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Abstract

Authentication is a slippery security property that has been formally de/ned only recently;
among the recent de/nitions, two rather interesting ones have been proposed for the spi-calculus
by (Abadi and Gordon (in: Proc. CONCUR’97, Lecture Notes in Computer Science, Vol. 1243,
Springer, Berlin, 1997, pp. 59–73; Inform. and Comput. 148(1) (1999) 1–70) and for CSP by
Lowe (in: Proc. 10th Computer Security Foundation Workshop, IEEE Press, 1997, pp. 31–43).
On the other hand, in a recent paper (in: Proc. World Congr. on Formal Methods (FM’99),
Lecture Notes in Computer Science, Vol. 1708, Springer, Berlin, 1999, pp. 794–813), we have
proved that many existing security properties can be seen uniformly as speci/c instances of a
general scheme based on the idea of non-interference. The purpose of this paper is to show
that, under reasonable assumptions, spi-authentication can be recast in this general framework
as well, by showing that it is equivalent to the non-interference property called NDC of Focardi
and Gorrieri (J. Comput. Security 3(1) (1994=1995) 5–33; IEEE Trans. Software Eng. 23(9)
(199) 550–571). This allows for the comparison between such a property and the one based on
CSP, which was already recast under the general scheme of Focardi and Martinelli (1999).
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1. Introduction

Authentication is, intuitively, the process of reliably verifying the identity of some-
one or something. This is usually achieved by some form of binding; e.g., users are
recognized on the net by some information (e.g., password or key) only they know.
Authentication has, however, many facets. For instance, in a communication protocol,
entity authentication commonly refers to the capability of identifying the other party
engaged in a protocol session, while message authentication usually refers to authen-
ticity of both the origin and the content of the exchanged message.

Even if there is a widespread agreement on what authentication should be, under
a closer scrutiny one realizes that it is a very slippery security property. As a matter
of fact, formal de/nitions of authentication have rarely been given, not widely agreed
upon, usually not compared and only recently proposed in the literature (see, e.g.,
[3,16,18,27]). This is sometimes due to the fact that we /rst need a formal model
on which the problem is de/ned (and this is often a source of possible proliferation
of diKerent proposals) and then a formal de/nition of authentication w.r.t. the chosen
model. Moreover, even when a formal de/nition is given, usually this is not (easily)
comparable to others, due to diKerent mathematical assumptions of the model.

The main aim of our current research is to /nd a uniform approach for de/ning the
many variants of security properties (authentication in particular) in such a way that
they can all be seen as speci/c instances of a general scheme. This is badly needed
in order to compare, classify and evaluate the merits of the various de/nitions and
possibly provide general and eKective analysis techniques that can be applied suitably
for all properties.

To this aim, in [14] we have presented a process algebra, called CryptoSPA, 1 that
is expressive enough to model a large class of systems, e.g., (non-mobile) security
protocols. CryptoSPA has been chosen as the common model for comparing the var-
ious properties through the general, unifying scheme, called GNDC. The main idea
behind GNDC is the notion of non-interference, which was proposed many years ago
[15] in a completely diKerent context to study information Gow in computer systems
and was widely studied in [9,10,21]. Roughly, a system satis/es a security property
if its behavior cannot be altered (hence, with no interference) when executed in a
hostile environment. This property is a direct generalization for security protocols of
the property of non-deducibility on composition (NDC for short) that we proposed in
[9,10].

Some security properties (e.g., CSP authentication of [18] and non-repudiation as in
[26]) have been shown as instances of our general scheme in [12,14]. The main goal of
this paper is to show that the rather diKerent authentication property de/ned by Abadi
and Gordon [2], once adapted for CryptoSPA, can be formulated in our framework as
well, under some reasonable, mild assumptions. This new formulation of the property
de/ned in [2] is interesting for the following reasons:

1 CryptoSPA is an improvement of (value-passing) SPA [10] which borrows some concepts for handling
cryptography from the language de/ned in [22,20].
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• It strengthens our claim that non-interference plays a key role in the speci/cation
and analysis of security protocols, as also the spi-authentication property can be
recast in the same scheme.

• It helps in comparing the various authentication properties among them and with
respect to other diKerent security properties, as they are now de/ned uniformly (in
the same language) as instances of the same general scheme. For instance, here we
show that in a particular (but reasonable) situation the Agreement authentication
property de/ned in [18] is stronger than spi-authentication [2].

• It contributes to clarify the spi authentication property: in fact, in its original def-
inition, based on a testing-like semantics, the tester plays both the role of intruder
and observer at the same time; in its new equivalent formulation, the two roles
are clearly separated. Moreover, the new formulation does not require the explicit
de/nition of the secure speci/cation.

• It may contribute with analysis techniques for spi-authentication: the new formulation
is based on NDC and techniques for the veri/cation of NDC are already available,
also implemented in existing tools [6,7,10].

The paper is organized as follows: in Section 2 we de/ne the model; in Section 3 we
adapt to our model the notion of message authentication of the spi-calculus; Section
4 describes NDC-based authentication, while Section 5 describes the CSP authentica-
tion property called Agreement; Section 6 shows that, under some assumptions, mes-
sage authentication of the spi-calculus and NDC-based authentication are equivalent; in
Section 6 we also compare Agreement with spi-authentication, showing that the for-
mer implies the latter under some reasonable assumptions; Section 7 brieGy discusses
some veri/cation issues; Section 8 describes some concluding remarks and future work.
Finally, an appendix contains the proofs of some results reported in the paper.

2. The model

In this section we describe the language we use for the speci/cation of authentication
properties and protocols, originally presented in [14]. It is called cryptographic security
process algebra (CryptoSPA for short), and is a variant of value-passing CCS [23],
where the processes are provided with some primitives for manipulating messages. In
particular, processes can perform message encryption and decryption, and also construct
complex messages by composing together simpler ones.

2.1. The CryptoSPA syntax

The CryptoSPA syntax is based on the following elements:
• A set I = {a; b; : : :} of input channels and a set O= { Ma; Mb; : : :} of output channels,

related through a function M· : I ∪O→ I ∪O which given an input a∈ I returns the
corresponding output Ma∈O and vice versa, i.e., MMa= a.

• A set M of basic messages. The set M of all messages is de/ned as the least
set such that M ⊆M and ∀m;m′; k ∈M we have that (m;m′) (pairs) and {m}k
(encryptions) also belong to M.



288 R. Focardi et al. / Theoretical Computer Science 291 (2003) 285–327

• A set C ⊆ I ∪O of channels, ranged over by c, such that c∈C iK Mc∈C; these
channels represent the insecure network on which the enemy can intercept and fake
messages. Channels in (I ∪O)\C are the private channels.

• A function Msg : I ∪O→P(M) which maps every channel c into the set of possible
messages that can be sent and received along such a channel. Msg is such that
Msg(c) =Msg( Mc).

• A set Act= {c(m) | c∈ I; m∈Msg(c)}∪ { Mc m | Mc∈O; m∈Msg(c)}∪ {} of actions
( is the internal, invisible action), ranged over by a; we also have a function
chan(a) which returns c if a is either c(m) or Mcm, and the special channel void
when a= ; we assume that void is never used within a restriction operator (see
below).

• A set Var of variables, ranged over by x.
• A set Const of constants, ranged over by A.
The syntax of CryptoSPA terms (or processes) is de/ned as follows:

E ::= 0 | c(x):E | Mce:E | :E | E + E | E ‖E | E\L | E[f] |
| A(e1; : : : ; en) | [e = e′]E;E | [〈e1 : : : er〉 �rule x]E;E

where e; e′; e1; : : : ; er are messages or variables, L is a set of input channels and
f :Act �→Act is a function that relabels channel names inside actions. 2 Both the op-
erators c(x):E and [〈e1 : : : er〉 �rule x]E;E′ bind the variable x in E. It is also assumed

that each constant A has an associated de/ning equation: A(x1; : : : ; xn)
def= E where E

is a CryptoSPA process which may contain no free variables except x1; : : : ; xn, which
must be distinct. Constants permit us to de/ne recursive processes.

Besides the standard value-passing CCS operators, we have an additional one that
has been introduced in order to model message handling and cryptography. Informally,
the [〈m1 : : : mr〉 �rule x]E1;E2 process tries to deduce a piece of information z from the
tuple of messages 〈m1 : : : mr〉 through one application of rule �rule; if it succeeds then
it behaves like E1[z=x], otherwise it behaves like E2. See next subsection for a more
detailed explanation of derivation rules.

We call E the set of all the CryptoSPA closed terms (i.e., with no free variables),
and we de/ne sort(E) to be the set of all the channels syntactically occurring in the
term E. Moreover, for the sake of readability, we always omit the termination 0 at the
end of process speci/cations, e.g., we write a in place of a:0. We also write [m=m′]E
in place of [m=m′]E; 0 and analogously for [〈m1 : : : mr〉 �rule x]E; 0. Finally, we often
replace constructive rules (encryption and pairing) with the resulting messages, e.g.,
we use Mc{m}k as a shortcut for [〈m; k〉 �enc x] Mcx.

2.2. The operational semantics of CryptoSPA

In order to model message handling and cryptography, CryptoSPA may be equipped
with a set of inference rules (inference system). Note that CryptoSPA syntax, its

2 The relabeling functions map channels in C to channels in C and channels in (I ∪O)\C to channels in
(I ∪O)\C.
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m m′

(m;m′)
(�pair)

(m;m′)
m

(�fst)
(m;m′)
m′ (�snd)

m k
{m}k

(�enc)
{m}k k−1

m
(�dec)

Fig. 1. Inference system for message manipulation, where m;m′; k; k−1 ∈M.

semantics and the results obtained herein are completely parametric with respect to
the inference system used. It is thus quite easy to adopt other rules, e.g., for modeling
some kinds of cryptographic weakness. For explanatory purposes, in Fig. 1, we provide
a simple inference system which is quite similar to those used by many authors (see,
e.g., [17,19]). We consider a function ·−1 :M→M which denotes, for each key k
(i.e., a message possibly used as encryption key), the corresponding decryption key.
Note that there are no rules, to obtain the message k−1 from k (and vice versa). In
particular, the inference system can combine two messages obtaining a pair (rule �pair);
it can extract one message from a pair (rules �fst and �snd); it can encrypt a message
m with a key k obtaining {m}k and, /nally, decrypt a message of the form {m}k only
if it has the corresponding (inverse) key k−1 (rules �enc and �dec). As an example,
process [〈{m}k ; k−1〉 �dec x]E1;E2 decrypts message {m}k through the inverse key k−1

and behaves like E1[m=x], while [〈{m}k ; k ′〉 �dec x]E1;E2 (with k ′ �= k−1) tries to de-
crypt the same message with the wrong inverse key k ′ and (since it is not permitted
by �dec) it behaves like E2.

Given an inference system, we say that a message m can be deduced from a set of
messages � whenever there exists a tree whose nodes are messages, such that the root
is m, the leaves are contained in � and each message in the tree may be obtained by
applying a rule instance of the inference system whose premises are the descendants
of the message in the tree. We consider a function D, from /nite sets of messages to
sets of messages, such that D(�) is the set of messages that can be deduced from �.
We assume that D is recursive.

Note that, in our model, we are assuming encryption as completely reliable. Thus,
we do not allow any kind of cryptographic attack, e.g., the guessing of secret keys.
Nevertheless, we observe the attacks that can be carried out even if cryptography is
completely reliable.

The behavior of a CryptoSPA term is formally described by means of the labeled
transition system 〈E; Act; { a→}a∈Act〉, where a→a∈Act is the least relation between Cryp-
toSPA terms induced by the axioms and inference rules of Fig. 2.

Example 2.1. We present a very simple example of a protocol where A sends a
message mA to B encrypted with a key kAB shared between A and B. We de/ne it

as P def= A(mA; kAB) ‖B(kAB) where A(x1; x2) def= Mc{x1}x2 and B(x1) def= c(y):[〈y; x1〉 �dec z]
out z. Moreover, k−1

AB = kAB (symmetric encryption) and Msg(c) =M. We want to ana-
lyze the execution of P with no intrusion, we thus consider P\{c}, since the restriction
guarantees that c is now a private channel between A and B. We obtain a process whose
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(input)
m∈Msg(c)

c(x):E
c(m)−→E[m=x]

(output)
m∈Msg(c)
c m:E c m−→ E

(internal)
:E →E

(‖1)
E a→E′

E ‖E1
a→E′ ‖E1

(‖2)
E

c(m)−→E′ E1
c m−→ E′

1

E ‖E1
→E′ ‖E′

1

(+1)
E a→E′

E + E1
a→E′

(=1)
m=m′ E1

a→E′
1

[m=m′]E1;E2
a→E1

(=2)
m �= m′ E2

a→E′
2

[m=m′]E1;E2
a→E′

2

([f])
E a→E′

E[f]
f(a)−→ E′[f]

(\L)
E a→E′ chan(a) �∈ L

E\L a→E′\L
(D1)

〈m1 : : : mr〉 �rule m E1[m=x] a→E′
1

[〈m1 : : : mr〉 �rule x]E1;E2
a→E′

1

(D2)
� ∃m : 〈m1 : : : mr〉 �rule m E2

a→E′
2

[〈m1 : : : mr〉 �rule x]E1;E2
a→E′

2

(def)
E[m1=x1; : : : ; mn=xn]

a→E′ A(x1; : : : ; xn)
def= E

A(m1; : : : ; mn)
a→E′

Fig. 2. Operational semantics (symmetric rules for +1; ‖1 and ‖2 are omitted).

only possible execution is the correct one where A sends to B the message {mA}kAB
and then out mA is executed:

P\{c} →(0 ‖ [〈{mA}kAB ; kAB〉 �dec z]out z)\{c} out mA−→ (0 ‖ 0)\{c}

2.3. The enemy

In this section we characterize the crucial notion of enemy (or intruder) as done in
[14]. Such a characterization is necessary to analyze protocols where some information
is assumed to be secret, as it always happens in cryptographic protocols. Intuitively,
an enemy can be thought of as a process which tries to attack a protocol by stealing
and faking the information which is transmitted on the CryptoSPA public channels in
set C. In principle, such a process could be modeled as a generic process X which
can communicate only through the channels belonging to C. However, in this way,
we obtain that X is a too powerful attacker which is able to “guess” every secret
information (e.g., the private key KAB of Example 2.1), as illustrated in the following
example.

Example 2.2. Consider again the protocol P of Example 2.1. Since only A and B
know kAB, this protocol should guarantee the authenticity of mA even in the presence
of an enemy. We assume that c∈C is a public channel and we consider the following
process:

X (m; k) def=[〈m; k〉 �enc y] Mcy

This process may only communicate over the public channel c, as sort(X (m; k))={c}.
Consider now process X (mX ; kAB), which knows kAB and can consequently send a faked
message {mX }kAB to B. In order to observe this, we consider the following process
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I(0; V ) = ∅
I(c(x):E; V ) = I(E; V )
I(c e:E; V ) = get−msg(e)∪ I(E; V )
I(:E; V ) = I(E; V )

I(E1 + E2; V ) = I(E1; V )∪ I(E2; V )
I(E1 ‖E2; V ) = I(E1; V )∪ I(E2; V )
I(E \ L; V ) = I(E; V )
I(E[f]; V ) = I(E; V )

I(A(e1; : : : ; en); V ) =




⋃
i∈{1;:::;n}

get−msg(ei) if A∈V

I(E; V ∪{A})∪ ⋃
i∈{1;:::;n}

get−msg(ei)

otherwise

where A(x1; : : : ; xn)
def= E

I([e= e′]E1;E2; V ) = get−msg(e)∪ get−msg(e′)∪ I(E1; V )∪ I(E2; V )

I([〈e1 : : : er〉 �rule x]E1;E2; V ) =

( ⋃
i∈{1;:::;r}

get−msg(ei)

)
∪ I(E1; V )∪ I(E2; V )

where

get−msg(e)=
{ {e} if e is a message

∅ if e is a variable

Fig. 3. De/nition of I(E; V ).

“under attack” (note that we put X inside the scope of restriction):

(P ‖X (mX ; kAB))\{c}
After one  communication step, the process above can perform out mX which repre-
sents the fact that B has received mX instead of mA. This happens since X (mX ; kAB)
is in some sense “guessing” kAB, but we would like to forbid such behavior since,
as mentioned above, we are interested in attacks that can be carried out even when
cryptography is completely reliable.

This problem of guessing secret values can be solved by imposing some constraints
on the initial data known by the intruders. Given a process E, we call ID(E) the
set of messages that appear in E. More formally, we de/ne ID(E) as I(E; ∅), where
I :E×P(Const)→P(M) is given in Fig. 3. Informally, I(E; V ) is a function that
recursively visits the sub-terms of E and the body of the constants used. The argument
V is used to check that the unwinding of a constant de/nition is performed only once.

Example 2.3. Consider A(m1), where A(x) def= Mc x:0 ‖ Mc m2:A(m3). Note that:

I(A(m3); {A}) = m3

I( Mc x:0; {A}) = I(0; {A}) = ∅
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I( Mc m2:A(m3); {A}) = {m2} ∪ I(A(m3); {A}) = {m2; m3}
I(A(x); {A}) = I( Mc x:0; {A}) ∪ I( Mc m2:A(m3); {A}) = {m2; m3}
I(A(m1); ∅) = {m1} ∪ I(A(x); {A}) = {m1; m2; m3}

Thus, we have ID(A(m1)) = I(A(m1); ∅) = {m1; m2; m3}.

Now, let �I ⊆M be the initial knowledge that we would like to give to the intruders,
i.e., the public information such as the names of the entities and the public keys, plus
some possible private data of the intruders (e.g., their private key or nonces). For a
certain intruder X , we want that all the messages in ID(X ) are deducible from �I . We
thus de/ne the set E�I

C of enemies as E
�I
C = {X | sort(X )⊆C and ID(X )⊆D(�I )}.

To see how E
�I
C prevents the problem presented in Example 2.2, consider again the

enemy X (mX ; kAB) of that example. To specify that kAB is secret, it is now suPcient
to require that kAB =∈D(�I ). Since ID(X (mX ; kAB)) = {mX ; kAB}, we /nally have that
X (mX ; kAB) =∈E

�I
C .

2.4. Semantic equivalences

In this section we de/ne some semantic equivalences that we will use to formalize
security properties. Each equivalence is based on a particular notion of indistinguishable
behavior which we informally describe in the following:
• Trace equivalence requires, for two processes to be equivalent, that the set of their

possible execution sequences is exactly the same. This must be true even when
the processes are exposed to every possible intruder. Such a de/nition would be
too strong for our purposes if used without restricting public channels: as a matter
of fact, a generic intruder would be able to guess secret values hence breaking
cryptography. Thus, we will always use trace equivalence inside de/nitions that
restrict the scope of public channels. Trace equivalence is used in Section 4 for the
de/nition of NDC and in Section 5 for the de/nition of Agreement.

• May-testing equivalence requires that equivalent processes cannot be distinguished
by any process (tester) that does not know the secret values. This de/nition incor-
porates the fact that the tester is not able to break cryptography and is thus suitable
to work on “open” processes. May-Testing is used in Section 3 for the de/nition of
spi-calculus authentication.

We will also de/ne some technical notions which will be useful in proofs:
• Barbed pre-congruence relation, denoted with P-P′, requires that the “greater”

process P′ is able to simulate step-by-step the “smaller” one P, in any testing context.
This notion is useful to prove that two processes are testing equivalent.

• A structural equivalence is also de/ned, in order to simplify the manipulation of
parallel and restriction operators in the proofs.

We now formally de/ne the notions described above.

2.4.1. Trace equivalence
Most of the security properties that have been proposed for the analysis of secu-

rity protocols are based on the simple notion of trace: two processes are equivalent
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if they show exactly the same execution sequences (called traces). We need a transi-
tion relation E a⇒E′ which does not consider internal  moves. It is a shorthand for
E( →)∗E1

a→E2( →)∗E′. For a trace )= a1 : : : an we write E
)⇒E′ if E a1⇒E1

a2⇒· · · an−1⇒
En−1

an⇒E′ for some E1; : : : ; En−1. Note that E⇒E′ stands for a possibly empty se-
quence of internal transitions, i.e., E( →)∗E′. The set Tr(E) of traces associated with
E is then de/ned as Tr(E) = {)∈ (Act\{})∗ | ∃E′ :E

)⇒E′}.

De�nition 2.4. Let E; F ∈E. We write E6trace F iK Tr(E)⊆Tr(F). We also say that
E and F are trace equivalent (notation E≈trace F) iK E6trace F and F6trace E.

2.4.2. Testing equivalence for CryptoSPA
In this section we give a notion of behavioral equivalence which incorporates the

idea of unguessable secrets discussed in the previous section. This equivalence will
allow us to rephrase in our model the notion of authentication used in the spi-calculus
[1,2]. The underlying idea is that two processes are equivalent if and only if they
cannot be distinguished by any process that does not know the secret values. It is a
weaker version of classical testing equivalence, which requires that equivalent processes
should be indistinguishable by any process [5].

We de/ne the notion of experiment as given in the spi-calculus. A test is a pair
(T; ,), where T is a process called tester and , is a barb, i.e., a channel c or Mc. A
process P exhibits a barb , (denoted by P ↓ ,) iK for some message m and process

P′, we have P
,m−→P′. Moreover P converges on a barb , (denoted by P ⇓ ,) iK

P( →)∗P′ and P′ ↓ ,. Now, we say that a process P immediately passes a test (T; ,)
iK (P ‖T ) ↓ ,. We also say that a process P passes a test (T; ,) iK (P ‖T )⇓ ,.

We parameterize the notion of equivalence by the set of messages �I which are
supposed to be known by the testers. Thus, we obtain the following set of possible
testers: E�I = {X |X ∈E and ID(X )⊆D(�I )}. Note that this set is strictly larger than
the set of enemies E

�I
C de/ned in the previous section. The reason is that such enemies

can only communicate over the public channels in C.

De�nition 2.5. For all P;Q∈E, we write P6may Q iK ∀T ∈E�I ; ∀,∈ I ∪O :P ‖T ⇓ ,
implies Q ‖T ⇓ ,. We also say that P is may-testing equivalent to Q (notation P
≈may Q) iK P6may Q and Q6may P.

It is easy to prove that ≈may is an equivalence relation on CryptSPA processes.
Testing equivalence has been exploited in a very elegant way for the formal analysis

of security protocols in the spi-calculus, as it implicitly provides a check over every
possible enemy. In fact, a tester can play at the same time the role of the attacker and
the role of the observer that checks the outcomes of this attack. Thus, if two processes
are may-testing equivalent, this means that they behave in the same way also when
they are executed together with every possible enemy.

Our notion of may-testing equivalence diKers from the de/nition given for the
spi-calculus, where every possible spi-calculus process can be a test. This diKerence
is due to the way secret messages are dealt with. The restriction operator of the
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(s)pi-calculus supports the speci/cation of new, and thus unguessable, messages di-
rectly inside a process. In this way, a special quanti/cation over a subset of testers
(with knowledge limited by �I ) is not needed, and a classic testing-equivalence
suPces. 3

Proposition 2.6. Let P;Q∈E. Then, P6trace Q implies P6may Q.

This derives from the standard result that classical may-testing preorder (with the
quanti/cation over any possible test) corresponds to trace preorder. It is interesting
to observe that the opposite implication does not hold. As a counterexample con-

sider a process A(x1; x2) def= [〈x1; x2〉 �enc x] Mcx that encrypts x1 with x2 and sends it out
on channel c. If kA is secret (and also all the messages encrypted with kA), then
A(m1; kA)≈may A(m2; kA) even if m1 �=m2 and m1; m2 are public. On the other hand, if
m1 �=m2 then we have A(m1; kA) �≈trace A(m2; kA) because Mc{m1}kA is a trace for A(m1; kA)
but not for A(m2; kA).

We can also prove that our may-testing preorder is preserved by the parallel com-
position with testers and by the restriction operator.

Proposition 2.7. Let P;Q∈E be two processes, R∈E�I a tester and L a set of
channels. If P6may Q then
(i) P ‖R6may Q ‖R;

(ii) P\L6may Q\L.

Corollary 2.8. Let P;Q∈E. If P≈may Q then for all R∈E�I we have P ‖R≈may Q ‖R
and P\L≈may Q\L.

We will exploit these results when comparing the two diKerent notions of authenti-
cation we are going to introduce in the following sections.

2.4.3. Barbed bisimulation
Barbed bisimulation [25] provides very ePcient proof techniques for verifying the

other equivalence notions de/ned so far.

De�nition 2.9. A relation S⊆E×E is a barbed simulation if (P;Q)∈S implies
• if P ↓ , then Q ↓ ,,
• if P →P′ then there exists Q′ such that Q →Q′ and (P′; Q′)∈S.

A barbed bisimulation is a symmetric relation S such that both S and S−1 are
barbed simulations. The union of all barbed simulations is represented by E.

3 It is worthwhile noticing that in [22,20] a language similar to CryptoSPA is equipped with a form of
secret generation.
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De�nition 2.10. A relation S⊆E×E is a barbed pre-congruence (w.r.t. �I ) iK for
(P;Q)∈S and for all R∈E�I we have P ‖REQ ‖R.

We de/ne - to be the largest barbed pre-congruence. As usual we can de/ne the
notion of barbed equivalence, and the weak versions of these preorders and equiva-
lences. In particular, a barbed weak simulation (denoted with C= ) is a relation de/ned

as in De/nition 2.9 by simply replacing Q ↓ , with Q ⇓ , and Q →Q′ with Q( →)∗Q′.
A barbed weak pre-congruence (denoted with /) is de/ned as in De/nition 2.10 by
replacing E with C= .

The following result is useful to prove that two processes are related by 6may.

Proposition 2.11. -; / ⊆6may.

We also de/ne structural equivalence as follows.

De�nition 2.12. Let P;Q; R∈E and L; L1 ⊆ I . Then, we de/ne ≡ as the least equiva-
lence relation closed under the following rules:
(1) P ‖ 0≡P;
(2) P ‖Q≡Q ‖P;
(3) P ‖(Q ‖R)≡ (P ‖Q) ‖R;
(4) 0\L≡ 0;
(5) P\L\L1 ≡P\L1\L;
(6) (P ‖Q)\L≡P\L ‖Q if sort(Q)∩L= ∅.

Structural equivalence will be useful to manipulate parallel and restriction operators
in the proofs. Moreover, the following lemma shows that structural equivalence is a
barbed simulation; hence, in the following, it will be sound to use barbed simulation
up to “equivalent processes” as a proof technique.

Lemma 2.13. Let P;Q∈E. Then, P≡Q implies
• if P ↓ , then Q ↓ ,,
• if Q →Q′ then P →P′ with P′ ≡Q′.

De�nition 2.14. A relation S⊆E×E is a barbed simulation up to ≡ if (P;Q)∈S
implies
• if P ↓ , then Q ↓ ,,
• if P →P′ then there exists Q′ such that Q →Q′ and P′ ≡S≡Q′,
where P′ ≡S≡Q′ means that for some P′′ ≡P′ and Q′′ ≡Q′ we have (P′′; Q′′)∈S.

Proposition 2.15. If S is a barbed simulation up to ≡ then ≡S≡ is a barbed
simulation.

An analogous de/nition and result can be given for barbed weak simulation up
to ≡.
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3. Message authentication in the spi-calculus

In [1,2] an interesting notion of authentication is proposed. Consider a process S(m)
representing a protocol 4 which has the aim of transmitting message m from a party A
to a party B. S(m) guarantees the authentication of message m if whenever a message
m is delivered to B by S(m), then m must be the same message as m.

The basic idea behind the veri/cation of this property is the following: we have
to generate from S(m) a speci/cation Sspec(m) which guarantees authentication by
construction, i.e., where the only message that can be delivered to B is m. Then, we
can verify whether S(m) is may-testing equivalent to the speci/cation Sspec(m), i.e.,
whether there exists or not an attacker which can induce S(m) to behave wrongly with
respect to the delivery of m.

In [1,2] a general method for generating the speci/cation Sspec(m) is not provided.
Instead, the construction of Sspec(m) is illustrated by several example protocols. Intu-
itively, it can be obtained as follows: in the protocol S(m), every time B accepts a
message m, such a message is replaced by m. In the following we formalize this intu-
ition obtaining a general method for the construction of Sspec(m) starting from S(m).
We feel that our formalization is general enough to model the signi/cant examples of
cryptographic protocols reported in [1,2] (see also Section 6.1.1).

Note 1. As in [1,2], we assume that S(m) is always composed of two parts: one strictly
concerning the protocol execution and another one representing the continuation of
the protocol. The latter is usually denoted by F(x), where x represents the received
message. Here, we assume that the execution part can only send messages on public
channels c∈C, while the continuation, by de/nition, does not take part to the protocol,
and so it must use channels which are not in C.

When may-testing equivalence is checked, the tester ideally acts as an attacker on
the public channels and as an observer on the continuations. We give a simple example
of a protocol speci/cation in this style.

Example 3.1. We specify here a trivial protocol where Alice sends to Bob a message
m as plain text over an insecure channel c:

A(x) def= Mc x; B def= c(y):F(y); S(x) def= A(x) ‖B
When Bob receives the message in y, he just behaves like F(y) which will possibly
use the message in the future. The corresponding secure speci/cation is

A(x) def= Mc x; Bspec(t)
def= c(y):[y = t]F(t); Sspec(x)

def= A(x) ‖Bspec(x)

where it is possible to give to Bob a message t that is “magically” checked against
y before activating the continuation F . In Sspec(m) we have that Bob can only accept
the correct message m, then behaving like F(m). This represents the secure version of

4 In the following, we will often use the word “protocol” instead of “process”.
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S(m), i.e., a version where the received message is always authentic by construction.
Clearly, S(m) does not guarantee any authentication of m: any external user can intro-
duce a fake message m′ on c that will be accepted by Bob. As a consequence, S(m)
can move to F(m′) while Sspec(m) cannot.

Note that we can rewrite this protocol in a style that separates more evidently the
execution part from the continuation one:

A′(x) def= Mc x; B′ def= c(y): Mpy; S ′(x) def=(A′(x) ‖B′ ‖p(z):F(z))\{p}
As a matter of fact, A′(x) ‖B′ represents the execution, while p(z):F(z) is the contin-
uation with a “guard” p(z) which has the special purpose of enabling the execution of
F(z) at the right time. It is possible to show that this special form S ′(x) for the protocol
is trace and may-testing equivalent to the initial one S(x), provided that p =∈ sort(F).

As we have seen in the example above, it can be useful to write a protocol in a
particular style that we call normal form. In general, more than one continuation could
be present. Given a protocol S, we denote all of its occurrences of continuations 5 as
{F1(x1); : : : ; Fn(xn)}, where xi represents the only free variable of Fi. From S we derive
a process Snf(m1; : : : ; mn) in normal form as follows:(

S ′ ‖ ∏
i∈1;:::;n

pFi(xi):Fi(xi)

)
\p̃ (1)

where S ′ is the process S where every continuation Fi(xi) is replaced by pFi(xi), and
p̃= {pF1 ; : : : ; pFn} is a set of channels that are used neither in S nor in Fi and are not
contained in C. Note that the channels in p̃ are indexed with the continuations Fi. This
is useful for managing multiple concurrent sessions between senders and receivers
which can be modeled by considering n copies of the sender and n copies of the
receiver in parallel. We assume that syntactically equal continuations (up to renaming
of bound variables, i.e., 2-conversion) correspond to the same protocol between two
users but in diKerent parallel sessions.

Given this particular form for protocols, it is quite natural to derive a secure speci/-
cation. More precisely, given the normal form Snf(m1; : : : ; mn) as in (1), it is suPcient
to de/ne Sspec(m1; : : : ; mn) as follows:(

S ′ ‖ ∏
i∈1;:::;n

pFi(xi):[xi = mi]Fi(mi)

)
\p̃: (2)

Note that every continuation is enabled only if the received message xi is equal to the
correct message mi. Note also that in the case of multiple sessions, this simply requires
that a “correct” multiset of messages is delivered from one process to another one, in
whatever possible order (see Section 6.1.1 for an example).

5 We assume that continuations are not dynamically duplicated in the protocol.
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Remark 3.2. In the following, we will always consider protocols in the normal form
(1) and speci/cations in the form (2).

As done in the spi-calculus, we will always assume that the messages mi to be
delivered by the protocol are not secret, otherwise it would not be possible to observe
them with testing equivalence.

Assumption 1. When we consider a message m to be delivered by a protocol we always
assume that m∈D(�I ).

Another important assumption (common to the spi-calculus approach) about the con-
tinuations is that they should not know the protocol secrets. Otherwise, they could help
the tester attacking the protocol by making such secrets public.

Assumption 2. For all continuations F(x) and for all m∈D(�I ) we have F(m)∈E�I .

Hence, we can formalize in our framework the notion of authentication proposed for
the spi-calculus.

De�nition 3.3. A protocol S guarantees weak spi-authentication iK for all vectors
(m1; : : : ;mn) of messages: S(m1; : : : ;mn)≈may Sspec(m1; : : : ;mn).

The following lemma states that the behavior of a speci/cation may always be
simulated by the protocol. So, as expected, the speci/cation only shows a (correct)
subset of the possible behaviors of the protocol.

Lemma 3.4. For all vector of messages m̃= (mi)i∈1:::n; Sspec(m̃)- S(m̃).

As a consequence, we have that spi-authentication concerns whether the speci/cation
is an upper bound of the protocol.

Corollary 3.5. A protocol S guarantees weak spi-authentication i> for all vectors
(m1; : : : ;mn) of messages: S(m1; : : : ;mn)- Sspec(m1; : : : ;mn).

In [1], another notion of authentication is proposed which includes a quanti/cation
over the continuations Fi. In this way, it is possible to study if the protocol guarantees
authentication in every possible context, rather than just in a special situation charac-
terized by a speci/c continuation. To clarify this point we give the following simple
example.

Example 3.6. Consider again the simple protocol of Example 3.1. Now, consider the
special case where F(x) = 0. We obtain that for every m; S(m) is equivalent to
Sspec(m). Indeed, S(m) and Sspec(m) become the same process if F(x) = 0. However,
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we have already observed that this trivial protocol cannot guarantee the authenticity of
m. On the contrary, if we replace F(x) with out x then we may detect the attack. The
continuations play thus a central role. In particular, if the behavior of a continuation
does not depend on the message x then it cannot help detecting authentication attacks.

Let F̃ be a vector of continuations (F1; : : : ; Fn). We will denote with SF̃ the protocol
S where its continuations are replaced by F̃ . Moreover, the initial vector of a protocol
S will be denoted by F̃∗.

When we quantify over all possible vectors of continuations, we require that equal
continuations (up to 2-conversion) are always replaced by equal continuations. More
formally, we say that two vectors (F1; : : : Fn); (F ′

1 ; : : : ; F
′
n) are compatible if and only if

∀i; j∈{1; : : : n}: Fi =Fj iK F ′
i =F ′

j . We then consider only the vectors of continuations
that are compatible with the initial one F̃∗. This condition is necessary if we want
to analyze multiple sessions where many instances (all with the same continuation)
of a process are considered (see Section 6.1.1). Hence, we obtain the following more
general de/nition:

De�nition 3.7. A protocol S guarantees (strong) spi-authentication iK for all the vectors
of continuations F̃ compatible with F̃∗; SF̃ guarantees weak spi-authentication.

In the following, with spi-authentication we will always refer to the strong spi-
authentication property.

Example 3.8. In order to illustrate the de/nition above, we consider once more the
simple insecure protocol of Example 3.1. We have already shown that it does not
guarantee any authentication of m. Here we formally prove that it does not guarantee
spi-authentication.

To this purpose, it is enough to consider the continuation F̃ = (out z), the message
m̃= (m) and the tester (T; ,) with T = Mcm′:out(x):[x=m′] M, x and m′ �=m. Now it is
easy to see that SF̃(m) �≈may SF̃spec(m). As a matter of fact,

SF̃(m) ‖T = Mcm ‖ c(y):out y ‖ Mcm′:out(x):[x = m′] M, x

→ Mcm ‖ outm′ ‖ out(x):[x = m′] M, x

→ Mcm ‖ 0 ‖ M, x ↓ ,

hence, SF̃(m) ‖T ⇓ ,. On the other hand, whatever execution sequence is performed by
process SF̃spec(m) ‖T , the only out y action that can be executed by SF̃spec(m) is outm.
So T will always receive m which is diKerent from m′ and the test [x=m′] will never
be passed. So, SF̃spec(m) ‖T �⇓ ,

In the following, we will show that there exists a vector of canonical continua-
tions F̃ ′ such that the weak spi-authentication of SF̃

′
implies the spi-authentication
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of S. Thus, these special continuations allow us to avoid the universal quanti/cation
over all possible vectors F̃ . In particular, we consider the special vector F̃ ′ where
F ′
i (xi) = outF∗

i
(xi) and such that the channels outF∗

i
are private, i.e., not in C. Note

that this vector is compatible with F̃∗. We have the following result.

Proposition 3.9. S guarantees spi-authentication i> SF̃
′
guarantees weak spi-authenti-

cation, with F ′
i (xi) = outF∗

i
(xi).

Intuitively, this interesting result states that there exists a canonical continuation F̃ ′

that can be considered in order to prove spi-authentication for every possible contin-
uation. We will use this result to compare such a notion of authentication with the
NDC-based one (see Section 6.1).

The solution of using may-testing equivalence for authentication veri/cation is very
elegant, but mixing the tester and the intruder could generate some confusion. It would
be much more intuitive to separate the intrusion activity from the equivalence check.
This is what is done in the property we are going to present in the next section.
Moreover, here the de/nition of the speci/cation is somewhat arbitrary and is related
to the particular form of the protocols. In the next section we will show that the
de/nition of a secure speci/cation is not necessary anymore when we adopt a notion
of authentication based on non-interference.

4. NDC-based authentication

We recall the notion of non-interference (NI) [15]. NI was proposed in system secu-
rity as a model for the detection of all possible interferences of a certain group of users
with another one. It has been formalized in diKerent ways (see, e.g., [9,15,24,28]),
and also applied in the veri/cation of various properties of security protocols [6–
8], with authentication among them. The correctness of a protocol can be proved
by guaranteeing that an enemy is not able to interfere at all with the execution of
the protocol, i.e., that the protocol behaves exactly in the same way with or with-
out the enemy. In this respect, we have already noticed a similarity in the two ap-
proaches.

In the following, we will use the generalization of NI to the process algebraic setting
proposed in [9] and called non-deducibility on compositions (NDC). The idea is the
following: the group U of untrusted users that must not interfere with the other users
(in trusted group T) is characterized by the set of actions that its components can
execute. Public channels in C are the channels which processes in U can use for
communication. A process S is NDC if every possible process X ∈U composed with
S is not able to modify the behavior of S observed from the point of view of the
users in T. Thus, U corresponds to E

�I
C and NDC can be de/ned as follows, where

we always consider processes S which are in (normal) form (1).

De�nition 4.1. A process S is NDC iK ∀X ∈E
�I
C (S ‖X )\C ≈trace S\C.
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The only diKerence with respect to the de/nition given in the original model (SPA,
with no cryptography) is that the knowledge of processes X ∈U is bounded by �I . In
CryptoSPA, this is required to correctly model secret values, as observed in Section 2.3.
NDC requires that untrusted processes in E

�I
C are not able to change the behavior of

the process observed from processes in T and represented by S\C. As a matter of
fact, S\C is the process where no untrusted activity is allowed. If it is equivalent to
(S ‖X )\C, this means that X is not able to modify in any observable way the execution
of S.

Note that NDC, in its original de/nition, is based on trace equivalence. Here we
give a de/nition of may-testing-based NDC (TNDC) in order to compare it with the
authentication notion de/ned in the previous section.

De�nition 4.2. A process S is TNDC iK ∀X ∈E
�I
C (S ‖X )\C ≈may S\C.

An intuitive notion of authentication can be given in a natural way through TNDC=
NDC as follows:

De�nition 4.3. Let S be a protocol. S guarantees (T )NDC-authentication iK for all
messages m1; : : : ;mn we have that S(m1; : : : ;mn)∈ (T )NDC.

Note that in the de/nition above we do not take care of continuations. In particu-
lar, the fact that S(m1; : : : ;mn)∈ (T )NDC requires that S(m1; : : : ;mn) composed with
whatever enemy X ∈E

�I
C is equivalent to S(m1; : : : ;mn)\C. Since C represents the set

of channels over which the parties communicate, then S(m1; : : : ;mn)\C corresponds to
a secure speci/cation (execution with protected channels). In this approach we obtain,
in a sense, the secure speci/cation for free.

Example 4.4. Similarly to what we did in Example 3.8, we apply the NDC de/nition
above to formally prove that the protocol of Example 3.1 is insecure, with respect to
authentication of m.

It is interesting to see that since we restrict the behavior of the process on the
channels in C we actually do not observe directly the communication, but only the
behavior on the continuations. We obtain a speci/cation that is somehow simpler than
the one needed in the spi-calculus authentication approach. As a matter of fact, S(m)\C
is trace and may-testing equivalent to the process F(m), which is just the expected
(correct) continuation for the protocol.

Proving that the protocol is not NDC is rather simple. Consider a message m and an
attacker X = Mcm′ with m′ �=m. Now it is easy to see that (S(m) ‖X )\C �≈trace S(m)\C
when F(m′)�trace F(m). As a matter of fact, it quite easy to prove that (S(m) ‖X )\C
≈trace F(m) + F(m′)�trace F(m) ≈trace S(m)\C when F(m′)�trace F(m). The last con-
dition is rather intuitive and can be read as “the fact that Bob receives a message
diKerent from the expected one has some observable eKect on his future behavior”. If
this is not true, the value of the received message is not relevant and checking the
authentication of m becomes useless.
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5. The agreement property

In this section we recall the notion of Agreement [18] as formalized in the general
schema of [14]. The basic idea of the Agreement property is the following. A protocol
guarantees to a responder B Agreement with an initiator A on a set of data items ds if,
whenever B (acting as a responder) completes a run of the protocol, apparently with
the initiator A, then:
• A has previously been running the protocol, apparently with B, and A was acting as

initiator in this run,
• A and B agreed on the data values corresponding to all the variables in ds,
• each run of B corresponds to a unique run of A.

Technically, what is done in the Agreement property is to have for each party
an action representing the running of the protocol and another one representing the
completion of it. For example, consider an action commit res(B; A; ds) representing a
correct termination of B as a responder that is convinced to communicate with A and
agrees on data in ds. Moreover, consider an action running ini(A; B; ds) that represents
the fact that A is running the protocol as an initiator, apparently with B and with data
ds. If we have these two actions speci/ed in the protocol, the Agreement property
requires that when B executes commit res(B; A; ds), then A has previously executed
running ini(A; B; ds). This means that every time B completes the protocol with A
convinced that the relevant data are the ones represented by ds, then A must have
been running the protocol with B using exactly the data in ds.

As done in [18], we assume that the actions representing the running and the commit
are correctly speci/ed in the protocol. We can see them as output actions over two
particular channels running ini and commit res. For simplicity, in the examples we
only analyze the case where A is the initiator and B is the responder, and the set
ds of data items is composed only by a single datum d from a set D. However, the
speci/cation can be easily extended in order to cover all the cases studied in [18]. Let
NotObs(P) = sort(P)\(C ∪{running ini; commit res}) be the set of channels in P that
are not public and are diKerent from running ini and commit res, i.e., that will not be
observed. We can then de/ne function 2Agree as follows:

P′(x; y) =
∑
d∈D

running ini (x; y; d):commit res (y; x; d)

P′′ =
∑

c∈NotObs(P)
c(x):P′′ +

∑
c∈NotObs(P)
m∈Msg(c)

Mc m:P′′

2Agree(P) = P′′ ‖P′(A; B)

Note that P′′ is essentially the process that executes every possible action over channels
in sort(P) which are not in C and are diKerent from running ini and commit res. 6

Given P; 2Agree(P) represents the most general process that satis/es the Agreement
property and has the same sort as P. As a matter of fact in 2Agree(P) action running ini

6 Note also that inputs are ignored, as in P′′ there is no occurrence of a free x. The reason is that P′′
already knows all the messages can it can output.
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(A; B; d) always precedes commit res (B; A; d) for every datum d, and every combination
of the other actions of P can be executed. In order to analyze more than one session, it
is suPcient to consider an extended 2 which has several processes P′(A; B) in parallel.
For example, for n sessions we can consider the following:

2Agree(P) = P′′ ‖ P′(A; B) ‖ · · · ‖P′(A; B)︸ ︷︷ ︸
n

We want that even in the presence of an enemy, P does not execute traces that are
not in 2Agree(P). So we can give the following de/nition:

De�nition 5.1. P ∈E satis/es Agreement iK ∀X ∈E
�I
C : (P ‖X )\C6trace 2Agree(P)

Note that in [18] it is only required that Agreement holds when the process is
composed with a particular intruder, which should intuitively be the most powerful
one. In [14] we have formally proved that this simpler requirement is suPcient (and
necessary) to guarantee our version of Agreement. This point is discussed further in
Section 7.

Example 5.2. We consider here a simple example to illustrate the Agreement prop-
erty. One of the aim of Agreement is to verify whether a protocol guarantees entity
authentication of one party with respect to another one. As an example, consider the
following ( Gawed) protocol: Alice wants to authenticate herself to a server S; in order
to achieve this, she sends her login “A” and password “wonderland”, both encrypted
with a key which is shared with the server S. The encryption should avoid the discov-
ering of Alice’s password by a malicious third party.

We specify this protocol as follows (we directly enrich the protocol with running ini
and commit res actions):

A= running ini (A; S):

Mc{A; wonderland}kAS

S = c(x):(

[〈x; kAS〉 �dec y] [y �fst l] [y �snd p]

[l = A] [p = wonderland] commit res (S; A)

+ [〈x; kBS〉 �dec y] : : : (for authenticating another user “B”)

: : :

+ [〈x; kUS〉 �dec y] : : : (other possible users)

P = A ‖ S ‖ · · · ‖ S
where kAS ; wonderland =∈�I , as they are secret. We suppose to have more than one
server ready to verify authentication requests from the users. An important property that
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this protocol should guarantee is that no malicious party should be able to impersonate
any users with respect to the server S. We now show that this protocol is insecure
by proving that it does not satisfy Agreement. In particular, it is suPcient to consider
the following attacker (belonging to E

�I
C ) which intercepts the message from Alice and

replays it later: X = c(x): Mcx: Mcx. Now it is easy to see that (P ‖X )\C�trace 2Agree(P) by
considering the following execution:

(P ‖X )\C = (A ‖ S ‖ · · · ‖ S ‖X )\C
running ini (A;S)⇒ (0 ‖ S ‖ · · · ‖ S ‖ Mc{A; wonderland}kAS

Mc{A; wonderland}kAS )\C
⇒ (0 ‖ commit res (S; A) ‖ commit res (S; A)‖

‖ S · · · ‖ S ‖ 0)\C
commit res (S; A);
commit res (S; A)⇒ (0 ‖ 0 ‖ 0 ‖ S · · · ‖ S ‖ 0)\C

the corresponding trace is

running ini (A; S):commit res (S; A):commit res (S; A)

where a commit with no previous running is present and which, consequently, is not a
trace for 2Agree(P). The enemy is able to impersonate Alice by just replaying the same
encrypted message. Note that the enemy is not learning the password as he does not
know that key KAS . Nevertheless, he is able to carry out the attack.

6. Comparison

In this section, we formally compare the notions of authentication presented in the
previous sections. Speci/cally, we compare the notion of authentication proposed for
the spi-calculus both with the TNDC-based authentication and with the Agreement one.

6.1. Spi-calculus and NDC-based authentication

We have already pointed out some of the similarities between spi-calculus and NDC-
based authentication: both properties are based on a notion of behavioral equivalence;
moreover, they both check whether the “process under attack” behaves like a secure
speci/cation. It is, however, important to notice that this is done in a quite diKerent
way. In the spi-calculus the process is implicitly checked against all the possible inter-
actions with the (hostile) environment through the use of the may-testing equivalence.
There, the tester plays simultaneously both the role of the attacker and the role of
the observer (see Fig. 4). On the other hand, the TNDC-based approach performs an
explicit quanti/cation over all possible intruders, then observing the outcome of the
attack (see Fig. 5). The /rst interesting result shows that authentication in the spi-
calculus is at least as discriminating as the TNDC-based one, when Sspec guarantees
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Fig. 4. Testers as “observers and attackers” in spi-authentication.
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Fig. 5. Separated attackers and observers in NDC-authentication.

TNDC-authentication. (Later on, we will prove that also the converse holds, under
some mild assumptions.)

Proposition 6.1. Let S be a protocol and Sspec be a secure speci@cation ( for S) that
guarantees TNDC-authentication. If S guarantees spi-authentication then S guaran-
tees TNDC-authentication.
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Proof. We have to prove that

∀X ∈ E
�I
C (S(m̃) ‖X )\C ≈may S(m̃)\C (3)

for all vectors of messages m̃. Since S(m̃)≈may Sspec(m̃) and ≈may is a congruence
w.r.t. the restriction operator and the parallel composition with processes in E�I (see
Corollary 2.8), then proving (3) is equivalent to proving the following:

∀X ∈ E
�I
C (Sspec(m̃) ‖X )\C ≈may Sspec(m̃)\C

which is true by the hypothesis Sspec(m̃)∈TNDC.

One of the hypotheses of the proposition above is that Sspec guarantees TNDC-
authentication. As a matter of fact, we can prove that any speci/cation Sspec guarantees
TNDC-authentication, under the following well-formedness condition:

WFC1 For every vector of messages m̃; Sspec(m̃)\C ≈may
∏

k∈1::n
Fk(mk).

This condition is a very natural one as it requires that all the continuations of the
speci/cations when there is no attacker at all, are eventually enabled. In other words,
the speci/cation is well formed for not containing unreachable continuations. If it does,
then some useless redundancy is present in Sspec. Under this condition we can prove
the following lemma.

Lemma 6.2. Assume that for every vector of messages m̃; Sspec(m̃)\C ≈may
∏

k∈1::n
Fk(mk). Then, Sspec guarantees TNDC-authentication.

This lemma gives a formal evidence of the correctness of the way we de/ne spec-
i/cations Sspec. As a consequence of this lemma we obtain that, in general, spi-
authentication is at least as discriminating as the TNDC-based one.

Corollary 6.3. Let S be a protocol such that for every m̃; Sspec(m̃)\C ≈may
∏

k∈1::n
Fk(mk). If S guarantees spi-authentication then S guarantees TNDC-authentication.

Proof. The proof directly follows from Proposition 6.1 and Lemma 6.2.

The other implication is less obvious. As a matter of fact, since in TNDC the action
of the intruder is separated from the observation activity (see also Fig. 5), we have
to be sure that this “splitting” can be performed without loosing discriminating power.
For example, as our intruders are not able to communicate over the channels of the
continuations, one may think, at a /rst glance, that TNDC may miss some possible
attack. We show that this is not the case.

We need to precisely de/ne when the delivering of a set of messages to the continu-
ations is correct in a protocol. Intuitively, it is correct if the same delivering is possible
also in the speci/cation. To formalize this concept we need to de/ne the vectors of
activations.
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De�nition 6.4. Let SF̃(m̃) be a protocol and T be a tester and consider a computation
) between them. The vector of activations of ) (denoted with Activations())) is the
vector of all the activated continuations with the received message:

Activations()) = (Fk(m′)|pFi(xi):Fi(xi) synchronizes with MpFkm
′ in ))

where the ordering of the activations is the same as in ), and synchronizes means that
pFi(xi):Fi(xi) and MpFkm

′ raise an internal communication.

In order to de/ne when a vector of activations is correct for a process S with
continuations F̃ = (Fi)i∈1:::n and messages m̃= (mi)i∈1:::n we consider, as a reference,
the following vector A which is correct by construction:

A = (Fi(mi) | i ∈ 1 : : : n)

All the “correct” vectors of activations correspond to all the permutations of sub-vectors
of A.

De�nition 6.5. Let A be de/ned as above. A vector Avs of activations is correct if
and only if there exists an injective function 7 : {1; : : : ; |Avs|} �→ {1; : : : ; n} such that
Avsi =A7(i).

We de/ne now the notion of correct delivering schema, which relates the activations
of a computation ) to correct vectors.

De�nition 6.6. Given a correct vector of activations Avs with injection 7, a correct
delivering schema 8 : {1; : : : ; |Avs|} �→ {1; : : : ; n} of Avs and 7 is de/ned as follows:
8(k) = z if for some i we have Avsi =Fk(m′) and A7(i) =Fz(mz).

By the fact that Avsi =A7(i) and that 7 is injective, it is easy to see that a correct
delivering schema 8 of Activation()) has the following relevant properties:
• 8 is injective;
• for all MpFkm

′ synchronized in ) we have m8(k) =m′ and Fk =F8(k).
Intuitively, this means that if a protocol activates a continuation through MpFkm

′, then 8
is the function that returns the index 8(k) of a correct delivering F8(k)(m8(k)) =Fk(m′),
i.e., a delivering which can be executed by the secure speci/cation. Moreover, each
activation is mapped by 8 into a diKerent correct delivering.

The following lemma states that if a protocol executes a computation ) where only
correct activations are performed, then also the secure speci/cation can execute ).

Lemma 6.7. Let SF̃(m̃) be a protocol and T be a tester. Suppose SF̃(m̃) ‖T ⇓ ,
through a computation ) such that Activations()) is a correct vector of activations.
Then, SF̃spec(m̃) ‖T ⇓ ,.

As a direct consequence of the above lemma, we have that if SF̃(m̃) ‖T ⇓ , and
SF̃spec(m̃) ‖T �⇓ ,, then, for all the successful computations ) of SF̃(m̃) ‖T (i.e., for all
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the computations where SF̃(m̃) ‖T ( →)∗S̃ F̃(m̃) ‖ T̃ ↓ ,), we have that Activations()) is
not a correct vector of activations. This means that in every ) that leads T to suc-
cess, we always have at least one message delivering which cannot be simulated by
SF̃spec(m̃).

To prove the following result we need this additional well-formedness condition:

(WFC2) For every vector of messages m̃; S(m̃)\C ≈may Sspec(m̃)\C.

The condition above is an obvious requisite for Sspec: the process S and its speci/cation
Sspec behave in the same way when the public channels are protected through the
restriction (i.e., when no attack is possible).

Lemma 6.8. Let S be a protocol such that for every vector of messages m̃; S(m̃)\C
≈may Sspec(m̃)\C. If SF

′
guarantees TNDC-authentication then SF

′
guarantees weak

spi-authentication.

From the previous results the following can be easily proved.

Theorem 6.9. Let S be a protocol satisfying the following well-formedness
conditions:

(WFC1) For every vector of messages m̃; Sspec(m̃)\C ≈may
∏

k∈1::n Fk(mk).
(WFC2) For every vector of messages m̃; S(m̃)\C ≈may Sspec(m̃)\C.

Then, S guarantees (strong) spi-authentication if and only if SF̃
′
guarantees TNDC-

authentication.

Proof. One direction follows from Corollary 6.3. By the other hand, if the process SF̃
′

is authentic w.r.t. the TNDC based de/nition then by Lemma 6.8 we discover that SF̃
′

is (weak) spi-authentic and /nally by Proposition 3.9 we /nd out that S guarantees
(strong) spi-authentication.

Now we show that the two notions of message authentication based on non-inter-
ference, i.e. TNDC and NDC, actually coincide when we study canonical forms. This
is very useful to avoid the implicit quanti/cation in TNDC due to testing equivalence.
We give the following proposition which can be applied when a CryptoSPA process
P is the product of the canonical continuations F̃ ′ in order to obtain the /nal result
(see Theorem 6.11).

Proposition 6.10. Let P be a CryptoSPA process which can only execute a @nite
number of output actions and such that ID(P)⊆D(�I ). Then, for all Q∈E; P≈may Q
i> P≈trace Q.

Finally, the following result completes the comparison.
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Fig. 6. Graphical description of the protocol.

Theorem 6.11. Let S be a protocol which guarantees the well-formedness conditions
(WFC1) and (WFC2). Then, S guarantees (strong) spi-authentication if and only if
SF̃

′
eiguarantees NDC-authentication.

Proof. By Theorem 6.9, we need only to prove that SF̃
′
(m̃)∈TNDC iK SF̃

′
(m̃)∈NDC.

On the one hand, the fact that SF̃
′
(m̃)∈NDC implies SF̃

′
(m̃)∈TNDC, follows from

Proposition 2.6.
For the other direction, we have that

(SF̃
′
(m̃) ‖X )\C ≈may SF̃

′
(m̃)\C

Now, since SF̃
′
(m̃)\C ≈may S(m̃)\C ≈may Sspec(m̃)\C ≈may

∏
k∈1::n Fk(mk) perform only

a /nite number of output actions and ID(
∏

k∈1::n Fk(mk))⊆D(�I ), by Proposition 6.10
we obtain that

(SF̃
′
(m̃) ‖X )\C ≈trace SF̃

′
(m̃)\C

Hence, the thesis follows.

6.1.1. An example: the Wide Mouthed Frog Protocol
In this section we show how to use NDC to analyze a simpli/ed version (also

studied in [2]) of the Wide Mouthed Frog Protocol [4].
We consider two processes A and B, respectively, sharing keys kAS and kBS with a

trusted server S. In order to establish a secure channel with B; A sends a fresh key kAB
encrypted with kAS to the server S. Then, the server decrypts the key and forwards it
to B, this time encrypted with kBS . Now B has the key kAB and A can send a message
mA encrypted with kAB to B. The protocol should guarantee that when B receives mA,
such a message has been indeed originated by A. The protocol is composed of the
following three messages (see also Fig. 6):

Message 1 A → S : A; {B; kAB}kAS
Message 2 S → B : {A; kAB}kBS
Message 3 A → B : {mA}kAB

The main diKerence with respect to the original protocol is that here messages 1 and
2 do not contain timestamps. This makes the protocol sensitive to a replay attack (as
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already remarked in [1]). We specify the protocol as the following CryptoSPA normal
form: 7

A(m; k) def= c1 (A; {(B; k)}kAS ):c3 {m}k
B def= c2(y):[〈y; kBS〉 �dec z] [z �snd s] c3(t):[〈t; s〉 �dec w]pF w

S def= c1(u):[〈u〉 �snd x][〈x; kAS〉 �dec y][y �snd z]c2 {(A; z)}kBS :S
P(m;m′) def= (A(m; kAB) ‖A(m′; k ′AB) ‖B ‖B ‖ S ‖pF(z):F(z) ‖

‖pF(z):F(z))\pF

where c1; c2 and c3 are the three channels over which messages 1, 2 and 3 are
communicated, respectively. Note that we have considered two instances of A and B
in order to observe the replay attack. If we consider only one instance of A and B no
attack is possible here. Note also that A has diKerent messages and session keys in the
two sessions.

Let us see if the protocol guarantees the well-formedness conditions. First, it is
easy to see that P(m;m′) with no enemy, i.e., P(m;m′)\{c1; c2; c3}, is trace equiv-
alent to F(m) ‖F(m′). This represents the intended execution of the protocol. As a
matter of fact the two sessions can be executed in any possible interleaving. It is also
easy to prove that Pspec(m;m′)\{c1; c2; c3} ≈trace F(m) ‖F(m′). Thus, we /nally have
P(m;m′)\C ≈trace Pspec(m;m′)\C ≈trace F(m) ‖F(m′).

Since P(m;m′) is well formed, in order to check if it satis/es (strong) spi-authenti-
cation we can verify if PF̃′

(m;m′) guarantees NDC-authentication. Note that PF̃′
(m;m′)

is obtained from P(m;m′) by replacing F(w) with outF w. Note also that in the two
instances of B the continuation is exactly the same (this allows to model multiple
sessions).

We show that PF̃′
(m;m′) does not guarantee such a property. Consider the en-

emy X def= c2(x):c2 x:c2 x:c3(y):c3 y:c3 y. It is easy to see that (P ‖X )\C is able to ex-
ecute the trace outF m:outF m that is not a trace for process outF m ‖ outF m′. Hence,
(PF̃′

(m;m′) ‖X )\C�trace outF m ‖ outF m′ ≈trace PF̃′
(m;m′)\C and NDC-authentication

is not satis/ed.
The enemy X intercepts messages 2 and 3 and replays them, inducing B to commit

twice on message m (as shown by trace outF m:outF m). This attack is quite critical in
some situations. As an example, m could be a request of money transfer that would
be executed twice. In order to avoid this attack, it is possible to modify the protocol
(as done in [2]) by adding nonce-based challenge responses.

6.2. Agreement and spi-authentication

In this section, we compare the Agreement property and the spi-authentication one.
We show that, in a particular (but reasonable) situation, Agreement implies spi-authenti-
cation. The intuition is that Agreement provides a form of authentication of the origin

7 This protocol speci/cation is quite simpli/ed since there are only two users and the possible sessions
are /xed in advance. However, this is suPcient here to show how the attack can be revealed.
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of a message, while the spi-authentication notion is more concerned with the integrity
of the message itself.

First of all, we must choose a common setting for the comparison. We keep the
same assumption we made for the previous comparison. Hence, we suppose that our
processes are in the normal form (1) and satisfy the Assumptions 1 and 2, required
by our previous analysis.

We are studying protocols which typically must deliver information (messages)
among parties. In the Agreement property the roles of the sender (the initiator) and
the receiver (the responder) are made explicit by using control actions. In the spi-
authentication approach these roles are in a sense implicit. As a matter of fact, we can
think of the processes with the continuations as the receivers, and of the other ones as
the senders.

Typically, in the automated analysis of security protocols, /xed instances of sessions
are considered, where speci/c messages are sent. We thus focus our comparison on
this restricted framework and we consider a simple situation where a process is willing
to independently receive n messages from several users. Thus, we assume to have n
(not necessarily distinct) senders. We can describe this process in the following way:

S(x1; : : : ; xn) =
(
A1(x1) ‖ · · · ‖An(xn) ‖Bn ‖

∏
n
pF(y):F(y)

)
\p̃ (4)

where Bn is the parallel composition of n copies of B in which the abstraction F(y)
is substituted by pF (y).

For the analysis of the Agreement property we need to consider a slightly modi/ed
process, where control actions are inserted:

S ′(x1; : : : ; xn) =
(
A′

1(x1) ‖ · · · ‖A′
n(xn) ‖ (B′)n ‖ ∏

n
pF(y):F(y)

)
\p̃

where for i∈{1; : : : ; n} we have

A′
i(xi) = running ini(A′

i ; B
′; xi):A(xi)

and B′ is obtained by suitably changing B so that each continuation F(d), deliver-
ing message d, is preceded by the issuing of commit res(B′; A′

i ; d) for some suitable
i∈{1; : : : ; n}.

It is possible to prove that, in the situation we are considering, the Agreement prop-
erty is strictly stronger than spi-authentication. Intuitively, this is due to the fact that
spi-authentication records which messages are sent to the continuations, not their origi-
nators. In order to prove this result, we exploit the characterization of spi-authentication
through non-interference described earlier.

Theorem 6.12. Consider a process S(d1; : : : ; dn) in the form (4) that satis@es the
well-formedness conditions of WFC1 and WFC2, and consider the corresponding
S ′(d1; : : : ; dn). If S ′(d1; : : : ; dn) satis@es Agreement then S(d1; : : : ; dn) satis@es spi-
authentication.
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We show now an interesting case of a process satisfying spi-authentication (once
messages are /xed) but not Agreement. In particular, consider again the speci/cation
of the Wide Mouthed Frog protocol of Section 6.1.1 and /x the pair of messages to
(m;m):

P′ def=(A(m; kAB) ‖A(m; k ′AB) ‖B ‖B ‖ S ‖pF(z):F(z) ‖pF(z):F(z))\pF

Then, clearly spi-authentication is not able to detect the replay attack shown before, as
the two messages are identical and the trace where m is delivered twice is just a legal
trace. On the other hand, the Agreement property is not satis/ed by this speci/cation.
In fact, the replay attack may be successfully completed even without the starting of
the second run of the protocol, i.e. simply by emitting a single running ini(A; B; m).
Thus, producing a trace that is not possible for the speci/cation 2Agree(S ′).

This gives an idea of the fact that spi-authentication, diKerently from Agreement, is
not related to the actual originators of the messages. However, we should remark that
when the quanti/cation is performed over every vector of messages then the previous
process satis/es neither NDC nor spi-authentication. Simply, we can consider a pair
(m;m′) where m �=m′. This example shows that the quanti/cation over all messages
plays a central role in spi-authentication.

Example 6.13. In the following, we present two protocols which enjoy spi-authenti-
cation but not Agreement, thus proving that Agreement is strictly stronger than spi-
authentication.

The /rst example is very simple. Alice sends to Bob a message x that Bob already
knows. When Bob receives a message, he just compare it with x and proceeds only if
they are equal:

S(x) = A(x) ‖B(x)

A(x) = Mc x

B(x) = c(y):[x = y]F(y)

Note that the only syntactic diKerence between S and Sspec is that B(x) = c(y):[x=y]
F(y) and Bspec(x) = c(y):[x=y][x=y]F(x). Thus, for every m we have B(m)≈may

Bspec(m) and so S(m)≈may Sspec(m), i.e., S satis/es spi-authentication.
Now, we re/ne S(x) to perform the Agreement analysis as follows:

S ′(x) = A′(x) ‖B′(x)

A′(x) = running ini(A; B; x): Mc x

B′(x) = c(y):[x = y]commit res(B; A; y):F(y)

If we consider an intruder which knows a message m, e.g. X = Mcm, then (S ′(m) ‖X )\C
performs a trace where commit res(B; A;m) is not preceded by running ini(A; B;m). So,
this process does not satisfy Agreement, but it satis/es spi-authentication.
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Consider also a classical (insecure) authentication scheme based on password
exchange: 8

S(x) = A(x) ‖B
A(x) = Mc(x; pwd)

B= c(y):[y �fst y1][y �snd y2][y1 = m][y2 = pwd]F(y1)

Alice authenticates the message x to Bob by sending it with her password pwd. Bob
knows Alice’s password, and, after verifying that the received message is equal to m,
he checks whether the received password corresponds to pwd or not. (Bob could be
a server whose unique client is Alice, and m would be the login name of Alice.)

Suppose the intruder has intercepted Alice’s password in a previous session and so
assume pwd∈D(�I ). As Bob always checks the received message against the expected
one m, it is impossible for an intruder to force him into accepting a faked message.
With a reasoning similar to that in the previous example then we can show that S
satis/es spi-authentication.

Now, we re/ne S(x) to perform the Agreement analysis as follows:

S ′(x) = A′(x) ‖B′

A′(x) = running ini(A; B; x): Mc(x; pwd)
B′ = c(y):[y �fst y1][y �snd y2][y1 = m][y2 = pwd]

commit res(B; A; y1):F(y1)

Consider an intruder who knows the message m, e.g. X = Mc(m; pwd) (recall that
pwd∈D(�I )), then process (S ′(m) ‖X )\C performs a trace where commit res(B; A;m)
is not preceded by running ini(A; B;m). Again, this process does not satisfy Agreement,
but it satis/es spi-authentication.

The two examples above, which discriminate between Agreement and spi-authenti-
cation, are somehow pathological as the receiver already knows the message to be
received. Nevertheless, these examples clearly show a basic diKerence between the
two properties. On the one hand, spi-authentication focuses only on verifying that no
modi/ed messages are accepted by the responder thus providing message authenticity=
integrity. Here the intruder is sending the correct (expected) message, thus it does not
represent an attack for spi-authentication. On the other hand, Agreement also veri/es
if the party on the other side of the network is the correct one, thus guaranteeing entity
authentication. In Fig. 7 we summarize the relationships among the properties studied
in this paper (where the subscript F ′ means that the property is checked for the process
with the canonical continuation).

Example 6.14. In this example we show a direct application of the comparison results
above. Consider again the speci/cation of the Wide Mouthed Frog Protocol of Sec-
tion 6.1.1. We could be interested to study if it satis/es the Agreement property. It
is in the form (4). So if we consider the modi/ed protocol P′(m;m′) where run and
commit actions are added, we have that if P′(m;m′) satis/es Agreement then P(m;m′)

8 Note, however, that such a protocol does not enjoy the condition WFC1.
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TNDCF’
NDCF’

F’weak spi-auth

weak spi-auth

Agreement

spi-auth

Fig. 7. Inclusion diagram among the authentication properties.

satis/es spi-authentication. Now, since we have shown that P(m;m′) does not satisfy
spi-authentication then we can directly conclude that the corresponding P′(m;m′) does
not satisfy Agreement. Following the proof of Theorem 6.12 we can also see that
the attack on spi-authentication induces an attack on Agreement where the intruder is
impersonating one of the two A processes.

7. Veri�cation of authentication: the “most powerful enemy”

A common feature of the properties presented so far (including also spi-authenti-
cation) is that the veri/cation has to be carried out against all the possible enemies=
testers. One of the advantages of NDC is that it is possible to prove that a “most
powerful enemy” exists. Thus, such properties may be veri/ed just against such a
particular hostile process.

In this section we brieGy report the fundamental results about this “most powerful
enemy” theory, without proving them. The interested reader may refer to [7,13,14].

A “most powerful enemy” can be de/ned by using a family of processes TopC;�trace
each representing the instance of the enemy with knowledge �:

TopC;�trace =
∑
c∈C

c(x):TopC;�∪{x}
trace +

∑
c∈C

m∈D(�)∩Msg(c)

Mc m:TopC;�trace

From the results in [13,14] we obtain the following:

Proposition 7.1. Let S be a protocol. We have that
(i) S ∈NDC iK (S ‖TopC;�I

trace)\C ≈trace S\C;
(ii) S satis@es Agreement i> (S ‖Top�I

trace)\C6trace 2Agree(S).
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8. Conclusion and future work

In order to compare various formalizations of security properties, we have de/ned in
[13,12,14] a general scheme that allows us to capture a number of properties (e.g., au-
thentication, secrecy, non-repudiation, and so on) as particular instances of the scheme
itself. The results presented here are a /rst step towards our goal of formal comparison
of security properties. Our aim is to obtain a complete classi/cation in the style of
[9,18], which could help in evaluating the relative merits of all such properties.

In this paper, we have compared under some reasonable assumptions three notions
of authentication: spi-authentication, based on testing-equivalence, Agreement, based
on the observation of correspondence actions, and NDC-authentication, based on non-
interference. We have proved that the notion of spi-authentication may be equivalently
expressed through the notion of NDC-authentication. Moreover, we have shown that the
Agreement notion is at least as discriminating as the spi-authentication one. We have
also identi/ed some (very particular) cases in which spi-authentication is strictly weaker
than Agreement. Roughly speaking, spi-authentication seems to be mostly concerned
with the integrity of the data transmitted whereas Agreement has a stronger commitment
on the authentication of the sender. We claim that for “relevant” protocols the two
properties could collapse and we leave as future work the formal characterization of
such protocols.

A main goal of our current research is to provide general, eKective analysis tech-
niques that can be suitably applied to a set of security properties. In this paper, we
have seen that the spi-authentication corresponds to a notion of authentication based
on NDC. This allows us, in principle, the reuse of automatic checking techniques
for NDC in order to check spi-authentication over CryptoSPA protocols; indeed, as
explained in [13,12,14] and brieGy reported in Section 7, if �I is /nite, then it is
possible to /nd a most-general intruder Top such that NDC is reduced to just one
check (SF̃

′
(m1; : : : ;mn) ‖Top)\C ≈trace SF̃

′
(m1; : : : ;mn)\C that can be veri/ed using the

CoSeC=CVS technology [6,7]. We are also investigating the problem of /nding a /-
nite set of vectors of messages, which could avoid the universal quanti/cation over
all the possible messages m̃. Moreover, it would be interesting to study general proof
techniques for the analysis of unbounded processes and compare them with the ones
proposed for authentication in the spi-calculus model (see, e.g., the proof of correctness
of the Wide Mouthed Frog protocol in [1]).

Finally, we are currently studying the relations between spi and NDC authentication
also in the spi-calculus model, where the possibility of communicating channel names
between processes gives rise to new interesting issues. These complicate a lot the
comparison, but we feel that at least some of the results presented here hold in this
model as well.

Acknowledgements

We would like to thank the anonymous referees for their helpful comments for the
presentation of this paper.



316 R. Focardi et al. / Theoretical Computer Science 291 (2003) 285–327

Appendix Proof

Proposition 2.7. Let P;Q∈E be two processes, R∈E�I a tester and L a set of chan-
nels. If P6may Q then
(i) P ‖R6may Q ‖R;
(ii) P\L6may Q\L.

Proof. (i) We have to prove that for every barb , and for every process T ∈E�I ,
(P ‖R) ‖T ⇓ , implies that (Q ‖R) ‖T ⇓ ,. Now, if (P ‖R) ‖T ⇓ , then we have (P ‖R)
‖T ⇒(P′ ‖R′) ‖T ′ and also (P′ ‖R′) ‖T ′ ↓ ,. But due the operational semantics of
CryptoSPA, P ‖(R ‖T )⇒P′ ‖(R′ ‖T ′) and P′ ‖(R′ ‖T ′) ↓ ,. This means that P passes
the test (R ‖T; ,). Note that this is a correct test since R∈E�I and so also R ‖T ∈E�I .
Since P6may Q, we have that also Q passes (R ‖T; ,) and hence the thesis
follows.

(ii) We have to prove that for every barb , and for every process T ∈E�I ; (P\L) ‖T
⇓ , implies that (Q\L) ‖T ⇓ ,. If ,∈L then , is executed by T and we just consider a
test T ′ where , is relabeled to ,′ =∈L∪ sort(P)∪ sort(Q)∪ sort(T ). Otherwise let ,′ be
the same as ,. Now we clearly have that (P\L) ‖T ′ ⇓ ,′. Moreover, since (P\L) cannot
synchronize over channels in L then also (P\L) ‖(T ′\L)⇓ ,′. Now, this clearly implies
that also P ‖(T ′\L)⇓ ,′ and by hypothesis Q ‖(T ′\L)⇓ ,′. Since the test (T ′\L) does
not synchronize over channels in L we also have that (Q\L) ‖(T ′\L)⇓ ,′ and clearly
(Q\L) ‖T ′ ⇓ ,′. It is easy to see that also (Q\L) ‖T ⇓ ,.

Proposition 2.11. -; / ⊆6may.

Proof. As usual we have that -⊆ /. Hence, we will prove that / ⊆6may. Sup-
pose that P/Q, and that P passes a test (T; ,), with T ∈E�I . This means that
P ‖T ⇒P′ ‖T ′ and P′ ‖T ′ ↓ ,. Since, P/Q we get that there exists Q′ ‖T ′′ such that
Q ‖T ⇒Q′ ‖T ′′ and P′ ‖T ′ C= Q′ ‖T ′′. Thus, it follows that Q′ ‖T ′′ ⇓ , and /nally the
thesis.

Proposition 2.15. If S is a barbed simulation up to ≡ then ≡S≡ is a barbed
simulation.

Proof. Let P≡S≡Q, then there exist P′ ≡P and Q′ ≡Q such that (P′; Q′)∈S.
Now, if P ↓ ,, by Lemma 2.13 we have that P′ ↓ , and, since (P′; Q′)∈S, also Q′ ↓ ,
and, by Lemma 2.13, also Q ↓ ,. Moreover, if P → P̃ then also P′ → P̃′ with P̃≡ P̃′.
Since (P′; Q′)∈S, then Q′ → Q̃′ with (P̃′; Q̃′)∈S and, by Lemma 2.13 Q → Q̃ with
Q̃′ ≡ Q̃. As P̃≡ P̃′; (P̃′; Q̃′)∈S and Q̃′ ≡ Q̃ we get that P̃≡S≡ Q̃ and so the thesis.

Lemma 3.4. For all vector of messages m̃= (mi)i∈1:::n; Sspec(m̃)- S(m̃).
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Proof. The following is a barbed simulation up to ≡:

S =
{((

Q ‖ ∏
k∈I

pFk (x):[x = mk ]Fk(mk)
)
\p̃ ‖R

)
;

(
Q ‖ ∏

k∈I
pFk (x):Fk(x)

)
\p̃ ‖R1) :

I ⊆ {1; : : : ; n}; p̃ = {pFi}i∈1:::n; {Q; R; R1} ⊆ E; R- R1}
To prove this, consider (A; B)∈S, then:
• if A ↓ , then we may have the following cases:

◦ if Q ↓ , then also B ↓ ,;
◦ if R ↓ , then also B ↓ ,, since R-R1;

• if A →A′ then we may have the following cases:
◦ if Q →Q′ then also B →B′ for some B′ with (A′; B′)∈S;
◦ if R →R′ then also B →B′ for some B′ with (A′; B′)∈S since R-R1;

◦ if Q and pFj (x):[x=mj]Fj(mj) synchronize, then it must be Q
pFi m

′
−→ Q′ with Fj =Fi.

We may have two cases depending on m′:
m′ =mj then

A′ ≡
(
Q′ ‖ ∏

k∈I\{j}
pFk (x):[x = mk ]Fk(mk)

)
\p̃ ‖ (Fj(mj) ‖R)

Then also B →B′ and

B′ ≡
(
Q′ ‖ ∏

k∈I\{j}
pFk (x):Fk(x)

)
\p̃ ‖ (Fj(m′) ‖R1)

Since Q may synchronize with pFj (x):Fj(x). Moreover, as m′ =mj we have
that Fj(m′)≡Fj(mj). Thus, A′ ≡S≡B′.
m′ �=mj then

A′ ≡
(
Q′ ‖ ∏

k∈I\{j}
pFk (x):[x = mk ]Fk(mk)

)
\p̃ ‖R)

Since Q may synchronize with pFj (x):Fj(x), then also B →B′ where

B′ ≡
(
Q′ ‖ ∏

k∈I\{j}
pFk (x):Fk(x)

)
\p̃ ‖ (Fj(m′) ‖R1)

Since R-Fj(m′) ‖R1 we have A′ ≡S≡B′.

Finally note that for all R; (Sspec(m̃) ‖R; S(m̃)) ‖R)∈S. Thus, Sspec(m̃)- S(m̃).

Proposition 3.9. S guarantees spi-authentication i> SF̃
′
guarantees weak spi-authenti-

cation, with F ′
i (xi) = outF∗

i
(xi).
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Proof. One direction is obvious as F̃ ′ is compatible with F̃∗. Thus, if process S
guarantees spi-authentication, then SF̃

′
will certainly guarantee weak spi-authentication.

For the other direction, the proof is by contradiction. Assume that S does not
guarantee spi-authentication; then we will arrive at the contradiction that also SF̃

′

does not guarantee the weak spi-authentication property. We suppose that it is pos-
sible to /nd a vector of continuations F̃ and a vector of messages m̃ such that
SF̃(m̃) �≈may SF̃spec(m̃). By Lemma 3.4, we have that SF̃spec(m̃)6may SF̃(m̃), so the as-

sumption that SF̃(m̃) �≈may SF̃spec(m̃) implies that SF̃(m̃)�may SF̃spec(m̃). Thus, there ex-

ists an experiment (T; ,) which is passed by SF̃(m̃) and is not passed by SF̃spec(m̃).
Formally

SF̃(m̃) ‖T ⇓ ,; SF̃spec(m̃) ‖T �⇓ ,

Without loss of generality, we can assume that the channels of F̃ ′ are neither in the
sort of T nor in the one of F̃ . Indeed, in such a case, we could rename the channels
in collision with the ones in F̃ ′, obtaining another vector of continuations MF which
enjoys our requirements and such that S MF does not satisfy weak spi-authentication.

In principle, it could happen that Fj helped the attacker in such a way that cannot
be simulated by F ′

j . However, Fj can communicate nothing to the intruder that the
intruder could not know. In fact, due to Assumption 2, we know that the processes
Fj(mj) have no secrets in collision with the protocol part. Hence the interaction of the
protocol with Fj can be completely simulated by the intruder which may produce a
copy of Fj(mj).

Thus, consider the following tester T ′ as∏
i∈1:::n

outF∗
i
(xi):Fi(xi) ‖T

and let Outs be the set {outF∗
i
}i∈1:::n.

Assume for a while that the following two inequalities hold:
(i) SF̃(m̃) ‖T/ (SF̃

′
(m̃) ‖T ′)\Outs,

(ii) (SF̃
′

spec(m̃) ‖T ′)\Outs/ SF̃spec(m̃) ‖T .
From (i) the following holds:

SF̃(m̃) ‖T / (SF̃
′
(m̃) ‖T ′)\Outs/ SF̃

′
(m̃) ‖T ′

Since SF̃(m̃) ‖T ⇓ ,, with , =∈Outs, then also SF̃
′
(m̃) ‖T ′ ⇓ ,. As, by hypothesis, SF̃

′

satis/es weak spi-authentication, we derive SF̃
′

spec(m̃) ‖T ′ ⇓ ,. Since , =∈Outs, also (SF̃
′

spec

(m̃) ‖T ′)\Outs⇓ ,. Now, by inequality (ii), we have also that SF̃spec(m̃) ‖T ⇓ ,, which
leads to a contradiction (S would guarantee spi-authentication).

We now prove the two inequalities (i) and (ii).
For proving SF̃(m̃) ‖T/ (SF̃

′
(m̃) ‖T ′)\Outs, let us show that the following is a

barbed weak simulation up to ≡:

S =
{(

Q ‖ ∏
k∈I

pFk (x):Fk(x)
)
\p̃I ‖T;
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Q1 ‖

∏
k∈I

pF′
k
(x):F ′

k(x)
)
\p̃′

I ‖
∏
i∈I

outF∗
i
(x):Fi(x)

)
\Outs ‖T ):

I ⊆ {1; : : : ; n}; p̃I = {pFi}i∈I ; p̃′
I = {pF′

i
}i∈I ; Q∈E; Q1 = Q[f]; T ∈ E

}
where f is the relabeling function such that f(pFi) =pF′

i
.

Assume that (A; B)∈S then:
• if A ↓ , then we may have the following cases:

◦ Q ↓ ,, in this case also B ↓ ,,
◦ T ↓ ,, in this case also B ↓ ,.

• if A →A′ then we may have the following cases:
◦ Q →Q′ then also B →B′ for some B′ and (A′; B′)∈S,
◦ T →T ′ then also B →B′ for some B′ and (A′; B′)∈S,

◦ if there is a synchronization between Q
pFi (m

′)−→ Q′ and the pre/xed continuation
pFj (x):Fj(x) then let J = I\{j} and

A′ ≡
(
Q′ ‖ ∏

k∈J
pFk (x):Fk(x)

)
\p̃J ‖Fj(m′) ‖T

We also have that B →B′ where

B′ ≡
(
Q′

1 ‖
∏
k∈J

pF′
k
(x):F ′

k(x)
)
\p̃′

J ‖ outF∗
j
m′ ‖ ∏

i∈I
outF∗

i
(x):Fi(x))

\Outs ‖T

where Q′
1 =Q′[f] since F ′

j = outF∗
j

. Thus, we have that B′ →B′′ by means of a
synchronization on the channel outF∗

j
where

B′′ ≡
(
Q′

1 ‖
∏
k∈J

pF′
k
(x):F ′

k(x)
)
\p̃′

J ‖
∏
i∈J

outF∗
i
(x):Fi(x))\Outs

‖Fj(m′) ‖T

and (A′; B′′)∈S.

For proving (SF̃
′

spec(m̃) ‖T ′)\Outs/ SF̃spec(m̃) ‖T let us show that the following is a
barbed weak simulation (up to ≡):

S =

{((
Q ‖ ∏

k∈I1
pF′

k
(x):[x = mk ]F ′

k(mk)

)
\p̃′

I1 ‖
∏
k′∈I2

outF∗
k′

(mk′) ‖

‖ ∏
i∈I

outF∗
i
(x):Fi(x)

)
\Outs ‖T;(

Q1 ‖
∏
k∈I2

pFk mk ‖
∏
k∈I

pFk (x):[x = mk ]Fk(mk)

)
\p̃I ‖T :
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I1 ∪ I2 ⊆ I ⊆ {1; : : : ; n}; I1 ∩ I2 = ∅; p̃I = {pFi}i∈I ; p̃′
I1 = {pF′

i
}i∈I1 ;

Q ∈ E; T ∈ E; Q1 = Q[f′]

}

where f′ is the relabeling function such that f′(pF′
i
) =pFi . Assume that (A; B)∈S

then:
• if A ↓ , then we may have the following cases:

◦ Q ↓ ,, in this case also B ↓ ,,
◦ T ↓ ,, in this case also B ↓ ,.

• if A →A′ then we may have the following cases:
◦ Q →Q′ then also B →B′ for some B′ and (A′; B′)∈S,
◦ T →T ′ then also B →B′ for some B′ and (A′; B′)∈S,
◦ if there is a synchronization between a term outF∗

k
(mk) with k ∈ I2 and a pre/xed

continuation outF∗
l

(x):Fl(x) with l∈ I , then let K = I\{k}:

A′ ≡
(
Q ‖ ∏

k∈I1
pF′

k
(x):[x = mk ]F ′

k(mk)\p̃′
I1 ‖

∏
k′∈I2\{k}

outF∗
k′

(mk′)

‖ ∏
i∈K

outF∗
i
(x):Fi(x)

)
\Outs ‖Fl(mk) ‖T

We also have B →B′ by means of a synchronization on pFk with

B′ ≡
(
Q1 ‖

∏
i∈I2\{k}

pFi mi ‖
∏
h∈K

pFh(x):[x = mh]Fh(mh)

)
\p̃K ‖

‖Fk(mk) ‖T
since Fl(mk) =Fk(mk) then we have that (A′; B′)∈S,

◦ if there is a synchronization between Q
pF′i

(m′)
−→ Q′ and the pre/xed continuation

pF′
j

(x):[x=mj]F ′
j (mj) then let J1 = I1\{j}; J = I\{j} and we may have two

cases depending on m′:
m′ =mj. Then we have

A′ ≡
(
Q′ ‖ ∏

k∈J1

pF′
k
(x):[x = mk ]F ′

k(mk)\p̃′
J1
‖

‖ ∏
k′∈I2∪{j}

outF∗
k′

(mk′) ‖
∏
i∈I

outF∗
i
(x):Fi(x)

)
\Outs ‖T

We have also that B →B′ where

B′ ≡
(
Q′

1 ‖
∏

k∈I2∪{j}
pFk mk ‖

∏
k∈J

pFk (x):[x = mk ]Fk(mk)

)
\p̃J

‖T
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since Q≡Q′ ‖pF′
j

(mj) and so Q1 ≡Q[f′] ‖pFj (mj) (recall pF′
j

=pF′
i

and
f′(pF′

j
) =pFj) and /nally (A′; B′)∈S.

m′ �=mj. Then we have

A′ ≡
(
Q′ ‖ ∏

k∈J1

pF′
k
(x):[x = mk ]F ′

k(mk)\p̃′
J1
‖

‖ ∏
k′∈I2

outF∗
k′

(mk′) ‖
∏
i∈I

outF∗
i
(x):Fi(x)

)
\Outs ‖T

and also B →B′ where

B′ ≡
(
Q′

1 ‖
∏
k∈I2

pFk mk ‖
∏
k∈J

pFk (x):[x = mk ]Fk(mk)

)
\p̃J ‖T

and (A′; B′)∈S.

Lemma 6.2. Assume that for every vector of messages m̃; Sspec(m̃)\C ≈may
∏

k∈1::n
Fk(mk). Then, Sspec guarantees TNDC-authentication.

Proof. We have to prove that (Sspec(m̃) ‖X )\C ≈may Sspec(m̃)\C. One direction is triv-
ial, as Sspec(m̃)\C6trace (Sspec(m̃) ‖X )\C and so, by Proposition 2.6, Sspec(m̃)\C6may

(Sspec(m̃) ‖X )\C. Let us prove that

(Sspec(m̃) ‖X )\C 6may Sspec(m̃)\C:
By the hypothesis we have that

∏
k∈1:::n Fk(mk)6may Sspec(m̃)\C. Thus, if we prove that

(Sspec(m̃) ‖X )\C6may
∏

k∈1:::n Fk(mk), then we are done. We do this by showing that
(Sspec(m̃) ‖X )\C/ ∏

k∈1:::n Fk(mk) from which the result follows by Proposition 2.11.
First of all, as Sspec(m̃) is in form (2), we note that

(Sspec(m̃) ‖X )\C ≡(
Q ‖X ‖ ∏

k∈1:::n
pFk (x):[x = mk ]Fk(mk)

)
\p̃\C ≡(

(Q |X )\C ‖ ∏
k∈1:::n

pFk (x):[x = mk ]Fk(mk)
)
\p̃

for some Q∈EC∪p̃ since, by de/nition, the channels of the continuations are diKerent
from the ones in the protocol (see Note 1), i.e. they are diKerent from C ∪ p̃.

Let us consider the following relation:

S =
{(

Q′\C ‖ ∏
k∈I

pFk (x):[x = mk ]Fk(mk)
)
\p̃I ‖R;

∏
k∈I

Fk(mk) ‖R1):

I ⊆ {1; : : : ; n}; p̃I = {pFi}i∈I ; Q′ ∈ EC∪p̃I ; {R; R1} ⊆ E; R- R1

}
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We prove that S is a weak barbed simulation up to ≡. Suppose that (A; B)∈S then:
• if A ↓ , then it must be R ↓ , and so B ↓ , since R-R1,
• if A →A′, because of R →R′ then also B →B′ since R-R1 and A′SB′,
• if A →A′ because of Q′ →Q′′ then A′SB,
• if A →A′ because of a synchronization between Q′ and one of the factors pFi(x):[x=

mi]Fi(mi) then we may have two cases:

◦ Q′ pFj m
′

−→ Q′′ and m′ =mi. Let J = I\{i}, then:

A′ ≡(
Q′′\C ‖ ∏

k∈J
pFk (x):[x = mk ]Fk(mk)

)
\p̃J ‖ (Fi(mi) ‖R) S∏

k∈J
Fk(mk) ‖ (Fi(mi) ‖R1) ≡∏

k∈I
Fk(mk) ‖R1 ≡

B

◦ Q′ pFj m
′

−→ Q′′ and m′ �=mi. Then we have

A′ ≡(
Q′′\C ‖ ∏

k∈J
pFk (x):[x = mk ]Fk(mk)

)
\p̃J ‖R S∏

k∈J
Fk(mk) ‖ (Fi(m′) ‖R1) ≡

B

since R-Fi(m′) ‖R1.
So ≡S≡ is a weak barbed simulation and since we have that

(Sspec(m̃) ‖X )\C ≡(
(Q ‖X )\C ‖ ∏

k∈1:::n
pFk (x):[x = mk ]Fk(mk)

)
\p̃ S

∏
k∈1:::n

Fk(mk)

then (Sspec(m̃) ‖X )\C/ ∏
k∈1:::n Fk(mk).

Lemma 6.7. Let SF̃(m̃) be a protocol and T be a tester. Suppose SF̃(m̃) ‖T ⇓ ,
through a computation ) such that Activations()) is a correct vector of activations.
Then, SF̃spec(m̃) ‖T ⇓ ,.

Proof. By induction on the number n of activations in ).
• n= 0: This case is simple. Due to the form of processes and speci/cations, two

processes SF̃(m̃) and SF̃spec(m̃) cannot exhibit a diKerent behavior without performing
some synchronizations on the channels in p̃.

• n+1: Let pFi be the channel where the two processes perform the synchronization of
the /rst activation in ) and let 8 be a correct delivering scheme for Activations()).
Then

SF̃(m̃) ‖T ⇒ S ′F̃(m̃) ‖T ′
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and

S ′F̃(m̃) ≡
(
pFi (m8(i)) ‖pFj (x):Fj(xj) ‖P′ ‖ ∏

k∈I\{j}
pFk (x):Fk(x)

)
\p̃:

Thus, S ′F̃(m̃) ‖T ′ → S ′′ ‖Fj(m8(i)) ‖T ′ where

S ′′ ≡
(
P′ ‖ ∏

k∈I\{j}
pFk (x):Fk(x)

)
\p̃:

Then, we can see that also

SF̃spec(m̃) ‖T ⇒ S ′F̃spec(m̃) ‖T ′

where

S ′F̃spec(m̃) ≡(
pFi (m8(i)) ‖pF8(i) (x):[x = m8(i)]F8(i)(m8(i)) ‖P′ ‖∏
k∈I\{8(i)}

pFk (x):[x = mk ]Fk(mk)

)
\p̃:

Thus, also S ′F̃spec(m̃) ‖T ′ → S ′′1 ‖F8(i)(m8(i)) ‖T ′ where

S ′′1 ≡
(
P′ ‖ ∏

k∈I\{8(i)}
pFk (x):[x = mk ]Fk(mk)

)
\p̃

Since 8 is a correct delivering schema, we have that F8(i) =Fi, but we also know
that Fi =Fj thus it follows F8(i) =Fj. Let R′ be Fj(m8(i)) =F8(i)(m8(i)).

Now, consider the process S ′′′F̃
′
(m̃′) obtained by considering P′ as execution part

and where F̃ ′ is obtained from F̃ by substituting F8(i) with Fi by deleting the ith
continuation; m̃′ is obtained from m̃ by substituting m8(i) with mi and by deleting the
ith-component of the resulting vector.

Then we can note that both

S ′′′F̃
′
(m̃′) ≡ S ′′

and

Sspec
′′′F̃′

(m̃′) ≡ S ′′1

in particular the /rst equivalence holds since pFj (x):Fj(x) is equal to pFi(x):Fi(x).

Then, it is easy to see that S ′′′F̃
′
(m̃′) ‖Fj(m8(i)) ‖T ′ ⇓ , with a successful computation

)′ whose delivering schema 8′ is correct and 8′ is as 8 restricted on I\{i} except for
8′(l) = 8(i), where 8(l) = i and i �= l. Thus, we can apply the inductive hypothesis and

we obtain that also Sspec
′′′F̃′

(m̃′) ‖F8(i)(m8(i)) ‖T ′ ⇓ , by proving that SF̃spec(m̃) ‖T ⇓ ,.
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Lemma 6.8. Let S be a protocol such that for every vector of messages m̃; S(m̃)\C
≈may Sspec(m̃)\C. If SF

′
guarantees TNDC-authentication then SF

′
guarantees weak

spi-authentication.

Proof. By contradiction, we assume SF
′

does not guarantee weak spi-authentication.
By Lemma 3.4, there exists an experiment (T; ,) which is passed by SF̃

′
(m̃) and is

not passed by SF̃
′

spec(m̃).
By Lemma 6.7, it must be that at a certain point of the computation with the attacker

T a con/guration of the process S is reached such that one of the components sends
a non-correct m′ to a continuation Fi (according to De/nitions 6.5 and 6.6).

Our aim is to split the tester T in an attacker X and an observer T ′ such that the
attacker communicates only on the channels C and the observer only on the channels
of the continuations. Because of the restriction on the sort of X we cannot do as in
Proposition 3.9 to consider a diKerent attacker who plays the role of some continuations
Fi. This role will be played by our observer T ′.

Now, consider the shortest computation between the intruder T and the process S
which leads the processes to send an incorrect value to a continuation Fil+1 . During this
computation it is possible that the intruder T has committed with some continuation
F ′
j , i.e. it has received on some channel outF∗

j
. Let B= (F ′

i1 (m
′
i1 ); : : : ; F

′
il (m

′
il)) be the

ordered vector of channel=messages that the intruder has synchronized with. By our
assumption on the fact that we consider the shortest computation which leads to a
similar con/guration we know that the intruder in these receptions has received only
correct values.

As an attacker we consider a process X which is obtained from the process T
where the receptions on the channels outF∗

ij
are removed, by replacing the relative

input variables with the correct message mij .
Hence, we can write a process T ′ which receives on the barbs in B, then receives

a value on the channel outF∗
il+1

and then it tests whether the received value is diKerent
from the possible correct ones (we use an if–then–else operator) and if so it commits
on a special channel, say !.

T ′ = (outF∗
i1
(y):[y = m′

i1 ]goi2 ‖∏
k∈{2;:::;l}

goik :outF∗
ik
(y):[y = m′

ik ]goik+1 ‖
goil+1 :outF∗

il+1
(y):[y = mz1 ]0; [y = mz2 ]0; : : : [y = mzr ]0;!)\g̃o

where mz1 ; : : : ;mzr are the possible correct messages for Fil+1 after ) and g̃o=
{goik}k∈{1;:::;l+1} are synchronization channels. The restricted speci/cation SF̃

′
spec(m̃)\C

which is equivalent to SF̃
′
(m̃)\C (by hypothesis) can never produce an incorrect mes-

sage. Thus we have (SF̃
′
(m̃) ‖X )\C ‖T ′ ⇓! while SF̃

′
(m̃)\C ‖T ′ �⇓!. This shows the

contradiction SF̃
′
=∈TNDC.

Proposition 6.10. Let P be a CryptoSPA process which can only execute a @nite
number of output actions and such that ID(P)⊆D(�I ). Then, for all Q∈E; P≈may Q
i> P≈trace Q.
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Proof. By Proposition 2.6 we have that if P≈trace Q then P≈may Q.
We now prove that if P6may Q then P6trace Q. Consider a trace ) of P. Since

ID(P)⊆D(�I ), then ) may contain only output messages that are in D(�I ). Hence,
we can construct a test T ∈E�I that executes a barb , iK the tested process can
execute ). It is suPcient that the test checks that every received message is the correct
one through the matching operator. We have that P ‖T ⇓ ,, and by hypothesis, also
Q ‖T ⇓ ,. This implies that, by construction of T; ) must be also a trace for Q. Indeed,
as we already stated, T is such that every message of Q is checked against the messages
contained in ). T executes , only if every action of ) is executed.

We still have to prove that if Q6may P then Q6trace P.
First, we show that Q can only provide a sequence of output messages in D(�I ).

Try to suppose that Q performs an output of a secret message after, say n, outputs of
public messages. In this case, we can built a process T which receives n+ 1 values. T
composed with Q receives this value. If we compose this tester with P we must obtain
that P may send a /nite set of values m1; : : : ml that are not secret, after a sequence
of n outputs. The situation where P is not able to send a sequence of n+ 1 messages
should directly contradict assumption Q6may P. Hence, we can simply modify T in
such a way that it tests whether the last message received is diKerent from the messages
m1; : : : ml, if so it commits on a special channel !. Now, we get an absurd, since Q
passes (T; !) while P cannot do it.

Next, it is easy to see that Q cannot execute input actions. If it could do so, for
example after a sequence of output of public messages, then we could consider a test
that sends an output to Q and then executes on a special barb !. This test cannot
succeed with P, but as Q6may P, we obtain a contradiction.

We have proved that Q may only perform outputs of public messages. Now, to
show that Q6may P implies Q6trace P we can proceed as at the beginning of the
proof. Hence, the thesis follows.

Theorem 6.12. Consider a process S(d1; : : : ; dn) in the form (4) that satis@es the
well-formedness conditions of (WFC1) and (WFC2), and consider the correspond-
ing S ′(d1; : : : ; dn). If S ′(d1; : : : ; dn) satis@es Agreement then S(d1; : : : ; dn) satis@es spi-
authentication.

Proof. Fix a vector of messages (d1; : : : ; dn). We need to show that

∀X (S ′(d1; : : : ; dn) ‖X )\C 6trace 2Agree(S ′(d1; : : : ; dn)) implies

SF
′
(d1; : : : ; dn) ∈ NDC

as, by Lemma 6.8 and Proposition 6.10, SF
′
(d1; : : : ; dn)∈NDC implies spi-authenti-

cation.
By contradiction, suppose that SF

′
(d1; : : : :dn) =∈NDC. Then it must be that for some

intruder X the compound process (SF
′
(d1; : : : :dn) ‖X )\C is not equivalent to SF

′
(d1;

: : : :dn)\C. Now note that, by the well-formedness condition (WFC1) we made on the
process, we must have SF

′
(d1; : : : :dn)\C ≈trace

∏
i∈1:::n outF (di). Thus, it must be the

case that (SF
′
(d1; : : : :dn) ‖X )\C produces an incorrect trace, i.e., which is not a trace
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for
∏

n outF(dn). This happens if the ordered sequence of messages emitted is not a
pre/x of some permutation of the sequence d1; : : : ; dn.

But, by construction of S ′, we have that also (S ′(d1; : : : :dn) ‖X )\C produces a se-
quence of action commit res whose ordered sequence of messages is not correct. In
fact, each activation of a continuation F(d) is preceded by the issuing of the ac-
tion commit res(B; Ai; d) for some Ai. Now, the same trace is produced by the process
(S ′(d1; : : : :dn) ‖X )\C. But, since this process satis/es Agreement, this means that in
the incorrect trace there is also an incorrect sequence of messages delivered on the
channels running ini. This is impossible since it is easy to see that, by construction,
S ′(d1; : : : :dn) produces only correct sequences of outputs in this channel.
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