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Let X,, .., X, be independent random variables and define for each finite subset
Ic{l, .., n} the o-algebra #=0{X;:icl}. In this paper %, -measurable random
variables W, are considered, subject to the centering condition E(W,| #)=0 as.
unless /=J. A central limit theorem is proven for d-homogeneous sums
W(n)=3,_4 W, with var W(n)=1, where the summation extends over all ()
subsets /< {1,..,n} of size [I|=d, under the condition that the normed fourth
moment of W(n) tends to 3. Under some extra conditions the condition is also
necessary.  © 1990 Academic Press, Inc.

1. INTRODUCTION AND SUMMARY

We start with a sketch of the general setting. Consider independent
random variables X, .., X, on the probability space (Q, #, P). Define for
each finite subset /< {1, .., n} the o-algebra # =0{X,:iel} (with # the
trivial o-algebra) and let W, denote an %,-measurable random variable.
(Throughout this paper the random variables W, may depend on n,
W,= W,,; the parameter n will be suppressed where possible.) We assume
the random variables W, to be centered, square integrable, and
uncorrelated:

EW,=0, EW3 =d2<cw, EW,W,=0 if I#J.

We are interested in conditions that ensure asymptotic normality for
d-homogeneous sums,

Win)= Z w,,

| =d
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where the summation extends over all (%) subsets /< {1,..,n} of size
|7| =d. Without loss of generality we may assume the sum W(n) to be
normalized so as to have unit variance:

var W(n)= Y oi=1

[ =d

The following condition will play a crucial role in the theory
EWn)*-3 for n- w,

with 3 being just the fourth moment of the standard normal distribution.

This assumption does not suffice for a central limit theorem; W(n) may
converge (even in the simple case d=1) to any centered random variable
with unit variance and fourth moment equal to 3. What is needed, is a
negligibility condition which forces the total contribution of the random
variables W, which depend on X, to the variance of W(n) to be small for
eachi=1, .., n:

max ), 6;—-0 for n— oo

! Isi

In the important special case of homogeneous multilinear forms in
independent centered random variables,

W,=a, H X
iel

the above assumptions imply asymptotic normality for W(n). This will be
shown in Theorem 1 below. The muitilinearity in itself is not the essential
property which we need for asymptotic normality. What seems to be cru-
cial is that, as in the case of martingales, certain conditional expectations
should vanish. This will be made more precise.

Any square integrable #;, _,,-measurable random variable Z(rn) can be
written as

Z(n)= Y W,  where the components W, are uniquely
I<{l,.,n} . ..
determined by the conditions
(a) W, is F-measurable;

(b) E(W,| #)=0 as. unless I J. (1.1)

This follows from the expressions

Wy=EWy=E (Z(n) -3 W,) = EZ(n)
J# &
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and

W,=E<Z(n)— Y W, ‘f,) =E<Z(n)~ Y W, 3"',) as.
J#I Jgl

E.g., in case of a multilinear form, W,=aq,]],.; X;, condition (b) is
satisfied if EX,;=0, iel
* The above decomposition was used in Hoeffding [7] to obtain central
limit theorems for Z(n), Z(n) being approximately a sum of independent
random variables. We shall refer to (1.1) as the Hoeffding decomposition
(see Van Zwet [14]).

For d-homogeneous sums in the Hoeffding decomposition W(n)=
2\ =a W—we shall reserve the notation W(n) for homogeneous sums—
we have the following central limit theorem:

THEOREM 1. Let W(1), W(2),.. be d-homogeneous sums in the
Hoeffding decomposztzon W(n)= Zl n1=a Wr for fixed d with var W(n) =1,
for n=1,2, ... Suppose

(a) max; Y, 070 for n— o0,
(b) EW(n)*->3 for n > .
Then

Wn)—% N(O,1)  for n— .

The proof of Theorem 1 partly rests on algebraic methods. This is reflected
in the rather severe fourth moment condition. An algebraic approach is
more obvious in case d=2. The quadratic form in iid. N(0, 1) random
variables

Wn)=Y, a;X.X,

i%j

can be decomposed orthogonally as
W)=Y, Y

with p; the eigenvalues of the matrix (a;) and Y;N(0,1) distributed,
orthogonal, and hence independent. Clearly, W(n) has a normal limit
distribution iff max |y, vanishes for n-— co. Straightforward calculation
yields that the latter condition is equivalent with condition (b) of
Theorem 1 (see De Jong [31]).

The above example illustrates two important aspects. On the one hand,
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a central limit theorem with conditions expressed in terms of absolute | W)
cannot be sharp: One can construct a sequence of matrices (a,,=(*)n"")
such that the maximal eigenvalue vanishes, whereas the matrix (]a,,|) has
only one non-zero eigenvalue. On the other hand, only conditions on the
tails of the random variables W, will not be sufficient to ensure asymptotic
normality.

For asymptotic normality the interaction of the random variables W, has
to be taken into account. The fourth moment condition (b) of Theorem 1
expresses this (lack of) interaction neatly. Under an extra condition, only
imposing a further restriction on the tails of the summands W, it can be
shown that condition (b) is equivalent to asymptotic normality. (For
proofs of the results indicated by A and B, see De Jong [4].)

THEOREM A (Theorem 3.2.5 in De Jong [4]). Let W(l), W(2),.. be a
sequence of d-homogeneous sums in the Hoeffding decomposition,
Wn)=%,,_4 Wy, with var W(n)=1, for n=1,2, ... Suppose

(a) max;y,., 0250, n- oo,
(b) max, EW?3/ec3<D, D not depending on n.

Then the following two statements are equivalent:

(1) EW(n)*-3, n— o0,
(2) W(n)—-“N(@O,1), n— 0.

Condition (b) of Theorem 1 is restrictive as far as the tail distribution of
the summands W, is concerned. In this respect improvement can be gained
by truncation techniques. (See De Jong [4].) However, this is not our
main concern. We shall concentrate on the interplay of the summands W,
as expressed in the fourth moment.

One remark on Theorem 1 remains: The condition of homogeneity
cannot be removed from Theorem 1. Thus the theorem is not valid for a
non-homogeneous sum of two homogeneous sums.

In the remainder of the introduction we refer to some literature related
to our work. Quadratic forms in ii.d. N(0, 1) random variables are treated
exhaustively in Sevast'yanov [13]. In Rotar’ [11] this approach is
generalized to independent centered square integrable random variables.

By the method of moments Jammalamadaka and Janson [8] obtain a
central limit theorem in the non-homogeneous case for d=2. Hall [5] also
obtains a central limit theorem for this case, using a martingale central
limit theorem. Weber [15] uses backward martingales to obtain a central
limit theorem.

Central limit theorems for sums of random variables indexed by subsets
of the integers with three or more elements are more scarce. See, e.g.,
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Noether [10] and Barbour and Eagleson [1]. Both papers give results for
dissociated random variables. (The concept of dissociatedness was intro-
duced in McGinley and Sibson [9].) The random variables W, defined
above are examples of dissociated random variables. Rotar’ [12] considers
multilinear forms.

2. HOMOGENEOUS SUMS IN THE HOEFFDING DECOMPOSITION

In this section we are concerned with properties of homogeneous sums
in the Hoeffding decomposition that are valid irrespective of the assump-
tions (a) or (b) of Theorem 1. The Hoeffding decomposition is orthogonal.
Suppose J\I# J, then EW, W ,= EW,E(W, | %#)=0. Similarly, we have:

LemMma 2. Let Wy, ... W, be components in the Hoeffding decomposi-
tion and suppose I, " (I, --- VI )#1,. (I, is called a free index of the
g-tuple (1, .., 1,).) Then EW, .- W, =0 (provided the expectation exists).

Proof. By the defining relation 1.1.b we have

EW, --- W, =EW, - W, EW, | F,,. .,)=0

Remark. In fact, we have shown more, namely, that

EW,---W,|#)=0as, if Iin(hbu---ul,ud)#I,.

In the rest of this section we shall concentrate on the several partial
sums that form the fourth moment EW(n)'=EX,_, W)=
2ok EW,W,WW,. The collection of quadruples (7, J, K, L) is split
into the following three sets:

& the collection of quadruples with a free index (see Lemma 2),

# the collection of quadruples (7, J, K, L) for which each element in
the union Ju Ju KU L lies in exactly two of the sets I, J, K, L. This is the
collection of bifold quadruples:

L+ L+ 1e+1,=2-1,, 0015

 the rest F °\ 4; a quadruple in 7 has no free index and at least one
element in the union JuJu KU L is in three or more sets:

L+ 1+ 1e+1,22-1, 001
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In Lemma 2 it is shown that the set # contributes nothing to the fourth
moment EW(n)*. For any subset #* c % we have

S EW,W,W W, =0.

(LJ K LyeF*

The quantities = and 7', defined below, will play an important role in this
paper:

‘('= Z EW]WJWXWL,
(I.J, K, LyeT

= Z GIGJOKO-L‘
(ILJ, K, LYeT

Without proof we give the following estimate for t:

LeMMA B. t<Cy(max, ., ,67)"% with C, a constant depending on d,
but not on n.

For a proof which is elementary, we refer to De Jong [4]. Note that
Lemma B together with assumption (a) of Theorem 1 above implies that <
vanishes. (See Proposition 6(a) below.)

The remainder of the section is concerned with the bifold quadruples.
The collection of bifold quadruples is split into (d+ 1)(d+2)/2 subsets
(e, ), 0< f<e<d, where

Ble, )={,J, K, LYeB:|InJ|=e, |InK|=f}.

Given the numbers e = |InJ| and f=|In K|, the size of each intersection
of two indices is known: |[InLi=d—e— f and |InJ|=|Kn L|, etc. Put

S(e, f)= Yy, EW W, W W,.

(I.J K LyeBle, f)

Since the value of EW, W, W W, is not changed by a permutation of
(WIa W.h W[(, WI.)’ we have

Sle, f)=8(f, e)=S(e, d—e—f).

Put

s= ¥ Y S /)

I1€e<d—-2 1sf<sd—e—1

So= ¥ S(e,0).

I€esd—1
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It is helpful to envisage the quantities S(e, f) as being indexed by the
points of an equilateral triangle. There is a sixfold symmetry. The three ver-
tices S(0, 0), S(0, d), and S(d, 0) are equal. S is the sum over the interior
points and S, the sum over one side, exclusive of the endpoints. We have

EWn)'= Y  EW,W,WW, + Y  EW,W,WW,
(L.J.K, LYe® ) 4, J, K, LYeT
=S +3S,+35(0,0) +1". (2.1)

The following lemma will be needed below.

LemMma 3. Let W,, W, be measurable with respect to the o-algebras %,
and F,, respectively. Then

E[EW, W, | 'g;IAJ)]Z < Gi“i'

Proof. Recall that I4J=(I\J)u (J\I). By the conditional version of
the Cauchy-Schwarz inequality we have
ELEW/ W, | F1u)1? SELEW] | Fr00) EW3| F10))]
=E[E(W]| %) EW3| #\ )]
=070},
where the two equalities follow by the independence of the underlying

random variables X;. (For the first equality see Chung [2, Theorem 9.2.1].)
This proves Lemma 3.

Using the independence of the underlying random variables X, in the
same way as above, we obtain for bifold quadruples an equality.

LEMMA 4. Let W,, W, Wy, W, be measurable with respect to the
o-algebras %, %,, Fx and ¥, respectively. Then for a bifold quadruple
(1, J, K, L) we have

EW W Wy W, =E[EW,W,| F;) EW W, | Fs)]

Proof.

EW,W,WW,_ = E[W,W,E(WW,| %,,)]

1)
= E[WIWJE(WK W, | y([ul)m(KuL))]

(2)
= E[E(W,W,| Fra0) EW e W, | Frar)],
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where equality (1) follows by the independence of the random variables
(see [2, Theorem 9.2.1]). Equality (2) follows since we have in a bifold
quadruple (JuJ)n(Kw L)y=I14J=KAL.

Remark. Notice that it is not necessary in Lemma 3 or 4 to assume that
the random variables W,, W,, W,, W, are components in the Hoeffding
decomposition.

The main part of the proof of Theorem 1 rests on the above four lem-
mas, for the Lemmas 2—4 imply the technical results on bifold quadruples
of Proposition 5 below. With the latter results, the proof of Theorem 1 can
be established by taking a closer look at certain partial sums over the sets
% and 7. The first two assertions of Proposition 5 establish an almost
non-negativity for 25,-+ S and S, respectively. Both terms do not exceed
—1 (which vanishes under assumption (a) of Theorem 1).

PROPOSITION 5. Let (W)), ., be homogeneous components in the
Hoeffding decomposition. Then
(a) 25,+S8=2 —1,
(b) SO 2 )
(€} 2S,+S<(NH(So+1)+ 1.

Proof. To study the bifold quadruples we introduce the auxiliary
random variable

A= Z E( WI WJ 1 5]’—141)-

1,J
For a fixed subset C< {1, .., n} the random variable

Yo=Y EW,W,| %)

147 =C

satisfies E(Y | %) =0 as. if C\ B# & (Lemma 2, Remark). Hence there
is a Hoeffding decomposition for 4 with d-homogeneous sums

A9= Y Y EW,W,| ).

|Cl=2d—2e 147=C

We shall prove assertion (a) by showing that 25,+ S equals (up to a
remainder term not exceeding t) the variance of ¥, _,_,4%. By the
orthogonality of the Hoeffding decomposition we have

var Y A9= Y varA®“,

l1<e<d 1€e<d
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and

2
var A® < Z E( Y EW,W,| '%AJ))

|Cl =2d—2e 147=C

- )

(I, J, K, L), IAJ = KAL, |I4J| = 2d — 2e

X ELE(W W ;| Za;) EW W | Fiar)]

QY EWW,WW,
B NINT| =e
+ Y E[EW W, | Fu) EWkW, | Frar)]

T nd)=e

Y S(ef)+R., (2.2)

Os/<d—e

I

where equality (1) rests on the orthogonality of the Hoeffding decomposi-
tion. Equality (2) rests on Lemma 4. By the Cauchy-Schwarz inequality
and Lemma 3 we have

Ry < Z 010,00
T, |InJ|=e
and hence 'R“+ Tt +Rld——1| <.

The proof of assertions (b) and (c) is similar. For a fixed subset C with
|C| =2d— 2e we have

Y EW,W,| %)

14J=C

= > ) EW W, Fy). (23)

B, BcC, |B=|B|=d—e.BAB =@ NJ=B,J\I=F8

Assertion (b) follows by

z

|IC|=2d—2e B,BcC, |B=|B|=d—e, BNnB =

xE[ Y EWW,| fw)]z

INJ=B,J\I=F
= Z EWIWJWKWL+R2e

BN =e, INT=L\K, J\I=K\L

=S(e, 0) + R,,,

with the remainder term |3 R,,|<t (by Lemma 3). The final equality
follows, since for bifold quadruples the equality I\J=L\K implies
InK=¢. (Recall S5=5(1,0)+ --- +5(d—1,0).)

683/34/2-9
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Assertion (c) follows by the Cauchy-Schwarz inequality. Using (2.3) we
obtain

var4¥9= %

E[
|Cl =2d—2e B B cC, |B|=|B{=d—e, BnB =

x( S EW,W,| %,))]z

NI=B J\NI=B
|Cl =2d— 2e B,BcC |B=|B|l=d—e,BnB =

X[
B, BcC, |Bl=|B|l=d—e,BnB' =

<E( T EWW, ﬁ))])

NJ=B, J\I=F§

- (2‘1’26) (S(e, 0)+ Ro).
d—e

Assertion (c) follows, since by (2.2) we have

-2
25,+S< Y varA‘e’+1:<max(2d e)(S0+r)+r.

Ise<d € d—e

This proves Proposition 5.

3. PrROOF OF THEOREM 1

Under the conditions of Theorem 1 most of the quantities defined above
vanish. In order to make this clear we introduce the auxiliary random
variable

Zimy= Y W, W,

InJ#J

PROPOSITION 6. Under the conditions of Theorem | we have
(a) 150, n-o oo,
b) S;—0, n- o,
(c) -0, n- o,
(d) S—0, n-co.
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Proof. Assertion (a) follows from condition(a) of Theorem1 by
Lemma B. Assertion (d) follows from assertion (b) and assertion (a) by
Proposition 5(c). In order to prove assertion (b) consider the decomposi-
tion of W(n)?,

Wny=Y W,W,=Z(n)+ Y W,W,.
LJ Ini=g
Note that EZ(n)=3 ¢?=1 and that the two terms on the right-hand side

are orthogonal, since (/,J,K,L) has a free index if InJ=¢ and
KnL# . We have

) 2
E( Y W,W,) 22 Y s+ ¥ EW, W, W W,

In/=g Ini=3 IAnI=@ I+ INnKA D

(2)
=2-2 Y o702+,
InJ#

where equality (1) follows, since InJ= @f =1 K implies 7 = L for a bifold
quadruple. Equality (2) rests on

2
1=( y a?) =50,00+ Y o}o3,
| =d InJ#&
where the final equality rests on the .independence of W7 and W, if
InJ=(J. By the orthogonality of the decomposition of W(n)* and (2.1),

respectively, we have

EW(n)4—3(=1=)varZ(n)+So~2 Y o2q?

InJ# &

CrrS+385-3 ¥ ool G.1)

InJ#
The final terms in the equalities (1) and (2) vanish, since 7 does. Since
So2 —7 by Proposition 5(b), the right-hand side of (1) equals the sum of
two non-negative quantities (up to a vanishing remainder term). Hence,
both var Z(n) and S, vanish, since the left-hand side vanishes by condition
(b) of Theorem 1. This proves assertion (b). Assertion (c) follows, since by
the assertions (a), (b), and (d) all other right-hand-side terms in the final
expression above vanish and thus also ’. This proves Proposition 6.
The first equality of (3.1) yields:

CoRrROLLARY 7. Under the conditions of Theorem 1,

Z(n)i» 1, n— 0.
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Proof of Theorem 1. We write W(n) as a sum of martingale differences:

W(n) = Z Uk’ WIth Uk = Z W],

1<k<n I max =k

ey

will follow from the martingale central limit theorem of Heyde and Brown
(6] if the following two conditions are satisfied:
L ¥ 1cn EUL>0, n- oo,
I Y, UlnP1, noo.
Remark. The above conditions are by far not the sharpest conditions

known. However, they suit particularly well in the proof of Theorem 1.
Write

Z(n)= Z Vk’ WIth Vk= Z WI WJ.

igk<n InJ#Z, maxIuJ=k
The conditions T and II follow from the following three assertions:

(a) var(Z(n)—leks” U;‘:)—»O, n— o,
(b) var(Z(n)— X, <i<n U= cken EVi— U2,
(C) Zlék{n EV%-’O, n— 0.

Assertion (a) implies, in combination with Corollary 7, condition II; the
conditions (b) and (c) together imply condition L.

Proof of the Assertions (a), (b), and (c). Note that EV,=EU}.

E(Z(n)— 0 Ui)2

1<k<n

=E( Yy ww,— Y W,W,)2

Ind+g max [=maxJ

2
E( W,W,)
InJ# G, max v Jelal

=E (2 Y W, W,)2

InJ#F maxIuJel\J
=4 Z EWIWJWKWL
InJ£#QPGI#KnLmaxIuvJuKulLelnK\(JUL)
=4 y EW,W,W W,
T, maxIuJuKulLelnK\(Jul)
+4 y EW, W, W W,, (3.2)

@ InT# P, maxIuJuKuLelnK



CENTRAL LIMIT THEOREM 287

where the final equality follows from the definitions of the sets  and %:
for a quadruple in 7 each pair has a non-empty intersection and for a
quadruple in # we have |InJ|=|Kn L], since I4J=KAL.

We claim that both the bifold and non-bifold part in the above sum
vanish. The bifold part will be shown to be equal to (2/3)S+S,, which
vanishes according to Proposition 6. By symmetry we have

S+3S, = Y EW, W, W W,
BI#£T T#K, I+ L
=6 y EW,W,W W,

BIAN T4 K I# L, maxIuJuKulLelnk

2 ) EW, W, W W,

BI#FKmax IoJUuKulLelnK

=6( Z EWIWJWKWL

BoAINIJ#F#EINnL maxfoJUKULelnK

+2 ¥ EW,W, Wy WL),

B InJtF InL=F, maxIvJuKulelnk

where equality (1) follows, since the quadruples are bifold. Thus we have
shown

235+ 8,=4 Y EW, W, W W,.

BInJ+< P max IVJUKULelINK

It remains to show that the non-bifold quadruples in (3.2) vanish. Sup-
pose that (I, J, K, L)e 7, and let m=max IuJu Ku L. The point m lies
either in all four sets 1, J/, X, and L, in exactly three of these sets or in
exactly two. By symmetry we find

Tl= Z EW]WJWKWL

max /=max J=max K=max L

+4 ¥ EW, W, W W,

max f[oJuKulelnJnK\L

+6 ¥ EW, W, W W,.

Fymax IvJuKulelnK\(JUL)

Note that the first term equals

Y EUi= Y Y EW, W, WiW,.

I<k<n 1<k<n max/=maxJ=max K=max L=k
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A similar decomposition yields

max foJUKulL=kelnJnK\L
+4 y EW, W, W W,.

max IoJUKUL=kelnJnK\L INnJ+F#KnL
Thus, as in the equality (2.3), we find

v+ 4 v EW,W, W, W,
B InJ#EF maxIvJUKULelInkK
= Z EVit2 Z EwW W, W . Ww,.

l<sk<n T, max IuJuKuLelnK\(JUL)

Note that the final term in the above equality equals half the non-bifold
part of the right-hand side of (3.2). Since the left-hand side of (3.2) is non-
negative, the final term above is non-negative up to a vanishing remainder
term. Since the two terms of the left-hand side vanish and the right-
hand side is a sum of non-negative terms (the final one up to a vanishing
remainder term), all terms on the right-hand side vanish. This proves the
assertions {a) and {c). Finally, assertion (b), for I>k

E(V,- UV~ UH=0,

since each quadruple in the expectation has a free index containing /. This
completes the proof of Theorem 1.
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