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Abstract 

In this article we offer an algorithm recurrently divides a dataset by search of partitions via one dimensional 
subspace discovered by means of optimizing of a projected pursuit function. Aiming to assess the model order a 
resampling technique is employed. For each number of clusters, bounded by a predefined limit, samples from the 
projected data are drawn and clustered through the EM algorithm. Further, the basis cumulative histogram of the 
projected data is approximated by means of the GMM histograms constructed using the samples’ partitions. The 
saturation order of this approximation process, at what time the components’ amount increases, is recognized as the 
“true” components’ number.  Afterward the whole data is clustered and the densest cluster is omitted. The process is 
repeated while waiting for the true number of clusters equals one. Numerical experiments demonstrate the high 
ability of the proposed method. 
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1. Introduction 

General clustering procedures applied for high-dimensional data classification are frequently based on the 
Gaussian Mixture Model (GMM). Such model can expose an unsteady performance when the size of the considered 
dataset is overly small compared to the number of parameters to estimate or when an expected partition is composed 
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from clusters with significantly diverse sizes. To avoid these difficulties a projection clustering approach can be 
applied aiming to find a balance between the parameters’ quantity and the generality of the replica. Although the 
unrelated characteristics of the projected set may actually “hide” the clusters by imaging two items belonging to the 
same cluster observe as dissimilar as an arbitrary couple of items. Likewise, items could cluster inversely in varying 
subspaces.  

The projected clustering concept presumes that consequential partition can be discovered by projecting onto 
subspaces of lower dimensionality. Practically the most of existing projected clustering algorithms (see e. g. 1-5) are 
definitely based on an assumption that underlying clusters are depicted by areas of the data of high density separated 
by sparse areas. This fact is expressed by separated “picks” or “islands” in a subspace corresponding to the overall 
density of the full space. Hence, the seeking of attractive cluster structure in the high dimensional space can be 
altered by a corresponding procedure in lower dimensional subspaces. Formally speaking, interestingness is 
measured by a distance between the distribution of the projected data and a distribution of recognized as 
uninteresting, which is typically suggested to be normal. So, (see 6-7) any test statistic for testing non-normality (or 
departure from normality) might be applied as a projection index, quantifying the “interestingness”. 

In this article we offer a one-dimensional projection pursuit algorithm in the framework of the general Gaussian 
Mixture Model (GMM) supposing that each cluster is represented by a Gaussian probability density. Note that each 
projection of GMM distributed data is also GMM distributed. The parameters of GMMs are mostly estimated by the 
well-known Expectation Maximization Algorithm (EM) finding a maximum likelihood solution. A weakness of this 
fitting method consists of poor functioning, once high-dimensional data are operated as a large sample size is 
required in order to attain the required precision.  

We propose here a hierarchical projective clustering approach in the spirit of the mentioned earlier projection 
pursuit perspective based on searching of appropriate one-dimensional subspaces (directions). Note that such an 
approach is naturally connected to the color space optimizations (see, e.g. 8) where an image transformation is 
constructed in a way that saves as much of the information as possible from the source space though remaining as 
authentic as possible to the natural mapping. Actually, such a transformation is appearing in our approach as a 
weighted sum of the three linear-intensity values with the weights evaluated via the clustering projections goodness. 
The algorithm recurrently divides a dataset by search of partitions via one dimensional subspace discovered by 
means of optimizing of a projected pursuit function. Aiming to assess the model order (the components' quantity) a 
resampling technique is employed. For each number of clusters, bounded by a predefined limit, samples from the 
projected data are drawn and clustered through the EM algorithm. Further, the basis cumulative histogram of the 
projected data is approximated by means of the GMM histograms constructed using the samples’ partitions. The 
saturation order of this approximation process, at what time the components’ amount increases, is recognized as the 
“true” components’ number.  Afterward the whole data is clustered, by the EM algorithm with this found number of 
clusters, and the densest cluster is omitted. The process is repeated while waiting for the true number of clusters 
equals one.  

The paper is organized as follows: In section 2 we present proposed method and discuss its ingredients: the 
Gaussian Mixture model and the closely connected EM algorithm, Criteria for Projections Selecting and the model 
selection method. The remaining sections are devoted to the numerical experiments consisting of an application of 
the presented method to image segmentation and to conclusion. 

 
Nomenclature 

GMM Gaussian Mixture Model  
EM  Expectation Maximization 
KS  Kolmogorov-Smirnov 
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2. Proposed method 

The following pseudo-code describes the meta-algorithm of the suggested method. Now assume that the observed 
multivariate data 1 ,..., NX X X , have been generated from a mixture Gaussian distributions 

, i=1,...,kiN  on the Euclidian space mR  
Meta-Algorithm:  
1. For given data X  do: 
2. Discover an appropriate direction d* by optimizing of a projection pursuit function I(d); 
3. Project the data on the direction d*;  
4. Estimate the number of clusters k* of the projected data in the framework  the GMM (model order selection 

step); 
5. Partition the projected data with the EM algorithm into k*  clusters; 
6. Uncover the most concentrated cluster of the found partition and exclude it from the data; 
7. If the stopping criterion is met then stop, else return to step 1.  

Since, the partitions are being created in the GMM framework, the most concentrated cluster is expressed by the 
minimal cluster inner standard deviation. Let us consider in details an implementation of the supplementary method 
ingredients.  

2.1. GMM and EM algorithm 

The Gaussian Mixture Model (GMM) is a probabilistic replica that supposes all the data are produced from a 
mixture of a finite number of Gaussian distributions with undiscovered parameters (see, e.g. 9).  In the one-
dimensional case GMM assumes that the probability density function of X  is follows:  

1
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where k is the components number, ( | , )i iN  is a normal probability density function of the i – th 

component,  having the mean value i , the standard deviation i , i=1,…,k.; wi are components’ weights, 
i=1,…,k. The fit of the GMM model to the data can be evaluated by the log likelihood function of the data. 
Maximizing this function can be done using standard, iterative, numeric optimization methods or by EM algorithm 
to maximize log-likelihood:  

 
The consequences of the EM algorithm are very sensitive to the initial values of the parameters due to local maxima 
of the likelihood function.  At the algorithm initialization an auxiliary set  Z={zit, i=1,...,k, t=1,..,N} is introduced as 
a vector of k binary indicator variables that are mutually  exclusive and exhaustive (i.e., one and only one of the 
zin’s equals to 1, and all the others are 0, for a given n). {zin, i=1,...,k } is an array representing the identity of the 
mixture component including  xn.  Then, in every EM step, the succeeding calculations are performed which assure 
a monotonic growth in the likelihood value: 
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 M-Step: 
o Means Calculation: 
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o Variances Calculation: 
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o A posteriori  Probabilities Calculation: 
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After the new parameters values have been calculated, the M-step is finished, and the process returns to the E-step 
to recalculate the membership weights, and so on. The steps are executed until the parameters discontinue 
changing.  

2.2. Criteria for Projections Selecting 

We would like to operate with a criterion for choosing an appropriate projecting direction which is comfortable to 
compute, even if the data dimension and the sample size are sufficiently large. From the clustering standpoint, an 
interesting direction is someone producing projected clusters placed nearby well separated midpoints.  In this case, 
(see 10), a multimodal projected distribution predictable occurs. Hence, a purposeful criterion appears to be like 
seeking for directions exploiting the bimodality distribution property. Such an attitude was actually adopted in 11 
where the directions are selected to minimize the kurtosis of the projected data: 

 
1

* I (d)=kurtosis < , >argmin
d

d X d   .      (1) 
 
On the other hand, under some weak assumptions 12 distributions of linear projections can be reflected as 

approximately normal in the high dimension case; i.e., practically speaking, most projections are approximately 
Gaussian distributed. According to the well-known Cramer-Wold principle, if all one-dimensional projections are 
normal then the underlying distribution is normal. So, a statistic measuring “departure from normality” can be used 
as a pursuit index. Resting upon this concern we employ also the following index:     

 
2

* I (d)=KS < , > ,argmax
d

d X d    (2) 
 
where KS stands the Kolmogorov-Smirnov quantifies a distance from  normality (see e.g. 13). To avoid 

degenerative solutions we constrain these optimization tasks as follows: 
 

s.t. : =1.d   (3) 
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2.3. Model selection 

This “ill posed” cluster analysis problem can bear more than one answer 14-15. A review of clustering model selection 
methods is presented, for example, in 16.  The offered approach employs the stability attitude; more explicitly: a 
stable approximation of the underlining distribution by means of the GMM learned from samples.  For cluster 
amounts, bounded by a predefined upper limit, we extract samples from the projected data and divide them using 
the EM algorithm. The underlying cumulative data function is approximated with the GMM ones resulted from the 
samples’ partitions obtained. The goodness of fit is evaluated by the Kolmogorov-Smirnov sample test distance 
(KS) from normality averaged over all drawn samples. Evidently, the goodness of fit is being improved if the 
number of components grows to the correct one, and it is getting worse after. So, the process saturation appears 
when the number of components corresponds to the most stable GMM state.  

 
Model Selection Algorithm    
Input 

 X- projected data; 
 Kmax-maximal number of components to be tested; 
 NSAMP-number of samples to be drawn from the data; 
 NSIZE-fraction of the drawn samples in the current data; 
 -saturation threshold. 

 
Algorithm  
Construct the cumulative distribution F of X. 

1. For k=1 to Kmax 
2.        For n=1 to NSAMP 
3.          Sn=SAMPLE(X,NSIZE) 
4.          Construct the GMM cumulative distribution nG partition of Sn  obtained by the EM  

         algorithm. 
5.    Calculate a distance statistic n nDis = KS F,G . 

6.        End 
7. Calculate  C(k)=mean n( Dis , n=1,...,NSAMP)  

A suitable number of components k* is given by the first saturation point of C(k):

k
k* = agrmin C k C k 1  .  

3. Applications to image segmentation  

We provide several experiments in order to demonstrate the capability of the proposed method on images.  The 
following parameters’ values are used: 

  Kmax = 10; 
  NSAMP = 50; 
 NSIZE = 10% of the remaining data; 
  = 0.001.  

 
In the pre-processing step the one dimensional Haar discrete wavelet transform (DWT) is applied to gain high level 
details in the projected data.  After using DWT the approximation coefficients matrix is nulled, and the result of the 
inverse DWT is added to the projected data. Such a technique exploiting the advantage of the noise-robust nature of 
wavelets is actually applied in order to contrast images enhancement (see, e.g. 17). However, we apply it here in a 
slightly different manner aiming to stress separation of the high density regions.  The segmentation procedure is 
performed twice: with the two introduced projection pursuit functions defined in (1) and (2).  
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Example 1 
The first image considered is presented in Fig. 1 and Fig. 2 with its final segmentations obtained by means of the 
proposed method. 
  

 

Fig. 1 The first segmented image 

 

Fig. 2 The final segmentations of the first segmented image performed by means of two pursuit functions 

As have been seen, the second index provides more accurate segmentation of the image. Let us consider the 
evolution of this process in the second case. Actually, just three segmentations were performed. The directions and 
the numbers of the components chosen are presented in the following table (Table 1).  
  
   Table 1 Characteristics of the segmentation process 

Iteration numbers d(1) d(2) d(3) Number of the components 
1 0.0506 0.7754 -0.6294 2 
2 0.0357 0.9412 -0.3359 2 
3 0.6092 0.5077 -0.6092 3 

 
The following figure (Fig. 3) demonstrates the approximation of the underlying cumulative projection function 

(marked in red) via the 50 sample cumulative ones in the case where the suggested components number equals to 1. 
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Fig. 3 Approximation of the underlying cumulative projection function (marked in red) via the 50 sample cumulative ones for k=1 

The two first iterations of the segmentation process are also exhibited in Fig. 4 to 5 where the omitted clusters are 
marked in red. 

 
Fig. 4 The first segmentation iteration 

 
 

Fig. 5 The second segmentation iteration 
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Example 2 
Here a brain MRI is considered (Fig. 6) 

 

Fig.6 The first segmented image 

Note that this image appears to be more complicated in comparison with first one. Particularly, two relatively small 
objects, supposedly potential tumours, are presented. However our algorithm is capable to recognize them (Fig. 7). 

 
Fig. 7 The final segmentations of the second segmented image performed by means of two pursuit functions. 

 
The segmentation process with the second pursuit function passed 8 iterations (Table 2). 

 
 Table 2. Characteristics of the segmentation process 

Iteration numbers d(1) d(2) d(3) Number of the 
components 

1 0.8130 0.5641 0.1442 4 
2 0.8632 0.4773 -0.1645 4 
3 0.8610 0.4942 -0.1205 3 
4 0.8628 0.4810 -0.1552 2 
5 0.6380 0.1160 -0.7612 2 
6 0.6980 0 -0.7161 5 
7 0.6078 0.1421 -0.7812 2 
8 0.6103 0.1501 -0.7778 3 

 

Please note that the process has adapted at each step in order to get the best partition and eventually found the 
smallest details in the picture.  The number of clusters at 8-th iteration is not 1, but the process has been stopped due 
to the small amount of items intended to be clustered at the next step.    
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4. Conclusion 

We proposed a new a one-dimensional projection pursuit algorithm in the framework of the general Gaussian 
Mixture Model. The algorithm progressively removes data elements which divert the emphasis of attention. The 
algorithm is capable to reveal data groups owning different sizes. The numerical experiments demonstrate a high 
ability of the proposed model and we plan to intensify its evaluation and to compare its performance to those of 
other models 
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