by

⋃
X∈C AX in B (where we identify each AX with its isometric image in B). Observe that

there is a faithful canonical conditional expectation Φ :C∗
red(E,C) → A0, such that Φ|AX

= ΦX

for all X ∈ C.
As with C∗(E,C) (cf. Definition 1.5), we use the same symbols to denote vertices and edges

of E as for their canonical images in C∗
red(E,C).

We do not address here the question of extending Definition 3.5 to a functor from FSGr to
C∗-alg. However, several natural maps related to this possible functor will be needed, as follows.

First, given a finitely separated graph (E,C), observe that the natural images in C∗
red(E,C) of

the vertices and edges of E satisfy the defining relations of the C-algebra L(E,C). Hence, there
is a unique ∗-homomorphism L(E,C) → C∗

red(E,C) that sends all vertices and edges of E to
their canonical images in C∗

red(E,C). We refer to this map as the canonical map from L(E,C)

to C∗
red(E,C). For the same reason, we obtain a canonical map C∗(E,C) → C∗

red(E,C), and
the canonical map L(E,C) → C∗

red(E,C) is the composition of the canonical maps L(E,C) →
C∗(E,C) → C∗

red(E,C).
Next, suppose that E is a row-finite graph, viewed as a trivially separated graph (E,C) where

Cv = {s−1(v)} for all v ∈ E0 \ Sink(E). We then define C∗
red(E) := C∗

red(E,C). From the pre-
vious paragraph, we obtain a canonical map C∗(E) → C∗

red(E). We prove in Theorem 3.8 that
this map is an isomorphism.

The final canonical map we require is given in the following lemma.
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Lemma 3.6. Let (F,D) be a complete subobject of an object (E,C) in FSGr, such that
E0 = F 0. Then there is a natural embedding of C∗

red(F,D) into C∗
red(E,C) such that

E0 ∩ C∗
red(F,D) and F 1 ∩ C∗

red(F,D) are sent to their natural images in E0 ∩ C∗
red(E,C)

and E1 ∩ C∗
red(E,C).

Proof. Write A0 = C0(E
0) = C0(F

0), and denote by M and M ′ the Hilbert A0-modules corre-
sponding to (E,C) and (F,D) respectively. For X ∈ D, let λ′

X : ÃX → L(M ′) be the canonical
representation of ÃX on M ′, and for Y ∈ C, let λY : ÃY → L(M) be the canonical representation
of ÃY on M .

Let B be the C∗-subalgebra of C∗
red(E,C) generated by

⋃
X∈D λX(ÃX), and let ΦB :B → A0

denote the restriction of Φ(E,C) :C∗
red(E,C) → A0 to B . Note that (B,ΦB) satisfies conditions

(1)–(5) of Definition 3.3 with respect to the family (ÃX,ΦX)X∈D ((5) is trivially satisfied because
Φ(E,C) is faithful). Since these properties determine the reduced amalgamated product, we obtain
an isomorphism ϕ : (C∗

red(F,D))∼ → B such that ΦB ◦ϕ = Φ(F,D) and ϕλ′
X = λX for all X ∈ D.

It follows that ϕ restricts to an isomorphism from C∗
red(F,D) to the C∗-subalgebra of C∗

red(E,C)

generated by
⋃

X∈D λX(AX). �
The proof of the following lemma is straightforward.

Lemma 3.7. Assume that (F,D) is a complete subobject of an object (E,C) in FSGr, such that
E1 = F 1 and C = D. Then

C∗
red(E,C) ∼= C∗

red(F,D) × C0
(
E0 \ F 0). �

We are now ready to establish one of our main results. In particular, this provides an extension
of [29, Theorem 7.3] to finitely separated graphs. It implies that the linear basis of the dense
subalgebra L(E,C) explicitly exhibited in [1, Corollary 2.8] is linearly independent in C∗(E,C).
Thus, the paths in E are linearly independent in C∗(E,C), and the vertices of E constitute a set
of pairwise orthogonal nonzero projections in C∗(E,C).

Theorem 3.8. Let (E,C) be a finitely separated graph.

(1) The canonical map L(E,C) → C∗
red(E,C) is injective, and hence so is the canonical map

L(E,C) → C∗(E,C).
(2) If E is a (non-separated) row-finite graph, then the canonical map C∗(E) → C∗

red(E) is an
isomorphism.

Proof. Throughout, set A0 := C∗(E0,∅) = C0(E
0).

(1) We first consider the case where E0 is finite. In this case, A0 is a commutative finite-
dimensional C∗-algebra, and A0 = L(E0,∅). Let ψ :L(E,C) → C∗

red(E,C) be the canonical
map, and set LX := L(EX) = A0 ⊕ Lo

X for X ∈ C, where Lo
X = ker (ΦX)|LX

. We will denote
algebraic tensor products by �.

We have

L(E,C) ∼= ∗alg
A0

LX = A0 ⊕
⊕

Lo
X1

�A0 · · · �A0 Lo
Xn

,

(X1,...,Xn)∈Λ(C)
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and we want to show that ψ embeds each of the terms Lo
X1

�A0 · · ·�A0 Lo
Xn

into the correspond-

ing Mo
X1

⊗A0 · · · ⊗A0 Mo
Xn

, where MX := L2(C∗(EX),ΦX) for all X ∈ C. For (X1, . . . ,Xn) ∈
Λ(C) and ai ∈ Lo

Xi
, i = 1, . . . , n, we have

ψ(a1 �A0 · · · �A0 an)1A0 = â1 ⊗A0 · · · ⊗A0 ân ∈ Mo
X1

⊗A0 · · · ⊗A0 Mo
Xn

.

Hence, it suffices to show that, for z in the algebraic tensor product Lo
X1

�C · · ·�C Lo
Xn

, we have
〈z, z〉 = 0 if and only if z belongs to the kernel Kn of the natural map

Lo
X1

�C · · · �C Lo
Xn

−→ Lo
X1

�A0 · · · �A0 Lo
Xn

, (3.1)

cf. the proof of [19, Proposition 4.5]. We proceed by induction on n. If n = 1 then the result
follows from the fact that ΦX1 is faithful and LX1 ⊆ C∗(EX1), so that Lo

X1
⊆ Mo

X1
. Assume that

n > 1 and that Lo
X1

�A0 · · · �A0 Lo
Xn−1

embeds in Mo
X1

⊗A0 · · · ⊗A0 Mo
Xn−1

. The map in (3.1) is
the composition of the linear maps

(
Lo

X1
�C · · · �C Lo

Xn−1

)�C Lo
Xn

−→ (
Lo

X1
�A0 · · · �A0 Lo

Xn−1

)�C Lo
Xn

(3.2)

and

(
Lo

X1
�A0 · · · �A0 Lo

Xn−1

)�C Lo
Xn

−→ (
Lo

X1
�A0 · · · �A0 Lo

Xn−1

)�A0 Lo
Xn

. (3.3)

Write N0 := Lo
X1

�A0 · · · �A0 Lo
Xn−1

. By the induction hypothesis, N0 embeds in the Hilbert
A0-module N := Mo

X1
⊗A0 · · · ⊗A0 Mo

Xn−1
. The Hilbert A0-module Mo

X1
⊗A0 · · · ⊗A0 Mo

Xn
is

the interior tensor product N ⊗A0 Mo
Xn

, so that is the completion of the inner-product module
(N �C Mo

Xn
)/Y , where

Y := {
z ∈ N �C Mo

Xn
: 〈z, z〉 = 0

}
and 〈·,·〉 is the sesquilinear form on N �C Mo

Xn
defined by

〈n1 ⊗ m1, n2 ⊗ m2〉 = 〈
n2, φ

(〈n1,m1〉
)
m2

〉
,

for n1, n2 ∈ N , m1,m2 ∈ Mo
Xn

, where φ :A0 → L(Mo
Xn

) is the map given by the left action of A0
on Mo

Xn
.

Now we follow the proof of [19, Proposition 4.5]. Assume that

z =
k∑

i=1

xi ⊗ yi ∈ N0 �C Lo
Xn

⊆ N �C Mo
Xn

satisfies that 〈z, z〉 = 0. Let x = (x1, . . . , xk) ∈ Nk
0 ⊆ Nk . As in [19, proof of 4.5], Nk is a Hilbert

Mk(A0)-module and we have

〈z, z〉 = 〈
y,φ(k)(X)y

〉
,
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where y = (y1, . . . , yn) ∈ (Lo
Xn

)k and X = (〈xi, xj 〉) = 〈x, x〉Mk(A0). Since Mk(A0) is a finite-
dimensional C∗-algebra, there are a projection E and a positive element B in Mk(A0) such that

BX = E, XE = X.

It follows that xE = x and that φ(k)(E)y = 0. This shows that z belongs to the subspace of
N0 �C Lo

Xn
generated by all elements of the form na ⊗ m − n ⊗ φ(a)m, n ∈ N0, m ∈ Lo

Xn
,

a ∈ A0, that is, to the kernel of the map (3.3).
Finally, assume that z ∈ (Lo

X1
�C · · · �C Lo

Xn−1
) �C Lo

Xn
is such that 〈z, z〉 = 0. Let z be the

image of z under the map (3.2). Then 〈z, z〉 = 0 and by what we have just proven,

z =
∑
j

(zj aj ⊗ yj − zj ⊗ ajyj )

for some zj ∈ Lo
X1

�C · · · �C Lo
Xn−1

, yj ∈ Lo
Xn

, aj ∈ A0. It follows that

z −
∑
j

(zj aj ⊗ yj − zj ⊗ ajyj ) ∈ Kn−1 �C Lo
Xn

⊆ Kn.

Since zj aj ⊗ yj − zj ⊗ ajyj ∈ Kn for all j , we conclude that z ∈ Kn, as desired.
This concludes the proof in the case where E0 is finite. If E0 is infinite, then by [1, Proposi-

tion 3.6] we can write L(E,C) = lim−→ L(F,D), where (F,D) ranges over all the finite complete
subobjects of (E,C), and all the limit maps L(F,D) → L(E,C) are injective.

For a finite complete subobject (F,D) of (E,C), the canonical map L(F,D) → C∗
red(F,D)

is injective, as proved above. Let F ′ be the subgraph of E with (F ′)0 = E0 and (F ′)1 = F 1.
Then the canonical map C∗

red(F,D) → C∗
red(E,C) is the composition of the canonical maps

C∗
red(F,D) → C∗

red(F
′,D) and C∗

red(F
′,D) → C∗

red(E,C). By Lemmas 3.7 and 3.6, both of the
latter maps are injective and so the canonical map L(F,D) → C∗

red(E,C) is also injective. Since
L(E,C) = lim−→ L(F,D), it follows that the canonical map L(E,C) → C∗

red(E,C) is injective,
as desired.

(2) Since E is a non-separated graph, we identify C with E0 \ Sink(E), by corresponding
{s−1(v)} to v for non-sinks v ∈ E0. We shall write Ev = Es−1(v) for v ∈ C. Set nv := |s−1(v)|
and Lv := L(Ev), and set Av := C∗(Ev), and Bv := Ãv . Let B = C∗(E)∼ and recall that we
have a faithful conditional expectation Φ :B → Ã0 (Theorem 2.1). To establish the desired
isomorphism, it is enough to show that (B,Φ) satisfies conditions (1)–(5) of Definition 3.3,
because these conditions characterize completely the reduced amalgamated product of the fam-
ily (Bv,Φv)v∈C . All the conditions are immediate, with the exception of condition (4). To show
condition (4), take a sequence of vertices v1, . . . , vn in C, with n � 2, such that vi �= vi+1 for
i = 1, . . . , n − 1. We have to show that Φ(a1a2 · · ·an) = 0 when ai ∈ kerΦvi

for i = 1, . . . , n.
Since Lo

vi
:= Lvi

∩ kerΦvi
is dense in kerΦvi

, it suffices to prove this statement for all choices
of ai ∈ Lo

vi
, i = 1, . . . , n.

Consider v ∈ C, and note that any path of positive length in Ev consists of either a sequence
of loops at v or else a sequence of loops at v followed by one edge from v to a different vertex.
In particular, all paths of positive length in Ev start at v. Observe that every element of Lv is a
linear combination of terms of the following five types:
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(1) Paths γ in Ev of positive length.
(2) Paths ν∗, where ν is a path in Ev of positive length.
(3) Paths γ ν∗, where γ and ν are distinct paths in Ev of positive length.
(4) Terms γ (ee∗ − n−1

v v)γ ∗, where e ∈ s−1(v) and γ is a path in Ev from v to v.
(5) Vertices w ∈ E0.

All terms of types (1)–(4) are in Lo
v (recall formula (2.1)), whereas Φv(w) = w for w ∈ E0.

Hence, the terms of types (1)–(4) span Lo
v .

Returning to our previous discussion, we see that it is enough to show that Φ(a1a2 · · ·an) = 0
for all choices of ai ∈ Lo

vi
where each ai has one of the forms (1)–(4). We may also assume that

a1a2 · · ·an �= 0. It is easy to verify the following:

• If ai has one of the forms (1), (3), or (4) and i > 1, then ai−1 is necessarily of type (1).
• If ai has one of the forms (2), (3), or (4) and i < n, then ai+1 is necessarily of type (2).

It follows that at most one ai can be of type (4). If such a term occurs, then

a1a2 · · ·an = γ
(
ee∗ − n−1

v v
)
ν∗

for some v ∈ E0, some e ∈ s−1(v), and some paths γ , ν in E that end at v. In this case, it is clear
that Φ(a1a2 · · ·an) = 0. (Consider the cases γ = ν and γ �= ν separately.)

If no ai is of type (4), then one of the following holds: a1a2 · · ·an = γ for some path γ in E

of positive length; or a1a2 · · ·an = ν∗ for some path ν in E of positive length; or

a1a2 · · ·an = γ1γ2 · · ·γjν
∗
k ν∗

k+1 · · ·ν∗
n

where k = j or k = j + 1, and each γi or νi is a path of positive length in Evi
. Obviously

Φ(a1a2 · · ·an) = 0 in the first two cases, and it holds in the third case provided γ1γ2 · · ·γj �=
νnνn−1 · · ·νk . Thus, it suffices to assume that the third case obtains, and that γ1γ2 · · ·γj =
νnνn−1 · · ·νk , and to derive a contradiction.

We cannot have j = 1 and k = n, since then n = 2 while γ1 and ν2 have different starting
vertices. We cannot have j = 1 and k < n, since γ1 only changes vertices on its terminal edge,
whereas νn must change vertices once, and the following path νn−1 has at least one edge. Thus
j > 1, and similarly k < n. Since γ1γ2 �= 0, we have r(γ1) = v2 �= v1 = s(γ1), so γ1 consists of a
sequence of loops at v1 followed by an edge from v1 to v2. Similarly, νn consists of a sequence of
loops at vn followed by an edge from vn to vn−1. Thus, since γ1γ2 · · ·γj = νnνn−1 · · ·νk , we see
that γ1 = νn. Now γ2 · · ·γj = νn−1 · · ·νk , and we can continue in the same manner. We eventually
find that n − k + 1 = j and γj = νk . However, γj �= νj+1 because these paths have different
starting vertices, and γj �= νj (in case k = j ) by the assumption of type (3) for aj = γj ν

∗
j . This

provides the desired contradiction. �
Suppose V is a subset of E0 \ Sink(E) and X : V → C is a function such that X (v) ∈ Cv for

every v ∈ V . Define a subgraph EX of E so that E0
X = E0 and E1

X =⊔
v∈V X (v). View EX as

a trivially separated graph, and note that it is a complete subobject of (E,C).

Corollary 3.9. For any V and X as above, the induced map C∗(EX ) → C∗
red(EX ) →

C∗ (E,C) is injective, and hence so is the canonical map C∗(EX ) → C∗(E,C).
red
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Proof. By Theorem 3.8(2), we have C∗(EX ) ∼= C∗
red(EX ), and so Lemma 3.6 gives that the

canonical map C∗(EX ) → C∗
red(E,C) is injective. �

Remark 3.10. By [7, Corollary 4.5.4], every graph C∗-algebra of a row-finite graph is nuclear.
It follows from this and [7, Corollary 4.8.3] that the reduced C∗-algebra C∗

red(E,C) is exact for
every finitely separated graph (E,C). That C∗

red(E,C) is not nuclear in general follows from the
example

C∗
red(E,C) ∼= C∗

red(F2),

where (E,C) is the separated graph with one vertex v, two edges e1, e2, and C = {{e1}, {e2}}.
(Recall that C∗

red(F2) is not nuclear because F2 is not amenable [7, Theorem 2.6.8].)

We recall the following definitions, see e.g. [1,29].

Definition 3.11. Let (E,C) be a finitely separated graph. Recall the relation � defined on E0 by
setting v � w if and only if there is a path μ in E with s(μ) = v and r(μ) = w. A subset H of
E0 is called hereditary if v � w and v ∈ H always imply w ∈ H . The set H is called saturated
if r(s−1(v)) ⊆ H implies v ∈ H for any v ∈ E0 which is not a sink or an infinite emitter. Finally,
H is called C-saturated if r(X) ⊆ H for some X ∈ Cv , v ∈ E0, implies v ∈ H .

Let H be the lattice of hereditary C-saturated subsets of E0. By [1, Theorem 6.11] there is a
lattice isomorphism between H and the lattice Tr(A) of two-sided ideals of L(E,C) generated
by idempotents. In the C∗-algebra case, we are at least able to show that the analogous map
H → L(C∗(E,C)) is injective. Here, for any C∗-algebra A, we denote by L(A) the lattice of
closed (two-sided) ideals of A. For a subset X of E0 we denote by I (X) the closed ideal of
C∗(E,C) generated by X ∩ C∗(E,C).

Corollary 3.12. Let (E,C) be a finitely separated graph, and let H be the lattice of hereditary,
C-saturated subsets of E0. Then there is an order-embedding H → L(C∗(E,C)), given by H 
→
I (H).

Proof. Clearly, it suffices to show that E0 ∩ I (H) = H , for any H ∈ H. Thus, let H be a hered-
itary C-saturated subset of E0.

We construct a finitely separated graph (E/H,C/H) as in [1, Construction 6.8]. Namely,
E/H is the quotient graph, that is, the subgraph of E with

(E/H)0 = E0 \ H and (E/H)1 = r−1
E

(
E0 \ H

)= E1/H,

and, for v ∈ (E/H)0, we set

(C/H)v := {X/H | X ∈ Cv},

which is a partition of s−1
E/H (v), and C/H := ⊔

v∈E0\H (C/H)v . Here, for any X ⊆ E1, we
denote by X/H the set {e ∈ X: r(e) /∈ H }. Observe that X/H �= ∅ for all X ∈ Cv with v ∈
E0 \ H , because H is C-saturated.
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Since r−1
E (H) ∩ C∗(E,C) ⊆ I (H), the cosets of the elements in (E/H)0 ∩ C∗(E,C) and

(E/H)1 ∩C∗(E,C) generate C∗(E,C)/I (H). It is easily checked (by using the universal prop-
erty of C∗(E,C)) that C∗(E,C)/I (H) is presented by the above generators together with the
defining relations of C∗(E/H,C/H). Thus, we obtain an isomorphism

C∗(E,C)/I (H) −→ C∗(E/H,C/H)

sending v + I (H) 
→ v for v ∈ (E/H)0 and e + I (H) 
→ e for e ∈ (E/H)1. Now any vertex v ∈
E0 \H is nonzero as an element of L(E/H,C/H) (cf. [1, Corollary 2.8]). Since L(E/H,C/H)

embeds naturally in C∗(E/H,C/H) by Theorem 3.8(1), it follows that v /∈ I (H). Therefore
E0 ∩ I (H) = H , as desired. �
4. Simplicity in C∗

red(E,C)

For a finitely separated graph (E,C), the reduced C∗-algebra C∗
red(E,C) has typically fewer

ideals than the full C∗-algebra C∗(E,C). In fact, it can easily happen that C∗
red(E,C) is simple

while C∗(E,C) is not. We shall consider the two main examples from [1] and a related one, and
we will show that the corresponding reduced graph C∗-algebras are indeed simple. These are
somewhat exotic examples of simple C∗-algebras; for instance, one has stable rank one but not
real rank zero (see Corollary 6.3). We do not know whether the others are purely infinite or have
real rank zero.

We start by taking examples with only one vertex. The main tool is the following result of
Avitzour (see [3, Proposition 3.1]). Since we will only use the case of faithful states, we state
below the result in this case.

Proposition 4.1. (See [3, Proposition 3.1].) Let A, B be unital C∗-algebras and φ, ψ faithful
states on them. Let (D,Φ) be the reduced amalgamated product of (A,φ) and (B,ψ) (over C).
Let a ∈ kerφ and b ∈ kerψ be unitaries such that φ, ψ are invariant with respect to conjugation
by a, b respectively. Let c ∈ kerψ be a unitary such that ψ(b∗c) = 0.

Then for all x in D,

Φ(x) ∈ co
{
u∗xu: u unitary

}
,

where co denotes the norm-closed convex hull. It is enough to take u in the group generated by
a, b, c.

It follows readily from this result that in the given situation, D must be simple. Indeed, let J

be a nonzero closed ideal of D, and let x be a nonzero positive element of J . Since φ and ψ are
faithful it follows from [13] or [16] that Φ is faithful and so Proposition 4.1 gives that J contains
the invertible element Φ(x).

We apply now the result to reduced graph C∗-algebras.
As in [22], we will use the following unitaries in Mn(C). Let λn be a primitive n-th root of 1,

and set:
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un := diag
(
1, λn, . . . , λ

n−1
n

)
, vn :=

⎛
⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0

· · · · · ·
0 0 · · · 0 1
1 0 0 · · · 0

⎞
⎟⎟⎟⎠ .

Proposition 4.2. Let n,m > 1, and let (E,C) be the separated graph with one vertex v and with
Cv := {X,Y }, where |X| = n and |Y | = m. Then the reduced graph C∗-algebra C∗

red(E,C) is
simple.

Proof. Set A := On and B := Om, where as usual Ok denotes the Cuntz algebra, and identify
A = C∗(EX) and B = C∗(EY ). Then (C∗

red(E,C),Φ) is the reduced amalgamated product of
(On,φn) and (Om,φm), where we denote by φk the canonical faithful state on Ok . There is a
standard copy of Mn(C) in On, namely the linear span of {ef ∗: e, f ∈ X}, and using this copy
we define the unitary a := vn in A. Notice that φn is the composition of the canonical conditional
expectation from On onto the AF-algebra Oα

n and the tracial state τn on Oα
n = lim−→ Mni (C), where

α denotes the gauge action. Using this it is quite easy to show that φn(axa∗) = φn(x) for all
x ∈ On. Indeed, φn is invariant with respect to conjugation by any unitary in Oα

n . Observe that
φn(a) = trace(vn) = 0.

Similarly, b := vm and c := um are unitaries in kerφm, and φm is invariant with respect to
conjugation by both b and c. Moreover, φm(b∗c) = 0. It therefore follows from Proposition 4.1
that C∗

red(E,C) is a simple C∗-algebra. �
We need for our next examples a slight generalization of Proposition 4.1 for reduced amal-

gamated products over C∗-algebras different from C. Other generalizations to this context have
been obtained in [22] and [16].

Proposition 4.3. Let A, B , A0 be unital C∗-algebras with A0 ⊆ A and A0 ⊆ B , and let
φ : A → A0 and ψ : B → A0 be faithful conditional expectations. Let (D,Φ) be the reduced
amalgamated product of (A,φ) and (B,ψ), and let π :A∗alg

A0
B → D be the natural map from

the algebraic amalgamated product to D.
Assume there is a central projection P ∈ A0 such that PA0 = CP . Let a ∈ P(kerφ)P and

b ∈ P(kerψ)P be unitaries in PAP and PBP respectively, such that φ|PAP, ψ |PBP are invariant
with respect to conjugation by a, b respectively. Let c ∈ P(kerψ)P be a unitary in PBP such
that ψ(b∗c) = 0. Then for all x in π(P )Dπ(P ),

Φ(x) ∈ co
{
u∗xu: u unitary in π(P )Dπ(P )

}
.

It is enough to take u in the group generated by a, b, c.

Proof. The proof follows the steps of that of [3, Proposition 3.1]. Let us just mention what
are the main steps. Let M be the Hilbert A0-module arising in the construction of D (recall
Definition 3.3). We identify π with the standard representation A∗alg

A0
B → LA0(M).

Let W0 ⊆ PA∗alg
A0

B be the span of those words starting with an element from P kerφ or from
the constants CP or a multiple of b. Let W1 be the span of those words starting with some b′ in
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P kerψ such that ψ(b∗b′) = 0. Let

Hi = π(Wi)ξ ⊆ π(P )M.

Then π(P )M = H0 ⊕ H1. Since for x ∈ π(P )Dπ(P ) we have

‖x‖LA0 (M) = ‖x|π(P )M‖LA0 (π(P )M),

we can apply the proof of [3, Proposition 3.1] to show that

Φ(x) ∈ co
{
u∗xu: u unitary in π(P )Dπ(P )

}
,

as desired. �
Corollary 4.4. Assume that the conditions of the above proposition hold, and that in addition
π(P ) is a full projection in D. Then D is simple.

Proof. First, recall from [16, Theorem 2.1] that Φ is faithful. Let J be a nonzero closed ideal
of D. Since π(P ) is a full projection in D, we have that π(P )Jπ(P ) is nonzero. Let x be a
nonzero positive element in π(P )Jπ(P ). Then Φ(x) is a nonzero scalar multiple of P , and
so it follows from Proposition 4.3 that π(P ) ∈ J . Since π(P ) is full in D, we conclude that
J = D. �

The next example is related to an example considered by McClanahan in [22, Example 3.12]
(see Proposition 6.1 for the precise relationship). However we use in the proof our version of
Avitzour’s result (Proposition 4.3), which is simpler than the one used in [22].

Example 4.5. For integers 1 � m � n, define the separated graph (E(m,n),C(m,n)), where:

(1) E(m,n)0 := {v,w} (with v �= w).
(2) E(m,n)1 := {α1, . . . , αn,β1, . . . , βm} (with n + m distinct edges).
(3) s(αi) = s(βj ) = v and r(αi) = r(βj ) = w for all i, j .
(4) C(m,n) = C(m,n)v := {X,Y }, where X := {α1, . . . , αn} and Y := {β1, . . . , βm}.

By [1, Proposition 2.12], L(E(m,n),C(m,n)) ∼= Mn+1(L(m,n)) ∼= Mm+1(L(m,n)), where
L(m,n) is the classical Leavitt algebra of type (m,n). The same argument (by way of universal
properties) shows that

C∗(E(m,n),C(m,n)
)∼= Mn+1

(
Unc

m,n

)∼= Mm+1
(
Unc

m,n

)
, (4.1)

where Unc
m,n denotes the C∗-algebra generated by the entries of a universal unitary m × n matrix,

as studied by Brown and McClanahan in [6,20–22].

The reduced graph C∗-algebra of (E(m,n),C(m,n)) is Morita equivalent to McClanahan’s
example, as we will show in Section 6. (Hence, the following proposition can also be obtained
as a corollary of McClanahan’s results.)
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Proposition 4.6. Let 1 < m � n, and let (E,C) := (E(m,n),C(m,n)) be the separated graph
described in Example 4.5. Then the reduced graph C∗-algebra C∗

red(E(m,n),C(m,n)) is simple.

Proof. Set A0 := Cv ⊕ Cw, and identify A0 with C
2 so that v and w correspond to (1,0) and

(0,1) respectively. Set A := C∗(EX) and B := C∗(EY ), and identify A and B with Mn+1(C)

and Mm+1(C) so that v and w correspond to diag(1, . . . ,1,0) and diag(0, . . . ,0,1) in each case.
The canonical conditional expectations ΦX and ΦY are easily seen to correspond to the maps
φ :Mn+1(C) → C

2 and ψ :Mm+1(C) → C
2 given by

φ
([aij ]

)=
(

1

n

n∑
i=1

aii , an+1,n+1

)
, ψ

([bij ]
)=

(
1

m

m∑
j=1

bjj , bm+1,m+1

)
.

Take P := v, and observe that PA0 = CP and that P is a full projection in both A and B ,
so certainly P will be a full projection in D := A∗red

A0
B = C∗

red(E,C). Consider the unitaries
a := diag(vn,0) in Mn+1(C) and b := diag(vm,0), c := diag(um,0) in Mm+1(C) respectively;
then a ∈ PAP and b, c ∈ PBP with the above identifications. We have

φ(a) = ψ(b) = ψ(c) = ψ
(
b∗c

)= 0, (4.2)

and moreover φ|PAP, ψ |PBP are invariant with respect to conjugation by a, b respectively, and
thus the conditions in Proposition 4.3 are satisfied. It follows from Corollary 4.4 that C∗

red(E,C)

is a simple C∗-algebra. �
Remark 4.7. To fill in the cases not covered by Proposition 4.6, let n � 1 and consider (E,C) :=
(E(1, n),C(1, n)). If n > 1, then Unc

1,n
∼= On and (4.1) implies that

C∗(E,C) ∼= M2(On) ∼= Mn+1(On),

whence C∗(E,C) is simple. In this case, the full and reduced C∗-algebras of (E,C) coincide,
and C∗

red(E,C) is again simple.
Since Unc

1,1
∼= C(T), the case m = n = 1 reduces to C∗(E,C) ∼= M2(C(T)) by (4.1). Following

the construction in the proof of [1, Proposition 2.12], there is an explicit isomorphism

ψ : C∗(E,C) −→ M2
(
C(T)

)= M2(C) ⊗C C(T)

sending

v 
−→ e11, w 
−→ e22, α 
−→ ze12, β 
−→ e12,

where z is the canonical unitary generator of C(T). We shall use this isomorphism to see that
C∗(E,C) = C∗

red(E,C). Thus, the case m = n = 1 is the only one for which C∗
red(E,C) is not

simple.
Identify A := C∗(EX) and B := C∗(EY ) with their canonical images in C∗(E,C), and set

A0 := Cv ⊕ Cw. There is a faithful conditional expectation

φ ⊗ τ : M2(C) ⊗C C(T) −→
(

C 0
0 C

)
,
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where φ
(

a b
c d

)
=
(

a 0
0 d

)
for

(
a b
c d

)
∈ M2(C) and τ is the canonical faithful trace on C(T). This

corresponds to a faithful conditional expectation Φ : C∗(E,C) → A0, because ψ restricts to

an isomorphism of A0 onto
(

C 0
0 C

)
. We claim that (C∗(E,C),Φ) satisfies the conditions of

Definition 3.3 to be the reduced amalgamated product of (A,ΦX) and (B,ΦY ). Conditions (1)
and (2) are clear, (3) is easily checked, and (5) follows from the faithfulness of Φ . To check (4),
observe that since kerΦX = Cα ⊕ Cα∗ and kerΦY = Cβ ⊕ Cβ∗, it suffices to show that Φ

vanishes on all finite paths of the forms

αβ∗αβ∗ · · · , α∗βα∗β · · · , βα∗βα∗ · · · , β∗αβ∗α · · · .

However, ψ maps these paths to products of the form zkeij or (z∗)keij with k � 1, and φ ⊗ τ

vanishes on such products.
Therefore (C∗(E,C),Φ) = (A,ΦX)∗red

A0
(B,ΦY ) and so C∗(E,C) = C∗

red(E,C) in this
case, as claimed.

Finally, we show with another example that the structure of hereditary C-saturated subsets
of E0 is not respected in C∗

red(E,C) in general, that is, there can be two different hereditary C-
saturated subsets H1 and H2 which generate the same ideal of C∗

red(E,C). This heavily contrasts
with the situation for the full graph C∗-algebra C∗(E,C).

Let k, l,m,n � 2 be integers. Consider the separated graph (E,C), where

(1) E0 := {v,w1,w2} (with 3 distinct vertices).
(2) E1 := {α1, . . . , αk,β1, . . . , βl, γ1, . . . , γm, δ1, . . . , δn} (with k + l + m + n distinct edges).
(3) s(e) = v for all e ∈ E1, while r(αi) = r(βj ) = w1 for all i, j , and r(γi) = r(δj ) = w2 for

all i, j .
(4) C = Cv := {X,Y } where

X := {α1, . . . , αk, γ1, . . . , γm}, Y := {β1, . . . , βl, δ1, . . . , δn}.

A picture of the graph E for the case k = l = m = n = 2 is shown below.

v

α1

α2

β1

β2

γ1

γ2

δ1

δ2w1 w2

Observe that H1 = {w1} and H2 = {w2} are both hereditary C-saturated subsets of E0. How-
ever, by the next proposition, both H1 and H2 generate the full algebra C∗

red(E,C).

Proposition 4.8. Let (E,C) be the separated graph described above. Then the reduced graph
C∗-algebra C∗ (E,C) is simple.
red
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Proof. Set A0 := Cv ⊕ Cw1 ⊕ Cw2, and identify A0 with C
3 so that v, w1, w2 correspond to

(1,0,0), (0,1,0), (0,0,1) respectively. Set A := C∗(EX) and B := C∗(EY ), and identify A and
B with Mk+1(C) × Mm+1(C) and Ml+1(C) × Mn+1(C) so that v, w1, w2 correspond to

(
diag(1, . . . ,1,0),diag(1, . . . ,1,0)

)
,

(
diag(0, . . . ,0,1),0

)
,

(
0,diag(0, . . . ,0,1)

)
,

respectively, in each case. The canonical conditional expectations ΦX and ΦY correspond to the
maps φ : Mk+1(C) × Mm+1(C) → A0 and ψ : Ml+1(C) × Mn+1(C) → A0 given by

φ
([aij ],

[
a′
ij

])= 1

k + m

(
k∑

i=1

aii +
m∑

j=1

a′
jj

)
v + ak+1,k+1w1 + a′

m+1,m+1w2,

ψ
([bij ],

[
b′
ij

])= 1

l + n

(
l∑

i=1

bii +
n∑

j=1

b′
jj

)
v + bl+1,l+1w1 + b′

n+1,n+1w2.

Take P := v, and observe that PA0 = CP and that P is a full projection in both A and B , so
certainly P will be a full projection in D := A∗red

A0
B = C∗

red(E,C). Consider the unitaries

a := (
diag(vk,0),diag(vm,0)

) ∈ PAP,

b := (
diag(vl,0),diag(vn,0)

) ∈ PBP, c := (
diag(ul,0), diag(un,0)

) ∈ PBP.

Then (4.2) holds, and moreover φ|PAP, ψ |PBP are invariant with respect to conjugation by a, b

respectively, so that the conditions in Proposition 4.3 are satisfied. It follows from Corollary 4.4
that C∗

red(E,C) is a simple C∗-algebra. �
5. K-theory

Our aim in this section is to compute the K-theory of the full graph C∗-algebras of finitely
separated graphs. This will use the powerful results in [28].

We recall here the main result from [28] used in our computations; it is a particular case of
[28, Theorem 2.7].

Theorem 5.1. Let A0, A1, A2 be separable C∗-algebras. Assume that ik :A0 → Ak , for k = 1,2,
are embeddings, and that A0 is finite-dimensional. Let jk :Ak → A1 ∗A0 A2, for k = 1,2, be the
canonical maps. Then there is a 6-term exact sequence:

K0(A0)
(i1∗,i2∗)−−−−−→ K0(A1) ⊕ K0(A2)

j1∗−j2∗−−−−−→ K0(A1 ∗A0 A2) ⏐⏐ ⏐⏐"
K1(A1 ∗A0 A2)

j1∗−j2∗←−−−−− K1(A1) ⊕ K1(A2)
(i1∗,i2∗)←−−−−− K1(A0)

(5.1)

For some direct applications of this theorem to the K-theory of C∗-algebras of separated
graphs, see [12, Section 5].

In order to state our result, we need some preparation. If E is a row-finite (non-separated)
graph, we will denote by A′ the adjacency matrix of E, that is, the matrix (a(v,w))v,w∈E0 in
E
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Z
E0×E0

where a(v,w) := |s−1
E (v) ∩ r−1

E (w)|, that is, the number of arrows from v to w in E.

Write At
E and 1 for the matrices in Z

E0×E0\Sink(E) which result from the transpose of A′
E and

from the identity matrix after removing the columns indexed by sinks. Then the K-theory of
C∗(E) is given by the formulas

K0
(
C∗(E)

)∼= coker
(
1 − At

E : Z(E0\Sink(E)) −→ Z
(E0)

)
, (5.2)

K1
(
C∗(E)

)∼= ker
(
1 − At

E : Z(E0\Sink(E)) −→ Z
(E0)

)
(5.3)

[25, Theorem 3.2]. Further, the formulation of [25, Theorem 3.2] given in [30, Theorem 2.3.9]
shows that the isomorphism of (5.2) sends [v] to the coset of δv for all v ∈ E0, where (δv)v∈E0

denotes the canonical basis of Z
(E0).

We now present a corresponding result for any finitely separated graph (E,C). The adja-
cency matrix of (E,C) is the matrix A′

(E,C) := (a(v,w))v,w∈E0 such that the entry a(v,w) is the

function X 
→ aX(v,w) in Z
Cv where aX(v,w) equals the number of arrows in X from v to w,

for any v,w ∈ E0 and X ∈ Cv . We denote by 1C : Z(C) → Z
(E0) and At

(E,C) : Z(C) → Z
(E0) the

homomorphisms defined by

1C(δX) = δv and At
(E,C)(δX) =

∑
w∈E0

aX(v,w)δw

(
v ∈ E0, X ∈ Cv

)
,

where (δX)X∈C denotes the canonical basis of Z
(C).

With this notation, the K-theory of C∗(E,C) has formulas which look very similar to the
ones for the non-separated case:

Theorem 5.2. Let (E,C) be a finitely separated graph, and adopt the notation above. Then the
K-theory of C∗(E,C) is given as follows:

K0
(
C∗(E,C)

)∼= coker
(
1C − At

(E,C) : Z(C) −→ Z
(E0)

)
, (5.4)

K1
(
C∗(E,C)

)∼= ker
(
1C − At

(E,C) : Z(C) −→ Z
(E0)

)
. (5.5)

Further:

The isomorphism of (5.4) sends [v] to the coset of δv for all v ∈ E0. (5.6)

Proof. Since K-theory is continuous, we may reduce to the case where E is a finite graph
by using Proposition 1.6 and [1, Proposition 3.5 and comments after Definition 8.4]. Set
A0 := C∗((E0,∅),∅) = C0(E

0), which is a finite-dimensional commutative C∗-algebra under
our current assumption. There is an isomorphism κ : K0(A0) → Z(E0) sending [v] 
→ δv for
v ∈ E0.

For a finite separated graph (E,C) (meaning that E0, E1, and C are all finite), we will show
the results by induction on |C|. The case where |C| � 1 follows from the results for non-separated
graphs. Assume that n > 1 and that the results are true for finite separated graphs (E′,C′) with
|C′| < n. Let (E,C) be a finite separated graph with |C| = n, and select X ∈ Cv for some v ∈
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E0 \ Sink(E). Let C′ := C \ {X}, and consider the separated graphs (E1,C
′) and (E2, {X}),

where (E1)
0 = (E2)

0 = E0 and (E1)
1 =⊔

Y∈C′ Y , (E2)
1 = X. Then we have

C∗(E,C) = C∗(E1,C
′) ∗A0 C∗(E2, {X}),

relative to the canonical embeddings i1 : A0 → C∗(E1,C
′) and i2 : A0 → C∗(E2, {X}) cor-

responding to the inclusion morphisms ((E0,∅),∅) → (E1,C
′) and ((E0,∅),∅) → (E2, {X})

in FSGr. Therefore we can apply Thomsen’s result and the induction hypothesis to compute
K0(C

∗(E,C)). By induction, there is a commutative diagram as follows, where πC′ and π{X}
are the obvious quotient maps.

K0(C
∗(E1,C

′)) i1∗←−−−− K0(A0)
i2∗−−−−→ K0(C

∗(E2, {X}))
∼=
⏐⏐" κ

⏐⏐"∼=
⏐⏐"∼=

coker(1C′ − At
(E1,C

′))
πC′←−−−− Z

(E0)
π{X}−−−−→ coker(1{X} − At

(E2,{X}))

(The diagram is commutative because (5.6) holds for the cases (E1,C
′) and (E2, {X}).) Since

K1(A0) = 0, it follows from Theorem 5.1 that K0(C
∗(E,C)) is isomorphic to the cokernel of

the map

Z
(E0)

(πC′ ,π{X})−−−−−−→ Z
(E0)/

(
1C′ − At

(E1,C
′)
)
Z

(C′)⊕
Z

(E0)/
(
1{X} − At

(E2,{X})
)
Z

({X}), (5.7)

via an isomorphism that sends [v] to the coset of (δv + (1C′ − At
(E1,C

′))Z
(C′),0) for v ∈ E0. The

cokernel of (5.7) is easily seen to be isomorphic to

Z
(E0)/

((
1C′ − At

(E1,C
′)
)
Z

(C′) + (
1{X} − At

(E2,{X})
)
Z

({X}))= Z
(E0)/

((
1C − At

(E,C)

)
Z

(C)
)
,

in view of the exact sequence

Z
(E0)

(πC′ ,π{X})−−−−−−→ coker
(
1C′ − At

(E1,C
′)
)⊕ coker

(
1{X} − At

(E2,{X})
)

(q1,−q2)−−−−−→ coker
(
1C − At

(E,C)

) −−−−→ 0,

where q1 and q2 are the natural quotient maps. We thus obtain both (5.4) and (5.6).
Now we want to compute K1(C

∗(E,C)). From (5.1) and the above observations, we get a
short exact sequence:

0 −→ K1
(
C∗(E1,C

′))⊕ K1
(
C∗(E2, {X}))−→ K1

(
C∗(E,C)

)−→ ker(πC′ ,π{X}) −→ 0.

(5.8)

Set A := 1C′ − At
(E1,C

′) and B := 1{X} − At
(E2,{X}).

We distinguish two cases.
Case 1. X consists of a single loop at v. In this case, B = 0, and so π{X} is injective and

ker(πC′ ,π{X}) = 0. By using the induction hypothesis for K1, we get
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K1
(
C∗(E,C)

)∼= ker(A) ⊕ ZδX = ker
(
1C − At

(E,C)

)
,

as desired.
Case 2. |X| > 1 or X consists of a single edge from v to some different vertex. Then

B : ZδX → Z
(E0) is injective, so that K1(C

∗(E2, {X})) = ker(B) = 0, and we get from (5.8):

K1
(
C∗(E,C)

)∼= K1
(
C∗(E1,C

′))⊕ ker(πC′ ,π{X})

∼= ker
(
A : Z(C′) → Z

(E0)
)⊕ (

A
(
Z

(C′))∩ B(ZδX)
)
. (5.9)

Now using that A(Z(C′)) ∩ B(ZδX) is cyclic and B is injective, it is straightforward to show that
the last direct sum in (5.9) is isomorphic to

ker
(
(A B ) : Z(C) → Z

(E0)
)
.

Since (A B ) = 1C − At
(E,C)

, we get the desired result for K1(C
∗(E,C)). �

As an example, we consider the separated graph (E(m,n),C(m,n)) of Example 4.5, for
1 � m � n. Now (4.1) and Theorem 5.2 give

K0
(
Unc

m,n

)∼= coker

((
1 1

−n −m

)
: Z

2 → Z
2
)

∼=
{

Z if n = m,

Zn−m if n > m,

K1
(
Unc

m,n

)∼= ker

((
1 1

−n −m

)
: Z

2 → Z
2
)

∼=
{

Z if n = m,

0 if n > m.

This confirms a conjecture of McClanahan [21, Conjecture, p. 1067], and recovers [20, Corol-
lary 2.4] in the case n = m.

6. Relationships with McClanahan’s examples

We show here that the reduced C∗-algebra of the separated graph (E(m,n),C(m,n)) of
Example 4.5 is Morita-equivalent to the C∗-algebra constructed by McClanahan in [22, Exam-
ple 3.12]. Let us recall the definition in [22]. Let

(B,Ψ ) := (
Mn+m(C),Ψ1

)∗C2

(
M2(C),Ψ2

)
be the reduced amalgamated product over C

2 of the algebras Mn+m(C) and M2(C), with respect
to the conditional expectations defined by

Ψ1
(
(aij )

)=
(

1

n

n∑
i=1

aii ,
1

m

m∑
j=1

an+j,n+j

)
,

Ψ2

((
a b

c d

))
= (a, d).
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Proposition 6.1. Let 1 < m � n, let (E,C) := (E(m,n),C(m,n)) be the separated graph de-
scribed in Example 4.5, and let

(A,Φ) := C∗
red(E,C) ≡ (

Mn+1(C),Φ1
) ∗C2

(
Mm+1(C),Φ2

)
be the corresponding reduced C∗-algebra. Let T := vAv be the corner of A corresponding to
v ∈ E0, and observe that Φ restricts to a faithful, completely positive conditional expectation
φ : T → C·1T . Then we have a ∗-isomorphism

(B,Ψ ) ∼= (
M2(C) ⊗ T ,Ψ2 ⊗ φ

)
.

Proof. We are going to use again the characterization of the reduced amalgamated product. Let
eij and fij denote the canonical matrix units in Mn+m(C) and M2(C), respectively. There exist
unital ∗-homomorphisms σ1 :Mn+m(C) → M2(C) ⊗ T and σ2 :M2(C) → M2(C) ⊗ T such that

σ1(eij ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f11 ⊗ αiα
∗
j (1 � i, j � n),

f12 ⊗ αiβ
∗
j−n (1 � i � n < j � n + m),

f21 ⊗ βi−nα
∗
j (1 � j � n < i � n + m),

f22 ⊗ βi−nβ
∗
j−n (n < i, j � n + m),

and σ2(fij ) = fij ⊗ 1T for i, j = 1,2. Now all the conditions in the definition of the reduced
amalgamated product are easily verified, with the exception of (4), that needs some work.

Observe that kerΨ2 is spanned by {f12, f21}, while kerΨ1 is spanned by the set

Ξ := {ekl : 1 � k, l � n + m, k �= l} ∪ {εi : 1 � i � n} ∪ {εj : 1 � j � m},

with εi := eii − 1
n

∑n
t=1 ett and εj := ej+n,j+n − 1

m

∑m
s=1 es+n,s+n. We note that σ1(εk) =

f11 ⊗ λ(αk) and σ1(εk) = f22 ⊗ λ(βk), where λ(αk) := αkα
∗
k − 1

n
v and λ(βk) := βkβ

∗
k − 1

m
v.

For subsets T1, T2 of an algebra H, denote by Λo(T1, T2) the set of all elements of H
of the form a1a2 · · ·ar , where aj ∈ Tij and i1 �= i2, i2 �= i3, . . . , ir−1 �= ir . With this notation,
to verify (4) it will be enough to show that (Ψ2 ⊗ φ)(a1a2 · · ·ar) = 0 for all a1a2 · · ·ar in
Λo({σ2(f12), σ2(f21)}, σ1(Ξ)). This is, of course, clear for r = 1. We claim that:

(I) For r � 2, any word a1a2 · · ·ar ∈ Λo({σ2(f12), σ2(f21)}, σ1(Ξ)) is either zero or has the
form fij ⊗ d with d ∈ Λo(Tα,Tβ), where

Tα := {
αk,α

∗
k , λ(αk)

∣∣ 1 � k � n
}∪ {

αkα
∗
l

∣∣ 1 � k, l � n, k �= l
}
,

Tβ := {
βk,β

∗
k , λ(βk)

∣∣ 1 � k � m
}∪ {

βkβ
∗
l

∣∣ 1 � k, l � m, k �= l
}
,

and also:
(1) If ar ∈ σ1(Ξ) and j = 1, then d ends in one of α∗

l or αkα
∗
l (with k �= l) or λ(αk).

(2) If ar ∈ σ1(Ξ) and j = 2, then d ends in one of β∗ or βkβ
∗ (with k �= l) or λ(βk).
l l
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For c ∈ σ1(Ξ), observe that:

(1) σ2(f12)c �= 0 if and only if c = f21 ⊗ βk−nα
∗
l ; or c = f22 ⊗ βk−nβ

∗
l−n with k �= l; or c =

f22 ⊗ λ(βk).
(2) σ2(f21)c �= 0 if and only if c = f11 ⊗ αkα

∗
l with k �= l; or c = f11 ⊗ λ(αk); or c =

f12 ⊗ αkβ
∗
l−n.

With the aid of these observations, the claim is easily established by induction on r .
Since (A,Φ) is a reduced amalgamated product, Λo(Tα,Tβ) ⊆ kerΦ . Hence, we conclude

that Λo({σ2(f12), σ2(f21)}, σ1(Ξ)) ⊆ ker(Ψ2 ⊗ φ), as desired. �
The case n = m is special. In this case, the reduced graph C∗-algebra admits a faithful trace

and has minimal projections, as we will see. We establish this by finding a Morita equivalence
with a different example of McClanahan’s, namely [22, Example 4.1]. This example is given as
follows:

(C,Ψ ) := (
Mn(C), trn

)∗C

(
C(T), τ

)
,

where trn is the normalized matrix trace on Mn(C) and τ is the usual faithful trace on C(T).
Then we have:

Proposition 6.2. Let n > 1, let (E,C) := (E(n,n),C(n,n)) be the separated graph described in
Example 4.5, and let

(A,Φ) := C∗
red(E,C) ≡ (

Mn+1(C),Φ1
) ∗C2

(
Mn+1(C),Φ2

)
be the corresponding reduced C∗-algebra. Let T := vAv be the corner of A corresponding to
v ∈ E0, and observe that Φ restricts to a faithful, completely positive conditional expectation
φ : T → C·1T . There is a ∗-isomorphism

(C,Ψ ) ∼= (T ,φ).

Proof. We are going to use again the characterization of the reduced amalgamated product. Let
u denote the standard unitary generator of C(T), and let eij be the canonical matrix units in
Mn(C). There exist unital ∗-homomorphisms σ1 : Mn(C) → T and σ2 : C(T) → T such that
σ1(eij ) = αiα

∗
j for all i, j , and

σ2(u) = U :=
n∑

j=1

βjα
∗
j .

Conditions (1), (2), (5) in the definition of the reduced amalgamated product are easily verified,
as is the first part of (3), namely, that φ ◦ σ1 = trn.

As in the proof of Proposition 6.1, define

Tα := {
αk,α

∗
k , λ(αk)

∣∣ 1 � k � n
}∪ {

αkα
∗
l

∣∣ 1 � k, l � n, k �= l
}
,

Tβ := {
βk,β

∗, λ(βk)
∣∣ 1 � k � n

}∪ {
βkβ

∗ ∣∣ 1 � k, l � n, k �= l
}
,
k l
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where λ(αk) := αkα
∗
k − 1

n
v and λ(βk) := βkβ

∗
k − 1

n
v, and observe that Λo(Tα,Tβ) ⊆ kerΦ .

Since any nonzero power of U is a linear combination of elements of Λo(Tα,Tβ), we see that
φσ2(u

t ) = Φ(Ut) = 0 for all t �= 0. It follows that φ ◦ σ2 = τ , verifying (3).
Observe that ker trn and ker τ are the closed linear spans of the sets

Ξ := {ekl : 1 � k, l � n, k �= l} ∪ {εi : 1 � i � n},
Υ := {

ut : t ∈ Z \ {0}},
with εi := eii − 1

n

∑n
t=1 ett as before. Also, σ1(εk) = λ(αk). To verify condition (4), it is enough

to show that φ(a1a2 · · ·ar) = 0 for all a1a2 · · ·ar in Λo(σ1(Ξ),σ2(Υ )). This is clear for r = 1.
We claim that:

(I) Each element a1a2 · · ·ar ∈ Λo(σ1(Ξ),σ2(Υ )) with r � 2 and ar ∈ σ2(Υ ) can be written as a
linear combination of terms wUt such that w ∈ Λo(Tα,Tβ) and one of the following holds:
(a) t � 1 and w ends in one of α∗

l or αkα
∗
l (with k �= l) or λ(αk);

(b) t � 0 and w ends in one of β∗
l or βkβ

∗
l (with k �= l) or λ(βk).

The cases when r = 2 and a2 is a positive power of U are clear. The other r = 2 cases follow
from the facts that

σ1(ekl)U
−1 = αkβ

∗
l , σ1(εk)U

−1 = αkβ
∗
k − 1

n
U−1

for all k, l. The remainder of claim (I) is proved by induction on r , with the help of the following
observations:

Uσ1(ekl)U = βkα
∗
l U, Uσ1(ekl)U

−1 = βkβ
∗
l ,

U−1σ1(ekl)U = U−1αkα
∗
l U, U−1σ1(ekl)U

−1 = U−1αkβ
∗
l ,

Uσ1(εk)U = βkα
∗
kU − 1

n
U2, Uσ1(εk)U

−1 = λ(βk),

U−1σ1(εk)U = U−1λ(αk)U, U−1σ1(εk)U
−1 = U−1αkβ

∗
k − 1

n
U−2

for all k, l.
Finally, we claim that:

(II) Every element a1a2 · · ·ar ∈ Λo(σ1(Ξ),σ2(Υ )) can be written as a linear combination of
elements of Λo(Tα,Tβ).

This is clear when r = 1, and it follows directly from (I) when r � 2 and ar ∈ σ2(Υ ), just by
expanding the factors Ut . When r � 2 and ar ∈ σ1(Ξ), we obtain (II) from (I) with the help of
the facts that

Uσ1(ekl) = βkα
∗
l , Uσ1(εk) = βkα

∗
k − 1

U

n



2566 P. Ara, K.R. Goodearl / Journal of Functional Analysis 261 (2011) 2540–2568
for all k, l. Since Λo(Tα,Tβ) ⊆ kerΦ , we conclude from (II) that Λo(σ1(Ξ),σ2(Υ )) ⊆ kerφ, as
desired. �
Corollary 6.3. Let n > 1 and (A,Φ) := C∗

red(E,C) as in Proposition 6.2. Then A is a simple
C∗-algebra with a faithful trace. It has stable rank 1, but does not have real rank zero.

Proof. By Proposition 6.2, A is Morita equivalent to McClanahan’s example C , where (C,Ψ ) :=
(Mn(C), trn)∗C (C(T), τ ). We show that C has the described properties. Simplicity follows from
either [22, Proposition 3.3] or Proposition 4.6, and Ψ is a trace because trn and τ are traces (see
[3, Proposition 1.4] or [32, 2.5.3]). It is faithful because trn and τ are faithful.

Next, since C(T) is a diffuse abelian algebra with respect to τ , meaning that τ is given by an
atomless measure on T, it follows from [14, Proposition 3.4] that C has stable rank 1.

Finally, we consider the K-theory of the full free product algebra Cfull := Mn(C)∗C(T). Write
eij for the canonical matrix units in the copies of Mn(C) appearing in the different algebras under
consideration. Since K0(Mn(C)) and K0(C(T)) are infinite cyclic, with generators [e11] and [1],
respectively, it follows from Theorem 5.1 that K0(Cfull) is infinite cyclic, with generator [e11].
McClanahan showed in [23, Corollary 8.7] (cf. [22, Example 4.1]) that the natural map Cfull → C
induces isomorphisms in K-theory. (This also follows from [15, Theorem 4.1].) Consequently,
K0(C) is infinite cyclic, with generator [e11]. The faithful trace Ψ on C thus takes values in
(1/n)Z on projections, and it follows that e11 is a minimal projection in C . Therefore C cannot
have real rank 0. �
7. Problems

In this final section, we discuss some open problems which arise naturally in this investigation.

Problem 7.1. Compute the lattices of closed ideals of the full and reduced graph C∗-algebras of
a finitely separated graph (E,C), in terms of graph-theoretic data. In particular, find characteri-
zations of simplicity of C∗(E,C) and/or C∗

red(E,C) in terms of (E,C).
For the ordinary graph C∗-algebra C∗(E) of a countable graph E, the lattice of gauge-

invariant closed ideals was characterized in [4, Theorem 3.6, Corollaries 3.8, 3.10]; this gives
the full lattice of closed ideals in case E satisfies condition (K) (see [4], [11, Theorem 3.5]).
A characterization of simplicity of C∗(E) was found earlier, in [27, Theorem 12]. For the Leav-
itt path algebra of a separated graph (E,C), the lattice of trace ideals was characterized in [1,
Theorem 6.11], and necessary and sufficient conditions for “trace-simplicity” of L(E,C) were
obtained in [1, Theorem 7.1].

Problem 7.2. Find conditions when the full graph C∗-algebra of a finitely separated graph (E,C)

equals the reduced one. Observe that this is always the case for non-separated graphs (Theo-
rem 3.8(2)). A necessary condition for equality is that the full C∗-algebra needs to be exact
(Remark 3.10).

Exactness often fails, however, as shown by Duncan [12]. First, if there is a vertex v ∈ E0

at which there are two loops lying in different members of Cv , then C∗(E,C) is not exact [12,
Proposition 6]. Second, if there are vertices v,w ∈ E0 and three edges from v to w which lie in
distinct members of Cv , then C∗(E,C) is not exact [12, Proposition 7].
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Problem 7.3. When the reduced graph C∗-algebra of a finitely separated graph is simple and
infinite (as in some of the examples in Section 4), is it purely infinite? Does it at least have real
rank zero? Both answers are positive in the non-separated case [27, Theorem 18].

Problem 7.4. When the reduced graph C∗-algebra of a finitely separated graph is simple and
finite, must have it stable rank one? The answer is positive in the non-separated case [27, Theo-
rem 18]. The corresponding question for real rank zero is answered negatively by Corollary 6.3.

Problem 7.5. For free products of two nuclear C∗-algebras with faithful states, Germain proved
in [15] that the natural map from the full free product to the reduced one is a KK-equivalence
and so it induces an isomorphism in K-theory. Note that this applies to the examples in Proposi-
tion 4.2.

Is there a corresponding result for amalgamated free products? This would apply in particular
to all the examples of Section 4, for which we could then compute the K-theory of the reduced
graph C∗-algebras (thanks to Theorem 5.2).

Problem 7.6. Let (E,C) be a finitely separated graph. Let M(E,C) be the abelian monoid with
generators {av | v ∈ E0} and relations given by av = ∑

e∈X ar(e) for all v ∈ E0 and all X ∈ Cv .
It was shown in [1, Theorem 4.3] that there is a natural isomorphism M(E,C) → V (L(E,C)),
sending av to [v] ∈ V (L(E,C)), where V (L(E,C)) is the abelian monoid of Murray-von Neu-
mann equivalence classes of projections in matrices over L(E,C).

Is the natural map M(E,C) → V (C∗(E,C)) also an isomorphism? Equivalently, is the natu-
ral induced map V (L(E,C)) → V (C∗(E,C)) an isomorphism?

We conjecture that the answer to this question is positive. This is certainly the case for non-
separated graphs (see [2, Theorem 7.1]). If the answer is positive, it would follow, as in [1,
Corollary 4.5], that every conical abelian monoid is isomorphic to V (C∗(E,C)) for some finitely
separated graph (E,C).
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