
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 25, 76-98 (1982)

Upper and Lower Bounds
for First Order Expressibility *

NEIL IMMERMAN

Department of Mathematics, Tufts University,
Medford, Massachusetts 02155,

and Laboratory for Computer Science, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139

Received January 27, 198 1; revised October 10, 198 1

We study first order expressibility as a measure of complexity. We introduce the new class
Var&Szlv(n), r(n)] of languages expressible by a uniform sequence of sentences with v(a)
variables and size OIz(n)]. When v(n) is constant our uniformity condition is syntactical and
thus the following characterizations of P and PSPACE come entirely from logic.

NSPACEIlog nl L I,) Var&Szlk, log(n)/ E DSPACE[log2(n)],
k-1.2....

P= u Var&SzJk, nk 1,
!is I. *....

PSPACE= fJ Var&Szlk, 2”kl.
k-1.2....

The above means, for example, that the properties expressible with constantly many variables
in polynomial size sentences are just the polynomial time recognizable properties. These
results hold for languages with an ordering relation, e.g., for graphs the vertices are numbered.
We introduce an “alternating pebbling game” to prove lower bounds on the number of
variables and size needed to express properties without the ordering. We show, for example,
that k variables are needed to express Clique(k), suggesting that this problem requires
DTIMEInk].

INTRODUCTION AND SUMMARY

This article studies the size and the number of variables of first order sentences
needed to express certain properties. Each of these expressibility parameters measured
individually is closely related to Turing machine space complexity. When variables
and size are measured simultaneously they correspond to simultaneous space and
time. Thus the computational complexity of testing if an input has a given property
can be measured by determining the size and number of variables needed to express
the property in the language of mathematics. This insight suggests new ways to
obtain upper and lower bounds on a problem’s complexity. Upper bounds are

’ Research partly supported by NSF Grant MCS 81-05754.
76

0022.0000/82/040076-23$02.00/O
Copyright 0 1982 by Academic Press, Inc.
All rights oi reproduction in any form reserved.

FIRST ORDER EXPRESSIBILITY 77

obtained by expressing the property succinctly. Lower bounds can be demonstrated
by showing that two structures which differ on the property in question agree on all
sentences of a certain size and containing a certain number of variables.

In [121 we proposed studying the complexity of a property, C, via the size of a
sentence from first order logic needed to express C. We showed there that the
memory space needed to check if a given input has property C is closely related to
the size of C’s smallest first order description. More precisely:

NSPACE[f(n)] G Size[J(n)*/log(n)] C DsPACElf(n)* I.

Here Size[g(n)] is the family of all properties expressible by a uniform sequence of
sentences, F,, F, ,..., where F, has O[g(n)] symbols.

Several papers by Ruzzo [19,201, on simultaneous resource bounds motivated us
to find analogous results for first order expressibility. First we reexamined our proof
of the above containment for f(n) = log(n), i.e.:

NSPACE[log(n)] C Size[log(n)] G DSPACE]log’(n)l

and noticed that only a constant number of variables were needed. Furthermore while
the existential quantifiers range over the elements of the universe of the input, (i.e., 1
to n), the universal quantifiers could be boolean. Thus we let P’ur&~zl v(n), z(n)] be
the class of properties uniformly expressible with exactly u(n) variables and size
O[z(n)]. Also let Var&Sz(BV)[v(n), z(n)] be the same class with the additional
restriction that the universal quantifiers are boolean. Let “*” abbreviate 01 11. We
show that:

NsPACE[log(n)] G Var&Sz(BV)[*, log(n)] G Var&Sz(*, log(n)]

L Size[log(n)l E DSPACE[log*(n)].

Although none of the containments above are known to be proper, we conjecture
that all four are. Savitch’s simulation of NSPACE[log(n)] by DSPACEjlog*(n)] may
be optimal, but a model theoretic approach to separating the two classes would be to
prove

Var&Sz(BV)[*, log(n)] f Size[log(n)].

We find that Var&Sz(BV)[* log(n)] is identical to the natural class
Log(CFL)-those languages log-space reducible to some context free language. We
will also see that the third term in the above chain, Var&Sz[*, log(n)], is equal to
ASPACE&%Zf[log(n), log(n)]-the class of languages accepted by an
A.SPACE[log(n)] Turing machine which makes only O[log(n)] alternations between
existential and universal states.

Once the idea of counting distinct variables was raised it was natural to relax the
size restriction. Let Var[*, n*l = Uk=,, >,... Var&Sz(k, n* I-those properties
expressible with a constant number variables in polynomial size sentences Varl *. n* 1
is identical to polynomial time!

78 NEIL IMMERMAN

One weakness of our previous definition of expressibility size is that it makes use
of the notion of Turing machines in the definition of a “uniform” sequence of
sentences. At the time our feeling was that the uniformity condition was an imperfect
attempt to capture the notion that we really had one sentence with a variable number
of quantifiers, just as we have the notion of one Turing machine with a variable
amount of space. Indeed, the use of constantly many variables leads us to the
realization that there is a syntactic uniformity-the nth sentence of a
Var&Sz[k, z(n)] property is just z(n) repetitions of a fixed block of k quantifiers.
With this new definition of uniformity, Var[*: n*] is a notion entirely from logic.

Now that we know that DTZMZ?[nk] is closely related to Var[*, n *] it is useful to
determine which graph properties can and cannot be expressed with k variables. In
Section C we describe a combinatorial game, a modification of Ehrenfeucht-Fraisse
games, (see [6] or [lo]), with which we can prove lower bounds on what can be
expressed in k variables. These new games are an alternating version of pebbling
games.

Our definition of Var&Sz gives the sentences access to some arbitrary ordering
relation, <, on the universe of the input structures. Without this added relation we
cannot simulate Turing machines-there is no way to say, “Now the Turing machine
moves its input head one space to the right.” We showed in [121 that < is not needed
to express certain “natural” graph problems such as connectivity; however, it is
essential for other uses such as counting the parity of a totally disconnected graph.

The games mentioned above give us lower bounds only on what can be expressed
without the ordering predicate. We show, for example, that Clique(k)-the existence
of a complete subgraph on k vertices-cannot be expressed with k - 1 variables,
without Q. (Of course k variables suffice-just say there exist x, a.. xk forming a
clique.) This is plausability argument that Clique(k) is not in Var[k - 1, n*]. If we
could prove the latter result, i.e., that Clique(k) cannot be expressed with k - 1
variables and polynomial size in the language with <, then it would follow that the
general clique problem is not in Var [*, n *]. From this it would follow that P # NP.

In the following pages we give: (A) Definitions and motivations; (B) Some of the
main relationships between expressibility and Turing machine Time and Space; (C)
The alternating pebbling game; (D) Probabilistic graph arguments following [8,2]
showing that Hamilton Circuit, Clique, and GraphIso are not in Var(w.0. <)[*]; and
(E) Conclusions and directions for future research.

A. DEFINITIONS AND MOTIVATIONS

We propose to study the complexity of a condition, C, by asking, “How difficult is
to express C?” For this expression we choose the natural first order language of the
objects under consideration.

Think of a directed graph, for example, as a universe, V= {O, l,..., 12 - l), the
vertices, together with a binary edge relation E(-, -) on V. This is a logical structure

FIRST ORDER EXPRESSIBILITY 79

of similarity type r6 = (E(-, -)). The language of a type, r, L[T], consists of the
sentences built up from the symbols of r using the logical connectives SC, “or”, -, ;r>.
variables x, y,..., = , < and quantifiers, 3x and Vx, ranging over the universe. The two
relations, = and <, refer to the equality relation and the natural ordering on the
universe. For example, consider the following sentence from L [r(; 1:

S, -VxEly[E(x, y) or E(y,x)].

S, says that each vertex, x, has an edge coming out of it or an edge going into it. A
graph satisfies S, (in symbols G + S,) if it has no isolated vertices. Note that every
graph G “understands” every sentence S from L [sc], i.e., G + S or G + - S.

To motivate the definitions for variable and size expressibility we now consider a
stepwise refinement of sentences expressing a specific problem. Let GAP be the set of
directed graphs G with specified points a and 6 such that there is a path in G from a
to b. In symbols:

GAp={GIa-+ *-b).

GAP is known to be complete for NsPACE[log(n)]. (See 1211.) We show in] 131
that GAP is complete in a very strong sense-every problem C in NSPACE(log(n) 1
has a first order sentence translating all instances of C into instances of GAP.

To express GAP we will write down formulas P,(a, b) meaning, “There is a path of
length at most n from a to b.” We define P, by induction as follows:

PI@, Y) = (x = Y) or E(x, Y), (1)

P,(x, Y) = 3z(P,,,(x, zwPn/2(zI Y)). (2)

Equation (2) defines P, in a way that increases the quantifier rank, i.e., maximum
nesting of quantifiers, by one each time n is doubled. However P,,,* is written twice
on the right so the size of this P, is twice the size of P,,,*. We can alleviate this
problem using the “abbreviation trick” (see, e.g., [9]). The trick uses universal quan-
tifiers to permit us to write P,,, only once on the right. Thus:

P,(x, y) s 32 Vu Vu([u =x&u = z or 24 = z&v = y] * Pnlz(u, u)). (3)

We have now written P, with O[log(n)] symbols, thus proving that GAP is in
Size[log(n)], to be defined.

Continuing in our refinement notice that when we write P,,z(u, v) we may reuse X,
.v, z-their current values are no longer needed. Being slightly wasteful for the sake of
clarity, write:

p,(x,v) E 3zVuVu([u=x&u=z or u=z&u= y] * 3X3y[x=U&Y=U&P,,2(X,Y)l).

(4)

We have succeeded in expressing GAP by a uniform sequence of sentences,

511/25/1-6

80 NEIL IMMERMAN

(P,(a, b) 1 n > l}, such that P, has five variables and size O[log(n)]. This suggests the
following:

DEFINITION. A set C of structures of type t is expressible in v(n) variables and
size z(n), (in symbols, C is in Vur&Sz[v(n), z(n)]), if there exists a uniform sequence
of sentences F, F, . . . from L(s) such that:

a. For all structures G of type r with (GI < n,

GECt+Gt=F,

b. F, has v(n) distinct variables and a total of O[z(n)] symbols.

As Ruzzo has shown in [20], uniformity conditions may be greatly varied without
significantly changing a definition. The following condition will suffice in what
follows:

Uniformity Condition (*): The map n -+ F, can be generated in
DSPACE[v(n) . log(n)] and DTIME[z(n)].

Of course (*) does not capture our intuitive feeling that the F,,‘s are all the same
sentence with varying numbers of quantifiers. To make the latter notion more precise
abbreviate quantifiers with restricted domains as follows:

(3x * M)[***] sz[M& a**] read, “There exists x such that M.”

(Vx - M)[***] s Vx[M* *-*] read, “For all x such that M.”

Now we can write Eq. (4) more compactly as:

P,(x, y) = 31 Vu(Vv * M3) 3x(3y * M,) P,,?(X, y). (5)

Here M3=[~=x&v=z or x=z&v=y], and M,=[x=u&y=v]. Let A=
(3x . x = a)(3y . y = b). We can now write the sentences GAP, expressing the
existence of a path of length at most n from a to b in a very neat form:

GAP, =A[(3z)(Vu)(Vv . M3)(3x)(3y. M5)]‘ogcn’P,. (6)

Equation (6) give a model for the following totally syntactical definition of
uniformity for Var&Sz[v, z(n)]:

Uniformity Condition (* *): There exist constant c, prefix A, and quantifier free
formulas B, M, .-. M,, all of which have variables only x, ..a x,. such that:

F, =A[(Q,x, . M,) a.. (Q‘,x,, . MJ]C’Z(n)B.

We adopt (* *) as our definition of uniformity for Var&Sz[v, z(n)] when u is a
constant, otherwise we use (*). Equation (6) demonstrates that GAP is in
Var&Sz(S, log(n)]. More generally we can show:

FIRST ORDER EXPRESSIBILITY 81

THEOREM A. 1. (a) For s(n) > O[log(n)l,

NSPACE(s(n)] c: Var&Sz[O[s(n)/log(n)], s(n)‘/log(n)] E DSPACE[s(n)* 1.

@I:

NSPACE[log(n)J c: Var&Sz[*, log(n)] G DSPACE[log*(n)].

ProojI The proof of (a) is nearly the same as for Theorem 2 in 1 I5 1. We showed
there that NSPACE[s(n)] 5 Size[s(n)‘/log(n)] G DSPACE(s(n)* I. That proof noted
that a Turing machine instantaneous description (ID) of size s(n) could be coded in
O[s(n)/log(n)] variables since the variables range over an n element universe. Thus
using Eq. (3) we asserted the existence of a computation path of length c”“); Ols(n)]
ID’s were needed. For the proof of the first inclusion in (a) we use Eq. (4) instead.
Thus only a constant number of ID’s, requiring O[s(n)/log(n)] variables, must be
remembered at once.

Part (b) seems to be a special case of (a) but the proof of the first inclusion is
more subtle because we must satisfy the syntactic uniformity condition (**). The
following proof is quite technical and may easily be skipped at first reading without
affecting the understanding of the remainder of the paper.

We are given a nondeterministic Turing machine M running in space log(n) and
accepting a subset of all the structures of some type. Assume for convenience that M
accepts a set of graphs, i.e., r = (E(-, -)), and that the inputs are adjacency matrices.
We must build sentences o, expressing the acceptance property of M for graphs of
size n. Furthermore the v),,‘s must be syntactically uniform, have constantly many
variables, and be of size O[log(n)].

Since the variables range over an n-element universe they may be thought of as
log(n) bits of memory. We can thus code M’s log(n) size instantaneous description
(ZD) with a constant number of variables. An ID is coded as

(43 r,, r2, WI .a- Wk, h, ..’ h,J, where q gives the state and w, ... wk and h, .+. h, code
the k(log(n)) bits of work tape, and the position of the work head, respectively.
Finally, r, and r2 encode the read head position, i.e., they indicate that the read head
is looking at the cell corresponding to the pair (r,, r2) in the adjacency matrix. Thus
the read head is looking at a 1 if E(r,, r2) holds for the input graph, otherwise it is
looking at a 0. Note that the ordering < is used to indicate that the read head moves
one space to the left or right. This is the crucial use of <. A less important use is to
code and decode log(n) bits as a single variable.

It is a small matter to recognize M’s initial and final ID?. We will show how to
write the formula P,(ZD,, ID,) meaning that ID, follows from ID, in one move of M.
We then use Eq. (6) to express P,r(ZDi, ID,), that there is a computation path of
length nk from M’s initial ID to M’s final ID.

To write P, we must be able to say, “The symbol being read by the work head is
0.” It is thus necessary to decode the ith bit of a vertex’s number. We will identify a
vertex with its number. Let ON,(x, y) mean that y < log(n) and bit y of x is a 1.

82 NEIL IMMERMAN

LEMMA A.2. ON,(x, y) may be written uniformly in Var&Sz[*, log(n)].

Proof. We build up to ON,(x, y) using a sequence of inductive definitions and
repeatedly using an abbreviation trick as in [9]. We will use the symbols 0 and 1 for
convenience but they are of course definable from <. Define the successor relation by

Suc(x, y) = (x < y) & (x f y) & (Vz)[(x < 2) * (2 =x or y < z)].

(a) Define Plus,(x, y, z) to mean (x < n) and x + y = z:

Plus,(x, y, z) z (x = 0 & y = z) or (x = 1 8c Suc(y, z)).

Plus,,(x, y, z) E 3u, 324,3u,(P1us,(u,, u,, x) & Plus/&,, y, z+) & PlUS,(U,) uj, z)).

Using the abbreviation trick:

Plus,,(x, y, z) E 324,3u,3u, Vs, Vs,(Vs, . [(sl = u&s, = u,&s, =x) or

(s, = 24, &s, = y&s, = u3) or (sr = u2 &s, = u1 &s, = z)]) Plus,(s, , s2, sj).

Let
A,-[(s,=u,&s,=u,&s,=x)or (s,=u,&s,=y&s3=u3)

or (s,=u,&s,=u,&s,=z)]

and
A* = (x = S’ & y = s2 & z = Sj).

We thus obtain a syntactically uniform form of Plus:

PlUS”(X, y, z) = [3u, 324,324, vs, Vs,(Vs, * A r) 3x3y(3z * A*)]‘- P,(x, y, z).
(b) Define M,(p, q, r) to mean (p < n & r < n & pq = r):

M,(p, q, r) z (p = r = 0) or (p = 1 &q = r & (r = 0 or r = 1)).

M,,(P, 4, r) = 3u, 34 3u, 3w, 3w,(M,(u,, 4, wl) & M,(u,, 9, w2) 8~

Plus&, , u2, p) & Plus,(w, , w2, 4).

This definition works because p = u, + u,, andsopq=u,q+u,q.ToputM,into
syntactically uniform we need a lemma.

LEMMA A.3 “Combining Lemma”. Suppose that A,(x) can be written in syntac-
tically uniform form

A,(x) = [ABLOCK]‘Og” A,(x),

and suppose that B, may be defined inductively as

B,,(Y) = <Q,Y,> -.I (Q,~YJNY,A,,B,),

FIRST ORDER EXPRESSIBILITY 83

where R is a quantiJier free formula. Then B, may be written in the syntactically!
uniform form,

B,(x) 3 [BBLOCK] log ’ B,(x).

Proof. We must combine occurrences of A, and B, in R into a single occurrence
of a formula C, of size O[log m]. C,(a, X, y) will be equivalent to:

(a = 0 *A,(x)) & (a = 1 -j B,(y)).

Thus an inductive definition for C, is:

C,(a, x, y) _= (a = 0 3 A,(x)) & (a = 1 * B,,(y)),

C2,&, x, Y> = [ABLOCKl<Q, Y,) ... (Qk.vJ(a = 0 => C,,,(O, x, Y))

& (a = 1 * R(Y, C,(O, -) Y), CAL x, -I)>,

= [Q-B-L-0-C-K](P(a, x, y, C,)).

Here QBLOCK is a quantifier block and P is a quantifier free formula. By
induction C,(O, -, y) is equivalent to A,(-), and C,(1, x, -) is equivalent to B,(-).
We will assume that all occurrences of A, and B, in R are positive. Thus so are the
occurrences of C, in P. If this were not true then we would expand C, to include
such cases as (a = 2 3 4,(x)). Assume that P is in disjunctive normal form, i.e.,

P(a, x, Y, Cm> = V A Fi,i 5
i= I.. .r .j:- I.. maxi

where each F, is either C,(b,, xii, yij), or rij-a quantifier free formula not involving
C,. A formula equivalent to P(a, x, y, C,) is,

L(a, x, y, C,) = (3. 1 < i < r)(iplj)(3puv . S) C&l, 24, c).

Here 5’ is a conjunction over i and j saying that C,@, U, 2;) is equivalent to Fii. In the
case where F, is C,(b,, xii, yij) we must assert that /I = b,, u = xii, and t‘ = yii. If
F, is rij, we merely assert that tij holds. In symbols,

SS I(i= 1 &j= l)* T,,]& . . . & [(i=r& j=max,)+ T,.,,,r],

where

Tij E [p = b, & u = xij & u = yij] if F, is C,(bi,,, xii, yij)

z sij if F,, is rii.

84 NEIL IMMERMAN

Z,(a, x, y, C,) is clearly equivalent to P(a, x, y, C,). Thus,

&,(a, x, Y> tz [QBLOCKI Lta, x, Y, Cm>

= [QBLOCK](3 . 1 < i < r)(Vj)(3/3uu . S) Cm@ u, v)

E [QBLOCK](3i . 1 < i < r)(Vj)(3/?uu - S)(3axy . E) C,(a, x, y)

5 [CBLOCK] C,(a, x, y).

Here E says (J = a&u =x&u = y). Thus we have written C, and thus B, in the form
desired:

C, z [CBLOCK]‘Og” C,. I

(c) Define EXP,(a, b) to mean (a < log(n)) & (2” = b)):

EXP,(U,b)E (a=O&b= l),

EXP,,(a, b) = (3~ d)(EXP,(c, d) & Suc(c, a) & Plus,@, d, b)).

(d) Define ON,(x, y) to mean (y < log(n)) & (the yth bit of x is a 1):

ON,(x, y) = (3~ u w t)(EXP,(y, u) & u + u + w = x & M,(u, t, w)).

By the combining lemma, EXP, and ON, can be written in a syntactically uniform
form. This proves Lemma A.2. I

Now that we have ON,(x, y) we can write P,(ZD,, ID,). P, is just a disjunction
over all triples of states and read and work symbols saying what the Turing machine
M will do in one step. Then as claimed we can write Pnk(ZDi, ID,), expressing the
acceptance property for M uniformly with 0[1] variables and size O[log(n)]. 1

Let’s return to Eq. (4) and notice that in simulating an NSPACE[log(n)] property,
two universal quantifiers ranging from 1 to n are used. Their purpose is only to make
a choice between the first half and the second half of the path. It makes sense to
minimize the universal choices when simulating an existential class so we replace
“VuVv” in Eq. (4) by “VP, where b is boolean valued. Thus:

P,(x,y) = 3zVb3u[3v . [(b = O&u =x&v = z) or (b = I&u = z&v = y)])

3x($ * [x = u&y = ?I)) P&x, y). (7)

Define Var&Sz(BV)[u(n), z(n)] to be the family of properties expressible in v(n)
variables and size O[z(n)], where the existential quantifiers still range from 1 to n,
but the universal quantifiers are boolean. We will always assume that
z(n) > O[log n], and allow the sentences in question to contains constantly many
ordinary universal quantifiers, i.e., O[log n] bits. This is useful for example in
defining 0 and 1 which are needed in the proof of Theorem A. 1. For the definition to

FIRST ORDER EXPRESSIBILITY 85

make sense we assume that the formulas are in prenex form with all the 7’s pushed
inside. It is easy to see that GAP is in Var&Sz(BV)[k, log(n)], and more generally,

THEOREM A.4. For s(n) > log(n),

N?PACE[s(n)] c Var&Sz(BV)[O[s(n)/log(~)], s(n)‘/log(n)].

B. VARIABLES & SIZE VERSUS TIME& SPACE

Recall a definition and result of Sudborough 1221:

DEFINITION. AuxPDA[s(n), t(n)] is the class of languages accepted by a two way
nondeterministic push down automaton with auxiliary work tape of size s(n). running
in time t(n).

FACT (Sudborough). AuxPDA [log(n), n *] = log(CFL).

Ruzzo [191 defines an accepting computation tree of an alternating Turing machine
M to be a tree whose root is a starting ID of M, whose nodes are intermediate ID’s
and whose leaves are accepting configurations. Each universal node, U, has all its
possible next moves as offspring, while the existential nodes, e, lead to exactly one of
e’s possible next moves. We say that a language C is in ASPACE&T.S[s(n), z(n)] if
all members of C of size n are accepted in a computation tree using space s(n) and
tree size, (number of nodes), z(n). Ruzzo relates this new measure to auxiliary pda’s
via his Theorem 1 which implies:

FACT (Ruzzo). ASPACE&TS[s(n), z(n)*] = AuxPDA[s(n), z(n)* I.

Notice that both the tree size model and the AuxPDA charge much more for
universal moves than for existential ones. The following theorem shows that we get
the same classes in our expressibility measure by restricting all universal quantifiers
to be boolean. In a sense we charge log(n) times as much for a universal choice as for
an existental one.

THEOREM B.l.

Var&Sz(BV)[O[u(n)], z(n)] G ASPACE&TS(v(n) log(n),*‘(“)]

L Var&Sz(BV)[O[v(n) 1, u(n) . z(n) 1.

Proof. (cI,): Given an input structure G with n element universe we can generate
the nth sentence in our uniform sequence.

%PACE&Z’S[V(~) log(n), *r(n)] we can check if G + F,.
We must show that in

To test if G satisfies F, we read the sentence from left to right holding the present
values of variables x, -a- x,(,,) in our u(n) log(n) memory. Note that each non-

86 NEIL IMMERMAN

boolean variable may have value 1 to n corresponding to an element of G. At
existential quantifiers, 3xr, we existentially choose some x, from the universe of G
and at universal choices, Vb,, we universally choose bj. When we come to atomic
predicates, e.g., E(x,, x2) or b,, = 0, we can check their truth because we have the
current values of the variables. Note that this accepting procedure has tree size *‘(“)
because we may make a binary universal split U[z(n)] times.

(E?): Here we follow a proof of Ruzzo [191. We must express the property
Accept(r, z) which means that the alternating Turing machine M will accept in tree
size z when started with ID r. We express Accept(r, z) by choosing a point p in the
middle of the tree whose subtree is of size between l/3 and 2/3 of the original tree.
We may assume that the alternating machine has at most two choices at each move.
Thus it is obvious that such a p exists. Thus,

Accept(r, z) = 3p(Accept(r, (p), (2/3)z) & Accept(p, 0, (2/3)z)).

Here Accept(r, (q, .a’ qk), z) means that there is a computation tree of size z
starting at r such that each leaf is either an accepting configuration or one of
91 *‘* qk.

Our only trouble is to ensure that the list (q, ..a qk) stays of constant size.
Whenever the list is of length three we take an extra move to split it in half by finding
a point p above two of the three nodes in the list,

Accept(r, (ql, q2, q3), z) = MAccept(r, (sly P>, z) & Acwt(p, (q2, q3>, z)).

Note that in the above we can add a boolean universal quantifier and use the
abbreviation trick to write Accept(-) only once on the right. Also note that the above
is a slight lie since we don’t know which pair of q’s p will be above. In fact we would
have to say,

@(3s,, s2, s3, a permutation of q, q1 q,)(Accept(r, (sl, P>, z> & Accept(p, (s2, s,), z>>,

Thus we can write Accept(-) with a constant number of ID’s, i.e., O[v(n)]
variables, and the size of the sentence is O[v(n) . log(z)]. This proves
Theorem B.l. 1

COROLLARY B.2. Var&Sz(BV)[* log(n)] = Log(CFL).

Proof. From the above theorem, together with the results from Ruzzo and from
Sudborough:

Var&Sz(BV)[*, log(n)] =ASPACE&TS[log(n), n*]

= AuxPDA[log(n), n*]

= Log(CFL). I

There is a close relationship between expressibility and the complexity of alter-

FIRST ORDER EXPRESSIBILITY 87

nating Turing machines [3, 161. As we see in the next theorem the number of
variables corresponds to alternating space while the size of the sentence is similar to
alternating time.

THEOREM B.3. For s(n) > log(n),

ASPACE&TZME[s(n), t(n)] S Var&Sz[O]s(n)/log(n)], t(n)]

EASPACE&Tzikm[s(n), t(n) log(n)].

Proof. (c), Given an alternating machine M, we must write sentences cpn so that
an input G of size n is accepted by M if and only if G satisfies rp,. We write the
sentences Accept,(x) to mean that M started at ZDx will accept within t steps. We
accomplish this by saying that if x is in an existential state then there is some next
ZDy such that Accept,-,(y) whereas if x is universal then all next ID’s y satisfy
Accept,- AY>.

Accept,(x) = (~Y)(P,(x, Y) & Accept,-,(y)) &

(c‘x is universal” * [(Vy)(Pl(x, y) 3 Accept,-,(y)]).

Here x and y code ID’s of the form (q,x,, h, ,x1, h, ,..., x,, h,) where
r = O[s(n)/log(n)], q is the state, x, . . . x, hold the tape contents, and all the hi’s are 0
except one indicating the location of the head at a cell, 1 < hi < log(n) of xi. P,(x, y)
is as in the proof of Theorem A.l; it means that ZDy follows from ZDx in one move
of M. First we rewrite Accept, using the abbreviation trick:

Accept,(x)

E (+)(vz)(P,(x, y) & [z = y or (c‘x is universal” & P,(x, z))] 3 Accept,. ,(z))

We have written Accept, using O[t] blocks of quantifiers where each block quan-
tities the O[s(n)/log(n)] variables needed to code one ID. If s(n) > [log n] then this is
wasteful because the whole ID need not be requantified at each step. We will sketch
why it suffices to requantify two adjacent pieces of the tape at each move, and to
requantify the whole ID only once every r steps, thus keeping the formula size linear
in t(n). Let symbols a and b abbreviate 6-tuples of the form (q, xi, hi, Xi+, , i)
representing the state and the ith and i + 1st pieces of an instantaneous description.
The idea is to requantify such 6-tuples rather than the whole ID at each move. Thus,

Accept,(x) = (3a)(Vb)(P,(x, a) & [b = a or (“x is universal” & P,(x, b))]

* Accept,- 1((x, b))).

In order to repeat r blocks of these a’s and b’s it is convenient to use extra
variables c to keep track of what is going on. Let ci be 0 if a, = bi or if bi_, is

88 NEIL IMMERMAN

universal and bi is a possible next move after IDx followed by b, --- bi- r, in symbols
P,((x, b, a. - b,- r), bi). Let ci be 1 otherwise. Thus:

Accept,(x) E (3a)(Vb)(3c)([c = 0 & Accept,-,((x, b))] or

(c = 1 & a # b & (“x is existential” or V,(x, b))]).

Once each r steps a whole new IDx’ is requantified:

(M or [N 8~ Accept,-,(x’)]).

Here A4 says “(3k)c,=cz=...=ck_,=0 and x--tbl-teea *b,-, codes k-l
steps of a valid computation of M, and ck = 1 and ck-r is existential or
7, ((x, h . . . b,- 1), bk).” N says, “c, = c2 = . . . = c, = 0 and x -+ b, -+ .*a + b, codes
r steps of a valid computation of M resulting in x’.”

M and N can be written with O[r] symbols, using predicate P, and a new predicate
TN, b, ,..., b,, i, j, w) meaning that at step i, 1 < i < r, the contents of section j of the
ID is w. Finally, as in the combining lemma we can combine P, T, and Accept into
one predicate which can be defined as a formula of length O[t(n)] using
O[s(n)/log(n)] variables. The desired qDn is Accept,&D,), where ZDi is M’s initial
instantaneous description.

(c)~: Here we must show that given a structure G of size n and a sentence CJI,
with s(n)/log(n) variables and size t(n) we can check in ASPACE&
TIME[s(n), t(n) log(n)] whether or not G satisfies p,,. To test if G satisfies q,, we
read the sentence from left to right holding the present values of the variables
xl * * * xs(n)/lo*(nf in our s(n) bit memory. At quantifiers (3~~) or (Vx,) we make the
appropriate existential or universal choice of a new value for xi. Similarly at &c’s or
“or”s we can universally or existentially choose one branch and proceed. The atomic
sentences can be checked in constant time assuming we are dealing with indexing
alternating Turing machines. Note that this simulation requires up to log(n) steps for
each symbol of on. 4

Theorem B.3 would be nicer if we could improve the size bound in the middle term
to t(n)/log(n). This seems unlikely however, because the alternating time t(n)
machine can make t(n) alternations while the sentence could make only t(n)/log(n)
alternations. We can get an exact relation between expressibility and alternating
complexity by restricting the number of alternations the machine may make.

THEOREM B.4. For s(n) > log(n),

(a) ASPACE&TlME&AIt[s(n), t(n), t(n)/log(n)]
= Var&Sz[O(s(n)/log(n)], t(n)/log(n)].

(b) ASPACEcWt[s(n), a(n)]
E Var&Sz[O[s(n)/log(n)], a(n) + s(n)) s(n)/log(n)].

(c) ASPACE&.AIt[log(n), log(n)] = Var&Sz[*, log(n)].

FIRST ORDER EXPRESSIBILITY 89

Proof sketches: (a) Here the class on the left consists of languages recognizable
by an alternating Turing machine simultaneously in space s(n), time t(n), and making
t(n)/log(n) alternations. The proof is similar to the proof of Theorem B.3. The
difference is that when the next log(n) steps involve no alternation we skip ahead
log(n) steps with one quantifier and check later that all such jumps were valid log(n)
step computations. In this way we use a constant number of quantifiers for each alter-
nation and for each log(n) moves.

(b) The proof of (b) is similar except that we have no time bound between alter-
nations. Thus we must write out the whole ID, i.e., O[s(n)/log(n)] variables, at the
endpoints of each of the a(n) alternations. We check once that within an alternation
the final ID follows from the initial ID. By Theorem A. 1 this may be expressed with
s(n)*/log(n) symbols.

(c) One half of (c) is a special case of (b). The other half is similar to the second
containment of Theorem B.3. Evaluating a sentence with O[1] variables and size
O[log n] requires log(n) memory to store the contents of the variables, and at most
one alternation per symbol. 1

Corollary B.2 and Theorem B.~(c) interested us especially because we now have
natural classes, Log(CFL) and ASPACE&Alt[log(n), log(n)], identified with each of
the two intermediate terms in the following containment which is immediate from
Theorems A.1 and A.4:

NsPACE[log(n)] G Var&Sz(BV)[*, log(n)] E Var&Sz[*, log(n)]

c DSPACE[log*(n)].

The above relations between expressibility and alternating complexity lead to
corollaries concerning the relations between expressibility and deterministic
complexity. It is, however, interesting to prove the following directly:

THEOREM B.5. Let t(n) > n,

u DSPACE&TZME[~~, t(n)k] = U Var&Sz[k, t(n)” I.
k-~ 1, Z.... k-l.Z....

Proof: (c) This is similar to the usual proof that P c ASPACE[log(n) I. Let M
be a deterministic Turing machine running in space nk and time t(n)“. We describe
M’s computation via the sentences Cell,(p, a) meaning that tape cell number “p”
contains symbol number “a” at step t of the computation. Note that the cell location
requires O[log(n)] bits or a constant number of variables to specify. For simplicity
we assume a one tape Turing machine. If there were k tapes then a sentence,
Cells(p, -.. Pkral ... uk) would keep track of all the tape heads in a similar way.

The idea is to say that there exists a triple of cell values a ~, , a,, a, in the previous

90 NEIL IMMERMAN

move which lead to a in one move of M, and ai occurs in cell p + i at time c = 1. In
symbols:

Cell,(p,a)~(3a_,a,a,) u~,u,u,+u&
(

A Cell,-,(p + i, Ui) .
i=-1.0.1 1

Here “a-, uOul + u” is a finite disjunction over all possible triples, and their conse-
quences. To write our “Ai= _ ,,o,l Cell,-,(p + i, a,)” we use the abbreviation trick:

(Vp’)(Vu’)([(p’ = p - 1 & a’ = a-,) or (p’ =p & a’ = a,) or

(p’ = p + 1 & a’ = a,)] 2- Cell,-,(p’, a’)).

Thus Cell,&O, qf), meaning that the first cell in M’s ID at time t(n)k is the final
state symbol, can be written uniformly with a constant number of variables and
O[t(n)k] symbols.

(2): Going the other way we must produce a deterministic Turing machine which
given a structure G of size n, and a sentence o,, with k variables and t(n) symbols,
determines if G satisfies p,, using polynomial space and t(n)* time.

To test if G satisfies p, we examine the parse tree for (Pi. Each of the k variables
may take on any of the n values of the universe of G. Thus to each node in the parse
tree we can systematically attach the list of at most nk assignments to the variables
which make that node true. The leaves of the parse tree are atomic formulas such as
E(x,,x,); such a node’s associated list contains all those k-tuples (g, ... gk) such
that G I= E(g,, g3).

We can pass up the tree towards the root computing the list of k-tuples making
each node true, as we go. For example, an “8~” node’s list is derived by intersecting
the two lists it leads to, a “Vx,” node’s list consists of those tuples (g, ..a gk) such
that (h, g, . . . gk) appears on the preceding node’s list for all values of h.

When we reach the root either our list will contain all nk possibilities or it will be
empty since ~1, has no free variables. G satisfies rp, if and only if we are in the former
case.

Each node’s list requires nk log(n) space to store. Furthermore at most log(t(n))
lists must be remembered at once-the number of pebbles needed to pebble a tree of
size t(n). (Note that in the case in hand o, satisfies the syntactic uniformity condition
and so is essentially linear. Thus only two lists need be remembered at once.) Thus
polynomial space suffices. The time required to compute a node’s list from its
predecessors is certainly bounded by nzk. Thus the number of steps involved in the
entire computation is less than t(n) . n2k which is in turn bounded by t(n)*. I

We conclude this section with a corollary which summarizes some of the
relationships between classical complexity classes and expressibility with a constant
number of quantifiers. Recall that the latter notion comes entirely from logic. The
following thus casts the classic problems P = ?PSPACE and L = ?P in a new light.
(L is DSPACE[log n].)

FIRST ORDER EXPRESSIBILITY 91

COROLLARY B.6.

(a) L EASPACE&Mt[log(n), log(n)] = Uk=,,2,,,, Var&Sz[k, log(n)).

(b) p = Ukz,,2,... Var&Sz[k ~“1.
(c) PSPACE = Uk=,,Z ,.,, Var&Sz[k, 2”!7.

C. ALTERNATING PEBBLING GAMES

In this section we present a new pebbling game to obtain lower bounds for
Var&Sz(w.o. <). This game is a modification of Ehrenfeucht-Fraisse games. (See
[101 or [6].) Two players play the p-pebble, m move game on a pair of structures G,
H. Player I places pebbles on points from G or H trying to demonstrate a difference
between them while Player II matches these points trying to keep the structures
looking the same. We will see in Theorem C-1 that if Player II has a win for the p-
pebble, m-move game on G and H, then G and H agree on all properties expressible
in VarUz(w.0. <)[p, m].

DEFINITION. The p-pebble, m-move game on G and H is defined as follows:
Initially the pebbles, g, .=e g,, h, . . . h,, are off the board. On move i, Player I picks
up a pebble gj (or h,), 1 < j < p, and places it on a vertex of G (or H). Player II
answers by placing hj (or gj) on a corresponding point of H (or G). Let gi(i) be the
point on which gj is sitting just after move i. After each move i, 0 < i < m, detine the
mapfi as follows.

fi : CG -+ CH, gj(i) -+ h,(i).

The mapA takes the constants in G to the constants in H, and chosen points in G
to the respective chosen points in H. We say that Player II wins if for each i.
0 < i < m, A is an isomorphism of the induced substructures.

The quantifier rank of a sentence, 9, is the depth of nesting of quantifiers in cp.
Since the quantifier rank of a, is obviously less than or equal to the size of cp, the
following theorem shows that the p, m game gives a Var&Sz[p, m] lower bound on
the expressibility of any property on which G and H differ.

THEOREM C.l. Player II has a winning strategy for the p, m game on G, H if and
only if G and H agree on ail sentences with p variables and quantifier rank m.

We will give the proof, a minor modification of proofs in [10, 51, shortly. First we
will give an example. Consider the 4-pebble, d + l-move game on undirected graphs
G and H where H is disconnected while G is connected with diameter d. See Fig. 1.

Player I wins the game as follows: On the first two moves he puts pebbles h,, h,
on vertices a, b such that a and b are in distinct components of H. Player II must
place g,, g, on some vertices e, f from G. There is a path of length at most d from e
to f: Player I now uses the next d - 1 moves to walk along this path with pebbles g,,

92 NEIL IMMERMAN

H . . .
FIG. 1. The 4, d + 1 game on G and H.

and g, . Player II must answer with a path in H starting at a, and thus never reaching
b. Thus at move d + 1, two pebbles will coincide in G but not in H and Player I wins.

Notice that Player I’s strategy was to follow the following sentence, true in G but
not in H: (Let M(u, u) = E(u, u) or 24 = 0.)

Diam(d) E Vx,Vx,3,x,(M(x,, x0) & 3,x,(M(x,, x,) & 3,x,(M(x,, x0) & aa-

& 3d+lxi(M(xl-i,Xi)&M(xj,x~)) *‘*).

Also note that there is a sentence equivalent to Diam(d) with only three variables
and log(d) + 1 quantifier depth which Player I would have played had he known
about it.

Proof of Theorem C. 1. We prove a slightly stronger result.

Claim. Let 0 < k < p, and for 1 < i < k, let c” and cy be new constants in G and
H respectively. Then the following are equivalent:

(i) Player II has a win for the p-pebble m-move game on G and H when
started with the first k pebbles on cy . .a cl;’ and cr .a. cf, respectively.

(ii) (G, c’; .a. c$ and (H, cy ..a cf) agree on all sentences, S, with new
constant symbols c, e. + ck, variables xi +. + xp, quantifier rank m, and such that
nowhere in S does ci occur within the scope of a quantifier for xi.

Note that with k = 0 the claim reduces to what we need to show. We prove the
claim by induction on m:

Base case. If m = 0 then (G, cy ..a cf) and (H, cy ... cf) agree on all quantifier
free sentences if and only if the map from the constants in G (including the new ones)
to the respective constants in H is an isomorphism. That is, if and only if Player II
has won the O-move game.

FIRST ORDER EXPRESSIBILITY 93

Znductive step: Assume the claim for all m’ < m.

(i) 3 (ii). Suppose (i) holds but (ii) does not, and let S be the sentence of quan-
tifier rank m on which (C, cy . . . c:) and (H, cy ... cf) disagree. If S is of the form
74, or A&B, then the structures must disagree on one of A or B. Thus we may
assume that S is of the form 3x,(M(x,)), and (G, c? ... c:) + S, while
(H, cy . . . c:) I= 1s. Player I now places pebble g, on some vertex g,(1) from G so
that (G, g,(l), c! ... cf) + M(c,). Player II must reply by putting h, on some h ,(1)
such that (H, h,(l), cy .a. cf) + lM(c,). Thus Player II still has a winning strategy
for the m - 1 move game, and the two structures differ on M(c,), a sentence of quan-
tifier rank m - 1 in which no ci occurs within the scope of some quantifier for xi.
This violates the inductive assumption.

(ii) 3 (i). Assume (ii) and let Player I move placing, let us say, pebble, g, on
gl(l). Consider the finite collection (up to equivalence) of sentences S,(x,),..., S,(x,)
in the language of G together with variables x, . .. xp, constant symbols c2 +.. ckr of
quantifier rank m - 1, such that no ci occurs within the scope of a (Qxi) and such
that (G, g,(l), cy .+’ cf) + S,(c,).

Let

s = (3x,) (A Si(x’)). i=l...r

Thus

Thus, by our assumption, (H, cy a-- c:) also satisfies S. Let h,(1) be a witness in
H for x1. Now (G, g,(l), cf ‘.. I$) and (H, h,(l), cy .a. cf) agree on all sentences,
R, of quantifier rank m - 1, variables x, ..a xp, and constants c, ... ck such that no ci
occurs within the scope of a quantifier for xi. This is because any such R satisfied
by G would be an S,(c,) above and therefore also satisfied by H.

Our inductive assumption now shows that Player II wins the remaining m - 1
moves of the game, proving the claim. This proves Theorem C. 1. a

Define G =var,kJ H to mean that G and H agree on all k-variable sentences in the
language of their similarity type. What does it mean when G and H agree on all k
variable sentences without ordering? Theorem C.l shows that if Player I chooses any
r-tuple of points from G, r < k, then there is a corresponding isomorphic r-tuple from
H. Furthermore if Player I adds a point to the tuple in G, and r < k, then there is a
corresponding points in H which may be added preserving the isomorphism.

We have thus deduced the existence of a relation R on pairs of r-tuples from G and
r-tuples from H, i.e., R c lJrzo ,..., k Gk x Hk, satisfying:

(a) NC >, ()).
(b) R(g,h)*g=h.

94 NEILIMMERMAN

Cc> (R(g, h) & I 4-c k) * (Vx E G 3~ E HR((g, x), (h, Y)) & (Vy E H 3x E
G i((g, XL @, Y))>.

(d) Ifg=(g,...g,), let gi=(g,...g,-i,gi+,...gr) be the r-l tuple with
gi removed. Then:

R(g,h)aR(ti9h^i)V i = l,..., r.

PROPOSITION C.2. G zvar,kl H if and only if there exists a relation R satisfying
(a)-(d) above.

Proof: It should be clear that R corresponds to Player II’s winning strategy in the
k-pebble game on G and H. Thus if such an R exists then Player II can always win
by matching chosen r-tuples in G with R-related r-tuples in H. Assume
R((g,(s) --a g&)h (k(s) .a. MS))), i.e., the chosen points after move s are R-
related. Think of Player I’s moving of pebble gi as two actions. First he picks up gi.
By (d) we know R(gi(s), h,(s))). Next he places gi back on some new point gi(s + 1).
By (c) there exists y in H preserving the relation, i.e., with hi(s + 1) = y,
R(g(s + l), h(s + 1)). In particular g(s + 1) and h(s + 1) are isomorphic, and
Player II wins.

Conversely, if G --var,k, H then define R from Player II’s winning strategy as
follows:

R = {((x, *** x1), (Yl ..a y,)) 1 The k-pebble game on G and H, started with gi(0) = xi,

Ig,(O)= yi, i= 1 . . . r, is a forced win for Player II. }

The fact that Player II has a winning strategy for the k-pebble game on G and H
gives us (a). Parts (b), (c), and (d) follow from the rules of the game. 1

D. LOWER BOUNDS FOR Var(w.0. <O)[k]

In this section we will use the alternating pebbling games to prove lower bounds on
the number of variables needed to express certain combinatorial properties in the
language without <. Recall that the results of section A and B use descriptions of
Turing machine computations in first order languages containing <. Thus the results
of this section do not translate directly into lower bounds for time and space. Their
value is as an intuition and a starting point for similar lower bounds in stronger
languages.

Following [8] and [2], we write certain axioms for graphs. First:

To = VxVy(+W, x) 8~ [E(x, Y) * E(Y, x)]).

T, says that G is loop free and undirected. We will assume in this section that all
graphs satisfy T,,.

Fix k and let 1 < j < k - 1. The following sentences, S,,j, say that for any choice
of distinct vertices, x, ... xj and xj+, . . . xkml, there exists a vertex y different from

FIRST ORDER EXPRESSIBILITY 95

the xts with an edge to every vertex in the first groups and no edge to the second
group.

Sk.j- vx, .** vx,-, ((A
O<i<r<k

.i..r)

*3Y

[

A E(Y,xi)& /j (Y+xi&7E(Y3xi) *

O<i<j+l j<i<k 11

We use the Sk,j)s to write Tk, an axiom which says that every conceivable
extension of a configuration of k - 1 points to a configuration of k points is
realizable.

T, z /j S,.
O<j<k

A counting argument shows that almost all graphs satisfy T,. Define P,(S), the
probability that a graph of size n satisfies a sentence S, as follows:

P,(S)=#{GIGt=SS,IGI=n}/#{GIIGJ=n}.

THEOREM D.l [8,2]. For anyfixed k > 0, lim,+,[P,(T,)] = 1.

Proof: Given j < k, and distinct vertices x, . . . xk-i what is the probability that a
random vertex y is a witness for Sk,j? It’s just the probability that the k - 1 possible
edges E(xi, y) are correctly present or absent, i.e., 1/2k-‘.

Thus the probability that none of a random n - (k - 1) vertices is a witness for
Sk,j is:

n-k+1 a , where a = 1 - (1/2k-‘).

The probability that any of the fewer than nk sequences, x, ... xk-, ,j, cause T, to
fail is less than

nk . a n-k+1

and this last probability goes to 0 as n goes to infinity. fl

We are interested in T, because of the next result:

THEOREM D.2. For any two graphs G and H,

(G I= Tk 8z HI= T,) 3 G =Var,k, H.

Proof: Tk says that every k - 1 tuple may be extended to a k tuple in any
conceivable way. It follows that the relation:

R = {((a, ... a,), (b, -~.b,))IO&r<k,aiEG, b,.EH, & (a, -sea,)-(bl s..b,)}

satisfies (a)-(d) of Proposition C.2. Therefore G svarlkl H. 1

571/25/1-l

96 NEILIMMERMAN

COROLLARY D.3. Graph Isomorphism is not in Var(w.0. <)[k].

Proof: If GraphIso where in Var(w.0. <)[k] then there would be sentences F,,
F, . . . with k variables each such that for graphs G and H of size n,

Here (G, H) is the structure consisting of a disjoint union of G and H with a
monadic predicate true for exactly the points of G. By Theorem D.l there exist two
non-isomorphic graphs G, and Hk both satisfying T,. Clearly (Gk, Gk) + F,. But by
Theorem D.2, G, -varIk, H,. It follows that Player II wins the k-pebble game on
(Gk,Hk) and (Gk, G,J. H er strategy is to answer points in the first component with
the same point in the other copy of G,, and to use Player II’s winning strategy for the
k-pebble game on G, and H, to answer moves in the second component. This
strategy preserves an induced isomorphism between points chosen in each component
and is thus a win for Player II. It follows that (Gk, G,) -vartkl (Gk, Hk). Thus,

(Gk, Hk) t= F, , but G, is not isomorphic to H,.

This contradiction proves the corollary. I

Almost all graphs have a Hamilton circuit; however, in [8] it is shown that for any
k there is a graph H, which satisfies Tk and yet has no Hamilton circuit. It follows
that there exist two graphs, G,, Hkr both satisfying T, and yet differing on the
property of having a Hamilton circuit. Thus:

THEOREM D.4. “Hamilton Circuit” is not in Var(w.0. <)[*].

Using similar techniques we can show the following:

THEOREM D.5. Clique(k + 1) is not in Var(w.0. <)[k].

Proof. Recall that Clique(k + 1) is the set of graphs with a complete subgraph of
size k + 1. Clearly any graph satisfying T,, 1 is in Clique(k + 1). We show that there
exists a graph H,i= T, such that H, has no k + 1 clique. Define the graph
A, = (I’,,, E,) as follows:

V,,={(i,j)]l <i<k, l<:j<n},

Notice that A, has no k + 1 clique because any set of k + 1 vertices will have two
with the same first coordinate.

Let A; = (V,, E;) be a random subgraph of A,, i.e. each edge of E, has
probability l/2 of being in EL. Now lim,,, Prob(A; K T,) = 1. (This follows from
the same argument as in the proof of Theorem D.1, noting that every k - 1 tuple
from V,, has n points potentially satisfying T,.) Let H, be such a random AL. Thus
H, satisfies Tk but has no k + 1 clique. 1

FIRST ORDER EXPRESSIBILITY 97

F. CONCLUSIONS

We feel that first order expressibility is a natural way to obtain both upper and
lower bounds. The alternating pebbling games make the finding of optimal
descriptions of graph properties (without ordering) a tractable problem. Furthermore
our simulation theorems show that optimal sentences (with ordering) for a property C
can be easily translated to nearly optimal algorithms for checking C.

The following general areas of exploration are sugested:

(1) Find upper and lower bounds on Var&Sz(w.o. ,<) for a collection of graph
problems such as planarity, graph homeomorphism, vertex matching, etc.

(2) Improve the simulations of Section B, and then try to prove optimality.
Exactly how many variables are needed to describe a DZYM,?Z[n”] computation?

(3) Develop techniques to prove lower bounds on Var&Sz, i.e., with ordering.
This seems worthwhile but hard. One possible method would be to consider sentences
true for “most” orderings. See [17,4] for some results concerning the probability that
a formula is satisfied by a large finite structure. Other possible techniques are
discussed in [13, 151.

ACKNOWLEDGMENTS

Warm thanks to Juris Hartmanis, my thesis adviser. Many thanks to John Hopcroft, Albert Meyer.
and Michael Morley for helpful technical discussions. Thanks to MIT’s Laboratory for Computer
Science for letting me visit since June, 1980. Much thanks to the referees whose patient and thorough
readings of this paper have helped to remove many of the ambiguities and errors.

REFERENCES

I. A. AHO, J. HOPCROFT. AND J. ULLMAN, “The Design and Analysis of Computer Algorithms,”
Addison-Wesley, Reading, Mass., 1974.

2. A. BLASS AND F. HARARY, Properties of almost all graphs and complexes, J. Graph Theory 3
(1979), 225-240.

3. S. CHANDRA AND L. STOCKMEYER, Alternation, “Proc. 17fh FOG, 1976,“~~. 98-108.
4. K. COMPTON, Ph.D. Thesis, University of Wisconsin, Madison, 1980.
5. A. EHRENFEUCHT, An application of games to the completeness problem for formalized theories.

Fund. Math. 49 (1961), 129-141.
6. H. ENDERTON, “A Mathematical Introduction to Logic,” Academic Press, New York, 1972.
7. R. FAGIN, “Generalized first-order spectra and polynomial-time recognizable sets, in “Complexity of

Computation,” (R. Karp, Ed.), SIAM-AMS Proc. No. 7, pp. 43-73, Amer. Math. Sot.. Providence,
R. I., 1974.

8. R. FAGIN, Probabilities on finite models, J. Symbol Logic 41, No. I (1976), 5(r58.
9. M. FISCHER, AND M. RABIN, Super-exponential complexity of Presburger arithmetic, in “Complexity

of Computation” (R. Karp, Ed.), SIAM-AMS Proc. No. 7, pp. 27-41, Amer. Math. Sot..
Providence, R.I., 1974.

10. R. FRAISSE, Sur les classifications des systems de relations. Publ. Sci. Unio. Alger 1 (1954).

98 NEIL IMMERMAN

11. J. HARTMANIS, N. IMMERMAN, AND S. MAHANEY, One-way Log tape reductions, in “Proc. 19th
FOCS, 1978,” pp. 65-72.

12. N. IMMERMAN, Length of predicate calculus formulas as a new complexity measure, in “Proc. 20th
FOCS, 1979,” pp. 33747.

13. N. IMMERMAN, “First Order Expressibility as a New Complexity Measure,” Ph.D. Theis, Cornel
University, August, 1980.

14. N. IMMERMAN, Upper and lower bounds for first order expressibility, in “Proc. 21st FOCS, 1980,”
pp. 74-82.

15. N. IMMERMAN, Number of quantifiers is better than number of tape cells, J. Comput. System Sci., in
press.

16. D. KOZEN, On parallelism in Turing machines, in “Proc. 17th FOCS, 1976,” pp. 89-97.
17. J. LYNCH, Almost sure theories, Ann. Math. Logic 18 (1980, 91-135.
18. J. REIF, Universal games of incomplete information, in “Proc. 11th SIGACT, 1979,” pp. 288-308.
19. W. Ruzzo, Tree-size bounded alternation, in “Proc. 11th SIGACT, 1979,” pp. 352-359.
20. W. Ruzzo, On uniform circuit complexity, in “Proc. 20th FOCS, 1979,” pp. 3 12-3 18.
21. W. SAVITCH, Maze recognizing automata and nondeterministic tape complexity, J. Comput. System

Sci. 7 (1973), 389-403.
22. L. SUDBOROUGH, On the tape complexity of deterministic CFL’s J. Assoc. Comput. Mach. No. 3

(1978), 405-414.

