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Abstract

A classification of the doubles of the projective plane of order 4 with respect to the order of the automorphism group is presented
and it is established that, up to isomorphism, there are 1 746 461 307 doubles. We start with the designs possessing non-trivial
automorphisms. Since the designs with automorphisms of odd prime orders have been constructed previously, we are left with the
construction of the designs with automorphisms of order 2. Moreover, we establish that a 2-(21, 5, 2) design cannot be reducible in
two inequivalent ways. This makes it possible to calculate the number of designs with only the trivial automorphism, and consequently
the number of all double designs. Most of the computer results are obtained by two different approaches and implementations.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Double design; Projective plane; Construction methods

1. Introduction

Let V ={Pi}vi=1 be a finite set of points, and B={Bj }bj=1 a finite collection of k-element subsets of V, called blocks.
D = (V ,B) is a design with parameters t-(v, k, �) if any t-subset of V is contained in exactly � blocks of B. For the
basic concepts and notations concerning combinatorial designs, refer for instance to [1–3,13].

The incidence matrix of a design is a (0,1) matrix with v rows and b columns, where the element of the ith row and
jth column is 1 if Pi ∈ Bj (i = 1, 2, . . . , v; j = 1, 2, . . . , b) and 0 otherwise. The design is completely determined by
its incidence matrix.

An isomorphism of two designs D1 = (V1,B1) and D2 = (V2,B2) is a bijection between their point sets V1 and
V2 and their block collections B1 and B2, such that the point-block incidence is preserved. In terms of the incidence

� Some of the results were partially announced at the Ninth International Workshop on Algebraic and Combinatorial Coding Theory, Kranevo,
Bulgaria (June 2004), and some at the Annual Workshop on Coding Theory and Applications, Bankya, Bulgaria (December 2004).
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matrices, two designs are isomorphic if their incidence matrices are equivalent, i.e. if the incidence matrix of the second
design can be obtained from the incidence matrix of the first one by a permutation of the rows and columns.

An automorphism is an isomorphism of the design to itself, i.e. a permutation of the points that preserves the block
collection. The set of all automorphisms of a design forms a group called its full group of automorphisms. Each subgroup
of this group is a group of automorphisms of the design.

Each 2-(v, k, �) design determines the existence of 2-(v, k, m�) designs (for any integer m > 1), which are called
quasimultiples of a 2-(v, k, �) design. A quasimultiple 2-(v, k, m�) is reducible into m 2-(v, k, �) designs if there is a
partition of its blocks into m subcollections, each of which forms a 2-(v, k, �) design. This partition is called a reduction.
For m = 2 quasimultiple designs are called quasidoubles, and the reducible quasidouble designs are called doubles.
We shall denote by (D1 ∪ D2) a double design which can be reduced to the two designs D1 and D2. A reduction of a
double design D with parameters t-(v, k, 2�) can be represented by a set of two collections of blocks, each containing
half of the blocks of D, such that each collection of blocks forms a 2-(v, k, �) design. An obvious reduction of a double
design (D1 ∪ D2) is {D1, D2}; the order in which the constituent designs are listed, is not relevant. We will often use
the notation D2 = �D1, in which � is a point permutation applied to the points of D1 to obtain D2. Doubles can be
reducible in more than one way. Two reductions {D1, D2} and {D3, D4} of a double design are equivalent if and only
if there exists some point permutation � such that D3 = �D1 and D4 = �D2, or such that D4 = �D1 andD3 = �D2.
A double which has, up to equivalence, only one reduction is uniquely reducible.

Reducible 2-(21, 5, 2) designs are the subject of the present note, we will show that they are uniquely reducible.
Up to equivalence there is a unique 2-(21, 5, 1) design (the projective plane PG(2, 4) of order 4) and the reducible
2-(21, 5, 2) designs are its doubles. The first lower bound on the number of reducible 2-(21, 5, 2) designs is derived
in [11] and it is 10. Lower bounds on the number of doubles of projective planes in general are derived in [5,6]. These
bounds are much more powerful for projective planes of bigger orders, but for the doubles of the projective plane of
order 4 the bound is 24.

In this paper, we enumerate the reducible 2-(21, 5, 2) designs by constructing those which have non-trivial automor-
phisms, which allows us to calculate the number of all reducible 2-(21, 5, 2). This is possible, because these designs are
made up of two 2-(21, 5, 1) subdesigns. For other examples of enumerating designs which contain incidence structures
see for instance [8–10,15].

In [14] all 2-(21, 5, 2) designs with automorphisms of odd prime orders were constructed, their number was deter-
mined to be 22 998 and 4170 of them were found to be reducible. This leaves only the reducible 2-(21, 5, 2) designs
with automorphisms of order 2 to be constructed. There are two types of such automorphisms, namely those which
transform each of the constituent 2-(21, 5, 1) designs into itself and those which transform one of the 2-(21, 5, 1) into
the other (and vice versa). We construct 40 485 designs of the first type and 991 957 of the second. We study their
automorphism groups. The results coincide with those obtained in [14]. Using this data we calculate that the number
of all doubles of the projective plane of order 4 is 1 746 461 307.

2. Doubles of a uniquely reducible design

Below we will consider doubles of designs for which, up to isomorphism, only one design of its parameter set exists.
So instead of (D1 ∪ D2) we will often use the notation (D ∪ �D), where the constituent design �D is obtained from
D by a permutation � of its points.

In the rest of this section, D will be a 2-(v, k, �) design and (D ∪ �D) will be a uniquely reducible double of D. By
G we denote the full automorphism group of D; by G� we denote the intersection of the full automorphism groups of
D and �D; by Ĝ� we denote the full automorphism group of the double design (D ∪ �D).

The set of all v! permutations � of the points of D can be partitioned into classes CG(�), where CG(�) is the set of
point permutations � having the property that the double (D ∪ �D) is isomorphic to (D ∪ �D). Then obviously

v! =
∑
CG(�)

|CG(�)|. (1)

In the following proposition we determine the size of an isomorphism class CG(�) with a given representative point
permutation �.
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Proposition 1. The set CG(�) of point permutations � having the property that (D ∪�D) is isomorphic to (D ∪�D)

is given by

CG(�) = G�G ∪ G�−1G.

Moreover, the number of such permutations is given by

|CG(�)| =
{ |G|2/|G�| if G�G = G�−1G,

2|G|2/|G�| otherwise, i.e. G�G ∩ G�−1G = ∅.
(2)

Proof. Suppose � ∈ G�G, then ∃�, � ∈ G : � = ���. Clearly (D ∪ �D) is isomorphic to (D ∪ �D) since
�−1(D ∪ ���D) = (D ∪ �D). Similarly, if � ∈ G�−1G, then ∃�, � ∈ G : � = ��−1�, and (D ∪ �D) is isomorphic
to (D ∪ �D) since ��−1(D ∪ ��−1�D) = (�D ∪ D).

Conversely, we now suppose that (D ∪�D) is isomorphic to (D ∪�D). Since (D ∪�D) is uniquely reducible, only
two cases are possible. In the first case there exists a point permutation � for which �D = D and ��D = �D, which
implies that � ∈ G and �−1�−1� ∈ G, and thus that � ∈ G�G. In the second case there exists a point permutation �
such that �D = �D and ��D = D, which implies that �−1� ∈ G and �� ∈ G, and thus � ∈ �G and � ∈ G�−1 ⇒
� ∈ G�−1G.

From the theory of double cosets [4, Theorem 2.19] it follows immediately that |G�G| = |G�−1G| = |G|2/|G�|;
moreover, it is known that either G�G ∩ G�−1G = ∅ or G�G = G�−1G. Hence |G�G ∪ G�−1G| = 2|G|2/|G�|
when G�G ∩ G�−1G = ∅, and |G�G ∪ G�−1G| = |G|2/|G�| otherwise. �

Proposition 2. If G�G = G�−1G, then there exists � ∈ Ĝ� such that (D ∪ �D) = (D ∪ �D). This � transforms D
into �D and vice versa. If |G�| = 1, then � is of order 2.

Proof. Since G�G = G�−1G, it holds that �−1 ∈ G�G, hence ∃�, 	 ∈ G : �−1 = ��	. This means that ���	 = 1,
hence ��� ∈ G. Let � = ��.

Then �D = ��D = �D. Since �� ∈ G, ��D = D. Hence (D ∪ �D) = (D ∪ �D) and � transforms D into �D

and vice versa.
Moreover, it follows from �2D =D and �2�D =�D, that �2 ∈ G�. In case |G�| = 1, this means that �2 = 1. �

Corollary 3. If |Ĝ�| = 1, then |CG(�)| = 2|G|2.

Let Ni (resp., N ′
i ) denote the number of isomorphism classes CG(�) for which |G�| = i and G�G ∩ G�−1G = ∅

(resp., G�G = G�−1G). Then, using Eq. (2), Eq. (1) can be rewritten as

v! = 2|G|2N1 + |G|2N ′
1 +

∑
i>1

2|G|2
i

Ni +
∑
i>1

|G|2
i

N ′
i . (3)

Let N be the total number of non-isomorphic doubles of D, then

N = N1 + N ′
1 +

∑
i>1

Ni +
∑
i>1

N ′
i . (4)

If we can enumerate the doubles of D with non-trivial automorphisms by means of some construction techniques,
i.e. determine the numbers N ′

1 as well as Ni and N ′
i for all i > 1, Eq. (3) can be used to obtain the number N1 of doubles

of D with trivial automorphisms. Eq. (4) can be used to calculate the total number N of doubles of D.

Corollary 4. A 2-(v, k, �) design D of which all doubles are uniquely reducible, has at least v!/(2|G|2) non-isomorphic
doubles (with G the full automorphism group of D).

All quasidoubles of the projective planes of orders 2 and 3 have been known before this work. Up to isomorphism
there are 4 doubles of the projective plane of order 2 and 184 doubles of the projective plane of order 3. We established
that they are uniquely reducible, and then investigated their automorphisms and checked that they match Eqs. (3)
and (4).
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We also checked Eqs. (3) and (4) on the doubles of the affine planes of orders 2, 3 and 4. Most related to the main result
in this paper are the doubles of the affine plane of order 4, since their unique reducibility follows from the considerations
in the next section. All the doubles of the affine plane of order 4 are among the resolvable 2-(16, 4, 2) designs which
are constructed in [7] and for which the designs with non-trivial automorphisms are available from the authors’ web-
page. We determined that 9102 among them are reducible and, using Eqs. (3) and (4), we found that the number of
doubles of the affine plane of order 4 is 320 061. We independently constructed all these doubles and obtained the same
result.

It follows from Corollary 4 that the number of the non-isomorphic doubles of the projective plane of order 4 is at least
1 745 944 200. To determine their exact number by Eqs. (3) and (4), we have to construct all designs with non-trivial
automorphisms.

More precisely this means that we have to

• construct the double designs for which |G�| 	= 1 and determine the numbers Ni and N ′
i , i > 1 (cf. Section 4.1), and

• construct the double designs for which |G�|=1 and G�G=G�−1G, and thus determine the number N ′
1 (cf. Section

4.2).

3. On the unique reducibility of 2-(21, 5, 2)

In this section, two reductions {D1, D2} and {D3, D4} of a double design are considered different if the two sets of
collections of blocks are not pairwise equal. In order to prove the unique reducibility of a double 2-(21, 5, 2) design,
we will consider all different reductions and show that they are equivalent by a computer-assisted proof.

Consider a double 2-(v, k, 2�) design (D1 ∪ D2), which is a double of a unique (for its parameter set) 2-(v, k, �)

design. We consider all reductions, different from the obvious reduction {D1, D2}, in the form {Da
1 ∪ Db

2 , Da
2 ∪ Db

1},
where the collection of blocks Da

1 and Db
1 form D1, the collection of blocks Da

2 and Db
2 form D2, the collection of

blocks Da
1 and Db

2 form D3 and the collection of blocks Db
1 and Da

2 form D4, with D1, D2, D3 and D4 all isomorphic
designs:

Without loss of generality, we can restrict ourselves to reductions where the a parts have at least as many blocks as
the b parts. Also, we only consider reductions where Db

1 and Db
2 have no common blocks (i.e. no two blocks, one of

Db
1 and one of Db

2 are incident with the same set of points), since such a reduction is not different from the reduction
where the equal blocks of the b parts are put in the a parts.

Proposition 5. Let n be the number of blocks in Db
1 (Db

2), and �i the number of blocks in Db
1 (Db

2) containing point
i (i = 1, 2, . . . , v). The following considerations can be made:

(a) Any point is in the same number of blocks of Da
1 and Da

2 (Db
1 and Db

2).
(b) Any pair of points is in the same number of blocks of Da

1 and Da
2 (Db

1 and Db
2).
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(c) If D1 is a projective plane of order q (i.e. a 2-(q2 + q + 1, q + 1, 1) design), the following holds:

�i 	= 1, i = 1, 2, . . . , v, (5)
v∑

i=1

�i = n(q + 1), (6)

v∑
i=1

�2
i = n(n + q), (7)

n� q2 + q

2
. (8)

Proof.

(a) Db
1 and Da

1 (or Da
2 ) form a 2-(v, k, �), and thus point i is in r − �i blocks of Da

1 (Da
2 ).

(b) Let the pair of points (i,j) be in �ij blocks of Db
1 . Since Db

1 and Da
1 (or Da

2 ) form a 2-(v, k, �), the pair of points
(i,j) is in � − �ij blocks of Da

1 (Da
2 ).

(c) In a 2-(q2 + q + 1, q + 1, 1) design two blocks have exactly one common point. Consider any point i. When we
look at an arbitrary subset Sq of q blocks out of the q + 1 blocks incident with point i, Sq forces the last block
(which contains point i) to be incident with all q remaining points which are not in any of the blocks of Sq . So this
last block containing point i is fixed by the other q blocks. �i = 1 would force Da

1 (Da
2 ) to have q blocks containing

point i. This will force the block of Db
1 containing point i to be the same as the block of Db

2 containing point i, but
we supposed that Db

1 and Db
2 have no common blocks, so (5) follows.

Eq. (6) is obtained by counting the number of ones in the incidence matrix of Db
1 (Db

2) in two ways.
A 2-(q2 + q + 1, q + 1, 1) design is symmetric, and from the � = 1 condition for the blocks of the Db

1 (Db
2) part we

obtain
(

n
2

) = ∑v
i=1

(
�i
2

)
. Using also (6) we get (7).

Db
1 (Db

2) has at most as many blocks as Da
1 (Da

2 ). That is why n�
v/2�, and thus (8) follows. �

Proposition 6. A reducible 2-(21, 5, 2) design is uniquely reducible.

Proof. For q = 4, the set of Eqs. (5)–(8) has solutions only for n = 6, 8, 9, 10.
For each case, exhaustive generation is performed in the following way, satisfying (a) and (b) from Proposition 5:

• We generate the set of all non-equivalent Db
1 .

• For each such Db
1 , we generate the set of all non-equivalent Db

2 , taking into account the limitation that Db
1 and Db

2
have no common blocks.

• For each such combination of Db
1 and Db

2 , we generate all non-equivalent a parts (Da
1 or Da

2 ), and show that all
obtained reductions are equivalent.

The unique solution for the values of �i if n = 6 is (215, 06), namely 15 twos and 6 zeroes. There is only one
non-equivalent way to choose six blocks for Db

1 matching this pattern, but exhaustive generation shows we cannot
construct Db

2 . So n = 6 is impossible.
The unique solution for the values of �i if n = 8 is (42, 216, 03). There is only one non-equivalent way to choose

eight blocks for Db
1 matching this pattern. Given Db

1 , there is only non-equivalent way to construct Db
2 . For the unique

combination of Db
1 and Db

2 , we generated 12 non-equivalent Da
1 (Da

2 ). For all obtained reductions, one of which is
shown in Fig. 1, there exist point permutations �a and �b such that

• D2 = �b�aD1.
• Db

2 = �bD
b
1 , Da

1 = �bD
a
1 , Da

2 = �bD
a
2 , (�b)

2 = 1.
• Da

2 = �aD
a
1 , Db

1 = �aD
b
1 , Db

2 = �aD
b
2 .
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Fig. 1. One of the obtained reductions for the n = 8 case.

The reduction {Da
1 ∪ Db

2 , Da
2 ∪ Db

1} is equivalent to the reduction {D1, D2} because

�b(D
a
1 ∪ Db

2) = (Da
1 ∪ Db

1) = D1, �b(D
a
2 ∪ Db

1) = (Da
2 ∪ Db

2) = D2.

There are 3 solutions for the values of �i if n = 9: (51, 34, 214, 02), (43, 31, 215, 02) and (39, 29, 03). None of the
subsets of nine blocks of a 2-(21, 5, 1) design matches the first two patterns. There is only one non-equivalent way to
choose nine blocks for Db

1 matching pattern (39, 29, 03), but exhaustive generation shows we cannot construct Db
2 .

There are 3 solutions for the values of �i if n = 10: (51, 42, 33, 214, 01), (45, 215, 01) and (42, 38, 29, 02). None of
the subsets of 10 blocks of a 2-(21, 5, 1) design matches the first pattern. There is only one non-equivalent way to
choose 10 blocks for Db

1 matching pattern (45, 215, 01) or (42, 38, 29, 02), but exhaustive generation shows we cannot
construct Db

2 .
Thus, we conclude that a 2-(21, 5, 2) design cannot have two inequivalent reductions, i.e. it is uniquely

reducible. �

4. Reducible 2-(21, 5, 2) with non-trivial automorphisms

4.1. Automorphisms for which |G�| 	= 1

All 2-(21, 5, 2) designs with automorphisms of odd prime orders are constructed in [14]. It turns out that 4170 of them
are reducible and we use these for our classification. Thus, we only have to construct the designs with automorphisms
of order 2.
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Fig. 2. The design D1 (5 fixed points).

Consider (D1 ∪ D2) with a full automorphism group of order 2s (s�1), and |G�| 	= 1. Then D1 and D2 have
common automorphisms of order 2. The 2-(21, 5, 1) design is known to have automorphisms of order 2 with 5 fixed
points and automorphisms of order 2 with 7 fixed points. Their action is illustrated in Figs. 2 and 3. We construct all
double designs with such automorphisms of order 2 which are automorphisms of both D1 and D2. We consider the
two cases, namely

Automorphism of order 2 with 5 fixed points: Consider the incidence matrix of D1 in the form presented in Fig. 2
and suppose an automorphism 
 which acts on the points of the double as(1)(2) · · · (5)(6, 7)(8, 9) · · · (20, 21), and on
the blocks as (1)(2) · · · (5)(6, 7)(8, 9) · · · (20, 21)(22)(23) · · · (26)(27, 28)(29, 30) · · · (41, 42).

Automorphism of order 2 with 7 fixed points: Consider the incidence matrix of D1 in the form presented in Fig. 3
and suppose an automorphism � which acts on the points of the double as (1)(2) · · · (7)(8, 9)(10, 11) · · · (20, 21), and
on the blocks as (1)(2) · · · (7)(8, 9) · · · (20, 21)(22)(23) · · · (28)(29, 30) · · · (41, 42).

Let D2 = �D1. Then � is a permutation of the points which should

(a) transform any fixed point (with respect to 
 or �) into a fixed point,
(b) transform two points of one and the same orbit (with respect to 
 or �) into points which are in one and the same

orbit.

We have used two different approaches for the actual construction. The results are the same.
In the first approach we initially leave the fixed points aside and construct the non-trivial orbit part of the in-

cidence matrix of the double design. We generate all possibilities for the non-trivial orbit part of D2 by applying
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Fig. 3. The design D1 (7 fixed points).

all possible permutations of whole point orbits of D1 and filtering the equivalent solutions away. For each non-
equivalent solution we then generate all possible permutations within the point orbits of D2 and again filter the
equivalent solutions away. Finally, we add the fixed part in all possible ways (the fixed part of D2 is a permu-
tation of the fixed part of D1) and check for isomorphism. However, when applying this approach, the equiva-
lence checks in the first and second step should be carried out with great care since a large number of restrictions
hold.

In the second approach we first find all automorphisms of D1. Next we generate all point permutations meeting
conditions (a) and (b) in lexicographic order. When generating the current permutation �, we search for �, � ∈ G,
such that ��� or ��−1� is a permutation which is lexicographically smaller than � (see Proposition 1) and meets
conditions (a) and (b). The existence of such a pair �, � ∈ G means that the solution is equivalent to one we have
already generated, so we can drop it. Note that conditions (a) and (b) are of such a form that they allow us to prune
partial solutions for the permutations, which makes the programme much faster. Since the order of the automorphism
group G of the 2-(21, 5, 1) design is 120 960, considering all 120 9602 combinations is too time-consuming, so we only
consider � and � among a random part of the elements of the group G. We finally filter away the isomorphic solutions
(only a limited number of which happen to turn up) by a full isomorphism test.

In this way we construct 9564 non-isomorphic doubles with an automorphism of order 2 with 5 fixed points, and
31 094 with an automorphism of order 2 with 7 fixed points. This gives a total of 40 485 doubles for this case, because
173 have both an automorphism of order 2 with 5 or 7 fixed points. Of these doubles 305 have also an automorphism
of odd prime order, so they were already counted among the 4170 doubles found above.
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4.2. Automorphisms of order 2 with |G�| = 1

We generate all designs (D ∪�D), where � is a permutation of order 2 (see Proposition 2). We use a method similar
to the second approach from the previous section. We first find all automorphisms of D and then generate all possible
permutations of order 2 in lexicographic order. As the automorphism group of the projective plane of order 4 is doubly
transitive, we can fix one non-trivial orbit.

Suppose we have constructed the current permutation �. Suppose ∃�, � ∈ G, such that ��� is lexicographically
smaller than � (see Proposition 1, and mind that � is of order 2, i.e. � = �−1). If we have already constructed ���,
then it is of order 2, namely

������ = 1 ⇒ ���� = �−1�−1 ⇒ ���� ∈ G.

But ���� is also an automorphism of �D. Hence ���� ∈ G�. If |G�| = 1, then �� = 1 ⇒ � = �−1. Since |G�| = 1
for most of the designs constructed this way, for the currently constructed permutation �, we only search for � ∈ G,
such that �−1�� is lexicographically smaller than �, and we drop the solution if such an � exists. This way most of
the isomorphic copies are filtered, the final full isomorphism check does not filter much more. This simpler pruning
condition makes the programme much faster, which is important because we cannot prune partial solutions for the
permutations in this case.

We checked the results by two different implementations. In one of them we used McKay’s program nauty [12] for
the final isomorphism check. We construct 991 957 non-isomorphic designs which have an automorphism of order 2
transforming the constituent designs into one another. We establish that for 984 549 of them the order of the full group
of automorphisms is 2, and |G�| = 1.

5. Classification of the doubles of the projective plane of order 4

Classification results are presented in Table 1. The classification is based on three properties:

• the order of the automorphism group of the doubles (column |Ĝ�|),
• the order of the common subgroup of the full automorphism groups of D and �D (column |G�|), and
• whether G�G = G�−1G.

The column labeled N
(′)
|G�| gives the number of non-isomorphic doubles for the given values of the properties. The

number3 of designs isomorphic to one of these doubles among all the 21! possible (D ∪ �D) is presented in column

|CG(�)|/|G|; this number is determined using Proposition 1. Column N
(′)
|G�| multiplied by column |CG(�)|/|G| gives

the last column N
(′)
|G�| × |CG(�)|/|G|.

Having constructed all 1 028 899 doubles which possess non-trivial automorphisms, we use Eqs. (3) and (4) to
calculate the number of non-isomorphic designs which possess only the trivial automorphism which turns out to be
1 745 432 408; thus, the first row of Table 1, which is marked, is derived from the other rows.

The number of all 2-(21, 5, 2) doubles is 1 746 461 307, which does not differ very much from the bound obtained
by Corollary 4.
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Table 1
Classification of the doubles of the projective plane of order 4

|Ĝ�| |G�| G�G
?= G�−1G N

(′)
|G�|

|CG(�)|
|G| N

(′)
|G�| × |CG(�)|

|G|

1 1 No 1 745 432 408 241 920 422 255 008 143 360
2 1 Yes 984 549 120 960 119 091 047 040
2 2 No 33 631 120 960 4 068 005 760
3 3 No 2764 80 640 222 888 960
4 2 Yes 5709 60 480 345 280 320
4 4 No 389 60 480 23 526 720
5 5 No 26 48 384 1 257 984
6 3 Yes 1019 40 320 41 086 080
6 6 No 67 40 320 2 701 440
8 4 Yes 345 30 240 10 432 800
8 8 No 17 30 240 514 080
9 9 No 1 26 880 26 880

10 5 Yes 30 24 192 725 760
12 6 Yes 167 20 160 3 366 720
12 12 No 2 20 160 40 320
14 7 Yes 2 17 280 34 560
14 14 No 1 17 280 17 280
16 8 Yes 55 15 120 831 600
16 16 No 3 15 120 45 360
18 9 Yes 18 13 440 241 920
18 18 No 1 13 440 13 440
21 21 No 1 11 520 11 520
24 12 Yes 24 10 080 241 920
28 14 Yes 2 8640 17 280
30 15 Yes 1 8064 8064
32 16 Yes 20 7560 151 200
32 32 No 1 7560 7560
36 18 Yes 15 6720 100 800
40 20 Yes 1 6048 6048
42 21 Yes 2 5760 11 520
48 24 Yes 3 5040 15 120
54 27 Yes 1 4480 4480
64 32 Yes 7 3780 26 460
96 48 Yes 4 2520 10 080
96 96 No 1 2520 2520

108 54 Yes 2 2240 4480
120 60 Yes 1 2016 2016
128 64 Yes 2 1890 3780
192 96 Yes 4 1260 5040
252 126 Yes 1 960 960
256 128 Yes 1 945 945
384 96 Yes 1 1260 1260
384 192 Yes 1 630 630
480 240 Yes 1 504 504
576 288 Yes 1 420 420

1152 288 Yes 1 420 420
1152 576 Yes 1 210 210
1536 384 Yes 1 315 315
3840 1920 Yes 1 63 63

120 960 120 960 Yes 1 1 1

|Ĝ�| |G�| G�G
?= G�−1G N

(′)
|G�|

|CG(�)|
|G| N

(′)
|G�| × |CG(�)|

|G|
All 1 746 461 307 21!/|G| = 422 378 820 864 000
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