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Let Xi, . . . . X, be independent random variables and define for each finite subset 
IC { 1, . . . . tr} the u-algebra S,= o{Xj : io I}. In this paper Y,-measurable random 
variables W, are considered, subject to the centering condition E( W, 1 9,) = 0 as. 
unless I c J. A central limit theorem is proven for d-homogeneous sums 
W(n)=&=d W,, with var W(n)= 1, where the summation extends over all (z) 
subsets I c { 1, . . . . n} of size 111 =d, under the condition that the normed fourth 
moment of W(n) tends to 3. Under some extra conditions the condition is also 
necessary. d 1990 Academic Press, Inc. 

1. INTRODUCTION AND SUMMARY 

We start with a sketch of the general setting. Consider independent 
random variables X1, . . . . A’,, on the probability space (0, 9, P). Define for 
each finite subset Zc { 1, . . . . n} the a-algebra 9, = c(Xi : i E Z} (with 9@ the 
trivial a-algebra) and let W, denote an 9,-measurable random variable. 
(Throughout this paper the random variables WI may depend on n, 
W,= W,,; the parameter n will be suppressed where possible.) We assume 
the random variables W, to be centered, square integrable, and 
uncorrelated : 

EW,=O, EW;=a;<q EW,W,=Q if I# J. 

We are interested in conditions that ensure asymptotic normality for 
d-homogeneous sums, 

W(n)= 1 W,, 
IfI =d 
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where the summation extends over all (i) subsets Zc { 1, . . . . n} of size 
111 = d. Without loss of generality we may assume the sum PI’(n) to be 
normalized so as to have unit variance: 

var W(n)= C aj=l. 
111 =d 

The following condition will play a crucial role in the theory 

EW(n)4 --) 3 for n+oo, 

with 3 being just the fourth moment of the standard normal distribution. 
This assumption does not suffice for a central limit theorem; IV(n) may 

converge (even in the simple case d = 1) to any centered random variable 
with unit variance and fourth moment equal to 3. What is needed, is a 
negligibility condition which forces the total contribution of the random 
variables W, which depend on Xi to the variance of W(n) to be small for 
each i= 1, . . . . n: 

max C flf -0 for n-+02. 
’ Isi 

In the important special case of homogeneous multilinear forms in 
independent centered random variables, 

WI=aI JJ Xi, 
iel 

the above assumptions imply asymptotic normality for W(n). This will be 
shown in Theorem 1 below. The multilinearity in itself is not the essential 
property which we need for asymptotic normality. What seems to be cru- 
cial is that, as in the case of martingales, certain conditional expectations 
should vanish. This will be made more precise. 

Any square integrable Ft i, ,,_, n1 -measurable random variable Z(n) can be 
written as 

Z(n)= c w,, where the components W, are uniquely 
Ic.{l,...,n) 

determined by the conditions 

(a) W, is Prmeasurable; 

(b) E( W, ) FJ) = 0 a.s. unless ZC .Z. 

This follows from the expressions 

(1.1) 

W, =EZ(n) 
> 
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and 

Z(n)- c W,j% a.s. 
JSI 

E.g., in case of a multilinear form, W, = a, nie, X,, condition (b) is 
satisfied if EXi = 0, i E I. 

l The above decomposition was used in Hoeffding [7] to obtain central 
limit theorems for Z(n), Z(lt) being approximately a sum of independent 
random variables. We shall refer to (1.1) as the Hoeffding decomposition 
(see Van Zwet [14]). 

For d-homogeneous sums in the Hoeffding decomposition W(n) = 
C,,, =d WI-we shall reserve the notation W(n) for homogeneous sums- 
we have the following central limit theorem: 

THEOREM 1. Let W(l), W(2), . . . be d-homogeneous sums in the 
Hoeffding decomposition, W(n) = C;,, =d WI, for fixed d with var W(n) = 1, 
for n = 1,2, . . . . Suppose 

(a) maxi~,,ia~+Oforn+co, 
(b) EW(n)4+3 for n+ca 

Then 

W(n) -5 N(0, 1) jbr n-+c0. 

The proof of Theorem 1 partly rests on algebraic methods. This is reflected 
in the rather severe fourth moment condition. An algebraic approach is 
more obvious in case d = 2. The quadratic form in i.i.d. N(0, 1) random 
variables 

W(n) = 1 avX,Xi 
i#j 

can be decomposed orthogonally as 

with pi the eigenvalues of the matrix (Q) and Y,N(O, 1) distributed, 
orthogonal, and hence independent. Clearly, W(n) has a normal limit 
distribution iff max (~~1 vanishes for n + co. Straightforward calculation 
yields that the latter condition is equivalent with condition (b) of 
Theorem 1 (see De Jong [3 3). 

The above example illustrates two important aspects. On the one hand, 
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a central limit theorem with conditions expressed in terms of absolute ) IV,1 
cannot be sharp: One can construct a sequence of matrices (Use = ( Z)n-‘) 
such that the maximal eigenvalue vanishes, whereas the matrix (1~~~1) has 
only one non-zero eigenvalue. On the other hand, only conditions on the 
tails of the random variables W, will not be suflicient to ensure asymptotic 
normality. 

For asymptotic normality the interaction of the random variables W, has 
to be taken into account. The fourth moment condition (b) of Theorem 1 
expresses this (lack of) interaction neatly. Under an extra condition, only 
imposing a further restriction on the tails of the summands W,, it can be 
shown that condition (b) is equivalent to asymptotic normality. (For 
proofs of the results indicated by A and B, see De Jong [4].) 

THEOREM A (Theorem 3.2.5 in De Jong [4]). Let W(l), W(2), . . . be a 
sequence of d-homogeneous sums in the Hoeffding decomposition, 
W(n) = C,,, = d W,, with var W(n) = 1, for n = 1,2, . . . . Suppose 

(a)  maXi CIpi 4 -+ 0, n-co, 
(b) max, EW:/oT < D, D not depending on n. 

Then the following two statements are equivalent: 

(1) EW(n)4-+3, n+oo, 
(2) W(n) -+dN(O, l), n + co. 

Condition (b) of Theorem 1 is restrictive as far as the tail distribution of 
the summands W, is concerned. In this respect improvement can be gained 
by truncation techniques. (See De Jong [43.) However, this is not our 
main concern. We shall concentrate on the interplay of the summands W, 
as expressed in the fourth moment. 

One remark on Theorem 1 remains: The condition of homogeneity 
cannot be removed from Theorem 1. Thus the theorem is not valid for a 
non-homogeneous sum of two homogeneous sums. 

In the remainder of the introduction we refer to some literature related 
to our work. Quadratic forms in i.i.d. N(0, 1) random variables are treated 
exhaustively in Sevast’yanov [ 131. In Rotar’ [ 111 this approach is 
generalized to independent centered square integrable random variables. 

By the method of moments Jammalamadaka and Janson [8] obtain a 
central limit theorem in the non-homogeneous case for d= 2. Hall [S] also 
obtains a central limit theorem for this case, using a martingale central 
limit theorem. Weber [ 151 uses backward martingales to obtain a central 
limit theorem. 

Central limit theorems for sums of random variables indexed by subsets 
of the integers with three or more elements are more scarce. See, e.g., 
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Noether [lo] and Barbour and Eagleson [l]. Both papers give results for 
dissociated random variables. (The concept of dissociatedness was intro- 
duced in McGinley and Sibson [9].) The random variables W, defined 
above are examples of dissociated random variables. Rotar’ [ 121 considers 
multilinear forms. 

2. HOMOGENEOUS SUMS IN THE HOEFFDING DECOMPOSITION 

In this section we are concerned with properties of homogeneous sums 
in the Hoeffding decomposition that are valid irrespective of the assump- 
tions (a) or (b) of Theorem 1. The Hoeffding decomposition is orthogonal. 
Suppose J\ I # 0, then E W, W, = EW,E( W, 1 F1) = 0. Similarly, we have: 

LEMMA 2. Let W,,, . . . . Wl, be components in the Hoeffding decomposi- 
tion and suppose I, A (I, u . ‘. u I,) #I,. (Z, is called a free index of the 
q-tuple (II, . . . . I,).) Then EW,, . . WIq = 0 (provided the expectation exists). 

Proof: By the defining relation 1.l.b we have 

EW,, ... WI, = E W, ..’ K/W’,, I&u _.. u,,)=O. 

Remark. In fact, we have shown more, namely, that 

Et WI, . . . W,, ( PA) = 0 a.s., if Z,n(Z,u ... uZ,uA)#I,. 

In the rest of this section we shall concentrate on the several partial 
sums that form the fourth moment EW(n)4= E(z,,,=, W,)4= 
c (,, J, K, LJ EW, W, W, W,. The collection of quadruples (I, J, K, L) is split 
into the following three sets: 

5 the collection of quadruples with a free index (see Lemma 2) 
?# the collection of quadruples (I, J, K, L) for which each element in 

the union iu Ju Ku L lies in exactly two of the sets I, J, K, L. This is the 
collection of bifold quadruples: 

I,+ l,+ I,+ 1L=2.1,“,“KuL, 

F the rest S’\k@; a quadruple in F has no free index and at least one 
element in the union Zu J u Ku L is in three or more sets: 
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In Lemma 2 it is shown that the set F contributes nothing to the fourth 
moment EW(n)4. For any subset 9* c 9 we have 

c E W, W, W, W, = 0. 
(I, J, K. L)EF* 

The quantities r and r’, defined below, will play an important role in this 
paper : 

7’ = 
c EW, W, W, W,, 

(I, J, K. L)E~- 

?= 
c oI(T.I(TKoL. 

(1, J, K. L)E F 

Without proof we give the following estimate for r: 

LEMMA B. r < Cd(maxi Clsi a:)‘/*, with Cd a constant depending on d, 
but not on n. 

For a proof which is elementary, we refer to De Jong [4 J. Note that 
Lemma B together with assumption (a) of Theorem 1 above implies that z 
vanishes. (See Proposition 6(a) below.) 

The remainder of the section is concerned with the bifold quadruples. 
The collection of bifold quadruples is split into (d + 1 )(d + 2)/2 subsets 
99(e, f ), 0 <f < e < d, where 

Given the numbers e = [Zn JI and f = II n Kj, the size of each intersection 
of two indices is known: (ZnL) =d-e-f and lZnJ( =(KnLJ, etc. Put 

S(e, f)= C EWIWJW,WL. 
(I, J. K, L) E ate. f) 

Since the value of EW, W, W, W, is not changed by a permutation of 
(WI, W,, W,, W,), we have 

S(e, f)=S(Le)=S(e,d-e-f). 

Put 

s= c c S(e, f h 
lCeCd--2 l&f&d-e-1 

So = 1 S(e, 0). 
ISeid-1 
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It is helpful to envisage the quantities S(e, f) as being indexed by the 
points of an equilateral triangle. There is a sixfold symmetry. The three ver- 
tices S(0, 0), S(0, d), and S(d, 0) are equal. S is the sum over the interior 
points and S, the sum over one side, exclusive of the endpoints. We have 

EW(n)4= 1 EWrW,W,W,+ 1 EW,W,W,W, 
(f.J,K,L)E~ (LJ, K L)EY 

= s + 3& + 3S(O, 0) + 7’. (2.1) 

The following lemma will be needed below. 

LEMMA 3. Let W,, W, be measurable with respect to the o-algebras 9, 
and FJ, respectively. Then 

Proof: Recall that ZdJ= (Z\J) u (J\Z). By the conditional version of 
the Cauchy-Schwarz inequality we have 

ECE(W,W, I %AJ)I’ 6 ECW’: I 6,~) E( W: I 9,AJ)] 

= ECE( W: I %\J E( W: I FJ,,)] 

= a$& 

where the two equalities follow by the independence of the underlying 
random variables Xi. (For the first equality see Chung [2, Theorem 9.2.11.) 
This proves Lemma 3. 

Using the independence of the underlying random variables Xi in the 
same way as above, we obtain for bifold quadruples an equality. 

LEMkr.4 4. Let W,, W,, W,, W, be measurable with respect to the 
o-algebras FI, gJ, 9: and 9=, respectively. Then for a bifold quadruple 
(Z, J, K, L) we have 

EW,WJWKWL=ECE(W,W, I%,,) E(W,W, I F&)1. 
Proof: 

EWIWJWKW, = ECW,WJ(W,W, l4u,)l 

~ECW,W,E(UIKWLI~~uJ)n(KuL))l 

2 ECE(W,W, I %dE(W~WwL I FadI, 
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where equality (1) follows by the independence of the random variables 
(see [2, Theorem 9.2.11). Equality (2) follows since we have in a bifold 
quadruple (lu J) n (Ku L) = ZdJ= &IL. 

Remark. Notice that it is not necessary in Lemma 3 or 4 to assume that 
the random variables W,, W,, W,, W, are components in the Hoeffding 
decomposition. 

The main part of the proof of Theorem 1 rests on the above four lem- 
mas, for the Lemmas 2-4 imply the technical results on bifold quadruples 
of Proposition 5 below. With the latter results, the proof of Theorem 1 can 
be established by taking a closer look at certain partial sums over the sets 
.@I and y. The first two assertions of Proposition 5 establish an almost 
non-negativity for 2& + S and S,, respectively. Both terms do not exceed 
- r (which vanishes under assumption (a) of Theorem 1). 

PROPOSITION 5. Let ( W,),,, =d be homogeneous components in the 
Hoeffding decomposition. Then 

(a) 2S,+S> -r, 
(b) Soa -r, 
(c) 2s,+ss(z,)(s,+q+7. 

ProoJ To study the bifold quadruples we introduce the auxiliary 
random variable 

A = c E(W,W, I 6~~1. 
I, J 

For a fixed subset Cc { 1, . . . . n} the random variable 

yc= 1 E(W,WJI %J) 
IAJ=C 

satisfies E( Y, / pB) = 0 a.s. if C\B # 0 (Lemma 2, Remark). Hence there 
is a Hoeffding decomposition for A with d-homogeneous sums 

A”’ = 
c C E(WIWJ I %AJ). 

JC(=Zd-2e IAJ=C 

We shall prove assertion (a) by showing that 2S,+ S equals (up to a 
remainder term not exceeding z) the variance of C, c e < d A”‘. By the 
orthogonality of the Hoeffding decomposition we have 

var 1 <T< d A”) = I z< d var A”‘, 
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and 

( 
2 

var A”’ z 
,,,=Tde2 E 1 E(WIWJI &AJ) 

e ZAJ=C 

= 
c 

(I, J, K, L), IAJ= KAL, IIAJI = 2d- 2e 

x ECE( w, wJ 1 %AJ) Et wK WL t pKAL)l 

(2) = c EWIWJWK WL 
1, \InJI =e 

+ c ECE(WIWJ I %AJ)E(WKWL I %A.)] 
9-, IlnJJ=e 

= 04f;d--p S(e,f) + RI,? (2.2) . . 
where equality (1) rests on the orthogonality of the Hoeffding decomposi- 
tion. Equality (2) rests on Lemma 4. By the Cauchy-Schwarz inequality 
and Lemma 3 we have 

and hence (RI1 f .‘. +RId--ll Gt. 
The proof of assertions (b) and (c) is similar. For a fixed subset C with 

(Cl = 2d- 2e we have 

1 Et W, WJ I &AJ) 
IAJ=C 

= 
c c Et W, W.r I %AJ). (2.3) 

B,B’cC,IBI=IB’I=d-e.BnB’=12( I\J=B,J\I=B 

Assertion (b) follows by 

c c 
fCI=2d-2e B,B’cC,IBI=IB’I=d-e,BnB’=0 

XE 
[ 

c Et WI wJ 1 %AJ) 
I\J=B,J\l=B 1 

2 

= 
c EW, wJ wKwL +R2e 

~o,IInJI=e,I\J=L\K,J\I=K\L 

= Sk, 0) + R20 

with the remainder term Ix R,,I <r (by Lemma 3). The final equality 
follows, since for bifold quadruples the equality Z\ J= L\K implies 
ZnK=@. (Recall SO=S(l,O)+ ... +S(d-l,O).) 

683/34/2-9 
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Assertion (c) follows by the Cauchy-Schwarz inequality. Using (2.3) we 
obtain 

varA”)= 1 E c 
ICI =2d-2e B. B’ c C, 1BI = III’\ = d - e, B n B’ = 0 

X c 4 WI WJ I %J) 
I\J=B,J\I=B )I 

2 

c l2 
B,B’~C,IB~=JB’I=~~~,B~B’=~ 1 

E( W, WJ I %J) 
I\J=B,J\I=B 

Assertion (c) follows, since by (2.2) we have 

2s,+s< c var A@) + r < max 
1 <.e<d e 

This proves Proposition 5. 

3. PROOF OF THEOREM 1 

Under the conditions of Theorem 1 most of the quantities defined above 
vanish. In order to make this clear we introduce the auxiliary random 
variable 

Z(n)= 1 W,WJ. 
InJ#O 

PROPOSITION 6. Under the conditions of Theorem 1 we have 

(a) z + 0, n+oo, 

(b) S,-+O, n-rco, 

(cl z’+O, n-+03, 

(d) S-,0, n+co. 
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PruoJ: Assertion (a) follows from condition (a) of Theorem 1 by 
Lemma B. Assertion (d) follows from assertion (b) and assertion (a) by 
Proposition 5(c). In order to prove assertion (b) consider the decomposi- 
tion of IV(n)‘, 

W(n)‘=1 W,W,=Z(n)+ C W,W,. 
1, J InJ=@ 

No& that EZ(n) = C 0: = 1 and that the two terms on the right-hand side 
are ‘orthogonal, since (Z, J, K, L) has a free index if In J= 0 and 
Kn L # 0. We have 

E( 0:0:-t c EWI WJ WK W, 
InJ=0 InJ=0,I#ZnK#0 

%2-2 c a;a;+s,, 
InJ#0 

where equality (1) follows, since In J= 0 = In K implies Z= L for a bifold 
quadruple. Equality (2) rests on 

2 

=S(O, 0)+ C a:a:, 
InJ#0 

where the final equality rests on the >independence of v and W, if 
ZnJ= 0. By the orthogonality of the decomposition of W(n)* and (2.1), 
respectively, we have 

EW(n)4-3 FvarZ(n)+S,--2 C a:a: 
InJf0 

(3.1) 

The final terms in the equalities (1) and (2) vanish, since t does. Since 
SO 2 --z by Proposition 5(b), the right-hand side of (1) equals the sum of 
two non-negative quantities (up to a vanishing remainder term). Hence, 
both var Z(n) and SO vanish, since the left-hand side vanishes by condition 
(b) of Theorem 1. This proves assertion (b). Assertion (c) follows, since by 
the assertions (a), (b), and (d) all other right-hand-side terms in the final 
expression above vanish and thus also z’. This proves Proposition 6. 

The first equality of (3.1) yields: 

COROLLARY 7. Under the conditions of Theorem 1, 

Z(n)-% 1, n+co. 
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Proof of Theorem 1. We write IV(n) as a sum of martingale differences: 

W(n)= c Uk, with U,= c W,, 
l$k<?I I,maxI=k 

with respect to the sequence of increasing a-algebras F1 1, ,,,, ki. Theorem 1 
will follow from the martingale central limit theorem of Heyde and Brown 
[6] if the following two conditions are satisfied: 

1. c ~<k<,,EU:-+O, n-, 00, 
II. Cl<kcn U:jL’ 1, n-roe. . . 

Remark. The above conditions are by far not the sharpest conditions 
known. However, they suit particularly well in the proof of Theorem 1. 
Write 

z(n)= 1 vk? with V,= c WI w.I* 
I<kG:n InJ#0,maxIvJ=k 

The conditions I and II follow from the following three assertions: 

ta) var(Z(n)--Cl<k<fi u:)+“, n+mT . . 

(b) Var(Z(n)--Cl<k<n U:)=Cl<k<n E(Vk- u:,“, 

(C) &k<.E&i - - n+a3. 

Assertion (a) implies, in combination with Corollary 7, condition II; the 
conditions (b) and (c) together imply condition I. 

Proof of the Assertions (a), (b), and (c). Note that EVk = EU:. 

2 

=E c w,w.I- c WIWJ 
InJ#0 maxI=maxJ 

> 
2 

c WI WJ 
InJ#@21,rnaxIuJ~IAJ 

2 

c WI WJ 
InJ#0,maxluJ~I\J > 

=4 c EWI WJ WK WL 

=4 c EW,WJWKWL 
~,rnaxIuJuKvL~InK\(JuL) 

+4 c EW,W,W,W,, (3.2) 
i0,InJ#~,maxIuJvKvL~IrrK 
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where the final equality follows from the definitions of the sets Y and 9?: 
for a quadruple in 9 each pair has a non-empty intersection and for a 
quadruple in W we have IZn JI = (Kn LI, since IAJ= KAL. 

We claim that both the bifold and non-bifold part in the above sum 
vanish. The bifold part will be shown to be equal to (2/3)S+ S,, which 
vanishes according to Proposition 6. By symmetry we have 

s+3s,= c EW,WJW,W, 
B,I#J,I#K,I#L 

= 6 c EW,W,WKWL 
P,I#J,I#K,I#L,~~~I~JuK~LEI~K 

(1) 
= 6 c EWIWJWKWL 

1,I#K,maxIuJuKuL~lnK 

= 6 
( c EWIWJWKWL 

1,Ir,J#0#InL,ma~luJvKvL~InK 

+2 c 
O,I~J+O,I~L=O,ma~~u~~~u~~~n~ 

where equality (1) follows, since the quadruples are bifold. Thus we have 
shown 

2/3S+So=4 c EW,W,W,W,. 
d,InJ#IZI,maxIvJuKuLEInK 

It remains to show that the non-bifold quadruples in (3.2) vanish. Sup- 
pose that (I, J, K, L) E F, and let m = max Iv Ju Ku L. The point m lies 
either in all four sets Z, J, K, and L, in exactly three of these sets or in 
exactly two. By symmetry we find 

r’ = 
c EWIWJWKWL 

maxI=maxJ=maxK=maxL 

+4 c EW,WJWK WL 
maxIvJuKuL~InJn-K\L 

+6 c EW,W,W,W,. 

Note that the first term equals 

c EU:= 1 c EWlW,WKWL. 
I<k<n t,ck<n maxI=maxJ=maxK=maxL=k 
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A similar decomposition yields 

EV:=EU;+4 c EWIWJWKW, 
maxIuJvKuL=keInJnK\L 

+4 c EW,W,W,W,. 

Thus, as in the equality (2.3), we find 

T’+4 c EWI WJ WK WI, 
~,InJ#~,maxluJuKvL~InK 

= I<?<. 
EV;+2 c EWIWJWKWL. 

. . ~,malrIuJvKvL~InK\(JuL) 

Note that the final term in the above equality equals half the non-bifold 
part of the right-hand side of (3.2). Since the left-hand side of (3.2) is non- 
negative, the final term above is non-negative up to a vanishing remainder 
term. Since the two terms of the left-hand side vanish and the right- 
hand side is a sum of non-negative terms (the final one up to a vanishing 
remainder term), all terms on the right-hand side vanish. This proves the 
assertions (a) and (c). Finally, assertion (b), for I> k 

E(v,- u:)(v,- u;)=o, 

since each quadruple in the expectation has a free index containing 1. This 
completes the proof of Theorem 1. 
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