Fractal interpolation on the Koch Curve

P. Paramanathan, R. Uthayakumar*
Department of Mathematics, Gandhigram Rural Institute - Deemed University, Gandhigram, 624302, Tamil Nadu, India

ARTICLE INFO

Article history:

Received 27 April 2009
Received in revised form 13 January 2010
Accepted 5 March 2010

Keywords:

Koch Curve
Fractal interpolation
Harmonic functions
Self-similar functions

Abstract

The Koch Curve can be obtained as an iterated function system construction. Self-similar interpolation is possible for any function on the sets that are defined recursively. We prove that the Koch Curve (KC) is an analogue of the fractal interpolation theorem of Barnsley. Also the classical harmonic functions are defined on the KC as the degree 1 polynomials for self-similar interpolation.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The theory of fractal interpolation has become a powerful and useful tool in applied science and engineering since Barnsley introduced the concept of the fractal interpolation function [1]. Many researchers used the fractal interpolation function to analyze fractal sets and show that the functions have important applications to data interpolation [2]. Demir et al., computed derivatives of the restrictions of harmonic functions on the Sierpinski gasket to segments [3]. Kigami used harmonic functions on the segments of the Sierpinski gasket [4,5]. Needleman et al., defined calculus on the Sierpinski gasket [6]. Also Celik et al., proved the Sierpinski gasket (SG) to be an analogue of the fractal interpolation theorem of Barnsley [7].

An iterated function system construction is useful for sets that are defined recursively. The Cantor Set, Sierpinski Gasket and Koch Curve are three well known self-similar fractals. The Koch Curve (KC) is a continuous curve which is nowhere differentiable. The KC has infinite length and bounds a finite area. In the popular presentation of the theory of fractals, the Koch curve is defined heuristically in the following way: The segment $K_{0}=[0,1] \times\{0\} \subset R^{2}$ is called the initiator of the curve. The middle third of this segment is removed and replaced by two equal segments that would form an equilateral triangle with the removed piece. The resulting four sided zigzag K_{1} is called the generator of the curve. The next step consists of subjecting each of the four segments of K_{1} to the same process (removal of the middle third and replacement by two equal segments), as if each of them were a new initiator of length $1 / 3$. Apply the above procedure to all the four segments of K_{1}, we obtain a 16 sided zigzag K_{2}. This procedure is carried out ad infinitum and the Koch curve is seen as the figure obtained in the limit, which we shall denote by K_{∞}. This definition is easy in understanding intuitively the nature of the Koch curve. Due to the mathematical deficiency of the heuristic definition, we prefer to use different definition. Instead of dealing with the successive curves K_{n}, we will consider the finite sets V_{n} consisting of the vertices of K_{n}. A vertex, i.e. an element of V_{n}, is an endpoint of one of the constitutive segments of K_{n}. As an example we have, the KC starting with the line segment $((0,0),(1,0))$ as shown in Figs. 1 and 2.

[^0]

Fig. 1. Example of construction of Koch Curve K_{0} and K_{1}.

Fig. 2. Example of construction of Koch curve K_{2} and K_{3}.
The four contractions $f_{1}, f_{2}, f_{3}, f_{4}$ are given below:

$$
\begin{aligned}
f_{1}(x, y) & =\left(\frac{x}{3}, \frac{y}{3}\right) \\
f_{2}(x, y) & =\left(-\frac{x}{6}-\frac{\sqrt{3} y}{6}+\frac{1}{2},-\frac{\sqrt{3} x}{6}-\frac{y}{6}+\frac{\sqrt{3}}{6}\right) \\
f_{3}(x, y) & =\left(\frac{x}{6}+\frac{\sqrt{3} y}{6}+\frac{1}{2},-\frac{\sqrt{3} x}{6}-\frac{y}{6}+\frac{\sqrt{3}}{6}\right) \\
f_{4}(x, y) & =\left(\frac{x}{3}+\frac{2}{3}, \frac{y}{3}\right)
\end{aligned}
$$

V_{1} contains the following set of vertices:

$$
V_{1}=\left\{(0,0),\left(\frac{1}{3}, 0\right),\left(\frac{1}{2}, \frac{\sqrt{3}}{6}\right),\left(\frac{2}{3}, 0\right),(1,0)\right\}
$$

where (x, y) denotes a generic point of \mathbb{R}^{2}. We now consider the union

$$
V_{\infty}=\bigcup_{i \in \mathbb{N}} V_{i}
$$

$K C$ is the countable set and it contains 4^{k} line segments of length 3^{-k}.
Definition 1.1. The Koch curve $K C$ is the closure of V_{∞} in \mathbb{R}^{2}, namely $K C=\bar{V}_{\infty}$.

Since V_{∞} is a countable set, we can construct a bijection between V_{∞}, and a certain countable subset A of the closed unit interval $[0,1] \subset \mathbb{R}$. Since the curve K_{n} is open and connected, its vertices can be consistently numbered from 0 to 4^{n} starting at the origin $(0,0) \in \mathbb{R}^{2}$ and $(1,0) \in \mathbb{R}^{2}$. Let $V_{n}^{i}\left(i=0,1, \ldots, 4^{n}\right)$ denote the i th vertex of K_{n}.

Let $V_{1}=\left\{p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right\}$ be the vertices of the KC , and

$$
u_{i}(x)=\frac{1}{3}\left(x+p_{i}\right), \quad(i=1,2,3,4,5)
$$

the set of contractions of the plane, of which the KC is the attractor. Fix a number n and consider the iteration $u_{w}=$ $u_{w_{1}} u_{w_{2}} \cdots u_{w_{n}}$ for any sequence $w=\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in\left\{0,1, \ldots, 4^{n}\right\}$. The union of the images of V_{0} under these iterations is the set of nth stage vertices V_{n} of the KC.

Let $F: V_{n} \rightarrow \mathbb{R}$ be any function. Given any numbers $\alpha_{w}, w \in\left\{0,1, \ldots, 4^{n}\right\}$ with $0<\left|\alpha_{w}\right|<1$, there exists a unique continuous extension $f: K C \rightarrow \mathbb{R}$ of F, such that

$$
f\left(u_{w}(x)\right)=\alpha_{w} f(x)+h_{w}(x)
$$

for $x \in K C$, where h_{w} are harmonic function on the $K C$ for $w \in\left\{0,1, \ldots, 4^{n}\right\}$. Interpreting the harmonic functions as the "degree 1 polynomials" on the KC is thus a self similar interpolation obtained for any start function $F: V_{n} \rightarrow \mathbb{R}$.

We first recall a version of the fractal interpolation theorem of Barnsley [1].
Theorem 1.1. Let $\left[x_{0}, x_{N}\right] \subset \mathbb{R}$ be an interval and

$$
x_{0}<x_{1}<\cdots<x_{i-1}<x_{i}<\cdots<x_{N}
$$

a subdivision of this interval $(N \geq 2)$. Let $F_{i} \in \mathbb{R}(i=0,1, \ldots, N)$ be some arbitrary values attached to the points x_{i} and which are to be interpolated over the interval $\left[x_{0}, x_{N}\right]$ by a continuous function $f:\left[x_{0}, x_{N}\right] \rightarrow \mathbb{R}$ with $f\left(x_{i}\right)=F_{i}(i=0,1,2, \ldots, N)$.

Let $u_{i}:\left[x_{0}, x_{N}\right] \rightarrow\left[x_{i-1}, x_{i}\right]$ be the invertible maps

$$
u_{i}(x)=\frac{x_{i}-x_{i-1}}{x_{N}-x_{0}} x+\frac{x_{N} x_{i-1}-x_{0} x_{i}}{x_{N}-x_{0}} \quad(i=1, \ldots, N),
$$

$\alpha_{i} \in \mathbb{R}(i=1, \ldots, N)$ be any given numbers (called the vertical scaling factors) with $0<\left|\alpha_{i}\right|<1$ and $h_{i}:\left[x_{0}, x_{N}\right] \rightarrow \mathbb{R}$ be the linear functions

$$
h_{i}(x)=\left(\frac{F_{i}-F_{i-1}}{x_{N}-x_{0}}-\alpha_{i} \frac{F_{N}-F_{0}}{x_{N}-x_{0}}\right) x+\frac{x_{N} F_{i-1}-x_{0} F_{i}}{x_{N}-x_{0}}-\alpha_{i} \frac{x_{N} F_{0}-x_{0} F_{N}}{x_{N}-x_{0}}
$$

for $i=1, \ldots, N$.
Then, there exist a unique continuous function $f:\left[x_{0}, x_{N}\right] \rightarrow \mathbb{R}$ with $f\left(x_{i}\right)=F_{i}(i=0,1, \ldots, N)$ such that the following condition holds:

$$
f\left(u_{i}(x)\right)=\alpha_{i} f(x)+h_{i}(x) \quad \text { for } x \in\left[x_{0}, x_{N}\right] \text { and } i=1,2, \ldots, N .
$$

M.F. Barnsley proved that the graph of an interpolation function in the above sense can be realized as the attractor of an iterated functions system on the plane and thus it represents a fractal generically. Here we consider the other aspect of this construction: This interpolation function is "self similar" in the sense that if we magnify its restriction to $\left[x_{i-1}, x_{i}\right]$ to the whole interval $\left[x_{0}, x_{N}\right.$] by means of u_{i}, then it becomes almost the same f again (up to a multiplication by a number and modulo addition of a polynomial of degree 1) [6].

Interpreting the polynomials of degree 1 as classical harmonic functions on an interval and replacing them on the Koch Curve (KC) by harmonic functions of fractal analysis, we will obtain an analogue of the Barnsley fractal interpolation theorem for the KC.

2. Fractal interpolation theorem for the Koch Curve

Let $V_{1}=\left\{p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right\}$ be the set of vertices on the plane \mathbb{R}^{2} and $u_{i}(x)=\frac{1}{3}\left(x+p_{i}\right),(i=1,2,3,4,5)$ with the set of contractions of the plane which constitute an iterated functions system [4,5]. The KC is the attractor of this system:

$$
K C=u_{1}(K C) \cup u_{2}(K C) \cup u_{3}(K C) \cup u_{4}(K C)
$$

Fix a number n and consider the iteration $u_{w}=u_{w_{1}} u_{w_{2}} \cdots u_{w_{n}}$ for any sequence $w=\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in\left\{0,1, \ldots, 4^{n}\right\}$. The union of the images of V_{0} under these iterations constitutes the set of nth stage vertices V_{n} of the KC.

Given any function $f: V_{n} \rightarrow \mathbb{R}$, there is an operator H_{n}, defined by $H_{n}(f): V_{n} \rightarrow \mathbb{R}$

$$
H_{n}(f)(p)=\sum_{q \in N_{p, n}}(f(q)-f(p))
$$

where $N_{p, n}$ denotes the "neighbourhood" of p in V_{n}, the set of "next neighbours" of p in $V_{n}, 2$ in number for $p \in V_{n} \backslash V_{1}$ and 1 or 2 for $p \in V_{1}$. f is called harmonic on V_{n} if $H_{n}(f)(p)=0$ for all $p \in V_{n} \backslash V_{1}$.

Fig. 3. Example of fractal interpolation.
A continuous function $f: K C \rightarrow \mathbb{R}$ is called harmonic, if its restriction to V_{n} is harmonic for all n.
Consider an initial set of interpolation values on the nth stage vertices of the KC, for the given function $F: V_{n} \rightarrow \mathbb{R}$ (n-harmonic function on the KC). By applying the above harmonic-extension theorem to all $u_{w}\left(V_{1}\right) \subset u_{w}(K C)$ locally, from this we obtained n-harmonic function on the KC. This n-harmonic extension is not self-similar in the sense of a relationship between local and global. Therefore we construct another extension, which is self-similar in a very nice way and which has a close resemblance with the fractal interpolation theorem of Barnsley. The harmonic functions are used as correction terms for correct matching after rescaling of the function.

Theorem 2.1. Let $F: V_{n} \rightarrow R$ be any given function ($n \geq 1$). For any given numbers $\alpha_{w}\left(w \in\left\{0,1, \ldots, 4^{n}\right\}\right.$ with $0<\left|\alpha_{w}\right|<1$, there exists a unique continuous function $f: K C \rightarrow R$, such that $\left.f\right|_{V_{n}}=F$ and

$$
f\left(u_{w}(x)\right)=\alpha_{w} f(x)+h_{w}(x) \quad \text { for } x \in K C,
$$

where h_{w} are harmonic functions on the KC for all $w \in\left\{0,1, \ldots, 4^{n}\right\}$.
Proof. Let

$$
\mathscr{F}=\left\{g: K C \rightarrow R \text { continuous with } g\left(p_{1}\right)=F\left(p_{1}\right), g\left(p_{2}\right)=F\left(p_{2}\right), g\left(p_{3}\right)=F\left(p_{3}\right), g\left(p_{4}\right)=F\left(p_{4}\right), g\left(p_{5}\right)=F\left(p_{5}\right)\right\} .
$$

\mathscr{F} is a complete metric space with the maximum metric. Define the operator $T: \mathscr{F} \rightarrow \mathscr{F}$ by

$$
T(g)(y)=\alpha_{w} g\left(u_{w}^{-1}(y)\right)+h_{w}\left(u_{w}^{-1}(y)\right) \text { for } y \in u_{w}(K C) \text { and } w \in\left\{0,1, \ldots, 4^{n}\right\}
$$

where h_{w} is the harmonic function on the KC with vertex values

$$
h_{w}\left(p_{i}\right)=F\left(u_{w}\left(p_{i}\right)\right)-\alpha_{w} F\left(p_{i}\right) \quad \text { for } i=1,2,3,4,5 .
$$

Then $T(g)$ is well defined, continuous and $T(g)\left(u_{w}\left(p_{i}\right)\right)=F\left(u_{w}\left(p_{i}\right)\right)$, thus $T(g)\left(p_{i}\right)=F\left(p_{i}\right)$ and $T(g) \in \mathscr{F} . T$ is a contraction on \mathscr{F} with contractivity ratio $\max \left|\alpha_{w}\right|$ since

$$
\max _{x \in K C}|T(g)(x)-T(\tilde{g})(x)| \leq \max _{w \in\left\{0,1, \ldots, 4^{n}\right\}}\left|\alpha_{w}\right| \max x \in K C|g(x)-\tilde{g}(x)|
$$

for $g, \tilde{g} \in \mathscr{F}$. The unique fixed point f of T satisfies

$$
f(y)=\alpha_{w} f\left(u_{w}^{-1}(y)\right)+h_{w}\left(u_{w}^{-1}(y)\right) \text { for } y \in u_{w}(K C) \text { and } w \in\left\{0,1, \ldots, 4^{n}\right\},
$$

which means

$$
f\left(u_{w}(x)\right)=\alpha_{w} f(x)+h_{w}(x) \quad \text { for } x \in K C \text { and } w \in\left\{0,1, \ldots, 4^{n}\right\}
$$

as required.
Remark. The application of the above theorem includes image decoding (approximate the points in the image segments).
Example 1. Let $V_{1}=\left\{p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right\}$ and $F: V_{1} \rightarrow R$ be a function with $F\left(p_{1}\right)=0, F\left(p_{2}\right)=\frac{2}{9}, F\left(p_{3}\right)=\frac{1}{6}, F\left(p_{4}\right)=$ $\frac{1}{9}, F\left(p_{5}\right)=\frac{1}{3}$ and $\alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha_{4}=\alpha_{5}=\frac{1}{3}$. Then the graph of the interpolation function on the KC which takes these values on V_{1} is given in Fig. 3. The graph of the 1-harmonic function on the $K C$ with vertex values $F\left(p_{1}\right)=0, F\left(p_{2}\right)=\frac{2}{9}, F\left(p_{3}\right)=\frac{1}{6}, F\left(p_{4}\right)=\frac{1}{9}, F\left(p_{5}\right)=\frac{1}{3}$ in Fig. 4.

Fig. 4. Example of 1-harmonic function.

Acknowledgements

This research is supported by the University Grants Commission - Special Assistance Programme (UGC - SAP), Department of Mathematics - Gandhigram Rural University, Gandhigram, 624302 Tamil Nadu, India and the Jawaharlal Nehru Memorial Fund (JNMF), New Delhi, India.

References

[1] M.F. Barnsley, Fractals Everywhere, Academic Press, San Diego, 1988.
[2] M.A. Navascues, Fractal interpolants on unit circle, Applied Mathematical Letters 21 (2008) 366-371.
[3] B. Demir, V. Dzhafarov, S. Kocak, M. Ureyen, Derivatives of the restrictions of harmonic functions on the Sierpinski gasket to segments, Journal of Mathematical Analysis and Applications 333 (2007) 817-822.
[4] J. Kigami, Analysis on Fractals, Cambridge Univ. Press, 2001.
[5] M. Yamaguti, M. Hata, J. Kigami, Mathematics of Fractals, Americal Mathematical Society, 1997.
[6] J. Needleman, A. Teplyaev, P.L. Yung, R. Strichartz, Calculus on the Sierpinski gasket I: Polynomials, exponentials and power series, Journal of Functional Analysis 215 (2004) 290-340.
[7] D. Celik, S. Kocak, Y. Ozdemir, Fractal interpolation on the Sierpinski Gasket, Journal of Mathematical Analysis and Applications 337 (2008) $343-347$.

[^0]: * Corresponding author. Tel.: +91451 2452371; fax: +91451 2453071.

 E-mail addresses: nathangri@gmail.com (P. Paramanathan), uthayagri@gmail.com (R. Uthayakumar).

