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SUMMARY

Targeted endogenous gene activation is necessary
for understanding complex gene networks and has
great potential in medical and industrial applications.
The CRISPR-Cas system offers simple and powerful
tools for this purpose. However, these CRISPR-Cas-
based tools for activating user-defined genes are
unable to offer precise temporal control of gene
expression, despite the fact that many biological
phenomena are regulated by highly dynamic pat-
terns of gene expression. Here we created a light-
inducible, user-defined, endogenous gene activation
system based on CRISPR-Cas9. We demonstrated
that this CRISPR-Cas9-based transcription system
can allow rapid and reversible targeted gene activa-
tion by light. In addition, using this system, we have
exemplified photoactivation of multiple user-defined
endogenous genes in mammalian cells. The present
CRISPR-Cas9-based transcription system offers
simple and versatile approaches for precise endoge-
nous gene activation in basic biological research and
biotechnology applications.

INTRODUCTION

Complex gene networks are essential for diverse biological phe-

nomena, such as cellular programming, metabolism, homeo-

stasis, memory formation, and circadian rhythm. To understand

gene functions in these phenomena, approaches that enable

endogenous gene expression to be regulated at will are required.

For targeted endogenous gene regulation, a new class of pro-

grammable genome targeting technology, CRISPR (clustered

regularly interspaced palindromic repeats)-Cas (CRISPR-asso-

ciated) system in bacteria, has offered powerful tools (Cheng

et al., 2013; Gilbert et al., 2013; Jinek et al., 2014; Maeder

et al., 2013a; Nishimasu et al., 2014; Perez-pinera et al., 2013;

Qi et al., 2013). By single-guide RNA (sgRNA), the catalytically

inactive Cas9 protein (dCas9) derived from Streptococcus pyo-

genes can be bound on a target endogenous genome sequence

that is complementary to the first 20 nucleotides (nt) of the

sgRNA and is adjacent to a protospacer-adjacent motif (PAM)

of the form NGG (Gilbert et al., 2013; Qi et al., 2013). Several

studies have shown that dCas9 fused with the transcriptional

activator domain enables activation of user-defined endogenous
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genes (Cheng et al., 2013; Maeder et al., 2013a; Perez-pinera

et al., 2013). However, these RNA-guided programmable tran-

scription factors are unable to offer precise spatiotemporal con-

trol of gene expression, despite the fact that many biological

phenomena are regulated by highly dynamic patterns of gene

expression. Therefore, a system that enables precise switching

on and off of multiple endogenous gene expression would

be indispensable for better understanding complex biological

systems.

For this purpose, here we demonstrate a targeted genome

photoactivation system based on dCas9 and the light-sensitive

cryptochrome 2 (CRY2) and its binding partner CIB1 from

Arabidopsis thaliana (Kennedy et al., 2010). In our CRISPR-

Cas9-based photoactivatable transcription system, targeting

dCas9 into given genome sequences just requires designing

the first complementary 20 nt of the sgRNA by simple plasmid

construction, and therefore this system offers a simple and

versatile method for spatiotemporally activating multiple user-

defined endogenous genes.
RESULTS

Design and Optimization of the CRISPR-Cas9-Based
Photoactivatable Transcription System
This CRISPR-Cas9-based photoactivatable transcription sys-

tem consists of two fusion proteins and sgRNAs (Figure 1A).

The first fusion protein is the genomic anchor probe, containing

dCas9 and CIB1. This anchor probe binds to the targeted

genome sequence by sgRNAs. The second fusion protein is

the activator probe, which includes the photolyase homology re-

gion of CRY2 (CRY2PHR) and the transcriptional activator

domain. In the absence of blue light, the genomic anchor binds

the promoter region of the targeted gene by sgRNAs while the

activator probe is freely diffuse within the nucleus. Upon blue

light irradiation, CRY2PHR and CIB1 are heterodimerized and

consequently the transcriptional activator domain is recruited

to the target locus to activate gene expression.

We generated the two fusion proteins and assessed the induc-

tion potency of each combination of the two by measuring re-

porter gene activity in both light and dark state conditions. In

this assessment, we constructed the firefly luciferase reporter

under the control of the upstream activator sequence (UAS) of

Gal4. Several studies have shown that the level of gene activa-

tion by synthetic transcription factors based on dCas9 and the

activation domain can be synergistically enhanced by usingmul-

tiple sgRNAs targeting different sites in the promoter region

of the same locus (Cheng et al., 2013; Maeder et al., 2013a;
–174, February 19, 2015 ª2015 Elsevier Ltd All rights reserved 169
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Figure 1. Design and Optimization of the CRISPR-Cas9-Based Photoactivatable Transcription System

(A) Schematic of the CRISPR-Cas9-based photoactivatable transcription system.

(B) Constructs of the genomic anchor probes (A–E) and activator probes (0–4).

(C) Luciferase reporter activity induced by each combination of the genomic anchor probe (A: NLS-dCas9-trCIB1(*NLS)) and activator probes (0–4).

(D) Luciferase reporter activity induced by each combination of the genomic anchor probe (A–E) and activator probes (2: NLSx3-CRY2PHR-p65).

(E) The time course of light-induced reporter gene transcription. The empty vector containing no insert was used as a negative control.

Error bars, SEM (n = 6 from two individual experiments with biological triplicates). See also Figures S1 and S2.
Perez-pinera et al., 2013). To obtain robust reporter gene activa-

tion in this experiment, we simultaneously transfected triple

sgRNAs targeting different regions of the UAS into HEK293 cells

with a genomic anchor probe, an activator probe, and luciferase

reporter (Figure S1).

To build the effective light-inducible transcription system, we

generated several genomic anchors and activators with different

additional motifs (Figure 1B). The nuclear localization signal

(NLS) derived from SV40 large T antigen is used to localize these

probes in the nucleus. For adequate nuclear localization, we also

tested three tandem repeat of the NLS sequence (NLSx3).

Furthermore, we made alternations in the CIB1 domain. We

tested C-terminal truncated (D308–334) CIB1 (trCIB1), reported

as the mutant from which the transcriptional factor-like domain

has been partially removed (Konermann et al., 2013). We also

examined a CIB1 variant that is mutated at the internal NLS

(CIB1(*NLS)) (Kennedy et al., 2010).

First, we tested which activator probes could most efficiently

induce reporter gene expression with the genomic anchor,

NLS-dCas9-trCIB1(*NLS) (Figure 1C; Figure S2A). Four of the

five activator units showed light-induced reporter upregulation

in HEK293 cells. In particular, NLSx3-CRY2PHR-p65 yielded

the highest reporter activation in the light state as well as fold

induction (16.1-fold). Conversely, we found that the A0 com-
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bination of NLS-dCas9-trCIB1(*NLS) and NLS-CRY2PHR-NLS-

VP64, which is similar to the design and combination of the

optimized LITE system, an optical gene regulation system based

on transcription activator-like effector (TALE), could not signifi-

cantly induce reporter gene expression (Konermann et al.,

2013). This result showed that just replacing TALE with dCas9

in the LITE system is insufficient to build the CRISPR-Cas9-

based photoactivatable transcription system.

Next, we optimized the genomic anchor to reduce background

activity (Figure 1D; Figure S2B). We compared five genomic

anchor units and found that the E2 combination of NLS-

dCas9-trCIB1 and NLSx3-CRY2PHR-p65 yielded the lowest

background activity and the highest fold induction (31.0-fold).

We also made a direct comparison between the LITE system

and the CRISPR-Cas9-based photoactivatable transcription

system using luciferase reporter containing part of the Neurog2

promoter sequence (Figure S2C).We found that the E2 combina-

tion based on dCas9 showed higher reporter activation and fold

induction (8.0-fold) than the LITE system based on TALE.

Consistent with Figure 1C, we observed that the A0 combination

could not induce robust gene expression.

For further functional validation of this combination, we trans-

fected these constructs into HeLa and COS-7 cells (Figures S2D

and S2E). All the samples showed light-induced reporter gene
vier Ltd All rights reserved



Figure2. SpatialGeneActivationbyCRISPR-

Cas9-based Photoactivatable Transcription

System

(A) Slit-patterned mCherry expression in HEK293T

cells illuminated by blue light with a spatial pattern

using a black masking tape. The widths of slits are

2.5 and 1.5 mm, respectively. Scale bar represents

5 mm.

(B) Line scan intensity profile of mCherry (red) and

EGFP (green) in (A). See also Figure S1.
expression, demonstrating thewide applicability of this photoac-

tivatable transcription system. We also investigated the time

course of light-induced reporter gene expression in HEK293T

cells using this system. We found that reporter gene increased

as the illumination time increased, and only an hour of blue light

irradiation could activate the reporter gene (�2.8-fold) (Fig-

ure 1E). In addition, we compared the gene expression kinetics

between this Cas9-based photoactivatable transcription system

and a tetracycline-inducible system, the Tet-On system (Figures

S2F and S2G). We confirmed that, in terms of the gene expres-

sion kinetics, our Cas9-based photoactivatable transcription

system can match the Tet-On system, which is commonly

used in biological sciences. In the following experiments, we

used the E2 combination constructs.

Spatial Gene Activation by Patterned Illumination
We tested whether this system offers spatial gene activation

by light (Figure 2). To do this, we generated mCherry reporter

to visualize the expression pattern of the reporter gene with

a fluorescence stereomicroscope. HEK293T cells transfected

with NLS-dCas9-trCIB1, NLSx3-CRY2PHR-p65, mCherry re-

porter, sgRNAs targeting mCherry reporter, and EGFP as trans-

fection marker were irradiated with slit-patterned blue light. After

24 hr, the slit pattern of mCherry-expressing cells according to

the irradiation pattern was observed (Figure 2), demonstrating

that this system can spatially control gene expression.

Optogenetic Activation of Endogenous Gene by the
CRISPR-Cas9-Based Photoactivatable Transcription
System
We next tested whether this system can also optically activate

endogenous gene expression in HEK293T cells (Figure 3).

To do this, we generated four sgRNAs targeting the different

sequences in the promoter of the human ASCL1 gene, which en-

codes the transcription factor regulating neural differentiation.

To determine which sgRNA can most efficiently induce ASCL1

expression, we transfected NLS-dCas9-trCIB1 and NLSx3-

CRY2PHR-p65 with individual sgRNAs into HEK293T cells.
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By comparative quantitative PCR, we

confirmed that ASCL1 is successfully

activated in all the cases using each

sgRNA (Figure 3A). When we simulta-

neously transfected all four sgRNAs

targeting the promoter region of ASCL1,

ASCL1 expression in the light state was

significantly enhanced compared with us-

ing individual sgRNAs as expected (Fig-
ure 3A) (Cheng et al., 2013; Maeder et al., 2013a; Perez-pinera

et al., 2013). It is notable that the transfection of multiple sgRNAs

targetingASCL1 did not affectASCL1 expression in the dark and

showed a substantially high induction ratio of ASCL1 expression

by light (�50-fold). These results demonstrate that our photoac-

tivatable transcription system can induce endogenous gene

expression by light and the level of gene expression can be syn-

ergistically enhanced by multiple sgRNAs.

Next, we investigated the time course of light-induced ASCL1

transcription. We found that 3 hr of blue light irradiation was

enough to induce significant ASCL1 mRNA transcription (�10-

fold) (Figure 3B). We also tested whether endogenous gene acti-

vation by this system is reversible and repeatable. Incubation

for 18 hr in the dark first after blue light irradiation reduced the

ASCL1mRNA expression level to baseline level and second after

light irradiation can induce ASCL1mRNA expression again (Fig-

ure 3C). These results demonstrate that this system can offer

rapid, reversible, and repeatable endogenous gene activation.

Multiplexed Photoactivation of User-Defined
Endogenous Genes
Toshow that this systemallowsphotoactivationof variousendog-

enous genes, we generated four sgRNAs each targeting the pro-

moter regions of humanMYOD1, NANOG, and IL1RN genes and

tested their light-induced transcription in HEK293T cells (Figures

4A–4C). The light-dependent transcription of each gene was

observed when HEK293T cells were cotransfected with the four

sgRNAs. Next, we tested multiple photoactivation of ASCL1 and

MYOD1 genes in HEK293T cells (Figure 4D). In the sample trans-

fectedwith NLS-dCas9-trCIB1, NLSx3-CRY2PHR-p65, andmul-

tiple sgRNAs targeting the promoters of ASCL1 andMYOD1, we

observed light-dependent transcription of both ASCL1 and

MYOD1. We found no significant difference in ASCL1 and

MYOD1 expression levels between themultiple and single photo-

activation experiments (p > 0.20), indicating that ASCL1 and

MYOD1 activation are saturated under our transfection condi-

tions. We also confirmed that cells transfected with sgRNAs tar-

geting the promoter ofASCL1 showed light-induced transcription
ª2015 Elsevier Ltd All rights reserved 171



Figure 3. Optogenetic Activation of the Endogenous ASCL1 Gene

in HEK293T Cells by the CRISPR-Cas9-Based Photoactivatable

Transcription System

(A) Light-induced ASCL1 expression in HEK293T cells measured by qRT-PCR.

The four sgRNAs targeting the promoter region of ASCL1 were transfected

individually or in combination, as indicated.

(B) The time course of light-induced ASCL1 transcription.

(C) Reversible and repeatable activation of ASCL1 transcription. In these ex-

periments, the data are expressed as the amount of mRNA relative to the

negative control transfected with empty vector in the dark.

Error bars, SEM. In (A), n R 6 from at least two individual experiments with

biological triplicates. In (B) and (C), n = 3 from the same experiment. Student’s

two-tailed t test was performed. ***p < 0.001 versus the sample in the dark. See

also Figure S1.
of ASCL1 without affecting MYOD1 expression and vice versa.

These results demonstrate that this system can be used formulti-

plexed photoactivation of user-defined endogenous genes.

DISCUSSION

In conclusion, we have developed the CRISPR-Cas9-based

photoactivatable transcription system. Previously, it was re-

ported that optical endogenous gene activation can also be

achieved by the LITE system based on TALE (Konermann

et al., 2013). Unlike the LITE system, which requires complex

and time-consuming DNA assembly to target a given sequence,

our CRISPR-Cas9-based transcription system provides easy-

to-use, user-defined endogenous gene activation. The capacity

of our CRISPR-Cas9-based photoactivatable transcription sys-

tem was exemplified by synergistic photoactivation of endoge-

nous genes. In addition, we have demonstrated multiplexed

photoactivation of user-defined endogenous genes. These fea-

tures of the present photoactivation system are easy program-

mability and highly parallel applicability of the CRISPR-Cas tech-

nology. We exemplified multiplexed gene expression using eight

different sgRNAs. The number of sgRNAs is readily increased to
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a large extent, according to the recent report by Chen et al.

(2013), in which �70 sgRNAs were used for imaging specific

genomic loci based on dCas9 tagged with EGFP. Thus, the pre-

sent optogenetic system based on the CRISPR-Cas technology

with easy programmability and highly parallel applicability could

achieve highly synergistic and massively multiplexed spatiotem-

poral activation of endogenous genes with light.

Konermann et al. (2013) mentioned that the TALE DNA-bind-

ing domain of the LITE system might be replaced with dCas9.

However, we found that replacing TALE with dCas9 in the LITE

system could not provide dCas9-based optical gene activation.

One possible explanation for this is that the larger and more

complex structure of dCas9 than that of TALE may weaken the

localization and dimerization of the two fusion proteins. To over-

come this, we generated an originally designed molecular probe

and finally established the robust dCas9-based optical gene

activation system. The present CRISPR-Cas9-based photoacti-

vatable transcription system is an optogenetic tool employing

Cas9 technology. Furthermore, by replacing transcriptional acti-

vator p65 with other domains, such as epigenetic-modifying en-

zymes (de Groote et al., 2012; Maeder et al., 2013b), nucleases

(Miller et al., 2011), and recombinases (Mercer et al., 2012), this

system could also offer diverse types of Cas9-guided genome

regulation with high spatiotemporal resolution. The present

CRISPR-Cas9-based photoactivatable transcription system

will contribute to expanding the possibilities of optogenetic regu-

lation, mammalian genome engineering, and biotechnology ap-

plications (Brieke et al., 2012; Lienert et al., 2014).

SIGNIFICANCE

CRISPR-Cas9 provides a powerful tool for targeted endoge-

nous gene regulation. To expand the scope of Cas9 technol-

ogy, here we created an optogenetic tool based on dCas9,

enabling light-inducible user-defined endogenous gene

activation. It has been reported that optical endogenous

gene activation can also be achieved with the LITE system

based on TALE (Konermann et al., 2013). However, we found

that replacing TALEwith dCas9 in the LITE system could not

provide dCas9-based optical gene activation. Therefore, we

designed a new molecular probe and finally established the

robust dCas9-based optical gene activation system. We

demonstrated that this Cas9-based transcription system

can allow rapid and reversible targeted gene activation by

light and exemplified photoactivation of multiple user-

defined endogenous genes in mammalian cells. The present

system will contribute to expand the possibilities of optoge-

netic regulation, mammalian genome engineering, and

biotechnology applications.

EXPERIMENTAL PROCEDURES

Bioluminescence Assay

For the reporter gene expression assay, HEK293, HeLa, COS-7, and HEK293T

cells were plated at approximately 2.03 104 cells/well in 96-well black-walled

plate (Thermo Fisher Scientific), and cultured for 24 hr at 37�C in 5% CO2. The

cells were then transfected with Lipofectamine 2000 (Invitrogen) according to

the manufacturer’s protocols. cDNAs encoding genomic anchor probes, acti-

vator probes, sgRNAs, and reporter were transfected at a 1:1:1:1 ratio. In this

experiment, the ratio of three sgRNAs was 1:1:1. The total amount of DNA was
vier Ltd All rights reserved



Figure 4. Optogenetic Activation of Various

Endogenous Genes in HEK293T Cells by

the CRISPR-Cas9-Based Photoactivatable

Transcription System

(A–C) Light-induced MYOD1 (A), NANOG (B), and

IL1RN (C) expression in HEK293T cells measured

by qRT-PCR. The four sgRNAs targeting the pro-

moter region of each gene were transfected in

combination.

(D) Multiplexed endogenous gene photoactivation.

HEK293T cells were transfected with cDNAs

encoding NLS-dCas9-trCIB1, NLSx3-CRY2PHR-

p65, and the indicated sgRNAs. In these experi-

ments, the data are expressed as amount of mRNA

relative to the negative control transfected with

empty vector in the dark.

Error bars, SEM (n R 6 from at least two individual

experiments with biological triplicates). Student’s

two-tailed t test was performed. *p < 0.05, **p <

0.01, ***p < 0.001 versus the sample in the dark.

See also Figure S1.
0.2 mg/well. Twenty hours after the transfection, the culture medium was re-

placed with 100 ml of phenol red-free DMEM (Sigma Aldrich) containing

500 mM of D-luciferin (Wako Pure Chemical Industries) as a substrate. After in-

cubation for 24 hr at 37�C in 5% CO2 under continuous blue light irradiation or

in the dark, bioluminescence measurements were performed using a Centro

XS3 LB 960 plate-reading luminometer (Berthold Technologies). In the time

course experiment, bioluminescence measurements were performed at the

indicated time points. For Tet-inducible expression, 1.0 mg/ml doxycycline

(Dox) was used. Blue light irradiation was performed using a 470 ± 20 nm

LED light source (CCS Inc.). The intensity of the blue light was 1.5 W/m2.

Quantitative Real-Time PCR Analysis

Total RNA isolation and reverse transcription PCR were performed using

the Cells-to-CT kit (Life Technologies). qRT-PCR was performed by the

StepOnePlus system (Life Technologies) using TaqMan probes.

Additional experimental procedures can be found in the Supplemental

Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes two figures, Supplemental Experimental

Procedures, and a supplementary note on the amino acid sequences of the

genomic anchor probes (A–E) and activator probes (0–4) and can be found

with this article online at http://dx.doi.org/10.1016/j.chembiol.2014.12.011.
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