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For a finite multigraph G , let Λ(G) denote the lattice of integer
flows of G – this is a finitely generated free abelian group with an
integer-valued positive definite bilinear form. Bacher, de la Harpe,
and Nagnibeda show that if G and H are 2-isomorphic graphs then
Λ(G) and Λ(H) are isometric, and remark that they were unable
to find a pair of nonisomorphic 3-connected graphs for which the
corresponding lattices are isometric. We explain this by examining
the lattice Λ(M) of integer flows of any regular matroid M. Let
M• be the minor of M obtained by contracting all co-loops. We
show that Λ(M) and Λ(N) are isometric if and only if M• and
N• are isomorphic.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Let G = (V , E) be a (finite undirected connected multi-) graph. Choose an arbitrary orientation for
each edge of G , and let D be the corresponding signed incidence matrix: D is the V -by-E matrix
with entries given by

Dve =
⎧⎨
⎩

+1 if e points into v but not out,

−1 if e points out of v but not in,

0 otherwise.

The matrix D defines a linear transformation D : R
E → R

V . The lattice of integer flows of G is Λ(G) =
ker(D) ∩ Z

E . This is a finitely generated free abelian group with a positive definite integer-valued
inner product 〈·,·〉 induced by the Euclidean dot product on R

E . Of course, the set Λ(G) depends
on the choice of orientations defining the matrix D . Reversing the orientation of the edge e ∈ E
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results in changing the sign of the e-th coordinate of every element of Λ(G). This changes neither
the group structure nor the inner product structure of the lattice (Λ(G),+, 〈·,·〉). Thus, the isometry
class of this lattice is independent of the choice of orientations of the edges, and depends only on
the isomorphism class of G . (An isometry of lattices Λ and Λ′ is a bijection ψ : Λ → Λ′ such that
both ψ and ψ−1 are abelian group homomorphisms that preserve the bilinear forms on the lattices.)
Bacher, de la Harpe, and Nagnibeda [1] and Biggs [2] thoroughly develop the theory of these lattices
and their many interpretations, connections, and analogues.

A natural question of reconstruction arises: to what extent can properties of the graph G be de-
termined from the isometry class of the lattice Λ(G)? Cut-edges of G contribute nothing to Λ(G).
Proposition 5 of Bacher, de la Harpe, and Nagnibeda [1] shows that if G and H are 2-isomorphic then
Λ(G) and Λ(H) are isometric. They remark (on p. 197) that they were unable to find a pair of noni-
somorphic 3-connected graphs with isometric lattices of integer flows. By Whitney’s theorems [6] on
2-isomorphism of graphs, this suggests that Λ(G) and Λ(H) are isometric if and only if the graphic
matroids M(G) and M(H) are isomorphic except for co-loops.

This is indeed the case, as follows from Theorem 1 below. For any matroid M, let M• denote the
minor of M obtained by contracting all co-loops of M. Let (M, E) be a regular matroid of rank r
on a ground-set E . Then M has a unique representation (over R) as the column-matroid of a totally
unimodular (TU) matrix M (modulo representation equivalence). The lattice of integer flows of M is
Λ(M) = ker(M) ∩ Z

E . This generalizes the construction for graphs, in which case M is the signed
incidence matrix of a connected graph with any row deleted. The isometry class of the lattice Λ(M)

is independent of the choice of representing matrix M , and depends only on the isomorphism class
of M. In his foundational work on representability of matroids, Tutte worked with a more general
concept of “chain-groups” in which the coefficients are from any integral domain; see [5], for example.
The chain-group of M with integer coefficients is, in our notation, Λ(M∗).

Theorem 1. Let M and N be regular matroids. Then Λ(M) and Λ(N) are isometric if and only if M• and N•
are isomorphic.

Corollary 2. Let G and H be 3-connected graphs. Then Λ(G) and Λ(H) are isometric if and only if G and H
are isomorphic.

Proof. Whitney [6] shows that 3-connected graphs G and H are isomorphic if and only if M(G) and
M(H) are isomorphic. Also, since G has no cut-edges M(G) has no co-loops, so that M(G)• = M(G),
and similarly for M(H). The corollary now follows from Theorem 1. �

Our strategy for proving Theorem 1 is to identify metric properties of a basis B of an integral
lattice Λ that correspond to Λ being the lattice Λ(M) of integer flows of a regular matroid M, and
to B being a fundamental basis B(M, B) of Λ(M) consisting of signed circuits associated with a base
B of M. (Since we are dealing both with lattices and with matroids we use the word “basis” for a
basis of a lattice, but “base” for what is usually called a basis of a matroid.)

The implementation of this strategy rests on two key ideas. The first key is a characterization
of the signed circuits (or “simple flows”) of M in terms of metric data of the lattice Λ(M), without
reference to their coordinates as vectors in Z

E . The second key is to identify properties of a symmetric
integer matrix A which correspond to the existence of a TU matrix U such that U †U = A: we find
a necessary condition on A which we call “g-nonnegativity”; to any g-nonnegative matrix A we
associate a certain {0,1}-matrix X(A); finally, such a U exists if and only if X(A) has a TU signing U
such that U †U = A. An auxiliary result about TU matrices then enables us to complete the proof of
Theorem 1.

In Section 2 we briefly review some preliminary facts concerning totally unimodular matrices,
regular matroids, and integer flows and cuts. In Section 3 we develop some facts about signed circuits
(or simple flows), culminating in their characterization by metric data. In Section 4 we introduce g-
nonnegative, g-positive, and g-feasible matrices, and prove Theorem 1. In Section 5 we conclude with
some subsidiary results and examples, and two conjectures.
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We thank the anonymous referees for their constructive criticism, and one especially for the refer-
ences and comments regarding Proposition 11 and Conjecture 26.

2. Preliminaries

2.1. Totally unimodular matrices

For a matrix M of real numbers, let M� be the matrix of absolute values of the entries of M . A ma-
trix U with entries in Z is totally unimodular (TU) if every square submatrix of U has determinant in
the set {−1,0,+1}. For a {0,1}-matrix X , a totally unimodular signing of X is a TU matrix U such that
U � = X . A matrix Q with entries in Z is weakly unimodular (WU) if every maximal square submatrix
of Q has determinant in the set {−1,0,+1}. Let Is denote the s-by-s identity matrix. The proof of
Lemma 3 is elementary, and is omitted.

Lemma 3. If an m-by-s matrix U is WU and contains Is as a submatrix, then U is TU.

Lemma 4 (Camion). (See Lemma 13.1.6 of [3].) Let Q and U be TU matrices such that Q � = U � . Then Q can
be changed into U by multiplying some rows and columns by −1.

Theorem 13.1.3 of [3] determines exactly which {0,1}-matrices have TU signings, although we do
not need this result until Example 20.

2.2. Regular matroids

A regular matroid (M, E) is the column-matroid of some r-by-m TU matrix M of rank r, repre-
sented over the real field R. The columns of M are labelled by the set E . Two F-representations
M and M ′ of a matroid are equivalent if there is an r-by-r matrix F invertible over F, an E-by-E
F-weighted permutation matrix P , and a field automorphism σ : F → F such that

M ′ = σ(F M P ).

(The column labels E are also permuted according to P .) Regular matroids are uniquely representable
over any field F, meaning that any two F-representations of a regular matroid are equivalent (Corol-
lary 10.1.4 of [3]).

Let M be represented by a TU matrix M . If B ⊆ E is a base of M then there is a signed permutation
matrix P bringing the labels in B into the first r positions, and a matrix F , invertible over Z, such
that

F M P = [Ir L]
for some r-by-s matrix L, where s = m − r. This is a representation of M coordinatized by B . Since
M is TU, F is invertible over Z, and P is a signed permutation matrix, it follows that F M P is WU.
From Lemma 3 (and transposition) it follows that [Ir L] is also TU (see also Lemmas 2.2.20 and 2.2.21
of [3]).

2.3. Integer flows, duality, and integer cuts

Let (M, E) be a regular matroid represented by the r-by-m TU matrix M . The lattice of integer flows
of M is

Λ(M) = ker(M) ∩ Z
E ,

defined up to isometry. If B is a base of M and M = [Ir L] is a representation of M coordinatized
by B , then the matrix
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U =
[ −L

Is

]

is such that MU = O . Since M is TU it follows that U is TU, and since U has rank s = dim ker(M),
the columns of U form an ordered basis B(M, B) = {β1, . . . , βs} of Λ(M). This is a fundamental basis
of Λ(M) coordinatized by B .

If M is represented by M = [Ir L] then the dual matroid M∗ is represented by U † = [−L† Is]. If M
is TU then U † is TU. The lattice of integer cuts of a regular matroid M, represented by M , is

Γ (M) = Row(M) ∩ Z
E ,

in which Row(M) denotes the row-space of M . As a set this depends on M , but it is well defined
up to isometry. From the above, it is clear that Λ(M) and Γ (M∗) are isometric. Since the definition
of Λ(M) implicitly involves matroid duality, some of our arguments could be simplified slightly by
considering Γ (M) instead. However, to keep things straight we will consider only Λ(M), except in
Section 5.1.

Lemma 5 is a familiar fact, but we prefer to phrase it just the way we want.

Lemma 5. Let (M, E) be a regular matroid of rank r on a set E of size m, and let s = m − r. Let B be any basis
for Λ(M), and let Q be an E-by-s matrix with columns given by the elements of B. Then Q is WU.

Proof. Pick a base B of M and let M = [Ir L] represent M coordinatized by B . Then B′ = B(M, B) is
another basis for Λ(M), and any matrix U with these columns is TU. Since B′ and B are both bases
for the lattice Λ(M), the change of basis matrix F such that Q = U F has det F = ±1. Since U is WU
it follows that Q is WU. �

If B = {β1, . . . , βs} is any ordered set of vectors in an inner-product space, then the Gram matrix
Gram(B) = A = (aij) of B is the s-by-s matrix with entries aij = 〈βi, β j〉 for all 1 � i, j � s. Two
lattices Λ and Λ′ are isometric if and only if they have ordered bases B and B′ , respectively, such
that Gram(B) = Gram(B′).

3. Simple flows, or signed circuits

3.1. Basic facts

Let (M, E) be a regular matroid represented by a TU matrix M , and let Λ(M) = ker(M) ∩ Z
E be

its lattice of integer flows (relative to M). For a column vector β ∈ Z
E , the support of β is the subset

supp(β) = {
e ∈ E: β(e) 
= 0

}
of E . For β ∈ Λ(M) we have Mβ = 0, so that if β 
= 0 then supp(β) is a dependent set in M, and
hence contains a circuit (i.e. a minimal dependent set) of M.

We require the following familiar facts (and include supporting arguments as proof sketches).

Lemma 6. For every β ∈ Λ(M), if supp(β) is a circuit C then β spans the subspace of ker(M) consisting of
vectors with support contained in C .

Proof sketch. If there were another linearly independent vector in this subspace then we could pro-
duce a dependent set of M properly contained in C , a contradiction. �
Lemma 7. For every β ∈ Λ(M), if supp(β) is a circuit C then all nonzero coordinates of β have the same
absolute value.
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Proof sketch. Let MC be the submatrix of M supported on columns in C , and write one of the
columns of MC as a linear combination of the others. This system of linear equations may be re-
dundant – reducing to an irredundant subsystem, it can then be solved by Cramer’s Rule, and all the
determinants involved are in {−1,0,+1} since M is TU. �

An element of Λ(M) is a simple flow (or signed circuit) if it is nonzero, all of its coordinates are
in the set {−1,0,+1}, and its support is a circuit of M. Let S(M) denote the set of all simple flows
in Λ(M).

Lemma 8. For every circuit C of M there are exactly two simple flows ±αC with support equal to C .

Proof sketch. Since C is dependent, there is a nonzero β ∈ ker(M) with supp(β) ⊆ C . Since C is a
circuit, supp(β) = C . Now Lemma 8 follows from Lemmas 6 and 7. �
Lemma 9. If B is a base of a regular matroid M then every element of B(M, B) is a simple flow in Λ(M), and
hence S(M) spans Λ(M).

Proof sketch. Each element of B(M, B) is supported on a circuit, as one easily verifies. �
Lemma 10. If M ′ is another matrix that represents M then an element of Λ(M) is a simple flow relative to M ′
if and only if it is a simple flow relative to M.

Proof sketch. By uniqueness of representation for regular matroids, M ′ = F M P as in Section 2.2.
Note that β ∈ ker(M ′) ∩ Z

E corresponds to Pβ ∈ ker(M) ∩ Z
E , and that P is a signed permutation

matrix. �
3.2. Consistent decompositions

By Lemma 9, each flow in Λ(M) can be expressed as a sum of simple flows. For β ∈ Λ(M), a
consistent decomposition of β is a multiset A of simple flows such that:

(i) β = ∑
α∈A α;

(ii) for all α ∈ A, supp(α) ⊆ supp(β);
(iii) for all α ∈ A and e ∈ E , α(e)β(e) � 0.

Proposition 11 is due to Tutte (Theorem 6.2 of [4] or Theorem 5.43 of [5]). We reproduce his proof
for completeness and the readers’ convenience.

Proposition 11 (Tutte). Let (M, E) be a regular matroid represented by a WU matrix M. Then every β ∈ Λ(M)

has a consistent decomposition A.

Proof. We begin by showing that if β 
= 0 then there exists a simple flow α that conforms to β in
the sense that supp(α) ⊆ supp(β) and α(e)β(e) > 0 for all e ∈ supp(α). If there is a counterexample
then there is such a counterexample β with supp(β) minimal. By Lemmas 6, 7, and 8, supp(β) is not
a circuit. By Lemma 8, again, there is a simple flow α with supp(α) ⊆ supp(β). Let e ∈ supp(α) be
such that |β(e)| is minimal. Replacing α by −α if necessary, we may assume that α(e)β(e) > 0. Now
β ′ = β − β(e)α has supp(β ′) ⊂ supp(β). If β ′ = 0 then α conforms to β . Otherwise, since β was a
minimal counterexample, there is a simple flow α′ conforming to β ′ . From the choice of e ∈ supp(α)

it follows that α′ conforms to β as well, a contradiction.
The proposition now follows from the base case β = 0 (which has the consistent decomposition

A = ∅) by an easy induction on ‖β‖ = ∑
e∈E |β(e)|. For the induction step, let ‖β‖ > 0 and let α be

a simple flow conforming to β . Then β ′ = β − α has ‖β ′‖ < ‖β‖, so by induction it has a consistent
decomposition A′ . Thus, A = A′ ∪ {α} is a consistent decomposition of β . �
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3.3. Metric characterization

Proposition 12. Let (M, E) be a regular matroid represented by a WU matrix M. For any nonzero α ∈ Λ(M),
the following are equivalent:

(a) the element α is a simple flow of Λ(M) (relative to M);
(b) for all nonzero β,γ ∈ Λ(M) such that α = β + γ , 〈β,γ 〉 < 0.

Proof. First, assume that (a) holds, and let α = β + γ with nonzero β,γ ∈ Λ(M). For every e ∈ E we
have α(e) = β(e) + γ (e), and since α(e) ∈ {−1,0,+1} we must have β(e)γ (e) � 0. Since the support
of α is a circuit of M, the supports of β and γ cannot be disjoint (since each contains at least one
circuit of M). Therefore 〈β,γ 〉 < 0, so that (b) holds.

Conversely, assume that (a) fails to hold. By Proposition 11, α has a consistent decomposition A.
Since α is nonzero, A is nonempty. If |A| = 1 then α is a simple flow. Thus, assume that |A| � 2, and
let β ∈ A and γ = α − β . Now β and γ are nonzero, α = β + γ , and β(e)γ (e) � 0 for all e ∈ E , from
the definition of consistent decomposition. This shows that 〈β,γ 〉 � 0, so that (b) fails to hold. �

For an arbitrary lattice Λ we define the set of simple elements to be the set S(Λ) of nonzero
elements α ∈ Λ satisfying condition (b) in Proposition 12. Lemma 13 is immediate.

Lemma 13. Let ψ : Λ → Λ′ be an isometry of integer lattices. Then ψ restricts to a (metric-preserving) bijec-
tion from S(Λ) to S(Λ′).

Lemma 13 already severely constrains the possibilities for an isometry ψ : Λ(M) → Λ(N). How
to get an isomorphism φ : M• → N• from this is still not clear, however. This is resolved in the next
section.

4. g-Feasible matrices, and proof of Theorem 1

Let B(M, B) = {β1, . . . , βs} be a fundamental basis of Λ(M) (coordinatized by some base B and
representing TU matrix M). Let U be the m-by-s matrix with {β1, . . . , βs} as columns. The Gram
matrix A = U †U determines the isometry class of Λ(M). The main effort in the proof of Theorem 1
is to reconstruct (as far as possible) the matrix U from its Gram matrix A. This is accomplished by
Camion’s Lemma 4 and Corollary 15 below.

4.1. Inclusion/Exclusion

Let C = {C1, . . . , Cs} be a collection of subsets of a finite set E , and let [s] = {1,2, . . . , s}. For every
S ⊆ [s], define

φC(S) =
∣∣∣∣
⋂
i∈S

Ci

∣∣∣∣ and γC(S) =
∣∣∣∣
⋂
i∈S

Ci \
⋃

j∈[s]\S

C j

∣∣∣∣.

Here, by convention,
⋂

∅ = E . One sees that for every S ⊆ [s],

φC(S) =
∑

S⊆S ′⊆[s]
γC

(
S ′).

By Inclusion/Exclusion, it follows that for every S ⊆ [s],
γC(S) =

∑
S⊆S ′⊆[s]

(−1)|S ′\S|φC

(
S ′).

Note that γC(S) � 0 for all S ⊆ [s], from the definition.
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4.2. g-Feasible matrices

Let A = (aij) be an s-by-s symmetric matrix of integers, with positive diagonal entries. The three-
element subsets (or triples) {h, i, j} of [s] are divided into three types: {h, i, j} is positive, null, or
negative depending on whether

ahi · aij · a jh

is positive, zero, or negative. Let �(A) denote the set of negative triples of [s]. Define a function
f A : 2[s] → N as follows: for each S ⊆ [s],

f A(S) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if S = ∅,

0 if Y ⊆ S for some Y ∈ �(A),

aii if S = {i},
min{|aij|: {i, j} ⊆ S} otherwise.

Define a second function g A : 2[s] → Z by Inclusion/Exclusion: for each S ⊆ [s],
g A(S) =

∑
S⊆S ′⊆[s]

(−1)|S ′\S| f A
(

S ′).
The matrix A is g-nonnegative provided that g A(S) � 0 for all ∅ 
= S ⊆ [s], and is g-positive if it is
g-nonnegative and such that g A({i}) > 0 for all i ∈ [s]. Notice that, since f A(∅) = 0, if A is g-positive
and [s] 
= ∅ then

g A(∅) = −
∑

∅
=S⊆[s]
g A(S) � −s < 0.

Proposition 14. Let B = {β1, . . . , βs} ⊆ {−1,0,+1}E be a set of column vectors, let U be the E-by-s matrix
with columns {β1, . . . , βs}, and let A = (aij) = U †U = Gram(B). For each i ∈ [s] let Ci = supp(βi), and let
C = {C1, . . . , Cs}. If U is TU then for all ∅ 
= S ⊆ [s] we have f A(S) = φC(S) and g A(S) = γC(S), so that U †U
is g-nonnegative.

Proof. We use the notation βi(e) = Uei for the entries of the matrix U . We claim that for all ∅ 
=
S ⊆ [s],

f A(S) = φC(S).

From this it follows by Inclusion/Exclusion that for all ∅ 
= S ⊆ [s],
g A(S) = γC(S).

The combinatorial meaning of γC then shows that A is g-nonnegative.
To prove the claim, consider any nonempty S ⊆ [s].
If S = {i} then

f A
({i}) = aii = 〈βi, βi〉 = |Ci | = φC

({i}).
If S = {i, j} then consider any {e, f } ⊆ Ci ∩ C j . Since U is TU, the submatrix Z of U supported

on rows e and f and columns i and j has det Z ∈ {−1,0,+1}. All four entries of Z are in {−1,+1}.
Computing the determinants of all possibilities one finds that Z has an even number of −1’s, that
det Z = 0, and that Z has rank one. That is,

βi(e)β j(e) = βi( f )β j( f ).

It follows that the function e �→ βi(e)β j(e) is constant on Ci ∩ C j , so that |Ci ∩ C j | = |aij|. Equivalently,
for any e ∈ Ci ∩ C j ,

aij · βi(e)β j(e) > 0.
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(This is true even if aij = 0, since then Ci ∩ C j = ∅.) Therefore,

f A
({i, j}) = |aij| = |Ci ∩ C j| = φC

({i, j}).
It remains to consider the case that |S| � 3.
First, consider any {h, i, j} ⊆ S . If e ∈ Ch ∩ Ci ∩ C j then from the above it follows that

ahiai ja jh · βh(e)2βi(e)2β j(e)2 > 0,

and hence that {h, i, j} is a positive triple for A. Thus, if S contains a negative or a null triple {h, i, j}
then

f A(S) = 0 = |Ch ∩ Ci ∩ C j| =
∣∣∣∣
⋂
k∈S

Ck

∣∣∣∣ = φC(S).

Finally, consider the case that every triple contained in S is positive. We show that f A(S) = φC(S)

by contradiction, so suppose that there exists a set S ⊆ [s] such that f A(S) 
= φC(S). Then there is
such a set for which S is minimal according to set inclusion; by the above observations, |S| = t � 3.
Replacing βi by −βi as necessary, we can assume that aij > 0 for all {i, j} ⊆ S . (This is proved by
induction on t; the base case |t| = 3 and the induction step both rely on the fact that every triple
contained in S is positive.) Then, multiplying rows of U by −1 as necessary, we can assume that
βi(e) = 1 for all i ∈ S and e ∈ Ci . Let {i, j} ⊂ S be such that aij is minimal. Note that since A =
Gram(B) and each βi ∈ {−1,0,+1}E , we have aij � min{aii,a jj} for all {i, j} ⊆ [s]. Also note that for
every S ′ ⊆ S with |S ′| � 2, we have f A(S ′) � f A(S) = aij . Now

φC(S) =
∣∣∣∣
⋂
�∈S

C�

∣∣∣∣ � |Ci ∩ C j| = aij = f A(S).

Since S is a minimal set for which f A(S) 
= φC(S), it follows that φC(S) < f A(S), and that for every
h ∈ S ,

φC

(
S \ {h}) = f A

(
S \ {h}) � f A(S) > φC(S).

Therefore, for every h ∈ S there is an element

eh ∈
( ⋂

�∈S\{h}
C�

)
\ Ch.

These elements are pairwise distinct. Let Z be the submatrix of U supported on columns {βi: i ∈ S}
and rows {eh: h ∈ S}. By permuting rows and columns of Z we can bring this into the form Jt − It , in
which Jt is the t-by-t all-ones matrix. This is the adjacency matrix of the complete graph Kt , which
has eigenvalues t − 1 of multiplicity 1 and −1 of multiplicity t − 1. Therefore, since t � 3, we see that

det Z = ±det( Jt − It) = ±(t − 1) /∈ {−1,0,+1}.
This contradicts the hypothesis that U is TU, showing that the defective set S ⊆ [s] is impossible. This
completes the proof. �

Let A = (aij) be an s-by-s g-nonnegative matrix, and let k = −g A(∅) � 0. Define a k-by-s {0,1}-
matrix X(A) by saying that for each ∅ 
= S ⊆ [s], exactly g A(S) rows of X(A) are equal to the indicator
row-vector of the subset S ⊆ [s]. (Note that X(A) has no zero rows.) The matrix X(A) is defined only
up to arbitrary permutation of the rows. When A is g-positive we usually permute the rows of X(A)

so that the bottom s rows form an identity submatrix Is .

Corollary 15. Let U be a TU matrix, and let A = U †U (which is g-nonnegative). Then the rows of X(A) can be
permuted so that they are exactly the nonzero rows of U � .
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Proof. Since U is TU, we have g A(S) = γC(S) for all ∅ 
= S ⊆ [s], using the result and notation of
Proposition 14. Thus, for all ∅ 
= S ⊆ [s], exactly g A(S) rows of U have support equal to the set S of
columns. By definition, the same is true of X(A). The matrix U may also have some zero rows. �

A symmetric matrix A is g-feasible if there is a TU matrix U such that U †U = A. By Proposition 14,
this implies that A is g-nonnegative. Corollary 15 and Camion’s Lemma 4 show that if such a matrix
U exists then it is unique (modulo deleting zero rows, permuting the rows, and changing the signs of
some rows and columns). This is the uniqueness result at the heart of our proof of Theorem 1.

4.3. Proof of Theorem 1

One last technical detail is required.

Lemma 16. Let U be an m-by-s TU matrix containing Is as a submatrix. Then every WU matrix Q such that
Q † Q = U †U is TU.

Proof. We proceed by induction on s. The basis of induction, s = 1, is trivial since in this case if Q is
WU then Q is TU.

For the induction step we begin by showing that all (s − 1)-by-(s − 1) minors of Q are in
{−1,0,+1}. Let Z ′ be a nonsingular (s − 1)-by-(s − 1) submatrix of Q . Let Z be a nonsingular
s-by-s submatrix of Q that contains Z ′ . Then det(Z) = ±1, since Q is WU, so that F = Z−1 also
has det(F ) = ±1. Now Q F is WU and contains Is as a submatrix, so Q F is TU by Lemma 3. Per-
muting this Is submatrix of Q F to the bottom s rows, the columns of Q F are a fundamental basis
of a lattice Λ(N) for some regular matroid N. Similarly, the columns of U are a fundamental basis
of a lattice Λ(M) for some regular matroid M (after permuting the Is submatrix of U to the bot-
tom s rows). Since Q † Q = U †U , it follows that (Q F )† Q F = (U F )†U F . Thus, the i-th column of U F
is the image of the i-th column of Q F (for each i ∈ [s]) by means of an isometry from Λ(N) to
Λ(M). Since the columns of Q F are simple flows in Λ(N) (by Lemma 10), it follows from Lemma 13
that the columns of U F are simple flows in Λ(M). Thus, by Proposition 12, the columns of U F are
{−1,0,+1}-valued. Since U contains Is , U F contains Is F = F as a submatrix. Thus, the entries of
F = Z−1 = adj(Z)/det(Z) are all in the set {−1,0,+1}. Therefore det(Z ′) = ±1, as required.

Now, for any i ∈ [s], let Q i be the submatrix of Q obtained by deleting column i from Q , and
define Ui similarly. Clearly Ui is TU, Ui contains Is−1 as a submatrix, and Q †

i Q i = U †
i U i . The previous

paragraph shows that each Q i is WU. Finally, the induction hypothesis shows that each Q i is TU, and
since Q is also WU it follows that Q is TU. This completes the induction step, and the proof. �
Proof of Theorem 1. We begin by proving that if M and N are regular matroids for which M• and N•
are isomorphic, then Λ(M) and Λ(N) are isometric. Let φ : E(M•) → E(N•) be an isomorphism, let r
be the rank of M• and let k = |E(M•)|. Let B be any base of M• and let φ(B) be the corresponding
base of N• . Coordinatized by these bases, both M• and N• are represented by the same r-by-k matrix
of the form [Ir L] for some r-by-s TU matrix L (in which s = k − r). Since M• has no co-loops, L has
no zero rows. Let M have p co-loops, and let N have q co-loops. Then M and N are represented by
the matrices M and N , respectively, in which

M =
[

I p O p×r O p×s

O r×p Ir L

]
and N =

[
Iq O q×r O q×s

O r×q Ir L

]
.

Here, O a×b denotes the a-by-b all-zero matrix.
As in Section 2.3, the lattices Λ(M) and Λ(N) have bases given by the columns of the matrices

Q M =
⎡
⎣

O p×s

−L

I

⎤
⎦ and Q N =

⎡
⎣

O q×s

−L

I

⎤
⎦ ,
s s
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respectively. One sees immediately that

Q †
M Q M = Q †

N Q N,

and it follows that the lattices Λ(M) and Λ(N) are isometric.
Conversely, assume that M and N are regular matroids and let ψ : Λ(M) → Λ(N) be an isometry.

Let s be the rank of Λ(M) and Λ(N). Let |E(M)| = m and |E(N)| = n.
Let B = B(M, B) be a fundamental basis of Λ(M) coordinatized by a base B of M. Let U be an

m-by-s matrix with the elements βi ∈ B for i ∈ [s] as columns. Fix a TU matrix N representing N

over R, such that Λ(N) = ker(N)∩Z
n . Let Q be the n-by-s matrix with the elements ψ(βi) for i ∈ [s]

as columns.
Now U is an m-by-s TU matrix that contains Is as a submatrix, and since ψ is an isometry it

follows that Q † Q = U †U . Since ψ is an isometry and B is a basis for Λ(M), the columns of Q form
a basis for Λ(N). From Lemma 5 it follows that Q is WU, and then from Lemma 16 it follows that Q
is TU.

Now both U and Q are TU matrices such that A = U †U = Q † Q . By Corollary 15, the rows of U
and of Q can be permuted so that the nonzero rows of U � and of Q � both agree with X = X(A).
Let k = −g A(∅) be the number of rows of X , let r = k − s, let p = m − k, and let q = n − k. We may
assume that the last s rows of X support an Is submatrix, so that X = [K † Is]† for some r-by-s matrix
K with no zero rows. Thus, the matrices U � and Q � have the forms

U � =
⎡
⎣

O p×s

K

Is

⎤
⎦ and Q � =

⎡
⎣

O q×s

K

Is

⎤
⎦ .

By Camion’s Lemma 4, there are diagonal matrices H and F , invertible over Z, such that the submatrix
in the last k rows of Q ′ = H Q F equals the submatrix in the last k rows of U . The columns of Q ′
form a basis for Λ(N), and the matrices U and Q ′ have the forms

U =
⎡
⎣

O p×s

−L

Is

⎤
⎦ and Q ′ =

⎡
⎣

O q×s

−L

Is

⎤
⎦

for some r-by-s TU matrix L with no zero rows. Thus the regular matroids M and N are represented
(over R) by the matrices

M =
[

I p O p×r O p×s

O r×p Ir L

]
and N =

[
Iq O q×r O q×s

O r×q Ir L

]
,

respectively. From the forms of these representing matrices one sees that M• and N• are both repre-
sented by [Ir L], and thus are isomorphic. �
5. Concluding observations

5.1. The lattice of integer cuts

Recall the lattice Γ (M) of integer cuts of a regular matroid M, defined in Section 2.3. Theorem 1
is equivalent to each of the following two statements. (We omit the trivial proofs by duality.) For any
matroid M, let M◦ denote the minor of M obtained by deleting all loops of M.

Corollary 17. Let M and N be regular matroids. Then Γ (M) and Γ (N) are isometric if and only if M◦ and
N◦ are isomorphic.

Corollary 18. Let M and N be regular matroids. Then Λ(M) and Γ (N) are isometric if and only if M• and
(N◦)∗ = (N∗)• are isomorphic.
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5.2. Lattices in general

For convenience, a basis B of a lattice Λ is said to be g-nonnegative, g-positive, or g-feasible
depending on whether Gram(B) has that property.

Proposition 19. Let Λ be an integral lattice. The following are equivalent:

(a) Λ has a g-feasible basis.
(b) Λ has a g-feasible and g-positive basis.
(c) Λ is isometric with Λ(M) for some regular matroid M.

Proof. For (a) implies (b): let B be a g-feasible basis for Λ. Let A = Gram(B), let X = X(A), and let
U be a TU signing of X such that U †U = A. Say that U is an m-by-s matrix. Since A has rank s,
there is an invertible s-by-s submatrix Z of U . Since U is TU, det(Z) = ±1, so that F = Z−1 is an
integer matrix and det(F ) = ±1 as well. Now, Q = U F is an m-by-s WU matrix that contains Is as
a submatrix, so by Lemma 3, Q is TU. The columns of Q form a basis for Λ (since F is invertible
over Z), and Q † Q is g-positive (by Proposition 14, and since Q contains Is). Since Q † Q is clearly
g-feasible, this proves (b).

For (b) implies (c): if B is a g-feasible and g-positive basis of Λ then A = Gram(B) is g-positive
and X = X(A) has a TU signing U such that U †U = A. The columns of U form a basis B′ of the lattice
Λ(M) of some regular matroid. Now

Gram
(
B′) = Q † Q = A = Gram(B),

so that Λ and Λ(M) are isometric.
Trivially (b) implies (a). For (c) implies (b): assume that ψ : Λ(M) → Λ is an isometry, and let B

be any base of Λ(M). Then B = B(M, B) is a g-feasible and g-positive basis of Λ(M), so that ψ(B)

is a g-feasible and g-positive basis of Λ. �
5.3. Some examples

Example 20. A g-positive matrix that is not g-feasible. The matrix A shown below is g-positive, with
X = X(A) as shown:

A =

⎡
⎢⎢⎣

3 1 1 2
1 3 1 2
1 1 3 2
2 2 2 5

⎤
⎥⎥⎦ , X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1
1 0 0 1
0 1 0 1
0 0 1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Theorem 13.1.3 of [3] shows that X does not have a TU signing (by pivoting on the top-right entry).
Thus, A is not g-feasible.

Example 21. A g-nonnegative matrix A such that X(A) has a TU signing, but A is not g-feasible. The matrix
A shown below is g-nonnegative, with X = X(A) as shown:

A =

⎡
⎢⎢⎣

2 1 0 −1
1 2 1 0
0 1 2 1

−1 0 1 2

⎤
⎥⎥⎦ , X =

⎡
⎢⎢⎣

1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1

⎤
⎥⎥⎦ .
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One checks that X itself is TU. By Camion’s Lemma 4, any TU signing U of X is obtained from X by
multiplying some rows and columns of X by −1. For any such matrix U , the Gram matrix U †U is
obtained from X† X by multiplying some rows and the same columns by −1. But X† X = A� , and A
cannot be obtained from A� by means of this operation. Thus, there is no TU signing Q of X such
that Q † Q = A. (A g-positive example of this is A + I4.)

Example 22. A matrix Q such that Q † Q is g-positive and g-feasible, but Q is not WU. This example relates
to the hypotheses of Lemma 16. Clearly Q = [2] is not WU. The matrix A = Q † Q = [4] is g-positive
with X = X(A) = [1 1 1 1]†. Clearly X is TU with X† X = A, so A is g-feasible.

Example 23. The body-centered cubic lattice is Λ(K4) � Γ (K4). To see this, let the cycles of length four
in K4 be C1, C2, and C3, and let αi be a simple flow supported on Ci for each i ∈ {1,2,3}. Now
{α1,α2,α3} spans a sublattice Π of Λ(K4), and has Gram matrix 4I3. Thus, Π is a cubical lattice
with minimum length 2. Now, α1 + α2 + α3 = 2β for some simple flow β ∈ Λ(K4) supported on a
three-cycle. In fact Λ(K4) is the disjoint union of Π and Π +β , proving the claim. The lattices Λ(Kn)

are discussed on pp. 194–196 of [1].

Example 24. The root lattice An is Λ(U1,n+1) � Γ (Un,n+1). (The face-centered cubic lattice is A3 .) To see
this, for each i ∈ [n + 1] let ei be the coordinate column vector of length n + 1 with all entries 0
except for a 1 in row i. The root lattice An has as a basis the vectors si = ei+1 − ei for all i ∈ [n]. Since
U1,n+1 is represented by the all-ones matrix with one row and n + 1 columns, it is easy to see that
{s1, . . . , sn} is a basis for Λ(U1,n+1) as well. The argument on p. 194 of [1] shows that these are the
only root lattices of the form Λ(M) for some regular matroid.

5.4. Sixth-root-of-unity matroids

Let ω = eiπ/3 be a primitive sixth-root of unity, and let

E = {z ∈ C: z = a + bω for some a,b ∈ Z}
be the ring (in fact a PID) of Eisenstein integers. A sixth-root-of-unity matrix ( 6

√
1 matrix, for short) is a

matrix with entries in C such that every square submatrix has determinant d such that either d = 0
or d6 = 1. A sixth-root-of-unity matroid ( 6

√
1 matroid, for short) is one which can be represented over

C by a 6
√

1 matrix. Clearly, regular matroids are 6
√

1. Lemma 5.8 of [7] gives sufficient conditions for
a 6

√
1 matroid to be uniquely representable over C (by a 6

√
1 matrix).

For example, U2,4 is not a binary matroid (hence not regular) but it is represented over C by the
matrix[

1 0 1 1
0 1 1 ω

]
.

The vector space of real flows of U2,4 (relative to this representation) is the real span of the
column vector [−1 − 1 1 0]†. The vector space of complex flows of U2,4 is the complex span of both
[−1 − 1 1 0]† and [−1 − ω 0 1]†. The analogue of the lattice of integer flows for a matroid (M, E)

represented over C by a 6
√

1 matrix M is the lattice of Eisenstein flows

ΛE(M) = kerC(M) ∩ E
E .

The inner product on ΛE(M) is induced by the Hermitian inner product on C
E .

Such a lattice is not just an abelian group, but even an E-module. This allows a stronger version
of isometry: ψ : Λ → Λ′ is an E-isometry if it is a bijection such that both ψ and ψ−1 are E-module
homomorphisms that preserve the inner products on the lattices. Clearly an E-isometry is an isometry
in the usual sense.

If M and M ′ are 6
√

1 matrices representing the same matroid M, then kerC(M) ∩ E
E and

kerC(M ′) ∩ E
E are E-isometric if and only if M and M ′ are equivalent representations of M. (This
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follows easily from the definition of representation equivalence.) Thus, M is uniquely representable
by a 6

√
1 matrix if and only if the E-isometry class of ΛE(M) is independent of the representing

matrix M . It is not too difficult to see that for a regular matroid M,

ΛE(M) = Λ(M) ⊗ E,

but, as the example of U2,4 shows, this does not hold for all 6
√

1 matroids. (In fact, this equality
holds if and only if M is regular, since if it holds then ΛE(M) has an E-basis B that is also a Z-
basis of Λ(M). Thus, the matrix Q formed from the column vectors in B is 6

√
1 and real, hence TU.

Therefore M∗ and hence M are regular.)
The two-sum U2,4 ⊕2 U2,4 has two inequivalent representations by 6

√
1 matrices, and these yield

Eisenstein flow lattices that have bases with Gram matrices⎡
⎣

3 1 + ω 1 + ω

1 + ω 4 4 − σ

1 + ω 4 − σ 4

⎤
⎦

in which ω,σ ∈ C are primitive sixth-roots of unity. The two cases σ = ω and σ = ω yield lattices
which are not E-isometric, but seem to be isometric.

Conjecture 25. If M and M ′ are sixth-root-of-unity matrices representing the same matroid M, then
kerC(M) ∩ E

E and kerC(M ′) ∩ E
E are isometric.

Conjecture 26. Let M and N be sixth-root-of-unity matroids. Then ΛE(M) and ΛE(N) are isometric if and
only if M• and N• are isomorphic.

One could perhaps adopt a strategy similar to the one we used to prove Theorem 1 for regular
matroids. The Gram matrix of a basis of ΛE(M) is in general complex Hermitian with entries in E.
If one can identify a metric characterization of simple flows, and an appropriate generalization of
g-feasible matrices, then much of our argument could carry over.
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