
Science of
Computer

ELSEVIER Science of Computer Programming 33 (1999) 87-96
Programming

An inconsistency in procedures, parameters, and substitution
in the refinement calculus

Ana Cavalcantia, August0 Sampaiob, Jim Woodcock”

aOxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, UK
‘Departamento de InformriticalUFPE, Caixa Postal 7851. 50732-970 Recife PE, Brazil

Communicated by R. Bird; received 25 September 1996; received in revised form 5 March 1997

Abstract

Morgan and Back have proposed different formalisations of procedures and parameters in the
context of techniques of program development based on refinement. In this paper, we investigate
a surprising and intricate relationship between these works and the substitution operator that
renames the free variables of a program. In this study, we reveal an inconsistency in Morgan’s
refinement calculus and show that Back’s formalisation of procedures does not have the same
problem. @ 1999 Elsevier Science B.V. All rights reserved.

Keywords: Program development; Formal methods; Refinement calculus; Procedures;
Parameters

1. Introduction

Inspired by Dijkstra’s work on weakest preconditions (wp) [5], Back [l, 31,

Morgan [10,9], and Morris [11,131 have proposed three different formalisations of

the stepwise refinement technique of program development. They are all based on a

unified language of specification and programming. From the semantic point of view,

this unification is achieved by linking the constructors of the language to a single

mathematical model: Dijkstra’s wp.

In this context, specifications are viewed as particular forms of programs, and we

actually use the term program to refer to specifications, programs, and designs, where

programming structures and specifications are mixed. Furthermore, a specification can

be taken as the starting point for the development of a program which is guaranteed,

or can be proved, to be correct with respect to that specification. The correctness of

the development can be established by showing that the wp semantics is preserved.

0167~6423/99/$ - see front matter @ 1999 Elsevier Science B.V. All rights reserved.
PII: SO167-6423(97)00015-4

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82142214?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A. Cavalcanti et al. IScience of Computer Programming 33 (1999) 87-96

Morgan’s work is a refinement calculus: it distinguishes itself in that an extensive
set of refinement laws is presented. They define program transformations that preserve
total correctness (the wp semantics), and typically yield programs that are better in
some sense (either executable, more efficient, or better suited to some other purpose).
In [9], the development process consists of calculating programs by repeatedly applying
these laws until an adequate result is obtained.

Back [2], Morgan [7], and Morris [12] have all formalised the use of procedures and
parameters. In this paper, we uncover a rather subtle and unexpected relation between
these formalisations and the substitution operator that renames the free variables of a
program, and show that Morgan’s approach presents an inconsistency. The problem
with his work (as illustrated by suitable examples later on) is that formal parameters
are regarded as global (or free) variables in the procedure body, rather than as local (or
bound) variables as is the case in conventional procedural languages. Analysing Back’s
formalism, we conclude that it is free from the inconsistency found, essentially because
formal parameters are adequately represented by variables which are bound in the
procedure body. Morris’s approach is not considered here since it is directly based on
that of Back.

In Section 2 we present the approaches to procedures and parameters proposed by
Back and Morgan. Section 3 explains their relationship to the substitution operator and
the problem in Morgan’s approach. In Section 4 we summarise our results. Finally,
Appendix A shows how the refinement laws of Morgan’s calculus can be expressed

using Back’s formalism.

2. Procedures and parameters

In [2,9], procedures are declared in a block. In order to illustrate the particular
notation we employ to write procedure blocks, we consider the example below.

I[proc IncSx:=x+ 1 l Znc; ZW]] (1)

This very simple program uses the procedure Znc to increase the value of x by 2. The
program x :=x + 1 is the body of Znc, and Znc; Znc is the main program (the scope of
the procedure).

Both [2] and [7] adopt the copy rule of Algol 60 when defining a semantics for non-
recursive procedures. According to this rule, a program that contains a procedure call is
equivalent to that obtained by substituting the procedure body for the procedure name.
Variable capture must be avoided, in order to ensure that the scope of variables is static.
The program (1), for instance, is equivalent to x :=x + 1; x :=x + 1, as expected.

In order to illustrate the concerns related to the capture of variables, we consider
the program below which assigns 2 to a global variable x.

[[proc Ass2tox~x:=2oJ[var xoAss2tox](]((2)

A. Cavalcanti et al. /Science of Computer Programming 33 (1999) 87-96 89

The program I[var x l Ass2tox]J is a variable block: it declares a variable x local to
its body, Asdtox. Since there is a variable x free in the body of Ass2tox, we cannot,
as in the previous example, apply the copy rule and substitute x := 2 for Ass2tox. This
substitution would lead to the capture of the global variable x mentioned in the body
of Ass2tox by the local declaration of x in the main program and, therefore, would
violate the rules of static scope. Before applying the copy rule to (2), we have to
rename the local variable x. This is further discussed in Section 3.

In Back’s work, parametrised procedures can be defined using parametrised state-
ments. They can have the form (val vl l p), (res vl l p), or (var vl l p), which cor-
respond to the traditional mechanisms of parameter passing known as call-by-value,
call-by-result, and call-by-reference, respectively. In each case, vl ranges over lists of
variables standing for the formal parameters, and p over programs. These conventions
are assumed in subsequent definitions, where we also use 1 to range over lists of vari-
ables. Moreover, we use subscripts to extend the set of metavariables, so that vlr and
~12, for instance, also stand for lists of variables.

As opposed to assignments, for example, parametrised statements are not programs
by themselves. However, a parametrised statement (or the name of a procedure whose
body is a parametrised statement) can be applied to a list of actual parameters to yield a
program. The resulting program acts as that obtained by passing the actual parameters to
the program in the body of the parametrised statement. The number of actual parameters
must be the same as the number of formal parameters. The correspondence between
them is positional.

By way of illustration, we consider the program that assigns 0 to the variables x
and y by using a parametrised procedure Zero.

I[proc Zeroz(res n*n:=O)oZero(x); Zero(y)]/ (3)

By the copy rule, this program is equivalent to (res non :=0)(x); (res non:=O)(y).
Applications of parametrised statements to actual parameters are defined in terms of

variable blocks. For example, call-by-result is defined as

@es 4 l p)(vl2 > = I[var IO p[ul,\l]; VI2 := 111

provided 1 is a list of fresh variables. This variable block implements call-by-result us-
ing the well-known technique of assignment from a local variable. The term p[oZl\Z]
denotes the result of substituting the variables of 1 for every occurrence of the corre-
sponding variables vll in p.

In Morgan’s approach, the use of parametrised procedures is made possible by sub-
stitutions which define both the formal and actual parameters of a procedure at the
point(s) of call rather than definition. The forms of substitution available correspond
to call-by-value, call-by-result, and call-by-value-result.

For example, a substitution by result has the form p[result vl~\uI& where p is the
program to which it applies, uli, the list of formal parameters, and u/z, the list of actual
parameters. In order to write a program equivalent to (3), also using a procedure Zero,

90 A. Cavalcanti et al. IScience of Computer Programming 33 (1999) 87-96

we employ substitutions by result.

I[proc Zero s II := 0 0 Zem[result n\x]; Zero[result n\v]] 1

Morgan [7] provides a weakest precondition semantics for substitutions. Nevertheless,

they can also be defined in terms of variable blocks. For instance, we can derive from

the weakest precondition of a substitution by result that

p[result uZ1\21Z2] = I[var 10 p[uZl\Z]; 2112 := 111 (5)

for a list 1 of fresh variables. This is the definition actually adopted in [9]. The right-

hand side of this equation is identical to that of (4).

3. Exploring the effect of substitution

As we have mentioned previously, since the main program of the procedure block (2)

redeclares x, the copy rule cannot be applied to remove the procedure call. The standard

way to overcome this difficulty is to rename this local variable.

As a variable block binds the variables that it declares, it is well known that these

variables can be renamed without changing the meaning of the program, in the same

way that the variables bound by quantifiers can be renamed in the predicate calculus.

The relevant rule is as follows: for every program p and all lists of variables vii and

~12, I[var vZl l p]j = I[var 012 l p[vEl\uZz]]) provided the variables of vZ2 are not free

in p. By applying this result, we conclude that, since z is not free in Ass2tox, (2)
is equivalent to I[proc Ass2tox 2x := 2 l I[var z l Ass2tox[x\z]]I]I. At this point, our

main concern is the result of Ass2tox[x\z].

There seems to be two acceptable possibilities: Ass2tox and z := 2. In the first case,

the substitution operator acts on the name Ass2tox and, since x is clearly not free in

this program, Ass2tox is itself the result: substitution is a syntactic operator; this will

be referred to as syntactic substitution. In the second case, the substitution operator acts

on the body of Ass2tox and yields the result of substituting z for x in that program: the

behaviour of substitution is dependent on the context in which it is applied; we will

refer to this as context dependent substitution.

Both forms of substitution can be defined by recursion in the usual way. The interest-

ing parts of their definitions are those concerned with the application of substitution to

a procedure name. In the case of syntactic substitution, we have that pn[vZl\uZ2] = pn,

where pn is a metavariable that ranges over procedure names. For context dependent

substitution, if p is the body of the procedure pn, then pn[vZ~ \vZz] = p[vZl \vZz]. This

somewhat unusual form of substitution is adopted in [14] and, as we explain later on,

is part of a possible solution to the problems we uncover here.

The main purpose of this section is to show that either definition of substitution leads

to inconsistency in Morgan’s formalisation of procedures and parameters. Moreover,

we show that Back’s formalisation presents no problems, provided we adopt syntactic

substitution.

A. Cavalcanti et al. IScience of Computer Programming 33 (1999) 87-96 91

If we assume that Ass2tox[x\z] is z := 2 (context dependent substitution), we can
deduce that I[var z l Ass2tox[x\z]]I is equivalent to I[var z l z := 2]I. This program,
however, can be shown to be equivalent to skip: it does not change any variable other
than the local variable that it introduces, and always terminates. Overall, we can prove
that (2), which is supposed to assign 2 to x, is equivalent to skip.

In [14], Sampaio avoids this problem by restricting the application of the law that
accounts for the renaming of the variables declared by a variable block. He defines the
notion of contiguous scope and establishes that the renaming is possible only if the
variables have a contiguous scope in the body of the variable block.

A variable is said to have a contiguous scope in a program if either this program
does not contain free procedure names (procedure calls) or the variable is not free in
the bodies of the procedures that are called. In the above example, since x does not
have a contiguous scope in Ass2tox, because x is free in the body of this procedure,
we cannot deduce, according to [141, that I[var x l Ass2tox] I= I[var z l Ass2tox[x\z]] (.
Consequently, the undesired deduction that we have presented cannot be carried out.

Although it might be considered a solution to the problem, we cannot adopt
this approach if we accept the usual weakest precondition semantics of variable
blocks proposed in [2,10,9]. In all these models, the equality I[var x l Ass2tox](=
I[var z l Ass2tox[x\z]]I can be deduced, provided z is a fresh variable. More gener-
ally, the conventional law for renaming bound variables can be derived in all these
models. As a consequence, if we assume context dependent substitution, the undesired
deduction can be carried out in these models.

Sampaio gives an algebraic semantics for the language introduced in [14]. In this
semantics, the restricted renaming law that he proposes (based on the notion of con-
tiguous scope) is regarded as an axiom and no model is presented for the language.

In summary, if we discard the possibility of changing the semantics of variable
blocks, we have to assume that Ass2tox[x\z] is equal to Ass2tox, or, in more general
terms, that, substitution is a syntactic operator. This is the case in both [7] and [2].

While this decision avoids the problem discussed above, we show below that it leads
to another problem in Morgan’s formalisation of parameters [7,9]. Again, the problem
is illustrated by means of an example. We consider the program that assigns 2 to a
variable z using the procedure Ass2tox of (2).

I [proc Ass2tox g x := 2 l Ass2tox[result x\z] 11 (6)

In view of our previous comments about procedures and result substitutions, and
assuming syntactic substitution, we can, as formally shown below, get to an unex-
pected conclusion: this procedure block is equivalent to I [var 1 l x := 2; z := I] 1, a pro-
gram that assigns 2 to x and an arbitrary value (that assigned to I upon declaration)
to 2.

I [proc Ass2tox 2 x := 2 l Ass2tox[result x\z] 1)

= I [proc AssZtox 2 x:=2@ I[var loAsRtox[x\l]; z:= 111 [by (511

A. Cavalcanti et al. IScience of Computer Programming 33 (1999) 87-96

=) [proc Ass2tox 2 x:=2o([var ZoAss2fox; z:=Z]1]1

[by Ass2tox[x\Z] = ASs2tox]

=j[var Zox:=2; z:=Z]I [by the copy rule]

It might appear that an immediate solution to this problem is to adopt context de-
pendent rather than syntactic substitution. In this case, Ass2tox[x\Z], in the second line
of the above derivation, would be replaced by Z := 2 (rather than by Ass2tox), and the
overall result of the derivation would be z := 2, as expected. Nevertheless, we have just
concluded that substitution must be regarded as a syntactic operator, since otherwise
we run into the problem raised earlier in this section.

If we apply the copy rule at an earlier stage, before replacing the result substitution
by the variable block defined by (5), the resulting program assigns 2 to z as well. The
development is shown below.

([proc Ass2tox g x := 2 l Ass2tox[result x\z]] (

=x := 2[resuIt x\z] [by the copy rule]

= I[var Zo(x:=2)[x\Z]; z:= Z]] [by (511

= I[var IO Z:=2; z:= Z]] [by a property of substitution]

=z:=2 [by laws of assignment and declaration (see [14], for instance)]

In conclusion, the order in which the laws are applied influences the result.
In [9], Morgan uses the strategy illustrated by our second development above.

However, the laws that can be derived from the model of procedures and substitu-
tions provided in [7,9] do not enforce the application of this strategy: the order of
application used in the first development is also supported by this model.

Altogether, whatever definition we adopt for the substitution operator, we run into
problems. If we assume that A.ss2tox[x\z] is z := 2, in other words, context dependent
substitution, we run into the problem illustrated by our first example. Alternatively,
if we assume that Ass2tox[x\z] is Ass2tox (syntactic substitution), the problem posed
by our second example comes about. This problem is not specific to result substitu-
tions: similar inconsistencies would arise if we had used value or value-result substi-
tutions.

Back’s work does not present problems if we define that the substitution operator is
syntactic. In this approach, the program (6) is written I[proc Ass2tox g (res x l X := 2) l
Ass2tox(z)]I. Since the result of applying a procedure name to an actual parameter
cannot be established without investigating the body of the procedure, when reasoning
about Ass2tox(z), the only way to reduce it to a variable block is by first applying the
copy rule. Consequently, within Back’s framework, the unwanted deduction that could
be carried out using Morgan’s approach cannot arise.

As already explained, Sampaio [14] avoids the unwanted deductions by adopting
context dependent substitution and introducing a notion of contiguous scope which is
used to restrict the application of the law that renames local variables. If we assume

A. Cavalcanti et al. I Science of Computer Programming 33 (1999) 87-96 93

that variables cannot be redeclared, or in other words, if we rule out the possibility of
using nested scope, the variables will always have a contiguous scope. In this case, the
usual law that renames local variables can be applied without further constraints. The
restriction over variable declarations, however, is generally too severe. Moreover, as
Sampaio’s formalisation of procedures and parameters is essentially the same as that of
Back, he could have defined substitution as a syntactic operator, and then avoided the
restriction imposed on the renaming law. As we have shown above, Back’s approach
presents no problems whatsoever if syntactic substitution is adopted.

A negative aspect of Back’s work is the introduction of an additional construct: the
parametrised statement. In this formalism, an extra refinement relation between para-
metrised statements has to be defined and its properties explored before strategies of
procedure development are proposed. Moreover, Back’s work is not as appealing to
practising programmers as Morgan’s calculus, since Back does not propose refinement
laws, but only rules to prove the correctness of (recursive) procedures. The possibil-
ity of calculating, as opposed to verifying, programs accounts for developments that
can be uniformly presented as sequences of simple refinement steps. Each step can
be justified by the application of a refinement law and, possibly, the discharge of the
corresponding proof-obligations. Moreover, refinement laws provide guidance on the
construction of programs.

Fortunately, Morgan’s approach to the development of procedures can be formalised
using Back’s work. In Appendix A we present three refinement laws that correspond
to the main laws of [8] concerned with procedures (substitutions). The laws of [9]
combine an application of these simpler laws with the introduction of a procedure
call. In [4], we use Back’s formalism as a consistent model to derive the three laws
in the appendix and others that support the approach to the development of recursive
(parametrised) procedures proposed by Morgan in [9].

4. Conclusions

We have examined a subtle interaction between substitution, procedures and parame-
ters. Of particular importance is the definition of the substitution operator when applied
to a procedure name. Two alternatives have been analysed: one of them specifies that
the procedure name itself is taken into account (syntactic substitution); the other one
establishes that the substitution operates on the procedure body (context dependent sub-
stitution). Unfortunately, whichever option is chosen, Morgan’s approach to procedures
and parameters is found to be inconsistent.

To our knowledge, the subtle interaction between procedures, parameters, and
substitution discussed in this paper was originally pointed out in [14]. Sampaio’s idea
of restricting the application of the renaming law can be considered as a solution to
the problems found in Morgan’s approach, but the restriction turns out to be too severe
in practice. Also, Sampaio presented no mathematical model to justify the restricted
version of the renaming law.

94 A. Cavalcanti et al. IScience of Computer Programming 33 (1999) 87-96

Back’s formalisation of procedures and parameters involves a greater number of def-
initions and theorems. However, it does not present any of the complications we have
uncovered in Morgan’s work and imposes no restriction as in the solution proposed by
Sampaio.

The problem with Morgan’s approach seems to be a consequence of an unfortunate
design decision: formal parameters are not regarded as local variables in the procedure
body. This decision was perhaps an attempt to avoid parametrised statements, as sug-
gested by Back. Nevertheless, even though parametised statements do indeed increase
the complexity of the formalism, Back’s approach seems to be the right direction to
follow.

Another analysis of the usage of procedures in the refinement calculus is presented
in [6]. This study, however, concentrates on the methodological (rather than on the
semantical) aspects of the development of procedures. In [6], the suitability of the
refinement laws presented in [9] is discussed and an alternative strategy of program
refinement, where (non-recursive) procedures are introduced in the final phase of de-
velopment, is suggested.

Acknowledgements

The authors are indebted to Steve King and Carroll Morgan for their comments on
drafts of this paper. The work of Ana Cavalcanti and August0 Sampaio are financially
supported by CNPq, Brazil, grants 204.527190-2 and 52 1.039195-9, respectively.

Appendix A. Refinement laws

In Morgan’s refinement calculus, specifications are written using specification state-
ments. These have the form w :[pre, post], where w (the frame) ranges over lists of
variables, and pre (the precondition) and post (the postcondition) over predicates. This
program can change only the value of the variables in w and, when executed from a
state that satisfies pre, terminates in a state that satisfies post.

In what follows, we present three laws that can be used to transform specification
statements into parametrised statements or, more precisely, applications of parametrised
statements to actual parameters. As already mentioned, these laws correspond to laws
of [8], namely, those that introduce substitutions that apply to specification statements.

The law that introduces a call-by-value is as follows.

Law 1. Call-by-value.

w: [pre[oZ\eZ],post[vZ\eZ]]

(val UZ 0 w : [pre,post])(eZ)

provided the variables of uZ are not in w, and the variables of w are not free in el.

A. Cavalcanti et al. IScience of Computer Programming 33 (1999) 87-96 95

As we show in [4], this law and the other two that follow can be derived from the

wp semantics of specification statements, assignments, sequential compositions, and

variable blocks [lo, 31, and from the definitions of parametrised statements in terms of

variable blocks.

The introduction of a call-by-result can be achieved with the refinement law below.

Law 2. Call-by-result.

w, uZ2 : [pre,post]

(res 14 0 W, II~I : [pre,post[ul,\vl,]])(uZ*)

provided the variables of vlr are not in w, and are not free in pre or post.

For a call-by-value-result we have the following law.

Law 3. Call-by-value-result.

w, u12 : [pre[uZl \uZ2],post]

(val-res uli 0 w, ~2, : [pre,post[u12\ul,]])(uZ2)

provided the variables of ulr are not in w and are not free in post.

Morgan [S] also presents laws that transform assignments into substitutions. Since

assignments can be written as specification statements, we do not present the corre-

sponding laws here.

References

[l] R.-J.R. Back, On the correctness of refinement steps in program development, Ph.D. Thesis, Department

of Computer Science, University of Helsinki, 1978. Report A-1978-4.

[2] R.-J.R. Back, Procedural abstraction in the refinement calculus, Technical report, Department of

Computer Science, Abe, Finland, 1987. Ser. A, No. 55.

[3] R.-JR. Back, A calculus of refinements for program derivations, Acta Inform. 25 (1988) 593-624.

[4] A.L.C. Cavalcanti, A.C.A. Sampaio, J.C.P. Woodcock, Procedures, parameters, and substitution in the

refinement calculus, Technical Report TR-5-97, Oxford University Computing Laboratory, Oxford, UK,

1997.

[5] E.W. Dijkstra, A Discipline of Programming, Prentice-Hall, Englewood Cliffs, NJ, 1976.

[6] L. Groves, Procedures in the refinement calculus: a new approach?, in: H. Jifeng (Ed.), 7th Refinement

Workshop, Bath, UK, 1996.
[7] C. Morgan, Procedures, parameters, and abstraction: separate concerns, Science of Computer

Programming 11 (1) (1988) 17-27.

[8] C.C. Morgan, Programming from Specifications, Prentice-Hall, Englewood Cliffs, NJ, 1990.
[9] C.C. Morgan, Programming from Specifications, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1994.

[lo] C.C. Morgan, K. Robinson, P.H.B. Gardiner, On the refinement calculus, Technical Monograph TM-

PRG-70, Oxford University Computing Laboratory, Oxford, UK, 1988.

96 A. Cavalcanti et al. IScience of Computer Programming 33 (1999) 87-96

[ll] J.M. Morris, A theoretical basis for stepwise refinement and the programming calculus, Science of

Computer Programming 9 (3) (1987) 287-306.

[12] J.M. Morris, Invariance theorems for recursive procedures, Technical report, Department of Computer

Science, University of Glasgow, 1988.

[13] J.M. Morris, Laws of data refinement, Acta Inform. 26 (1989) 287-308.

[14] A. Sampaio, An algebraic approach to compiler design, D.Phil. Thesis, TM-PRG-110, Oxford University

Computing Laboratory, Oxford, UK, 1993. Revised version to appear as Vol. 4 of AMAST (Algebraic

Methodology and Software Technology) Series in Computing, World Scientific, Singapore, 1997, in

press.

