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Abstract 

Morgan and Back have proposed different formalisations of procedures and parameters in the 
context of techniques of program development based on refinement. In this paper, we investigate 
a surprising and intricate relationship between these works and the substitution operator that 
renames the free variables of a program. In this study, we reveal an inconsistency in Morgan’s 
refinement calculus and show that Back’s formalisation of procedures does not have the same 
problem. @ 1999 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

Inspired by Dijkstra’s work on weakest preconditions (wp) [5], Back [l, 31, 

Morgan [ 10,9], and Morris [ 11,131 have proposed three different formalisations of 

the stepwise refinement technique of program development. They are all based on a 

unified language of specification and programming. From the semantic point of view, 

this unification is achieved by linking the constructors of the language to a single 

mathematical model: Dijkstra’s wp. 

In this context, specifications are viewed as particular forms of programs, and we 

actually use the term program to refer to specifications, programs, and designs, where 

programming structures and specifications are mixed. Furthermore, a specification can 

be taken as the starting point for the development of a program which is guaranteed, 

or can be proved, to be correct with respect to that specification. The correctness of 

the development can be established by showing that the wp semantics is preserved. 
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Morgan’s work is a refinement calculus: it distinguishes itself in that an extensive 
set of refinement laws is presented. They define program transformations that preserve 
total correctness (the wp semantics), and typically yield programs that are better in 
some sense (either executable, more efficient, or better suited to some other purpose). 
In [9], the development process consists of calculating programs by repeatedly applying 
these laws until an adequate result is obtained. 

Back [2], Morgan [7], and Morris [12] have all formalised the use of procedures and 
parameters. In this paper, we uncover a rather subtle and unexpected relation between 
these formalisations and the substitution operator that renames the free variables of a 
program, and show that Morgan’s approach presents an inconsistency. The problem 
with his work (as illustrated by suitable examples later on) is that formal parameters 
are regarded as global (or free) variables in the procedure body, rather than as local (or 
bound) variables as is the case in conventional procedural languages. Analysing Back’s 
formalism, we conclude that it is free from the inconsistency found, essentially because 
formal parameters are adequately represented by variables which are bound in the 
procedure body. Morris’s approach is not considered here since it is directly based on 
that of Back. 

In Section 2 we present the approaches to procedures and parameters proposed by 
Back and Morgan. Section 3 explains their relationship to the substitution operator and 
the problem in Morgan’s approach. In Section 4 we summarise our results. Finally, 
Appendix A shows how the refinement laws of Morgan’s calculus can be expressed 

using Back’s formalism. 

2. Procedures and parameters 

In [2,9], procedures are declared in a block. In order to illustrate the particular 
notation we employ to write procedure blocks, we consider the example below. 

I[proc IncSx:=x+ 1 l Znc; ZW]] (1) 

This very simple program uses the procedure Znc to increase the value of x by 2. The 
program x :=x + 1 is the body of Znc, and Znc; Znc is the main program (the scope of 
the procedure). 

Both [2] and [7] adopt the copy rule of Algol 60 when defining a semantics for non- 
recursive procedures. According to this rule, a program that contains a procedure call is 
equivalent to that obtained by substituting the procedure body for the procedure name. 
Variable capture must be avoided, in order to ensure that the scope of variables is static. 
The program (1 ), for instance, is equivalent to x :=x + 1; x :=x + 1, as expected. 

In order to illustrate the concerns related to the capture of variables, we consider 
the program below which assigns 2 to a global variable x. 

[[proc Ass2tox~x:=2oJ[var xoAss2tox](]( (2) 
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The program I[ var x l Ass2tox]J is a variable block: it declares a variable x local to 
its body, Asdtox. Since there is a variable x free in the body of Ass2tox, we cannot, 
as in the previous example, apply the copy rule and substitute x := 2 for Ass2tox. This 
substitution would lead to the capture of the global variable x mentioned in the body 
of Ass2tox by the local declaration of x in the main program and, therefore, would 
violate the rules of static scope. Before applying the copy rule to (2), we have to 
rename the local variable x. This is further discussed in Section 3. 

In Back’s work, parametrised procedures can be defined using parametrised state- 
ments. They can have the form (val vl l p), (res vl l p), or (var vl l p), which cor- 
respond to the traditional mechanisms of parameter passing known as call-by-value, 
call-by-result, and call-by-reference, respectively. In each case, vl ranges over lists of 
variables standing for the formal parameters, and p over programs. These conventions 
are assumed in subsequent definitions, where we also use 1 to range over lists of vari- 
ables. Moreover, we use subscripts to extend the set of metavariables, so that vlr and 
~12, for instance, also stand for lists of variables. 

As opposed to assignments, for example, parametrised statements are not programs 
by themselves. However, a parametrised statement (or the name of a procedure whose 
body is a parametrised statement) can be applied to a list of actual parameters to yield a 
program. The resulting program acts as that obtained by passing the actual parameters to 
the program in the body of the parametrised statement. The number of actual parameters 
must be the same as the number of formal parameters. The correspondence between 
them is positional. 

By way of illustration, we consider the program that assigns 0 to the variables x 
and y by using a parametrised procedure Zero. 

I[proc Zeroz(res n*n:=O)oZero(x); Zero(y)]/ (3) 

By the copy rule, this program is equivalent to (res non :=0)(x); (res non:=O)(y). 
Applications of parametrised statements to actual parameters are defined in terms of 

variable blocks. For example, call-by-result is defined as 

@es 4 l p)(vl2 > = I[ var IO p[ul,\l]; VI2 := 111 

provided 1 is a list of fresh variables. This variable block implements call-by-result us- 
ing the well-known technique of assignment from a local variable. The term p[oZl\Z] 
denotes the result of substituting the variables of 1 for every occurrence of the corre- 
sponding variables vll in p. 

In Morgan’s approach, the use of parametrised procedures is made possible by sub- 
stitutions which define both the formal and actual parameters of a procedure at the 
point(s) of call rather than definition. The forms of substitution available correspond 
to call-by-value, call-by-result, and call-by-value-result. 

For example, a substitution by result has the form p[result vl~\uI& where p is the 
program to which it applies, uli, the list of formal parameters, and u/z, the list of actual 
parameters. In order to write a program equivalent to (3), also using a procedure Zero, 
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we employ substitutions by result. 

I[ proc Zero s II := 0 0 Zem[result n\x]; Zero[result n\v] ] 1 

Morgan [7] provides a weakest precondition semantics for substitutions. Nevertheless, 

they can also be defined in terms of variable blocks. For instance, we can derive from 

the weakest precondition of a substitution by result that 

p[result uZ1\21Z2] = I[var 10 p[uZl\Z]; 2112 := 111 (5) 

for a list 1 of fresh variables. This is the definition actually adopted in [9]. The right- 

hand side of this equation is identical to that of (4). 

3. Exploring the effect of substitution 

As we have mentioned previously, since the main program of the procedure block (2) 

redeclares x, the copy rule cannot be applied to remove the procedure call. The standard 

way to overcome this difficulty is to rename this local variable. 

As a variable block binds the variables that it declares, it is well known that these 

variables can be renamed without changing the meaning of the program, in the same 

way that the variables bound by quantifiers can be renamed in the predicate calculus. 

The relevant rule is as follows: for every program p and all lists of variables vii and 

~12, I[ var vZl l p]j = I[ var 012 l p[vEl\uZz]]) provided the variables of vZ2 are not free 

in p. By applying this result, we conclude that, since z is not free in Ass2tox, (2) 
is equivalent to I[ proc Ass2tox 2x := 2 l I[ var z l Ass2tox[x\z] ]I ]I. At this point, our 

main concern is the result of Ass2tox[x\z]. 

There seems to be two acceptable possibilities: Ass2tox and z := 2. In the first case, 

the substitution operator acts on the name Ass2tox and, since x is clearly not free in 

this program, Ass2tox is itself the result: substitution is a syntactic operator; this will 

be referred to as syntactic substitution. In the second case, the substitution operator acts 

on the body of Ass2tox and yields the result of substituting z for x in that program: the 

behaviour of substitution is dependent on the context in which it is applied; we will 

refer to this as context dependent substitution. 

Both forms of substitution can be defined by recursion in the usual way. The interest- 

ing parts of their definitions are those concerned with the application of substitution to 

a procedure name. In the case of syntactic substitution, we have that pn[vZl\uZ2] = pn, 

where pn is a metavariable that ranges over procedure names. For context dependent 

substitution, if p is the body of the procedure pn, then pn[vZ~ \vZz] = p[vZl \vZz]. This 

somewhat unusual form of substitution is adopted in [14] and, as we explain later on, 

is part of a possible solution to the problems we uncover here. 

The main purpose of this section is to show that either definition of substitution leads 

to inconsistency in Morgan’s formalisation of procedures and parameters. Moreover, 

we show that Back’s formalisation presents no problems, provided we adopt syntactic 

substitution. 
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If we assume that Ass2tox[x\z] is z := 2 (context dependent substitution), we can 
deduce that I[ var z l Ass2tox[x\z] ]I is equivalent to I[ var z l z := 2 ]I. This program, 
however, can be shown to be equivalent to skip: it does not change any variable other 
than the local variable that it introduces, and always terminates. Overall, we can prove 
that (2), which is supposed to assign 2 to x, is equivalent to skip. 

In [14], Sampaio avoids this problem by restricting the application of the law that 
accounts for the renaming of the variables declared by a variable block. He defines the 
notion of contiguous scope and establishes that the renaming is possible only if the 
variables have a contiguous scope in the body of the variable block. 

A variable is said to have a contiguous scope in a program if either this program 
does not contain free procedure names (procedure calls) or the variable is not free in 
the bodies of the procedures that are called. In the above example, since x does not 
have a contiguous scope in Ass2tox, because x is free in the body of this procedure, 
we cannot deduce, according to [ 141, that I[ var x l Ass2tox ] I= I[ var z l Ass2tox[x\z] ] (. 
Consequently, the undesired deduction that we have presented cannot be carried out. 

Although it might be considered a solution to the problem, we cannot adopt 
this approach if we accept the usual weakest precondition semantics of variable 
blocks proposed in [2,10,9]. In all these models, the equality I[ var x l Ass2tox]( = 
I[ var z l Ass2tox[x\z] ]I can be deduced, provided z is a fresh variable. More gener- 
ally, the conventional law for renaming bound variables can be derived in all these 
models. As a consequence, if we assume context dependent substitution, the undesired 
deduction can be carried out in these models. 

Sampaio gives an algebraic semantics for the language introduced in [14]. In this 
semantics, the restricted renaming law that he proposes (based on the notion of con- 
tiguous scope) is regarded as an axiom and no model is presented for the language. 

In summary, if we discard the possibility of changing the semantics of variable 
blocks, we have to assume that Ass2tox[x\z] is equal to Ass2tox, or, in more general 
terms, that, substitution is a syntactic operator. This is the case in both [7] and [2]. 

While this decision avoids the problem discussed above, we show below that it leads 
to another problem in Morgan’s formalisation of parameters [7,9]. Again, the problem 
is illustrated by means of an example. We consider the program that assigns 2 to a 
variable z using the procedure Ass2tox of (2). 

I [ proc Ass2tox g x := 2 l Ass2tox[result x\z] 11 (6) 

In view of our previous comments about procedures and result substitutions, and 
assuming syntactic substitution, we can, as formally shown below, get to an unex- 
pected conclusion: this procedure block is equivalent to I [ var 1 l x := 2; z := I ] 1, a pro- 
gram that assigns 2 to x and an arbitrary value (that assigned to I upon declaration) 
to 2. 

I [ proc Ass2tox 2 x := 2 l Ass2tox[result x\z] 1) 

= I [ proc AssZtox 2 x:=2@ I[var loAsRtox[x\l]; z:= 111 [by (511 
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= ) [ proc Ass2tox 2 x:=2o([var ZoAss2fox; z:=Z]1]1 

[by Ass2tox[x\Z] = ASs2tox] 

=j[var Zox:=2; z:=Z]I [by the copy rule] 

It might appear that an immediate solution to this problem is to adopt context de- 
pendent rather than syntactic substitution. In this case, Ass2tox[x\Z], in the second line 
of the above derivation, would be replaced by Z := 2 (rather than by Ass2tox), and the 
overall result of the derivation would be z := 2, as expected. Nevertheless, we have just 
concluded that substitution must be regarded as a syntactic operator, since otherwise 
we run into the problem raised earlier in this section. 

If we apply the copy rule at an earlier stage, before replacing the result substitution 
by the variable block defined by (5), the resulting program assigns 2 to z as well. The 
development is shown below. 

( [ proc Ass2tox g x := 2 l Ass2tox[result x\z] ] ( 

=x := 2[resuIt x\z] [by the copy rule] 

= I[var Zo(x:=2)[x\Z]; z:= Z]] [by (511 

= I[var IO Z:=2; z:= Z]] [by a property of substitution] 

=z:=2 [by laws of assignment and declaration (see [14], for instance)] 

In conclusion, the order in which the laws are applied influences the result. 
In [9], Morgan uses the strategy illustrated by our second development above. 

However, the laws that can be derived from the model of procedures and substitu- 
tions provided in [7,9] do not enforce the application of this strategy: the order of 
application used in the first development is also supported by this model. 

Altogether, whatever definition we adopt for the substitution operator, we run into 
problems. If we assume that A.ss2tox[x\z] is z := 2, in other words, context dependent 
substitution, we run into the problem illustrated by our first example. Alternatively, 
if we assume that Ass2tox[x\z] is Ass2tox (syntactic substitution), the problem posed 
by our second example comes about. This problem is not specific to result substitu- 
tions: similar inconsistencies would arise if we had used value or value-result substi- 
tutions. 

Back’s work does not present problems if we define that the substitution operator is 
syntactic. In this approach, the program (6) is written I[ proc Ass2tox g (res x l X := 2) l 
Ass2tox(z) ]I. Since the result of applying a procedure name to an actual parameter 
cannot be established without investigating the body of the procedure, when reasoning 
about Ass2tox(z), the only way to reduce it to a variable block is by first applying the 
copy rule. Consequently, within Back’s framework, the unwanted deduction that could 
be carried out using Morgan’s approach cannot arise. 

As already explained, Sampaio [14] avoids the unwanted deductions by adopting 
context dependent substitution and introducing a notion of contiguous scope which is 
used to restrict the application of the law that renames local variables. If we assume 
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that variables cannot be redeclared, or in other words, if we rule out the possibility of 
using nested scope, the variables will always have a contiguous scope. In this case, the 
usual law that renames local variables can be applied without further constraints. The 
restriction over variable declarations, however, is generally too severe. Moreover, as 
Sampaio’s formalisation of procedures and parameters is essentially the same as that of 
Back, he could have defined substitution as a syntactic operator, and then avoided the 
restriction imposed on the renaming law. As we have shown above, Back’s approach 
presents no problems whatsoever if syntactic substitution is adopted. 

A negative aspect of Back’s work is the introduction of an additional construct: the 
parametrised statement. In this formalism, an extra refinement relation between para- 
metrised statements has to be defined and its properties explored before strategies of 
procedure development are proposed. Moreover, Back’s work is not as appealing to 
practising programmers as Morgan’s calculus, since Back does not propose refinement 
laws, but only rules to prove the correctness of (recursive) procedures. The possibil- 
ity of calculating, as opposed to verifying, programs accounts for developments that 
can be uniformly presented as sequences of simple refinement steps. Each step can 
be justified by the application of a refinement law and, possibly, the discharge of the 
corresponding proof-obligations. Moreover, refinement laws provide guidance on the 
construction of programs. 

Fortunately, Morgan’s approach to the development of procedures can be formalised 
using Back’s work. In Appendix A we present three refinement laws that correspond 
to the main laws of [8] concerned with procedures (substitutions). The laws of [9] 
combine an application of these simpler laws with the introduction of a procedure 
call. In [4], we use Back’s formalism as a consistent model to derive the three laws 
in the appendix and others that support the approach to the development of recursive 
(parametrised) procedures proposed by Morgan in [9]. 

4. Conclusions 

We have examined a subtle interaction between substitution, procedures and parame- 
ters. Of particular importance is the definition of the substitution operator when applied 
to a procedure name. Two alternatives have been analysed: one of them specifies that 
the procedure name itself is taken into account (syntactic substitution); the other one 
establishes that the substitution operates on the procedure body (context dependent sub- 
stitution). Unfortunately, whichever option is chosen, Morgan’s approach to procedures 
and parameters is found to be inconsistent. 

To our knowledge, the subtle interaction between procedures, parameters, and 
substitution discussed in this paper was originally pointed out in [14]. Sampaio’s idea 
of restricting the application of the renaming law can be considered as a solution to 
the problems found in Morgan’s approach, but the restriction turns out to be too severe 
in practice. Also, Sampaio presented no mathematical model to justify the restricted 
version of the renaming law. 
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Back’s formalisation of procedures and parameters involves a greater number of def- 
initions and theorems. However, it does not present any of the complications we have 
uncovered in Morgan’s work and imposes no restriction as in the solution proposed by 
Sampaio. 

The problem with Morgan’s approach seems to be a consequence of an unfortunate 
design decision: formal parameters are not regarded as local variables in the procedure 
body. This decision was perhaps an attempt to avoid parametrised statements, as sug- 
gested by Back. Nevertheless, even though parametised statements do indeed increase 
the complexity of the formalism, Back’s approach seems to be the right direction to 
follow. 

Another analysis of the usage of procedures in the refinement calculus is presented 
in [6]. This study, however, concentrates on the methodological (rather than on the 
semantical) aspects of the development of procedures. In [6], the suitability of the 
refinement laws presented in [9] is discussed and an alternative strategy of program 
refinement, where (non-recursive) procedures are introduced in the final phase of de- 
velopment, is suggested. 
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Appendix A. Refinement laws 

In Morgan’s refinement calculus, specifications are written using specification state- 
ments. These have the form w :[pre, post], where w (the frame) ranges over lists of 
variables, and pre (the precondition) and post (the postcondition) over predicates. This 
program can change only the value of the variables in w and, when executed from a 
state that satisfies pre, terminates in a state that satisfies post. 

In what follows, we present three laws that can be used to transform specification 
statements into parametrised statements or, more precisely, applications of parametrised 
statements to actual parameters. As already mentioned, these laws correspond to laws 
of [8], namely, those that introduce substitutions that apply to specification statements. 

The law that introduces a call-by-value is as follows. 

Law 1. Call-by-value. 

w: [pre[oZ\eZ],post[vZ\eZ]] 

(val UZ 0 w : [pre,post])(eZ) 

provided the variables of uZ are not in w, and the variables of w are not free in el. 
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As we show in [4], this law and the other two that follow can be derived from the 

wp semantics of specification statements, assignments, sequential compositions, and 

variable blocks [lo, 31, and from the definitions of parametrised statements in terms of 

variable blocks. 

The introduction of a call-by-result can be achieved with the refinement law below. 

Law 2. Call-by-result. 

w, uZ2 : [pre,post] 

(res 14 0 W, II~I : [pre,post[ul,\vl,]])(uZ*) 

provided the variables of vlr are not in w, and are not free in pre or post. 

For a call-by-value-result we have the following law. 

Law 3. Call-by-value-result. 

w, u12 : [pre[uZl \uZ2],post] 

(val-res uli 0 w, ~2, : [pre,post[u12\ul,]])(uZ2) 

provided the variables of ulr are not in w and are not free in post. 

Morgan [S] also presents laws that transform assignments into substitutions. Since 

assignments can be written as specification statements, we do not present the corre- 

sponding laws here. 
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