A semiquantitative analysis of reactive astrogliosis demonstrates its correlation with the number of intact motor neurons after transient spinal cord ischemia

Satoru Wakasa, MD, PhD, Norihiko Shiiya, MD, PhD, Tsuyoshi Tachibana, MD, PhD, Tomonori Ooka, MD, PhD, and Yoshiro Matsui, MD, PhD

Objective: We evaluated the relationship between reactive astrogliosis and delayed motor neuron death after transient spinal cord ischemia in rabbits using a semiquantitative analysis of glial fibrillary acidic protein expression.

Methods: Spinal cord ischemia was induced by means of balloon occlusion of the infrarenal aorta for 15 minutes at 39°C in 18 New Zealand white rabbits. At 1, 3, and 7 days after reperfusion, 6 animals at each time point were killed, and the spinal cord was removed for histologic and immunohistochemical study. The variables analyzed were (1) neurologic function (Johnson score) at every 24 hours after reperfusion, (2) the number of intact motor neurons and terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate-biotin nick-end labeling–positive positive neurons, and (3) expression of glial fibrillary acidic protein in the gray and white matter, which was expressed as the percentage of stained area.

Results: All animals presented delayed motor neuron death. The number of intact neurons decreased correlatively with neurologic function. No obvious terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate–biotin nick-end labeling–positive cells were observed. Glial fibrillary acidic protein expression increased with time in both the gray and white matter, representing the development of reactive astrogliosis. Significant correlation was found between glial fibrillary acidic protein expression and the number of intact motor neurons on the third day in both the gray ($r^2 = 0.726, P = .031$) and white ($r^2 = 0.927, P = .002$) matter.

Conclusions: Reactive astrogliosis 3 days after transient spinal cord ischemia correlates with the number of intact motor neurons. Our method for semiquantitative analysis of reactive astrogliosis is simple and reproducible and seems useful for such experimental studies.
Abbreviations and Acronyms
GFAP = glial fibrillary acidic protein
GFAP% = GFAP-positive area fraction
TSCI = transient spinal cord ischemia
TUNEL = terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate–biotin nick-end labeling

MATERIALS AND METHODS
The experimental protocol was approved by the Ethics Committee for Animal Experimentation at Hokkaido University School of Medicine. Eighteen New Zealand white rabbits weighing 3.10 ± 0.04 kg (range, 2.80–3.50 kg) were used in this study.

Surgical Procedure
Anesthesia was induced with intramuscular administration of ketamine at a dose of 50 mg/kg and maintained with inhalation through a face mask of 2% to 4% isoflurane driven by 1 L/min oxygen. The animals were allowed to breathe spontaneously. Body temperature was continuously monitored with a rectal thermometer and was maintained at 39°C to 40°C. Atropine (0.1 mg/kg) was injected intramuscularly to prevent atelectasis. After surgical incision, the right femoral artery was dissected and cannulated with a 25-gauge angiocatheter. After intravenous administration of heparin sodium (100 IU/kg), a 4F angiographic balloon catheter (CI-304; Harmac Medical Products, Inc, Buffalo, NY) was inserted through the artery and advanced 15 cm cephalad into the abdominal aorta. The balloon was inflated with 15 ml of air, and after inflation, the catheter was removed and the surgical wound closed with interrupted absorbable suture. Arterial blood gas analyses were performed at 5 minutes before (T0) and 15, 30, 60 minutes, and 1 hour after (T1–T4) reperfusion. The rabbit was allowed to recover at ambient temperature and was returned to its cage.

Experimental Protocol
The rabbits were killed after achievement of deep anesthesia with intravenous administration of sodium pentobarbital (50 mg/kg) immediately after neurologic testing on the first, third, and seventh days after reperfusion (n = 6 each, the first day means the day after the operation). After death, the lumbosacral portion of the vertebrae was taken out en bloc, and the spinal cord was removed carefully and quickly. Thereafter, the L4 to L5 segments were dissected in 3 or 4 pieces. Some of those blocks for histologic study were fixed by means of immersion in 10% formalin solution and embedded in paraffin. The rest of the blocks were frozen in liquid nitrogen with Tissue-Tek O.C.T. compound (4582; Sakura Fine Technical Co, Ltd, Tokyo, Japan) and stored at −80°C for immunohistochemical analysis.

Neurologic Assessment
The rabbits’ hind-limb function was evaluated at every 24 hours after reperfusion, according to the method of Johnson and colleagues on the following 6-grade scale: 0, hind-limb paralysis; 1, severe paraparesis; 2, functional movement with no hop; 3, ataxia with disconjugate hop; 4, minimal ataxia; and 5, normal function. An observer unaware of the protocol assessed neurologic function.

Histologic Study
Serial transverse sections (4 μm) were obtained and stained with hematoxylin and eosin for histopathologic study. Terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate–biotin nick-end labeling (TUNEL) staining was also performed with a detection kit (298-60201, Apoptosis In Situ Detection Kit; Wako, Osaka, Japan) to detect apoptotic neuronal death. The reliability of the TUNEL staining method was validated by staining the positive control samples, which were created from 2 control animals without spinal cord ischemia by means of pretreatment with DNase-I. All sections were evaluated at a magnification of ×200.

In hematoxylin and eosin staining intact neurons in the anterior spinal cord were counted in each slice. We defined apoptotic and necrotic neurons as follows. Neurons presenting cytoplasmic shrinkage, nuclear chromatin condensation (crescentic or round), and apoptotic bodies were considered apoptotic. Neurons with loss of Nissl bodies, cytoplasmic vacuolization, structureless cytoplasm (sometimes with findings of cell lysis), and degradation of nuclei were considered necrotic. Mildly damaged neurons with swelling and dispersed Nissl substances were counted as intact neurons in this study. Counted data from 3 different slides in each animal were averaged and compared. In TUNEL staining apoptotic neurons were defined as the nucleus stained dark brown with or without chromatin condensation and apoptotic bodies in association with translucent cytoplasm, whereas necrotic neurons, if stained brown, show a diffuse light brown staining not only in the cell nucleus but also in the cytoplasm.

Immunohistochemical Study
Serial sections (4 μm) from frozen samples were fixed in 4% paraformaldehyde for 7 minutes at 4°C and then treated with 1% hydrogen peroxide in methanol for 30 minutes. Sections were incubated with a polyclonal rabbit anti-GFAP antibody (1:200; Z0334; DAKO, Carpinteria, Calif), which was previously treated with a peroxidase labeling kit (LK-09; Dainippon, Osaka, Japan), for 60 minutes at room temperature. The slices were colorized with liquid 3,3-diaminobenzidine (Liquid DAB, K3466; DAKO), and then nuclei were counterstained with hematoxylin.

For semiquantitative analysis of reactive astrogliosis, the microscopic images of the gray and white matter were captured through a charge-coupled device (CCD) camera connected to the microscope at a magnification of ×200. The obtained digital images were analyzed with a computer with image-processing software (ImageJ v1.37; National Institute of Mental Health, Bethesda, Md). The color images with various degrees of GFAP expression were converted to binary images and then to numeric data by means of particle analysis (Figure 1). The results of particle analysis represented the ratio of the accumulated area of GFAP-positive fractions over a certain size (ie, cytoplasm of astrocytes) to the whole area of the image. Those data obtained from several different slides (3 from the gray matter and 6 from the white matter) in each slice were averaged and presented as the GFAP-positive area fraction (GFAP%). The digital analyses were performed, comparing original images to binary images. The binary threshold was determined so that the signal-to-noise ratio became nearly equivalent among all images. The particle size used in particle analysis was set so that almost all astrocytes could be detected, whereas the noise could not.

Statistical Analysis
Data are expressed as the mean ± standard error of the mean. Comparison of the continuous variables was performed by using the 1-way analysis of variance test with Scheffe’s multiple comparison test. Changes in the hemodynamic and blood gas analysis data over time were analyzed with repeated-measures analysis of variance. For the analysis of serial changes
in Johnson scores in the same rabbits, the Friedman test was used, which was followed by the Wilcoxon signed-rank test for multiple comparison. Correlation analysis was performed with the simple linear regression test. Statistical analyses were performed with GraphPad Prism 4.0 (GraphPad Software, Inc, San Diego, Calif) and SPSS 11.0.1 for Windows (SPSS, Inc, Chicago, Ill).

RESULTS
All rabbits survived until the prescheduled time period for analyses. Table 1 demonstrated hemodynamic and blood gas analysis data during the procedure. The mean distal blood pressure decreased and the pulse pressure vanished (data not shown) after balloon inflation in all rabbits. The rectal temperature also decreased gradually during ischemia and returned to preocclusion values within 10 minutes after reperfusion. Base excess, PCO2, and blood glucose levels were significantly changed after reperfusion.

Neurologic Function
Figure 2 shows the serial change in Johnson score of 6 animals killed on the seventh day. Although hind-limb motor function was normal in 4 of 6 rabbits on the first day, it deteriorated in all rabbits thereafter. The score continued to decrease even after the third day in all rabbits, representing delayed-onset injury. A decrease in the Johnson score was statistically significant \(P < .001 \) and was 4.67 ± 0.21 on the first day, 3.67 ± 0.42 on the third day \((P = .059 \text{ vs the first day}) \), and 2.33 ± 0.33 on the seventh day \((P = .026 \text{ vs the first day, Figure 2}) \).

Histologic Study
On the first day, most neurons appeared intact. On the third day, necrotic neurons were apparent, and parenchymal edema, microvascular dilatation, and leukocyte infiltration were conspicuous. On the seventh day, necrotic neurons were apparent. Parenchymal edema was significant with the loss of constructive integrity of the gray matter. Apoptotic neurons were not evident at any time period. The number of intact motor neurons in the anterior spinal cord was significantly different among the 3 time points \((P = .001) \). This number was significantly smaller on the seventh day

<table>
<thead>
<tr>
<th>TABLE 1. Hemodynamic and blood gas analysis data during the protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proximal mBP (mm Hg)*</td>
</tr>
<tr>
<td>Distal mBP (mm Hg)*</td>
</tr>
<tr>
<td>Rectal temperature (°C)*</td>
</tr>
<tr>
<td>pH</td>
</tr>
<tr>
<td>Hematocrit (%)</td>
</tr>
<tr>
<td>P<sub>0</sub> (mm Hg)</td>
</tr>
<tr>
<td>P<sub>co</sub> (mm Hg)</td>
</tr>
<tr>
<td>Base excess (mEq/L)</td>
</tr>
<tr>
<td>Glucose (g/dL)</td>
</tr>
</tbody>
</table>

mBP, Mean blood pressure. *\(P < .05 \), repeated-measures analysis of variance. †\(P < .05 \) compared with the value at 5 minutes before clamping, Bonferroni’s multiple comparison test. ‡\(P < .05 \), paired t test.
(21.32 ± 0.59) than that on the first day (31.08 ± 1.37, \(P = .027 \)), whereas it was comparable between the third day (29.38 ± 3.64) and the first day (\(P = .870 \)). Of note, the variation of the number of intact neurons was prominent on the third day, reflecting the wide variation of Johnson scores at this time point (Figure 3). There was a significant correlation between the number of normal motor neurons and the Johnson score (\(r^2 = 0.658, P < .001, \) Figure 4). Meanwhile, no obviously TUNEL-positive motor neurons could be found at the 3 time points, although there were a few neurons presenting diffuse brown staining in both the nucleus and the cytoplasm and not being consistent with apoptotic neurons.

Immunohistochemical Study

In the gray matter reactive astrogliosis of the protoplasmic astrocytes was minimal on the first day. It became apparent on the third day around microvessels and some motor neurons. On the seventh day, reactive astrogliosis was prominent around the damaged neurons (Figure 5, upper row). The value of GFAP\% was significantly different among the 3 time points (\(P = .001 \)) and was 0.47 ± 0.07 on the first day, 0.72 ± 0.09 on the third day (\(P = .353 \) vs the first day), and 1.23 ± 0.17 on the seventh day (\(P = .001 \) vs the first day and \(P = .025 \) vs the third day; Figure 6, A). In the white matter reactive astrogliosis of the fibrous astrocytes was already present on the first day and became prominent and seemed nearly complete on the third day (Figure 5, lower row). GFAP\% was also significantly different among the 3 time points (\(P = .004 \)). GFAP\% on the third day (5.95 ± 0.45) was significantly higher than that on the first day.
(4.43 ± 0.27, P = .024), whereas that on the seventh day (6.24 ± 0.29) was not significantly different from that on the third day (P = .841; Figure 6, B). There was a significant correlation ($r^2 = 0.538$, $P < .001$) between the GFAP% values in the gray and white matter.

The linear regression analysis revealed a significant inverse correlation between GFAP% value and the number of intact neurons on the third day in both the gray ($r^2 = 0.726$, $P = .031$) and white matter ($r^2 = 0.927$, $P = .002$, Figure 7). In the gray matter a similar relationship was also observed on the first day, although it was not statistically significant ($r^2 = 0.595$, $P = .072$). On the seventh day, there was no corelationship between them.

DISCUSSION

The main observations of this study are as follows: (1) progressive and delayed deterioration of the hind-limb motor function was observed up to the seventh day after 15 minutes of spinal cord ischemia in all rabbits, with significant correlation between the Johnson neurologic score and the number of intact motor neurons; (2) development of reactive astrogliosis, which was observed in both the gray and white matter, was semiquantitatively analyzed by means of immunoreactivity for GFAP; and (3) semiquantitative analysis of the extent of GFAP expression in both the gray and white matter demonstrated significant correlation with the number of intact motor neurons on the third day.

Delayed-onset paraplegia was reported to develop 2 to 7 days after TSCI.2-8 The group of Sakurai and associates3 demonstrated that apoptotic motor neuron death accounted for the delayed motor dysfunction after TSCI by using TUNEL staining and immunohistochemical study for caspase-34 and Fas antigen5 expression. Matsumoto and colleagues,
however, suggested that delayed motor neuron death was predominantly associated with necrotic death\(^7\) and could develop if the ischemic insult exceeds the protection by astrocytes because astrocytes were considered to be activated by ischemia and to protect neurons.\(^8\) Our result that there were no obvious TUNEL-positive motor neurons was in accordance with the Matsumoto reports. However, we cannot exclude apoptotic neuronal death as a mechanism of delayed injury because other reliable assays, such as immunohistochemical study for cleaved caspase-3 or cleaved poly-adenosine diphosphate–ribose polymerase, were not performed. Further study will be necessary in this regard.

The inverse correlation between the extent of GFAP expression and the number of intact motor neurons observed on the third day might suggest that reactive astrocytes play an important role in the delayed motor neuron death. Alternatively, reactive gliosis was caused by neuronal injury, which was the reason for this correlation. However, the correlation with the number of intact neurons was present not only for the GFAP\(^{\%}\) in the gray matter but also for that in the white matter, and GFAP\(^{\%}\) in the white matter was in parallel with that in the gray matter. These results suggest that astrocytes activation was triggered globally by the initial ischemic event, rather than triggered locally by damaged neurons. In addition, if gliosis is merely a response to

FIGURE 6. Glial fibrillary acidic protein immunoreactivity (GFAP\(^{\%}\)) on the first, third, and seventh days after transient spinal cord ischemia in the gray (A) and white (B) matter.

FIGURE 7. Linear regression analysis for the correlation between the number of intact motor neurons and glial fibrillary acidic protein (GFAP) immunoreactivity on the first, third, and seventh days after transient spinal cord ischemia in the gray (A) and white (B) matter.
cellular death, such correlation should also be significant on the seventh day, when neuronal death was more prominent. Together with the localization of reactive astrocytes surrounding damaged neurons, we think that reactive astrocytes are involved in the mechanism of delayed motor neuron death.

Reactive astrocytes are characterized by hypertrophy of cellular processes and upregulation of GFAP and vimentin. GFAP is a chief component of intermediate filaments, which, together with microtubules and actin filaments, constitute the cytoskeleton of astrocytes. The protoplasmic astrocytes in the gray matter were reported to have smaller amounts of GFAP than the fibrous astrocytes in the white matter, which could explain the more rapid expression of GFAP in the white matter in our study. Upregulation of GFAP is perhaps the best known hallmark of reactive astrocytes and reactive gliosis. Within a few hours of virtually any type of brain injury, surviving astrocytes in the affected region begin to exhibit hypertrophy and proliferation. GFAP immunoreactivity becomes strongly positive at 48 to 72 hours after reperfusion, which persists in damaged areas for weeks after ischemia, without conspicuous cell loss. Our results on semiquantitative analysis were consistent with these reports.

The functions of astrocytes are numerous and complex. Astrocytes are sensors of changes in the brain environment, to which they immediately react on the genomic (eg, production of trophic factors) and nongenomic (eg, uptake of ions) level. Astrocytes are sources of energy substrates for neurons. They transfer lactate, pyruvate, or both to neurons and store glycogen as the main energy reserve in the brain. Astrocytes might both protect against and contribute to the neuroprotective role of reactive astrocytes in brain ischemia. They transfer lactate, pyruvate, or both to neurons and store glycogen as the main energy reserve in the brain.

There were numerous reports suggesting that reactive astrocytes could be closely associated with neuronal survival after ischemia. Muyderman and coworkers reported that selective depletion of mitochondrial glutathione in astrocytes increased the sensitivity to peroxynitrite and was associated with necrotic cell death. Li and colleagues demonstrated the neuroprotective role of reactive astrocytes in brain ischemia. Excitatory glutamatergic neurotransmission is controlled by astrocytes on biosynthesis and uptake of glutamate, consequently preventing neuronal death caused by excitotoxicity. Under pathologic conditions (eg, hypoxemia), however, astrocytes could release excitotoxic glutamate through glutamate transporters. Hence activated astrocytes might both protect against and contribute to the glutamate-mediated neuronal damage.

In this study we introduced a new method for semiquantitative analysis of GFAP expression and, by using it, successfully demonstrated the correlation between the number of intact motor neurons and GFAP expression. Although the decision of binary threshold or particle size and adjustment of signal-to-noise ratio are relatively a delicate matter, the particle analysis of digitized photographic data is simple, cost-effective, and highly reproducible compared with traditional procedures, such as histologic grading/scoring. It requires no fluorescent staining and special equipment like fluorescence microscopy. We could perform histologic analysis and semiquantitative immunologic analysis simultaneously and could even compare them by using single-sample slides. The present report will open a new window for further research into ischemic spinal cord injury.

References