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IMMEDIATE CHANGES AFTER MANUAL THERAPY IN
RESTING-STATE FUNCTIONAL CONNECTIVITY AS
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Objective: The purposes of this study were to use functional magnetic resonance imaging to investigate the
immediate changes in functional connectivity (FC) between brain regions that process and modulate the pain
experience after 3 different types of manual therapies (MT) and to identify reductions in experimentally induced
myalgia and changes in local and remote pressure pain sensitivity.
Methods: Twenty-four participants (17men;mean age ± SD, 21.6 ± 4.2 years) who completed an exercise-injury protocol
to induce low back pain were randomized into 3 groups: chiropractic spinal manipulation (n = 6), spinal mobilization (n =
8), or therapeutic touch (n = 10). The primary outcomewas the immediate change inFC asmeasured on functionalmagnetic
resonance imaging between the following brain regions: somatosensory cortex, secondary somatosensory cortex, thalamus,
anterior and posterior cingulate cortices, anterior and poster insula, and periaqueductal gray. Secondary outcomes were
immediate changes in pain intensity, measured with a 101-point numeric rating scale, and pain sensitivity, measured with a
handheld dynamometer. Repeated-measures analysis of variance models and correlation analyses were conducted to
examine treatment effects and the relationship between within-person changes across outcome measures.
Results: Changes in FC were found between several brain regions that were common to all 3 MT interventions.
Treatment-dependent changes in FC were also observed between several brain regions. Improvement was seen in pain
intensity after all interventions (P b .05) with no difference between groups (P N .05). There were no observed changes
in pain sensitivity, or an association between primary and secondary outcome measures.
Conclusion: These results suggest that MTs (chiropractic spinal manipulation, spinal mobilization, and therapeutic
touch) have an immediate effect on the FC between brain regions involved in processing and modulating the pain
experience. This suggests that neurophysiologic changes after MT may be an underlying mechanism of pain relief.
(J Manipulative Physiol Ther 2014;37:614-627)
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Improvements in pain intensity and pain sensitivity are
often reported after manual therapy (MT).1–4 Research
has demonstrated the following: (1) neurophysiologic

changes are observed after MT, and (2) reductions in pain
intensity and pain sensitivity are associated with functional
changes in central nervous system.5–8 A current assump-
tion is that neurophysiologic changes after MT may
underlie clinical improvement.

Functional magnetic resonance imaging (fMRI) research
includes several different approaches to estimate cortical
function. Several of these approaches have demonstrated
functional changes associated with pain relief. One such
measure is functional connectivity (FC). Functional connec-
tivity has been defined as “the temporal correlation of a
neurophysiologic index measured in different brain areas”
(see Fig 1).9 Recently, Letzen et al6 used FC between the
default mode network and brain regions associated with pain
processing to investigate lidocaine-induced analgesia, where-
as Zyloney et al10 used FC between the Periaqueductal Gray
(PAG) and cortical regions to investigate differential effects
underlying analgesia from of genuine and sham electro-
acupuncture.With the evidence supporting efficacy ofMT to
reduce pain intensity and pain sensitivity, it is reasonable to
assume that the underlying therapeutic effect of MT is likely
to include a higher cortical component.1,4,11,12

Although models explaining the therapeutic effects ofMT
on pain and pain sensitivity include the potential for a higher
corticalmechanism, the extent thatMT exert effects on higher
brain centers is not fully understood.13–16 Thus far, only one
study has used fMRI to assess changes in cortical function
after MT.17 Unlike the studies by Letzen et al and Zyloney
et al, the study by Sparks et al17 used a different approach.
They used peak blood-oxygen-level–dependent (BOLD)
contrast imaging to estimate of cortical function associated
with a task. In their study, pain-free volunteers processed
thermal stimuli applied to the hand before and after thoracic
spinal manipulation (a form of MT). What they found was
that after thoracic manipulation, several brain regions
demonstrated a reduction in peak BOLD activity. Those
regions included the cingulate, insular, motor, amygdala and
somatosensory cortices, and the PAG.

The purpose of this studywas to investigate the changes in
FC between brain regions that process and modulate the pain
experience after MT. The primary outcome was to measure
the immediate change in FC across brain regions involved in
processing andmodulating the pain experience and identify if
there were reductions in experimentally induced myalgia and
changes in local and remote pressure pain sensitivity.
METHODS

Study Design
This study is made up of a subset of participants who have

completed a larger, ongoing, preclinical trial (NCT01406847).
A randomized study design with blinded assessment was
implemented with 3 groups, measured at 2 time points. Pain-
free volunteers completed an exercise protocol to induce
myalgia in the low back. Forty-eight hours after completion of
the exercise protocol, participants returned and underwent
preintervention assessment. Preintervention assessment in-
cluded collection of pain intensity, local and remote pressure
pain measures, and fMRI data by a blinded assessor.
Participants were then randomized to receive 1 of 3 MT
interventions. Sealed opaque envelopes were used to inform
the treatment provider of assignment. Interventions were
performed by either a licensed physical therapist or
chiropractor. The randomization sequence was generated by
an individual no responsible for determining study eligibility,
outcome assessment, or intervention. After the interven-
tion, participants underwent the same assessment (postin-
tervention) performed by the same blinded assessor.
Participants
Seventy-five volunteers read and signed the informed

consent form approved by the University of Florida
Institutional Review Board. Enrolled participants were
recruited from the campuses of the University of Florida
and UF Health Hospital and the local surrounding
community. Participants were eligible to participate in the
study if they were between the ages of 18 and 44 years and
currently not experiencing back pain. Participants were
excluded from participating in the study if they met any of
the following criteria: previous participation in a condi-
tioning program specific to trunk extensors, any current
back pain, any chronic medical conditions that may affect
pain perception (eg, diabetes, high blood pressure,
fibromyalgia, and headaches), kidney dysfunction, muscle
damage, or major psychiatric disorder; history of previous
injury including surgery to the lumbar spine, renal
malfunction, cardiac condition, high blood pressure,
osteoporosis, or liver dysfunction; and performance of
any intervention for symptoms induced by exercise and
before the termination of their participation of the protocol.
To be included in these analyses, participants needed to
undergone the exercise-injury protocol and have completed
resting-state fMRI scans at both time points.
EXERCISE INJURY MODEL TO INDUCE LOW BACK PAIN
Prior to exercise, all participants completed a 5-minute

warm-up consisting of riding a stationary bicycle. After the
5-minute warm-up, participants then performed an isometric
test to establish a baseline measure of torque.18 Participants
then performed repetitions of dynamic resisted exercise.
Resistance was individualized to each participant using a
weight load. Weight loads were equal to 90% of the peak
torque measured during the baseline isometric test. Each
repetition was performed through the full available range of
motion. Participants performed sets of 15 repetitions or until



Fig 1. Functional connectivity is defined as the temporal correlation of a neurophysiologic index measured in different brain areas. This
term has been applied to fMRI, where the changes in BOLD signal over time are compared between 2 ROIs. The correlation between the
time series equals the estimated FC.
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volitional fatigue. After each set, torque was reestimated.
Using a criterion of 50% drop in torque, participants either
completed another set if the torque was greater than 50% or
ended if the reestimated torque was 50% or less than the
baseline. After the exercise, participants were instructed not
to initiate any medication or apply any intervention to the
lumbar spine to reduce painful symptoms. This human
model of acute endogenous low back pain has been
previously described in greater detail elsewhere.19,20
Manual Therapy Interventions
Interventions were performed by health care profes-

sionals who were selected from a pool based on availability
and who were not involved with the assessment of the
participant. The pool consisted of health care professionals
who had an active license (either physical therapy or
chiropractic), were currently or previously practiced, were
comfortable providing MT for musculoskeletal pain
conditions, and underwent training (with M.D.B.) on the
specific techniques performed in this study. The amount of
“hands-on” and personal contact was equivalent between
interventions. Prior to the intervention, all participants were
given similar verbal instructions regarding the techniques
performed. Each intervention met the criteria to be
categorized as a “Mind and Body”–based therapy by the
National Center of Complementary and Alternative Med-
icine.21 In this study, each intervention was considered an
MT technique and is briefly described below.
Spinal Manipulative Therapy
Participants randomized to the spinal manipulative

therapy (SMT) group received a high-velocity, low-
amplitude thrust (grade V) technique previously described
in the literature and commonly used for the treatment of low
back pain by several health care professions.22–28 This
particular technique was selected because it was used in low
back pain–clinical prediction rule studies involving patients
with acute and subacute pain23 and was the same technique
used by our group, which reported immediate pain
sensitivity changes in healthy and low back pain
participants.24,25
Spinal Mobilization
Participants randomized to spinal mobilization (MOB)

received a “grade III”mobilizing force applied and released to
the lumbar spine, directed posterior to anterior at a rate of 1
Hz for 2 minutes, followed by a 1-minute rest, and then the
mobilizing force again for 2 minutes. This particular
technique was selected because it was used in a recent
clinical trial involving patients with acute or subacute pain,29

and commonly used for the treatment of low back pain.
Therapeutic Touch Control
Participants randomized to therapeutic touch control

(TT) lay prone. The therapist placed both hands in contact
with the participants' pelvis across the top of the posterior
aspect of the sacrum and ilia. Light pressure was applied for
5 minutes.
Primary Outcome (Functional Imaging)
Acquisition. Functional magnetic resonance imaging was

performed using a research dedicated, Phillips Achieva 3
Tesla MRI Scanner (Phillips Healthcare, Andover, MA),
fitted with a 32-channel head coil. Each resting-state fMRI
scan was 5 minutes and 42 seconds long. One resting-state
scan was taken before and after the assigned intervention.
Functional data were collected in the transaxial orientation
using an EPI sequence (XYZ dimension = 80 * 80 * 38; field



617Gay et alJournal of Manipulative and Physiological Therapeutics
Cortical Changes After Manual TherapyVolume 37, Number 9
of view [RL (right-to-left direction), AP (anterior-to-posterior
direction), FH (foot-to-head direction)—mm] = 240, 240, 114;
slice thickness [mm] = 3; gap thickness = 0; voxel dimension
[mm] = 3 * 3 * 3; repetition time [milliseconds] = 2000), which
is consistent with recommended resting functional scanning
parameters.30 Structural data consisted of a high-resolution 3-
dimensional (3D) structural T1 collected in sagittal orientation
(XYZdimension = 256 * 256 * 180; field of view [AP, FH, RL
—mm] = 240, 240, 180; slice thickness [mm] =1; gap
thickness = 0; voxel dimension [mm] = 1 * 1 * 1; repetition
time/echo time (TR/TE) [milliseconds] = 8.1/3.7). During the
functional scan, physiological measures (eg, pulse oximeter
and respirations) were recorded simultaneously using built-in
recording equipment that is part of the Philips system. During
scanning, participants remained in the supine position with
their heads cushioned to reduce motion. Participants were
instructed to remain awake, with their eyes open and fixated
on a cross hair, “not to think about anything in particular,” and
to remain as still as possible. Participants wore earplugs
throughout the experiment to attenuate MRI noise.

Processing. Functional data were preprocessed in SPM12
(Wellcome Department of Imaging Neuroscience, London,
UK; http://www.fil.ion.ucl.ac.uk/spm). Images were
(1) slice-time corrected, (2) realigned and resliced into 3-
mm isotropic voxels, (4) co-registered to the high-resolution
3D anatomic volume, (5) warped into Montreal Neurological
Institute standard space using the deformations used to realign
the 3D anatomical data into Montreal Neurological Institute
space, and (6) spatially smoothed using a 6-mm full-width
half-maximum Gaussian kernel. Data were spike corrected to
reduce the impact of artifacts using the postprocessing Artifact
Detection Tool toolbox for fMRI data (http://www.nitrc.org/
projects/artifact_detect). Time points, where the mean global
signal changed by above 3 SDs, translation movement
exceeded 0.5 mm or rotational movement exceeded 0.01°,
were identified and later removed during first level general
linear model. The final processing steps were then carried out
using the FC toolbox Conn (http://www.nitrc.org/projects/
conn) that implements the component-based noise correction
method strategy for physiological and other noise source
reduction, which included the following: (1) temporal (band-
pass) filtering set between 0.01 and 0.1 Hz and (2) removal of
several sources of nonspecific variance by regression of
nuisance variables. Those nuisance variables included the
following: (1) the signal averaged over the lateral ventricles,
(2) the signal averaged over the deep cerebral white matter,
(3) the 6 parameters obtained bymotion correction, and (4) the
outlier data points identified with the Artifact Detection Tool
toolbox.

Regions of Interest. Within the brain, the pain experience is
subserved by an extended network of brain regions including
the thalamus (THA), primary and secondary somatosensory,
cingulate, and insular cortices.31–33 Collectively, these
regions are referred to as the pain processing network
(PPN) and encode the sensory discriminate and cognitive and
emotional components of the pain experience.33,34 Percep-
tion of pain is dependent not merely on the neural activity
within the PPN but also on the flexible interactions of this
network with other functional systems, including the
descending pain modulatory system.35,36 The descending
pain modulatory system includes subcortical regions such as
the PAG.37,38 Because of this, we choose to investigate 8 brain
regions bilaterally (16 total). Those regions are as follows:
anterior cingulate cortex (ACC), posterior cingulate cortex
(PCC), anterior insular cortex (aINS), posterior insular cortex
(pINS), THA, primary and secondary somatosensory cortex (SI,
SII), and the PAG.We used previously published coordinates to
center our regions of interest (ROIs). Those coordinates come
from pain studies that included patients with back pain39–41 and
healthy volunteers.42,43 With the coordinates as the center, 9-
mm spheres were created for each ROI, except for the THA and
PAG, which were 6 mm each. Each ROI sphere was overlaid
with a gray-mattermask to include only gray-matter voxels. The
ROI time series was then estimated by the spatial average of the
BOLD time series over all voxels within the generated spherical
region and gray-matter mask.

Functional Connectivity. Functional connectivitywas estimated
using the “Conn Toolbox” (www.nitrc.org/projects/conn)44

and represents the bivariate correlation between 2 ROIs' time
series. See Figure 1 for a schematic of FC. The FC between
each possible ROI-to-ROI connection was estimated twice
(120 total connections): once before the intervention and
again immediately after the intervention. Bivariate correla-
tions were converted to normally distributed z scores using
the Fisher transformation. The difference (post-FC − pre-FC)
in FC was estimated and used as the change in FC between
each ROI-to-ROI connection.

Secondary Outcomes (Behavioral Measures)
Pain Intensity. Participants used the 101-point numerical

rating scale to provide ameasure of the current intensity of their
lower back pain.45 The numeric rating scale is anchored with
0 = “no pain” and 100 = “worst pain imaginable.”The therapist
who performed the intervention collected participants' ratings.
The therapist asked for the rating immediately before and after
the participants received their assigned intervention. The
immediate effect on pain intensity was the difference between
ratings given at the 2 time points (ie, post − pre).

Pressure Pain Threshold. Pressure pain thresholds (PPT) were
assessed by a blinded assessor using a Microfet 2 handheld
dynamometer (Hoggan Health Industries, Inc, West
Jordan, UT). The tip of the dynamometer is equipped
with a rubber foot-plate of 1-cm diameter. During testing,
participants were positioned prone and pressure was slowly
applied until the participant reported that the sensation
changed from pressure to pain. At that point when
participants reported pain, the applied force was recorded.
Threshold measures were evoked in the paraspinal muscles
bilaterally 2.5 cm from the spinous processes of L1, L5, and
S2 and over the dorsum of the hand and foot, in the web-

http://www.fil.ion.ucl.ac.uk/spm
http://www.nitrc.org/projects/artifact_detect
http://www.nitrc.org/projects/artifact_detect
http://www.nitrc.org/projects/conn
http://www.nitrc.org/projects/conn
http://www.nitrc.org/projects/conn


Fig 2. The data used for this study were obtained from a subgroup of volunteers derived from the preclinical trial. fMRI, functiona
magnetic resonance imaging; MOB, spinal mobilization theory; SMT, spinal manipulative therapy; TT, therapeutic touch control.
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space between the first and second toe/finger. Local PPTs
were a composite measure of the average threshold over the
3 paraspinal muscle locations assessed bilaterally. Remote
PPTs were a composite measure of the average threshold
assessed on the dorsum of the foot and hand.
Statistics
For all measures, means and SDswere created at each time

point. Pearson correlation coefficients were estimated to
assess the relationships across variables at each time point
(ie, preintervention and postintervention). To establish
within- and between-group changes over time, we used
repeated-measures analysis of variance (RM-ANOVA).
Separate RM-ANOVAs were used to assess for the main
effect of time and for group by time interactions for each ROI-
to-ROI connection, pain intensity, and pressure pain sensitiv-
ity. In each RM-ANOVA, the dependent variable was the
postrandomization value, the baseline value was a covariate,
and intervention assignment was the between-participant
factor.We corrected for the number of separate RM-ANOVAs
conducted for across the 120 ROI-to-ROI pairs by using a
P value less than .01 as significant. Lastly, residual change
scores were used to put all outcome measures into a standard
metric of change. Pearson correlation coefficients were used to
estimate the relationship of within-person change between the
different outcomes measured (ie, primary and secondary
outcomes). All data analyses were performed using SPSS v21
(SPSS, Chicago, IL).
RESULTS

Of the 75 volunteers, 24 (mean ± SD age, 21.6 ± 4.2
years; 17 women) met the inclusion criteria and were
included in these analyses. Figure 2 shows the derivation of
l

the included sample. The imaging subgroup did no differ in
age, percent female, or other behavioral measures from the
remainder of the nonimaged study population (see Table 1
for more details).

Randomization of the imaging subgroup resulted in 6
participants receiving SMT, 8 participants receiving MOB,
and 10 participants receiving TT. Characteristics of the
imaging subgroup, separated by randomization assign-
ment, are summarized in Table 2. Preintervention,
postintervention, and raw change scores are presented for
FC measures between each ROI-to-ROI connection, as
well as the correlation to behavioral measures at the
same time point, in Tables 3, 4, and 5 for right hemisphere
connections, left hemisphere connections, and cross-
hemisphere connections, respectively.
Primary Outcome Measure
Common FC Changes for All MT groups. The RM-ANOVAs

found a main effect for time in 2 left hemisphere
connections and 1 cross-hemisphere connection (see
Fig 3). In the left hemisphere, the connections between
the PCC and aINS (P = .001) and pINS and PAG (P = .005)
significantly changed over time. Prior to MT, the left PCC
and left aINS showed a weak inverse (negative) relation-
ship (FC = −0.02, SD = 0.17). After MT, the relationship
flipped, showing a weak positive relationship (FC = 0.15,
SD = 0.21). The relationship between the left pINS and left
PAG showed an overall increase over time going from 0.03
(SD = 0.21) to 0.17 (0.21). The cross-hemisphere
connection between the left SI and right pINS decreased
over time (P = .005). These regions shared a moderately
strong positive relationship prior to intervention (FC =
0.36, SD = 0.26) that became weaker overtime (FC = 0.20,
SD = 0.26).

image of Fig�2


Table 1. Comparison of Characteristics of the Subgroup Included to Those Not Included in the Current Analysis

Variable Imaging Subgroup (n = 24) No Imaging Subgroup (n = 51) Mean Difference Between Groups P

Age (y), mean (SD) 21.6 (4.2) 22.7 (4.0) 1.1 .27
Sex 71% (17 women) 73% (37 women) 2% .84
Pain intensity (Pre) 10.5 (15.2) 12.1 (13.4) 1.6 .64
Pain intensity (Post) 6.6 (11.9) 9.0 (9.7) 2.5 .35
ΔPain intensity −3.9 (6.9) −3.5 (9.5) 0.3 .88
Local PPT (Pre) 14.9 (6.4) 18.6 (9.3) 3.7 .08
Local PPT (Post) 14.9 (6.6) 18.0 (9.2) 3.1 .14
ΔLocal PPT −0.0 (3.7) −0.4 (2.9) −0.3 .68
Remote PPT (Pre) 13.6 (5.6) 16.0 (9.5) 2.5 .24
Remote PPT (Post) 13.4 (5.2) 14.9 (8.3) 1.5 .41
ΔRemote PPT −0.2 −0.9 −0.7 .36

Pain intensity values are presented as mean (SD) rating using 101-point numerical rating system. PPT values are presented as mean (SD) force kg/cm2

Post, after MBB therapy; PPT, pressure pain thresholds; Pre, prior to MBB therapy; Δ, change score (post minus pre).

Table 2. Characteristics of Imaging Subgroup Separated by MBB Therapy

Variable/Group SMT MOB TT Total

No. of participants 6 8 10 24
Age (y), mean (SD) 20.7 (1.8) 21.1 (3.2) 22.5 (5.9) 21.6 (4.2)
Female, no. (%) 5 (83) 7 (88) 5 (50) 17 (71)
Pain intensity (Pre) 11.8 (13.7) 14.5 (22.1) 6.4 (8.5) 10.5 (15.2)
Pain intensity (Post) 5.5 (8.1) 10.1 (18.2) 4.4 (7.2) 6.6 (11.9)
ΔPain intensity −6.3 (8.8) −4.4 (8.5) −2.0 (3.5) −3.9 (6.9)
Local PPT (Pre) 12.9 (4.8) 12.4 (4.3) 18.2 (7.5) 14.9 (6.4)
Local PPT (Post) 11.8 (4.6) 11.2 (2.9) 19.7 (7.0) 14.9 (6.6)
ΔLocal PPT −1.1 (0.8) −1.2 (3.8) 1.5 (4.2) −0.02 (3.7)
Remote PPT (Pre) 10.1 (3.4) 12.7 (3.7) 16.4 (6.8) 13.6 (5.6)
Remote PPT (Post) 10.2 (3.7) 11.6 (3.1) 19.7 (7.0) 13.4 (5.2)
ΔRemote PPT 0.1 (1.0) −1.1 (3.9) 0.4 (3.0) −0.2 (3.0)

Pain intensity values are presented as mean (SD) rating using 101-point numerical rating system. PPT values are presented as mean (SD) force kg/cm2.
MOB, spinal mobilization theory; Post, after MBB therapy; PPT, pressure pain thresholds; Pre, prior to MBB therapy; SMT, spinal manipulative therapy;
TT, therapeutic touch control; Δ, change score (post minus pre).
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Treatment-Dependent FC Changes. Two right hemisphere and 1
cross-hemisphere ROI-to-ROI connections demonstrated
significant (P b .01) treatment-dependent differences in the
rate of FC change (see Fig 4). In the right hemisphere, the
strength of the positive connection between SI and
aINS increased in the SMT group (ΔFC = 0.28),
whereas it deceased in the MOB (ΔFC = −0.04) and TT
(ΔFC = −0.14) groups. Also in the right hemisphere, the
strength between SI and PAG increased in the SMT (ΔFC =
0.04) and MOB (ΔFC = 0.19) groups, whereas it decreased
in the TT group (ΔFC = −0.17). The cross-hemisphere
connection between the right aINS and left PCC increased
in the SMT (ΔFC = 0.21) and MOB (ΔFC = 0.05) groups,
whereas it decreased the TT group (ΔFC = −0.06).

Secondary Outcome Measure
On average, the pain intensity in our sample significantly

decreased overtime (mean pain reduction, 3.88; 95%
confidence interval [CI], 0.98-6.77; F1,21 = 8.60, P b .01),
regardless of the particular intervention received. No
significant differences were observed in change of pain
intensity across theMTgroups as evidenced by group by time
.

interaction (F2,21 = 0.77, P = .50). No significant change was
observed in local or remote pressure pain sensitivity over
time or for particular MT treatments (mean local PPT
change, −0.02 [95% CI, −1.57 to 1.52]; mean remote PPT
change, −0.17 [95% CI, −1.41 to 1.08]; P N .05).
DISCUSSION

This study assessed the relationship of brain activity
between regions of the PPN before and after MT. Using this
approach, we found common and treatment-dependent
changes in FC. These results provide further support to
speculations that neurophysiologic mechanisms may be
involved in the clinical benefit after MT.15 Current specula-
tion contends that the biomechanical aspect of MT induces
neurophysiologic effects that underlie clinical improvement.
Our study is unique in our neurophysiologic measure because
we used resting-state fMRI in conjunction with FC analyses.
Our results are in agreement with studies that have found
immediate changes using other neurophysiologic outcomes,
such as Hoffman-reflex and motor-neuron excitability,



Table 3. Right Hemisphere ROI-to-ROI Connections

ROI-to-ROI Pair (Pre) FC
ρ (Pre) Pain
Intensity

ρ (Pre) Local
PPT

ρ (Pre)
Remote
PPT (Post) FC

ρ (Post)
Pain
Intensity

ρ (Post)
Local
PPT

ρ (Post)
Remote
PPT ΔFC

ρ ΔPain
Intensity

ρ ΔLocal
PPT

ρ ΔRemote
PPT

R_ACC-to-R_PCC 0.26 (0.28) 0.053 0.282 0.456 a 0.17 (0.24) 0.271 0.062 0.204 −0.08 (0.30) 0.008 −0.129 0.118
R_ACC-to-R_aINS 0.26 (0.24) 0.204 0.302 0.389 0.30 (0.22) −0.424 a 0.185 0.115 0.04 (0.30) 0.127 0.142 −0.117
R_ACC-to-R_pINS 0.29 (0.22) 0.214 −0.116 0.169 0.22 (0.27) −0.370 −0.019 −0.041 −0.07 (0.30) 0.141 0.220 −0.187
R_ACC-to-R_SI 0.30 (0.25) 0.033 0.185 0.289 0.25 (0.24) −0.214 0.124 0.043 −0.05 (0.28) −0.093 0.153 0.053
R_ACC-to-R_SII 0.31 (0.22) −0.011 0.360 0.604 b 0.29 (0.24) −0.397 −0.007 −0.102 −0.02 (0.33) −0.105 0.052 0.008
R_ACC-to-R_THA 0.09 (0.19) 0.062 0.151 0.129 0.13 (0.19) 0.339 −0.291 −0.031 0.04 (0.27) 0.039 −0.018 −0.255
R_ACC-to-R_PAG 0.18 (0.22) 0.088 0.014 0.248 0.20 (0.17) −0.049 −0.031 0.070 0.10 (0.31) −0.143 −0.139 0.216
R_PCC-to-R_aINS −0.00 (0.17) 0.275 0.145 0.432 a 0.04 (0.14) −0.178 0.164 0.074 0.04 (0.18) 0.062 −0.208 −0.218
R_PCC-to-R_pINS 0.16 (0.22) 0.282 0.089 0.432 a 0.09 (0.19) −0.333 −0.051 −0.104 −0.07 (0.29) 0.249 −0.070 0.064
R_PCC-to-R_SI 0.16 (0.30) −0.080 0.267 0.498 a 0.08 (0.26) −0.085 0.021 0.177 −0.08 (0.35) −0.073 −0.305 0.467 a

R_PCC-to-R_SII 0.16 (0.31) 0.041 0.322 0.587 b 0.11 (0.23) −0.266 0.020 0.116 −0.05 (0.32) 0.070 −0.271 0.125
R_PCC-to-R_THA 0.18 (0.25) 0.180 0.006 0.137 0.16 (0.18) −0.093 0.110 0.173 −0.02 (0.26) 0.569 b −0.018 −0.277
R_PCC-to-R_PAG 0.22 (0.25) 0.259 0.067 0.239 0.23 (0.18) −0.140 0.293 0.244 0.01 (0.28) 0.237 −0.200 −0.240
R_aINS-to-R_pINS 0.50 (0.31) −0.139 −0.039 0.103 0.52 (0.30) −0.262 −0.052 0.036 0.02 (0.28) 0.560 b 0.009 −0.030
R_aINS-to-R_SI 0.13 (0.16) −0.016 0.016 0.276 0.13 (0.22) −0.239 0.004 −0.317 −0.00 (0.28) 0.093 −0.208 −0.300
R_aINS-to-R_SII 0.34 (0.21) 0.058 −0.098 0.055 0.35 (0.29) −0.338 −0.094 −0.126 0.01 (0.27) 0.174 0.287 −0.204
R_aINS-to-R_THA 0.12 (0.16) −0.232 −0.028 0.134 0.04 (0.14) −0.210 0.026 0.147 −0.08 (0.20) 0.192 −0.078 0.164
R_aINS-to-R_PAG 0.09 (0.16) −0.196 0.042 0.225 0.11 (0.20) −0.449 a 0.121 0.168 0.01 (0.16) 0.226 0.204 −0.089
R_pINS-to-R_SI 0.34 (0.25) −0.097 −0.314 0.102 0.28 (0.21) 0.105 −0.101 −0.351 −0.05 (0.27) −0.300 −0.417 a −0.047
R_pINS-to-R_SII 0.60 (0.26) −0.076 0.012 0.313 0.61 (0.25) −0.015 0.170 0.009 0.01 (0.25) −0.031 −0.115 −0.219
R_pINS-to-R_THA 0.23 (0.16) 0.214 0.026 −0.008 0.25 (0.18) −0.383 0.104 0.111 0.02 (0.24) −0.070 0.000 −0.092
R_pINS-to-R_PAG 0.12 (0.20) 0.006 −0.093 0.215 0.15 (0.22) −0.221 −0.150 −0.267 0.03 (0.22) 0.099 −0.124 0.134
R_SI-to-R_SII 0.45 (0.22) 0.114 0.234 0.254 0.48 (0.25) 0.067 −0.056 −0.257 0.03 (0.27) −0.046 −0.312 0.090
R_SI-to-R_THA 0.06 (0.18) 0.069 0.216 0.177 0.04 (0.27) 0.366 −0.314 −0.059 −0.02 (0.30) −0.178 0.172 0.156
R_SI-to-R_PAG 0.09 (0.22) 0.138 0.289 0.359 0.09 (0.14) 0.199 −0.531 b −0.390 0.00 (0.25) 0.001 −0.093 −0.120
R_SII-to-R_THA 0.17 (0.21) 0.271 −0.020 0.069 0.13 (0.13) 0.199 −0.531 −0.390 −0.04 (0.24) −0.015 −0.159 0.076
R_SII-to-R_PAG 0.14 (0.24) 0.153 0.060 0.317 0.12 (0.18) 0.070 −0.218 −0.112 −0.02 (0.25) 0.055 −0.420 a −0.009
R_THA-to-R_PAG 0.16 (0.19) −0.004 0.134 0.339 0.15 (0.16) −0.214 0.029 0.060 −0.00 (0.25) 0.049 −0.148 0.204

FC values are presented as mean (SD) Fisher transformed zero-order estimate.
ACC, anterior cingulate cortex; aINS, anterior insular cortex; FC, functional connectivity; L, left; PAG, periaqueductal gray; PCC, posterior cingulate cortex; pINS, posterior insular cortex; Post, after MBB
therapy; PPT, pressure pain threshold; Pre, prior to MBB therapy; R, right; SI, primary somato-sensory cortex; SII, secondary somato-sensory cortex; THA, thalamus; Δ, change score (post minus pre); ρ,
Pearson product-moment correlation coefficient.

a

P b .05.
b

P b .01.
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Table 4. Left Hemisphere ROI-to-ROI Connections

ROI-to-ROI Pair (Pre) FC

ρ (Pre)
Pain
Intensity

ρ (Pre)
Local PPT

ρ (Pre)
Remote
PPT (Post) FC

ρ (Post)
Pain
Intensity

ρ (Post)
Local PPT

ρ (Post)
Remote
PPT ΔFC ρ ΔPain Intensity ρ ΔLocal PPT ρ ΔRemote PPT

L_ACC-to-L_PCC 0.18 (0.26) −0.09 0.32 0.59 0.17 (0.22) 0.13 0.20 0.17 −0.01 (0.27) −0.020 −0.232 0.229
L_ACC-to-L_aINS 0.30 (0.21) 0.02 0.39 0.38 0.33 (0.24) 0.09 0.05 −0.09 0.03 (0.24) 0.097 −0.149 −0.278
L_ACC-to-L_pINS 0.29 (0.29) 0.06 0.02 0.34 0.23 (0.21) −0.29 0.42 0.28 −0.06 (0.30) −0.041 0.123 −0.082
L_ACC-to-L_SI 0.25 (0.26) 0.08 0.08 0.21 0.18 (0.22) −0.19 0.10 −0.04 −0.07 (0.26) 0.052 0.007 0.064
L_ACC-to-L_SII 0.34 (0.19) −0.18 0.18 0.36 0.37 (0.24) −0.10 0.01 −0.15 0.03 (0.29) −0.224 0.193 0.078
L_ACC-to-L_THA 0.14 (0.24) 0.05 −0.01 0.09 0.25 (0.16) 0.48 −0.37 −0.18 0.11 (0.25) −0.028 −0.030 0.100
L_ACC-to-L_PAG 0.12 (0.22) −0.05 0.02 0.33 0.22 (0.22) 0.17 0.02 0.09 0.09 (0.30) −0.174 −0.135 0.223
L_PCC-to-L_aINS −0.02 (0.17) 0.14 0.13 0.30 0.15 (0.21) 0.05 −0.01 −0.01 0.17 (0.23) 0.08 −0.17 0.07
L_PCC-to-L_pINS 0.11 (0.22) −0.16 0.24 0.61 0.16 (0.17) −0.12 −0.24 −0.17 0.05 (0.27) −0.13 −0.23 0.38
L_PCC-to-L_SI 0.15 (0.27) −0.231 0.131 0.357 0.12 (0.25) −0.131 −0.246 −0.140 −0.04 (0.34) −0.07 −0.28 0.37
L_PCC-to-L_SII 0.12 (0.31) −0.15 0.32 0.57 0.11 (0.21) 0.11 −0.06 −0.08 −0.01 (0.33) −0.23 −0.36 0.38
L_PCC-to-L_THA 0.12 (0.27) 0.20 −0.01 0.11 0.23 (0.20) 0.17 0.03 −0.06 0.11 (0.29) 0.29 0.02 −0.11
L_PCC-to-L_PAG 0.23 (0.24) 0.30 0.17 0.19 0.26 (0.17) 0.29 0.14 −0.01 0.04 (0.27) 0.24 −0.04 −0.18
L_aINS-to-L_pINS 0.62 (0.29) −0.244 0.007 0.034 0.54 (0.31) −0.305 0.234 0.240 −0.08 (0.28) −0.167 0.033 −0.268
L_aINS-to-L_SI 0.18 (0.21) −0.167 0.192 0.133 0.18 (0.26) 0.021 −0.060 −0.191 −0.00 (0.32) −0.209 −0.285 −0.201
L_aINS-to-L_SII 0.39 (0.23) 0.251 −0.056 −0.154 0.29 (0.29) −0.114 0.005 0.035 −0.10 (0.35) 0.066 0.370 −0.063
L_aINS-to-L_THA 0.04 (0.18) 0.221 −0.010 0.119 0.07 (0.21) 0.065 0.011 −0.051 0.03 (0.25) 0.146 −0.007 −0.293
L_aINS-to-L_PAG 0.05 (0.17) 0.115 0.215 0.409 a 0.17 (0.20) −0.065 0.094 0.006 0.12 (0.26) −0.081 −0.390 −0.205
L_pINS-to-L_SI 0.35 (0.28) −0.029 0.214 0.273 0.35 (0.27) 0.047 0.255 −0.003 −0.01 (0.31) 0.207 −0.189 −0.065
L_pINS-to-L_SII 0.61 (0.26) −0.186 0.439 a 0.324 0.49 (0.30) 0.036 0.413 a 0.182 −0.12 (0.25) 0.008 0.208 0.097
L_pINS-to-L_THA 0.04 (0.26) 0.129 −0.089 −0.001 0.14 (0.24) 0.373 −0.206 0.000 0.10 (0.29) −0.047 0.101 0.058
L_pINS-to-L_PAG 0.03 (0.21) 0.106 −0.053 0.345 0.17 (0.21) −0.093 0.060 0.203 0.13 (0.21) 0.052 −0.244 −0.210
L_SI-to-L_SII 0.48 (0.31) −0.077 0.299 0.400 0.37 (0.31) −0.051 0.220 0.120 −0.12 (0.33) 0.332 −0.196 −0.038
L_SI-to-L_THA −0.06 (0.24) 0.230 −0.006 0.127 0.01 (0.20) 0.489 a −0.225 −0.045 0.07 (0.30) 0.294 −0.042 0.220
L_SI-to-L_PAG 0.02 (0.21) 0.079 0.025 0.306 0.10 (0.16) 0.057 −0.242 −0.128 0.08 (0.22) −0.065 −0.388 −0.109
L_SII-to-L_THA 0.08 (0.24) 0.045 −0.006 −0.078 0.15 (0.20) 0.687 b −0.348 −0.098 0.06 (0.28) −0.283 0.164 0.222
L_SII-to-L_PAG 0.03 (0.22) 0.046 −0.027 0.298 0.11 (0.19) 0.173 0.055 0.092 0.08 (0.23) −0.201 −0.241 0.246
L_THA-to-L_PAG 0.32 (0.24) 0.064 0.080 0.177 0.32 (0.16) 0.152 −0.117 −0.033 0.00 (0.29) 0.425 a −0.184 0.202

FC values are presented as mean (SD) Fisher transformed zero-order estimate.
ACC, anterior cingulate cortex; aINS, anterior insular cortex; FC, functional connectivity; L, left; PAG, periaqueductal gray; PCC, posterior cingulate cortex; pINS, posterior insular cortex; Post, after MBB
therapy; PPT, pressure pain threshold; Pre, prior to MBB therapy; R, right; SI, primary somato-sensory cortex; SII, secondary somato-sensory cortex; THA, thalamus; Δ, change score (post minus pre);
ρ, Pearson product-moment correlation coefficient.

a P b .05.
b P b .01.
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Table 5. Cross-Hemisphere ROI-to-ROI Connections

ROI-to-ROI
Pair

(Pre)
FC

ρ (Pre)
Pain
Intensity

ρ (Pre)
Local
PPT

ρ (Pre)
Remote
PPT

(Post)
FC

ρ (Post)
Pain
Intensity

ρ (Post)
Local
PPT

ρ (Post)
Remote
PPT ΔFC

ρ ΔPain
Intensity

ρ ΔLocal
PPT

ρ Δ
Remote
PPT

R_ACC-to-L_ACC 2.58 (0.25) 0.065 0.286 0.110 2.60 (0.34) 0.171 −0.115 −0.123 0.02 (0.35) −0.083 −0.121 0.030
R_ACC-to-L_PCC 0.18 (0.26) −0.074 0.309 0.551 b 0.18 (0.24) 0.140 0.197 0.185 −0.00 (0.28) −0.002 −0.183 0.174
R_ACC-to-L_aINS 0.31 (0.22) 0.018 0.387 0.367 0.33 (0.25) 0.083 0.050 −0.048 0.03 (0.24) 0.070 −0.158 −0.279
R_ACC-to-L_pINS 0.29 (0.29) 0.039 0.026 v.309 0.24 (0.21) −0.336 v.423 a 0.258 −0.05 (0.31) −0.050 0.111 −0.091
R_ACC-to-L_SI 0.26 (0.26) 0.059 0.103 0.222 0.19 (0.22) −0.207 0.103 −0.040 −0.07 (0.26) 0.043 −0.011 0.060
R_ACC-to-L_SII 0.34 (0.20) −0.171 0.169 0.337 0.38 (0.25) −0.124 −0.008 −0.162 0.04 (0.29) −0.204 0.199 0.028
R_ACC-to-L_THA 0.13 (0.24) −0.011 0.035 0.135 25 (0.16) 0.449 a −0.348 −0.179 0.12 (0.26) −0.051 −0.065 0.114
R_ACC-to-L_PAG 0.12 (0.23) −0.022 0.018 0.354 0.22 (0.23) 0.145 0.038 0.138 0.10 (0.31) −0.143 −0.139 0.216
R_PCC-to-L_ACC 0.26 (0.28) 0.033 0.302 0.506 a 0.17 (0.24) 0.277 0.073 0.197 −0.09 (0.30) −0.014 −0.154 0.168
R_PCC-to-L_PCC 1.32 (0.20) −0.027 0.067 0.019 1.28 (0.25) −0.041 −0.358 −0.441 a −0.04 (0.26) 0.003 0.043 −0.153
R_PCC-to-L_aINS −0.02 (0.20) 0.132 0.185 0.408 a 0.09 (0.20) 0.148 0.017 0.055 0.11 (0.22) −0.048 −0.132 0.072
R_PCC-to-L_pINS 0.06 (0.24) −0.031 0.191 0.555 b 0.12 (0.17) −0.126 −0.136 −0.117 0.06 (0.24) 0.027 −0.104 0.273
R_PCC-to-L_SI 0.12 (0.30) −0.186 0.187 0.243 0.12 (0.21) −0.141 −0.185 −0.087 0.00 (0.34) −0.104 −0.232 0.325
R_PCC-to-L_SII 0.10 (031) −0.078 0.282 0.490 a 0.09 (0.20) 0.101 −0.124 −0.080 −0.01 (0.32) −0.225 −0.274 0.332
R_PCC-to-L_THA 0.12 (0.30) 0.275 −0.112 0.065 0.23 (0.25) 0.174 0.137 0.165 0.10 (0.27) 0.265 0.025 −0.138
R_PCC-to-L_PAG 0.24 (0.25) 0.301 0.020 0.087 0.26 (0.16) 0.145 0.139 0.213 0.02 (0.23) 0.199 0.029 −0.228
R_aINS-to-L_ACC 0.25 (0.23) 0.206 0.291 0.374 0.28 (0.22) −0.414 a 0.145 0.066 0.03 (0.29) 0.138 0.120 −0.114
R_aINS-to-L_PCC −0.04 (0.14) 0.205 0.181 0.386 −0.00 (0.17) −0.159 0.039 −0.058 0.04 (0.18) 0.019 −0.099 −0.100
R_aINS-to-L_aINS 0.54 (0.27) 0.176 0.225 0.357 0.48 (0.30) 0.004 0.251 0.258 −0.06 (0.30) −0.106 −0.270 0.088
R_aINS-to-L_pINS 0.26 (0.30) −0.018 0.103 0.149 0.30 (0.21) −0.391 0.243 0.282 0.03 (0.27) 0.338 −0.079 −0.253
R_aINS-to-L_SI 0.13 (0.19) −0.043 0.308 0.328 0.07 (0.20) −0.202 0.064 −0.241 −0.05 (0.28) −0.160 −0.145 −0.373
R_aINS-to-L_SII 0.21 (0.23) 0.213 0.028 0.126 0.17 (0.25) −0.476 a .199 −0.025 −0.04 (0.34) 0.098 0.263 −0.263
R_aINS-to-L_THA 0.02 (0.21) 0.167 −0.242 −0.101 −0.03 (0.18) −0.463 a 0.141 −0.045 −0.06 (0.27) 0.221 0.222 −0.005
R_aINS-to-L_PAG 0.06 (0.19) −0.015 0.100 0.320 0.09 (0.20) −0.631 b 0.266 0.181 0.03 (0.18) 0.316 −0.011 −0.145
R_pINS-to-L_ACC 0.28 (0.22) 0.237 −0.110 0.180 0.21 (0.27) −0.386 0.007 −0.021 −0.07 (0.30) 0.170 0.231 −0.201
R_pINS-to-L_PCC 0.15 (0.21) 0.044 0.159 0.459 a 0.08 (0.22) −0.168 −0.169 −0.168 −0.07 (0.30) −0.036 −0.154 0.123
R_pINS-to-L_aINS 0.29 (0.19) 0.114 0.170 0.200 0.18 (0.27) −0.252 0.028 0.002 −0.11 (0.30) 0.390 0.076 −0.304
R_pINS-to-L_pINS 0.54 (0.31) 0.018 0.365 0.292 0.50 (0.29) 0.284 0.028 0.043 −0.04 (0.36) 0.125 0.065 0.016
R_pINS-to-L_SI 0.36 (0.26) −0.197 0.089 0.089 0.20 (0.26) 0.040 0.171 −0.056 −0.16 (0.26) 0.004 −0.188 −0.296
R_pINS-to-L_SII 0.43 (0.34) −0.147 0.200 0.127 0.39 (0.27) 0.034 0.194 0.093 −0.05 (0.28) −0.341 −0.048 −0.308
R_pINS-to-L_THA 0.01 (0.20) 0.197 −0.098 −0.174 0.03 (0.20) 0.016 −0.199 −0.197 0.02 (0.27) 0.058 0.212 0.118
R_pINS-to-L_PAG 0.10 (0.21) 0.301 −0.258 0.139 0.13 (0.22) −0.220 −0.053 −0.147 0.03 (0.24) 0.272 −0.118 −0.034
R_SI-to-L_ACC 0.28 (0.26) 0.064 0.167 0.287 0.24 (0.23) −0.212 0.126 0.036 −0.04 (0.27) −0.061 0.129 0.041
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R_SI-to-L_PCC 0.16 (0.28) −0.058 0.274 0.619 b 0.06 (0.26) 0.048 −0.001 0.169 −0.09 (0.35) −0.015 −0.339 0.478 a

R_SI-to-L_aINS 0.15 (0.20) −0.148 0.170 0.290 0.12 (0.21) −0.152 0.108 −0.034 −0.03 (0.29) −0.090 −0.130 −0.137
R-SI-to-toL_pINS 0.29 (0.17) 0.012 0.000 0.288 0.30 (0.25) −0.075 0.269 −0.115 0.00 (0.28) 0.073 0.001 −0.348
R_SI-to-L_SI 0.65 (0.29) −0.029 0.254 0.321 0.66 (0.30) −0.230 0.286 0.092 0.01 (0.29) 0.241 −0.035 −0.168
R_SI-to-L_SII 0.42 (0.24) −0.183 0.301 0.333 0.44 (0.28) −0.017 0.175 0.118 0.01 (0.26) −0.157 −0.259 0.109
R_SI-to-L_THA −0.03 (0.21) 0.188 −0.026 0.012 0.03 (0.21) 0.312 −0.102 0.239 0.05 (0.25) 0.000 0.258 0.224
R_SI-to-L_PAG 0.03 (0.21) 0.011 0.310 0.340 0.13 (0.15) 0.144 −0.073 0.071 0.1 (0.23) −0.067 −0.004 −0.042
R_SII-to-L_ACC 0.31 (0.22) 0.011 0.365 0.633 b 0.30 (0.23) −0.392 0.010 −0.078 −0.02 (0.33) −0.095 0.049 0.021
R_SII-to-L_PCC 0.16 (0.30) −0.047 0.383 0.570 b 0.09 (0.24) −0.115 0.046 0.086 −0.06 (0.33) −0.001 −0.253 0.213
R_SII-to-L_aINS 0.26 (0.19) 0.141 0.095 0.106 0.15 (0.25) −0.387 0.090 −0.044 −0.11 (0.28) 0.044 0.146 −0.163
R_SII-to-L_pINS 0.40 (0.20) 0.094 0.333 0.374 0.36 (0.24) −0.205 0.195 −0.104 −0.04 (.025) 0.271 0.041 −0.234
R_SII-to-L_SI 0.38 (0.19) −0.202 0.265 0.131 0.32 (0.22) −0.429 a 0.265 −0.148 −0.07 (0.28) 0.027 −0.035 −0.335
R_SII-to-L_SII 0.63 (0.29) 0.157 0.412 a 0.189 0.54 (0.31) −0.193 0.400 0.138 −0.09 (0.34) −0.273 0.127 −0.349
R_SII-to-L_THA 0.07 (0.22) 0.287 −0.078 −0.062 0.01 (0.20) 0.055 −0.338 −0.198 0.05 (0.26) −0.040 0.110 0.039
R_SII-to-L_PAG 0.12 (0.23) 0.204 −0.033 0.129 0.11 (0.18) −0.025 0.089 0.173 −0.01 (0.25) 0.090 −0.189 −0.083
R_THA-to-L_ACC 0.08 (0.19) 0.117 0.115 0.089 0.13 (0.18) 0.313 −0.326 −0.048 0.05 (0.26) 0.052 −0.039 −0.305
R_THA-to-L_PCC 0.14 (0.24) 0.082 0.058 0.170 0.12 (0.19) −0.222 0.217 0.135 −0.01 (030) 0.426 a 0.046 −0.261
R_THA-to-L_aINS 0.04 (0.18) 0.078 0.216 0.158 −0.01 (0.15) −0.119 0.129 0.116 −0.05 (0.26) 0.221 0.254 −0.319
R_THA-to-L_pINS 0.05 (0.19) 0.368 0.035 0.060 0.07 (0.19) −0.058 0.080 0.163 0.03 (0.22) 0.225 0.461 a −0.375
R_THA-to-L_SI 0.02 (0.18) 0.244 0.398 0.344 −0.01 (0.15) 0.324 −0.124 0.003 −0.03 (0.23) 0.298 0.335 0.036
R_THA-to-L_SII 0.03 (0.20) 0.194 0.184 0.159 0.07 (0.20) 0.180 0.043 0.096 0.04 (0.28) 0.087 0.189 −0.188
R_THA-to-L_THA 0.47 (0.22) −0.146 0.027 0.224 0.48 (0.20) −0.411 a 0.252 −0.009 0.01 (0.25) 0.265 0.269 −0.259
R_THA-to-L_PAG 0.16 (0.21) 0.100 −0.095 0.407 a 0.16 (0.20) −0.006 0.097 0.249 0.00 (0.27) 0.080 −0.198 0.279
R_PAG-to-L_ACC 0.18 (0.22) 0.065 0.028 0.269 0.19 (0.16) −0.067 −0.007 0.030 0.02 (0.27) 0.164 −0.077 0.049
R_PAG-to-L_PCC 0.19 (0.26) 0.327 0.134 0.341 0.22 (0.16) −0.011 0.216 −0.134 0.03 (0.30) 0.265 −0.237 −0.210
R_PAG-to-L_aINS 0.07 (0.20) −0.124 0.250 0.279 0.15 (0.20) −0.190 −0.043 −0.095 0.08 (0.26) −0.058 −0.182 −0.267
R_PAG-to-L_pINS 0.04 (0.20) −0.145 0.123 0.481 a 0.14 (0.25) −0.033 −0.246 −0.113 0.10 (0.26) −0.160 −0.204 0.123
R_PAG-to-L_SI 0.06 (0.25) 0.132 0.076 0.327 0.08 (0.18) −0.017 −0.449 a −0.395 0.01 (0.27) −0.003 −0.329 −0.120
R_PAG-to-L_SII 0.09 (0.22) −0.053 0.006 0.356 0.08 (0.15) 0.038 −0.313 −0.296 −0.01 (0.23) −0.240 −0.369 0.208
R_PAG-to-L_THA 0.28 (0.21) −0.060 0.065 0.132 0.27 (0.17) −0.050 −0.058 0.011 −0.01 (0.26) 0.297 −0.155 0.187
R_PAG-to-L_PAG 1.00 (0.28) 0.034 −0.103 0.050 1.10 (0.26) −0.051 −0.307 −0.139 0.08 (0.34) −0.167 −0.168 −0.105

FC values are presented as mean (SD) Fisher transformed zero-order estimate.
ACC, anterior cingulate cortex; aINS, anterior insular cortex; FC, functional connectivity; L, left; PAG, periaqueductal gray; PCC, posterior cingulate cortex; pINS, posterior insular cortex; Post, after MBB
therapy; PPT, pressure pain threshold; Pre, prior to MBB therapy; R, right; SI, primary somato-sensory cortex; SII, secondary somato-sensory cortex; THA, thalamus; Δ, change score (post minus pre);
ρ, Pearson product-moment correlation coefficient.

a P b .05.
b P b .01.
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Fig 3. A, After MT, a decrease in FC between the lef
somatosensory cortex (SI) and the right pINS was observed
B, The left aINS and left PCC showed increased FC over time
C, After MT, the left pINS and left PAG showed increased FC
aINS, anterior insular cortex; INS, posterior insular cortex; PAG
periaqueductal gray; PCC, posterior cingulate cortex; SI, primary
somato-sensory cortex.

Fig 4. A, The change in FC between the right aINS and righ
somatosensory cortex (SI) differed across the 3 MT groups. The
SMT group showed an increase in FC (Δ= 0.28), whereas the
MOB group (Δ= −0.04) and the TT group (Δ= −0.14) showed
decreases in FC. B, The FC changes between the right aINS and
left PCC differed across the 3 MT groups. The SMT group (Δ=
0.21) and the MOB (Δ= 0.05) showed increases, whereas the TT
group (Δ= −0.06) showed a decrease. C, The FC changes
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t
.
.
.
,

between the right somatosensory cortex (SI) and right PAG
increased in the SMT (Δ= 0.04) and MOB (Δ= 0.19) groups
whereas FC decreased in the TT group (Δ= −0.17). aINS
anterior insular cortex; INS, posterior insular cortex; PAG
periaqueductal gray; PCC, posterior cingulate cortex; SI, primary
somato-sensory cortex.
electroencephalography with somatosensory-evoked poten-
tials, transcranial magnetic stimulation with motor evoked
potentials, and task-based fMRI with peak BOLD
response.17,46–49

Directly comparing our results with that of the only other
fMRI study is difficult because of the different estimates of
cortical function. We used FC estimated at rest, whereas they
used peak BOLD activity while processing a thermal-
stimulus task. Despite these differences, the results from
these studies do show similarities. For example, they found
reduced activity within the insular cortex, somatosensory
cortices, and PAG. We found the interrelationship between
some of these regions changed in the left hemisphere after
MT. We also found treatment-dependent changes in the
interrelationship between similar regions in the right
hemisphere. The ROI-to-ROI FC changes that were common
to all 3 interventions (ie, main effect of time) may represent
shared neurophysiologic mechanisms. However, we cannot
conclusively assume that these common shifts are more than
natural history or that they are specific to anMT intervention,
as these potential confounds were not controlled for in the
study design. The timing of these changes (ie, b1 hour) could
be viewed as associative, butmorework is needed in this area.

The treatment-dependent changes in ROI-to-ROI FC
may be reflective of differing biomechanical attributes of
the treatments. The 3 MT techniques used in our study
differ in their force-duration profiles. Research has shown
differences in the biomechanical and neurophysiologic
responses that are force-duration dependent.50–54 Although
the 3 MT interventions showed similar pain relief in our
study, there remains conflicting evidence as to the
superiority of clinical outcomes after MT techniques with
differing forcer-duration attributes.3,29,55,56
t

,
,
,

We found a significant reduction in exercised-induced pain
intensity after MT. Our findings are consistent with a prior
study that reported positive effects of MT on exercised-
inducedmyalgia in the extensormuscles of thewrist.57 In that
study, therewas an improvement in pain intensity with stretch
seen in the 2MT treatments over a no-treatment group. There
was no difference between the 2 MT treatments. A reduction
in resting pain intensity was seen over time; however, there
was no difference between MT treatment groups and the no-
treatment group. Because we did not include a no-treatment
group to compare, caution is neededwhen attributing the pain
relief in our study to the intervention.

We did not find immediate changes in remote or local
pressure pain sensitivity. This is contrary to the previous study
using MT on exercise induced myalgia in the wrist and recent
systematic reviews looking at the immediate effect of MT on
pressure pain sensitivity.1,4,57 We suggest that our sample size
is one possible reason for our results conflicting with previous
findings. Given our relatively small sample size (n = 24), small
main effects (η = 0.24) effects are likely to be obscured.
Limitations and Future Studies
Without a natural history group, attributing any change

solely to the intervention is unsubstantiated at this point
because all of our groups improved equally over time.

image of Fig�3
image of Fig�4
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Additional analyses are needed to disentangle treatment-specific
and natural improvement because our exercise-induced injury
model has a favorable prognosis and resolution is expected
naturally with time. Caution is needed when applying the
findings in our model to chronic conditions because the acute
pain and pain sensitivity increases in our model resolve quickly
over time, whereas in chronic pain, it does not.

In this study, we did not control for the variability
between providers, nor did we look for an interventionist
effect within the analyses. However, we feel that this also
strengthens our study because this increases the ability to
generalize the mechanism beyond a single provider and
increases the likelihood of findings can be replicated.

Although we found changes in FC, the within-person
relationship across the primary and secondary outcomes
was weak and inconsistent. Thus, interpretation of these
findings to represent a mechanism of pain relief currently
cannot be made. There is, however, some evidence
suggesting that the FC between brain regions prior to a
stimulus influences the perception of pain.36,58,59 Those
studies have shown that (1) the FC between the aINS and
the PAG, measured prior to the evoked stimulus, was
predictive of pain perception, and (2) prior to the evoked
stimulus, fluctuations in FC between regions in the classic
“pain network” and brain areas related to attention,
emotion, and descending pain modulation subserve con-
textual modulations of pain intensity. In this context, our
findings show that FC changes between the insula and
somatosensory cortex and PAG may subserve the subse-
quent reductions in peak BOLD while processing stimuli.

The involvement of the insular cortex in our study is
consistent with the close association between activity in this
region and the subjective experience of pain. This brain
region is extensively interconnected with various other
brain regions and integrates sensory and contextual
information to generate a higher-order representation of
interoception.60

Our ROI-to-ROI approach has several limitations. On
the positive side, this approach allows for a priori ROIs to
be investigated. However, numerous brain regions were
not included such as prefrontal, motor, reward, and
aversion regions. Because measuring change in FC is a
novel approach, future studies may consider a more
exploratory approach where only a single seed region is
used to identify other relevant brain regions. However, this
approach is limited by the selection of the seed region.
There are consequences to increasing the number of brain
regions. With our limited ROI approach, 8 ROI bilateral,
approximately 120 ROI-to-ROI comparisons we generat-
ed. We used a liberal correction (P b .01) for the number of
planned comparisons. This liberal correction does increase
the likelihood that some of our findings may be false
positives. Thus, achieving the correct balance between the
number of ROIs and correction for the number of
comparisons needs to be taken into account.
Our sample size (n = 24) may obscure moderate to small
group by time interactions. With our estimated partial η2

(η2 = 0.068) for the 3 group by 2 time point interaction, we
would need a sample of 133 participants to be properly
powered. We suggest that the sample size is a possible
reason for our results that pose conflict with previous
published findings suggesting that there are differential MT
effects. Also, we investigated only the immediate effects, so
extrapolating our findings beyond this cannot be made.

This study has implications for future mechanistic
research. In addition to disentangling common vs shared
cortical pathways, future research can build upon our results
by using more sophisticated network modeling approaches.
We found changes between sensory discriminate and sensory
affective ROIs, as well as between these ROIs and pain
modulatory brain areas. Our findings show that changes,
albeit modest, can be expected in the interrelationships
between these brain regions. Network modeling approaches,
such as functional network connectivity and dynamic causal
modeling, may provide additional insight into the central
modulatory effects of MT therapy on cortical function.
Continued research in this area is needed to address the extent
to which these changes underlie pain relief.
CONCLUSION

This mechanistic study identified brain regions of the
PPN where FC changed immediately after 3 different types
of MT. Neurophysiologic changes after MT may be an
underlying mechanism of pain relief.
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Practical Applications
• Resting-state fMRI in conjunction with FC
analyses demonstrates common and treat-
ment-dependent changes after 3 different
types of MT.

• The intensity of experimentally induced
myalgia is reduced after MT.

• Neurophysiologic changes after MT may be
an underlying mechanism of pain relief.
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