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a b s t r a c t

The Koch Curve can be obtained as an iterated function system construction. Self-similar
interpolation is possible for any function on the sets that are defined recursively. We prove
that the Koch Curve (KC) is an analogue of the fractal interpolation theorem of Barnsley.
Also the classical harmonic functions are defined on the KC as the degree 1 polynomials for
self-similar interpolation.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The theory of fractal interpolation has become a powerful and useful tool in applied science and engineering since
Barnsley introduced the concept of the fractal interpolation function [1]. Many researchers used the fractal interpolation
function to analyze fractal sets and show that the functions have important applications to data interpolation [2]. Demir et al.,
computed derivatives of the restrictions of harmonic functions on the Sierpinski gasket to segments [3]. Kigami used
harmonic functions on the segments of the Sierpinski gasket [4,5]. Needleman et al., defined calculus on the Sierpinski
gasket [6]. Also Celik et al., proved the Sierpinski gasket (SG) to be an analogue of the fractal interpolation theorem of
Barnsley [7].
An iterated function system construction is useful for sets that are defined recursively. The Cantor Set, Sierpinski Gasket

and Koch Curve are three well known self-similar fractals. The Koch Curve (KC) is a continuous curve which is nowhere
differentiable. The KC has infinite length and bounds a finite area. In the popular presentation of the theory of fractals, the
Koch curve is defined heuristically in the following way: The segment K0 = [0, 1] × {0} ⊂ R2 is called the initiator of
the curve. The middle third of this segment is removed and replaced by two equal segments that would form an equilateral
trianglewith the removed piece. The resulting four sided zigzag K1 is called the generator of the curve. The next step consists
of subjecting each of the four segments of K1 to the same process (removal of themiddle third and replacement by two equal
segments), as if each of them were a new initiator of length 1/3. Apply the above procedure to all the four segments of K1,
we obtain a 16 sided zigzag K2. This procedure is carried out ad infinitum and the Koch curve is seen as the figure obtained
in the limit, which we shall denote by K∞. This definition is easy in understanding intuitively the nature of the Koch curve.
Due to the mathematical deficiency of the heuristic definition, we prefer to use different definition. Instead of dealing with
the successive curves Kn, we will consider the finite sets Vn consisting of the vertices of Kn. A vertex, i.e. an element of Vn,
is an endpoint of one of the constitutive segments of Kn. As an example we have, the KC starting with the line segment
((0, 0), (1, 0)) as shown in Figs. 1 and 2.
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Fig. 1. Example of construction of Koch Curve K0 and K1 .
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Fig. 2. Example of construction of Koch curve K2 and K3 .

The four contractions f1, f2, f3, f4 are given below:
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V1 contains the following set of vertices:

V1 =

{
(0, 0),

(
1
3
, 0
)
,

(
1
2
,

√
3
6

)
,

(
2
3
, 0
)
, (1, 0)

}
where (x, y) denotes a generic point of R2. We now consider the union

V∞ =
⋃
i∈N

Vi

KC is the countable set and it contains 4k line segments of length 3−k.

Definition 1.1. The Koch curve KC is the closure of V∞ in R2, namely KC = V∞.
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Since V∞ is a countable set, we can construct a bijection between V∞, and a certain countable subset A of the closed unit
interval [0, 1] ⊂ R. Since the curve Kn is open and connected, its vertices can be consistently numbered from 0 to 4n starting
at the origin (0, 0) ∈ R2 and (1, 0) ∈ R2. Let V in (i = 0, 1, . . . , 4

n) denote the ith vertex of Kn.
Let V1 = {p1, p2, p3, p4, p5} be the vertices of the KC, and

ui(x) =
1
3
(x+ pi) , (i = 1, 2, 3, 4, 5)

the set of contractions of the plane, of which the KC is the attractor. Fix a number n and consider the iteration uw =
uw1uw2 · · · uwn for any sequence w = (w1, w2, . . . , wn) ∈ {0, 1, . . . , 4n}. The union of the images of V0 under these
iterations is the set of nth stage vertices Vn of the KC.
Let F : Vn → R be any function. Given any numbers αw , w ∈ {0, 1, . . . , 4n} with 0 < |αw| < 1, there exists a unique

continuous extension f : KC → R of F , such that

f (uw(x)) = αwf (x)+ hw(x)

for x ∈ KC , where hw are harmonic function on the KC for w ∈ {0, 1, . . . , 4n}. Interpreting the harmonic functions as the
‘‘degree 1 polynomials’’ on the KC is thus a self similar interpolation obtained for any start function F : Vn → R.
We first recall a version of the fractal interpolation theorem of Barnsley [1].

Theorem 1.1. Let [x0, xN ] ⊂ R be an interval and

x0 < x1 < · · · < xi−1 < xi < · · · < xN

a subdivision of this interval (N ≥ 2). Let Fi ∈ R (i = 0, 1, . . . ,N) be some arbitrary values attached to the points xi and which
are to be interpolated over the interval [x0, xN ] by a continuous function f : [x0, xN ]→ R with f (xi) = Fi (i = 0, 1, 2, . . . ,N).
Let ui : [x0, xN ]→ [xi−1, xi] be the invertible maps

ui(x) =
xi − xi−1
xN − x0

x+
xNxi−1 − x0xi
xN − x0

(i = 1, . . . ,N),

αi ∈ R (i = 1, . . . ,N) be any given numbers (called the vertical scaling factors) with 0 < |αi| < 1 and hi : [x0, xN ]→ R be the
linear functions

hi(x) =
(
Fi − Fi−1
xN − x0

− αi
FN − F0
xN − x0

)
x+

xNFi−1 − x0Fi
xN − x0

− αi
xNF0 − x0FN
xN − x0

for i = 1, . . . ,N.
Then, there exist a unique continuous function f : [x0, xN ] → R with f (xi) = Fi (i = 0, 1, . . . ,N) such that the following

condition holds:

f (ui(x)) = αif (x)+ hi(x) for x ∈ [x0, xN ] and i = 1, 2, . . . ,N.

M.F. Barnsley proved that the graph of an interpolation function in the above sense can be realized as the attractor of an
iterated functions system on the plane and thus it represents a fractal generically. Here we consider the other aspect of this
construction: This interpolation function is ‘‘self similar’’ in the sense that if we magnify its restriction to [xi−1, xi] to the
whole interval [x0, xN ] by means of ui, then it becomes almost the same f again (up to a multiplication by a number and
modulo addition of a polynomial of degree 1) [6].
Interpreting the polynomials of degree 1 as classical harmonic functions on an interval and replacing them on the Koch

Curve (KC) by harmonic functions of fractal analysis, wewill obtain an analogue of the Barnsley fractal interpolation theorem
for the KC.

2. Fractal interpolation theorem for the Koch Curve

Let V1 = {p1, p2, p3, p4, p5} be the set of vertices on the plane R2 and ui(x) = 1
3 (x+ pi) , (i = 1, 2, 3, 4, 5) with the set

of contractions of the plane which constitute an iterated functions system [4,5]. The KC is the attractor of this system:

KC = u1(KC) ∪ u2(KC) ∪ u3(KC) ∪ u4(KC).

Fix a number n and consider the iteration uw = uw1uw2 · · · uwn for any sequence w = (w1, w2, . . . , wn) ∈ {0, 1, . . . , 4
n}.

The union of the images of V0 under these iterations constitutes the set of nth stage vertices Vn of the KC.
Given any function f : Vn → R, there is an operator Hn, defined by Hn(f ) : Vn → R

Hn(f )(p) =
∑
q∈Np,n

(f (q)− f (p)) ,

where Np,n denotes the ‘‘neighbourhood’’ of p in Vn, the set of ‘‘next neighbours’’ of p in Vn, 2 in number for p ∈ Vn \ V1 and
1 or 2 for p ∈ V1. f is called harmonic on Vn if Hn(f )(p) = 0 for all p ∈ Vn \ V1.
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Fig. 3. Example of fractal interpolation.

A continuous function f : KC → R is called harmonic, if its restriction to Vn is harmonic for all n.
Consider an initial set of interpolation values on the nth stage vertices of the KC, for the given function F : Vn → R

(n-harmonic function on the KC). By applying the above harmonic-extension theorem to all uw(V1) ⊂ uw(KC) locally, from
this we obtained n-harmonic function on the KC. This n-harmonic extension is not self-similar in the sense of a relationship
between local and global. Therefore we construct another extension, which is self-similar in a very nice way and which has
a close resemblance with the fractal interpolation theorem of Barnsley. The harmonic functions are used as correction terms
for correct matching after rescaling of the function.

Theorem 2.1. Let F : Vn → R be any given function (n ≥ 1). For any given numbersαw (w ∈ {0, 1, . . . , 4n}with 0 < |αw| < 1,
there exists a unique continuous function f : KC → R, such that f |Vn = F and

f (uw(x)) = αwf (x)+ hw(x) for x ∈ KC,

where hw are harmonic functions on the KC for allw ∈ {0, 1, . . . , 4n}.

Proof. Let

F = {g : KC → R continuous with g(p1) = F(p1), g(p2) = F(p2), g(p3) = F(p3), g(p4) = F(p4), g(p5) = F(p5)}.

F is a complete metric space with the maximummetric. Define the operator T : F → F by

T (g)(y) = αwg(u−1w (y))+ hw(u
−1
w (y)) for y ∈ uw(KC) andw ∈

{
0, 1, . . . , 4n

}
where hw is the harmonic function on the KC with vertex values

hw(pi) = F(uw(pi))− αwF(pi) for i = 1, 2, 3, 4, 5.

Then T (g) is well defined, continuous and T (g)(uw(pi)) = F(uw(pi)), thus T (g)(pi) = F(pi) and T (g) ∈ F . T is a
contraction onF with contractivity ratio max |αw| since

max
x∈KC
|T (g)(x)− T ( g̃ )(x)| ≤ max

w∈{0,1,...,4n}
|αw|max x ∈ KC |g(x)− g̃(x)|

for g, g̃ ∈ F . The unique fixed point f of T satisfies

f (y) = αwf (u−1w (y))+ hw(u
−1
w (y)) for y ∈ uw(KC) andw ∈

{
0, 1, . . . , 4n

}
,

which means

f (uw(x)) = αwf (x)+ hw(x) for x ∈ KC andw ∈
{
0, 1, . . . , 4n

}
as required. �

Remark. The application of the above theorem includes image decoding (approximate the points in the image segments).

Example 1. Let V1 = {p1, p2, p3, p4, p5} and F : V1 → R be a function with F(p1) = 0, F(p2) = 2
9 , F(p3) =

1
6 , F(p4) =

1
9 , F(p5) =

1
3 and α1 = α2 = α3 = α4 = α5 =

1
3 . Then the graph of the interpolation function on the KC

which takes these values on V1 is given in Fig. 3. The graph of the 1-harmonic function on the KC with vertex values
F(p1) = 0, F(p2) = 2

9 , F(p3) =
1
6 , F(p4) =

1
9 , F(p5) =

1
3 in Fig. 4.
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Fig. 4. Example of 1-harmonic function.
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