Upper and Lower Bounds for First Order Expressibility*

Neil Immerman
Department of Mathematics, Tufts University, Medford, Massachusetts 02155, and Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Received January 27, 1981; revised October 10, 1981

$$
\begin{aligned}
& \text { We study first order expressibility as a measure of complexity. We introduce the new class } \\
& \text { Var\&Sz|v(n),z(n)| of languages expressible by a uniform sequence of sentences with } v(n) \\
& \text { variables and size } O|z(n)| \text {. When } v(n) \text { is constant our uniformity condition is syntactical and } \\
& \text { thus the following characterizations of } P \text { and } P S P A C E \text { come entirely from logic. } \\
& \qquad N S P A C E|\log n| \subseteq \bigcup_{k=1,2, \ldots} \operatorname{Var\& Sz|k,\operatorname {log}(n)|\subseteq DSPACE|\operatorname {log}^{2}(n)|,} \\
& \qquad P=\bigcup_{k=1,2, \ldots} \operatorname{Var\& Sz|k,n^{k}|,} \\
& \qquad P S P A C E
\end{aligned}
$$

The above means, for example, that the properties expressible with constantly many variables in polynomial size sentences are just the polynomial time recognizable properties. These results hold for languages with an ordering relation, e.g., for graphs the vertices are numbered. We introduce an "alternating pebbling game" to prove lower bounds on the number of variables and size needed to express properties without the ordering. We show, for example, that k variables are needed to express Clique (k), suggesting that this problem requires DTIME $\left|n^{k}\right|$.

Introduction and Summary

This article studies the size and the number of variables of first order sentences needed to express certain properties. Each of these expressibility parameters measured individually is closely related to Turing machine space complexity. When variables and size are measured simultaneously they correspond to simultaneous space and time. Thus the computational complexity of testing if an input has a given property can be measured by determining the size and number of variables needed to express the property in the language of mathematics. This insight suggests new ways to obtain upper and lower bounds on a problem's complexity. Upper bounds are

[^0]obtained by expressing the property succinctly. Lower bounds can be demonstrated by showing that two structures which differ on the property in question agree on all sentences of a certain size and containing a certain number of variables.

In [12] we proposed studying the complexity of a property, C, via the size of a sentence from first order logic needed to express C. We showed there that the memory space needed to check if a given input has property C is closely related to the size of C 's smallest first order description. More precisely:

$$
N S P A C E[f(n)] \subseteq \operatorname{Size}\left[f(n)^{2} / \log (n)|\subseteq D S P A C E| f(n)^{2} \mid\right.
$$

Here Size $[g(n)]$ is the family of all properties expressible by a uniform sequence of sentences, F_{1}, F_{2}, \ldots, where F_{n} has $O[g(n)]$ symbols.

Several papers by Ruzzo [19, 20], on simultaneous resource bounds motivated us to find analogous results for first order expressibility. First we reexamined our proof of the above containment for $f(n)=\log (n)$, i.e.:

$$
N S P A C E[\log (n)] \subseteq \text { Size } \mid \log (n)] \subseteq D S P A C E\left|\log ^{2}(n)\right|
$$

and noticed that only a constant number of variables were needed. Furthermore while the existential quantifiers range over the elements of the universe of the input, (i.e., 1 to n), the universal quantifiers could be boolean. Thus we let $\operatorname{Var\& } S z|v(n), z(n)|$ be the class of properties uniformly expressible with exactly $v(n)$ variables and size $O|z(n)|$. Also let $\operatorname{Var\& } \operatorname{Sz}(B \forall)|v(n), z(n)|$ be the same class with the additional restriction that the universal quantifiers are boolean. Let "*" abbreviate $O[1 \mid$. We show that:

$$
\begin{aligned}
N S P A C E[\log (n)] & \left.\left.\subseteq \operatorname{Var\& Sz}(B \forall)\right|^{*}, \log (n)|\subseteq \operatorname{Var\& Sz}|^{*}, \log (n)\right] \\
& \subseteq \operatorname{Size}|\log (n)| \subseteq D S P A C E\left|\log ^{2}(n)\right| .
\end{aligned}
$$

Although none of the containments above are known to be proper, we conjecture that all four are. Savitch's simulation of NSPACE $\left[\log (n) \mid\right.$ by DSPACE $\left[\log ^{2}(n) \mid\right.$ may be optimal, but a model theoretic approach to separating the two classes would be to prove

$$
\operatorname{Var} \& \operatorname{Sz}(B \forall)\left[{ }^{*}, \log (n)\right] \neq \operatorname{Sizc}[\log (n)] .
$$

We find that $\operatorname{Var\& } \operatorname{Sz}(B \forall)\left[{ }^{*} \log (n)\right]$ is identical to the natural class $\log (\mathrm{CFL})$-those languages \log-space reducible to some context free language. We will also see that the third term in the above chain, $\operatorname{Var} \& \mathrm{Sz}^{*}, \log (n) \mid$, is equal to ASPACE\&Alt $[\log (n), \quad \log (n) \mid$-the class of languages accepted by an $A S P A C E[\log (n) \mid$ Turing machine which makes only $O|\log (n)|$ alternations between existential and universal states.

Once the idea of counting distinct variables was raised it was natural to relax the size restriction. Let $\left.\left.\operatorname{Var}\right|^{*}, n^{*}\right]=\bigcup_{k=1,2, \ldots} \quad \operatorname{Var\& Sz}\left[k, n^{*} \mid\right.$-those properties expressible with a constant number variables in polynomial size sentences Var|* ${ }^{*} n^{*} \mid$ is identical to polynomial time!

One weakness of our previous definition of expressibility size is that it makes use of the notion of Turing machines in the definition of a "uniform" sequence of sentences. At the time our feeling was that the uniformity condition was an imperfect attempt to capture the notion that we really had one sentence with a variable number of quantifiers, just as we have the notion of one Turing machine with a variable amount of space. Indeed, the use of constantly many variables leads us to the realization that there is a syntactic uniformity-the nth sentence of a $\operatorname{Var\& } \mathrm{Sz}[k, z(n)]$ property is just $z(n)$ repetitions of a fixed block of k quantifiers. With this new definition of uniformity, $\operatorname{Var}\left[{ }^{*}, n^{*}\right]$ is a notion entirely from logic.

Now that we know that $\operatorname{DTIME}\left[n^{k}\right]$ is closely related to $\operatorname{Var}\left[{ }^{*}, n^{*}\right]$ it is useful to determine which graph properties can and cannot be expressed with k variables. In Section C we describe a combinatorial game, a modification of Ehrenfeucht-Fraisse games, (see [6] or [10]), with which we can prove lower bounds on what can be expressed in k variables. These new games are an alternating version of pebbling games.

Our definition of Var\&Sz gives the sentences access to some arbitrary ordering relation, \leqslant, on the universe of the input structures. Without this added relation we cannot simulate Turing machines-there is no way to say, "Now the Turing machine moves its input head one space to the right." We showed in [12] that \leqslant is not needed to express certain "natural" graph problems such as connectivity; however, it is essential for other uses such as counting the parity of a totally disconnected graph.

The games mentioned above give us lower bounds only on what can be expressed without the ordering predicate. We show, for example, that Clique (k)-the existence of a complete subgraph on k vertices-cannot be expressed with $k-1$ variables, without \leqslant. (Of course k variables suffice-just say there exist $x_{1} \cdots x_{k}$ forming a clique.) This is plausability argument that Clique(k) is not in $\operatorname{Var}\left[k-1, n^{*}\right]$. If we could prove the latter result, i.e., that $\operatorname{Clique}(k)$ cannot be expressed with $k-1$ variables and polynomial size in the language with \leqslant, then it would follow that the general clique problem is not in $\operatorname{Var}\left[{ }^{*}, n^{*}\right]$. From this it would follow that $P \neq N P$.

In the following pages we give: (A) Definitions and motivations; (B) Some of the main relationships between expressibility and Turing machine Time and Space; (C) The alternating pebbling game; (D) Probabilistic graph arguments following [8, 2| showing that Hamilton Circuit, Clique, and GraphIso are not in Var(w.o. \leqslant) [*]; and (E) Conclusions and directions for future research.

A. Definitions and Motivations

We propose to study the complexity of a condition, C, by asking, "How difficult is to express C?" For this expression we choose the natural first order language of the objects under consideration.

Think of a directed graph, for example, as a universe, $V=\{0,1, \ldots, n-1\}$, the vertices, together with a binary edge relation $E(-,-)$ on V. This is a logical structure
of similarity type $\tau_{G}=\langle E(-,-)\rangle$. The language of a type, $\tau, L[\tau]$, consists of the sentences built up from the symbols of τ using the logical connectives \&, "or", \neg, \Rightarrow, variables $x, y, \ldots,=, \leqslant$ and quantifiers, $\exists x$ and $\forall x$, ranging over the universe. The two relations, $=$ and \leqslant, refer to the equality relation and the natural ordering on the universe. For example, consider the following sentence from $L\left|\tau_{G}\right|$:

$$
S_{1} \equiv \forall x \exists y \mid E(x, y) \text { or } E(y, x) \mid
$$

S_{1} says that each vertex, x, has an edge coming out of it or an edge going into it. A graph satisfies S_{1} (in symbols $G \models S_{1}$) if it has no isolated vertices. Note that every graph G "understands" every sentence S from $L\left|\tau_{G}\right|$, i.e., $G \vDash S$ or $G \vDash \neg S$.

To motivate the definitions for variable and size expressibility we now consider a stepwise refinement of sentences expressing a specific problem. Let GAP be the set of directed graphs G with specified points a and b such that there is a path in G from a to b. In symbols:

$$
G A P=\left\{G \mid a \rightarrow^{*} \rightarrow b\right\} .
$$

$G A P$ is known to be complete for $\operatorname{NSPACE}[\log (n)]$. (See [21].) We show in |13| that $G A P$ is complete in a very strong sense-every problem C in NSPACE $|\log (n)|$ has a first order sentence translating all instances of C into instances of $G A P$.

To express GAP we will write down formulas $P_{n}(a, b)$ meaning, "There is a path of length at most n from a to b." We define P_{n} by induction as follows:

$$
\begin{align*}
& P_{1}(x, y) \equiv(x=y) \text { or } E(x, y) \tag{1}\\
& P_{n}(x, y) \equiv \exists z\left(P_{n / 2}(x, z) \& P_{n / 2}(z, y)\right) \tag{2}
\end{align*}
$$

Equation (2) defines P_{n} in a way that increases the quantifier rank, i.e., maximum nesting of quantifiers, by one each time n is doubled. However $P_{n / 2}$ is written twice on the right so the size of this P_{n} is twice the size of $P_{n / 2}$. We can alleviate this problem using the "abbreviation trick" (see, e.g., [9]). The trick uses universal quantifiers to permit us to write $P_{n / 2}$ only once on the right. Thus:

$$
\begin{equation*}
P_{n}(x, y) \equiv \exists z \forall u \forall v\left([u=x \& v=z \text { or } u=z \& v=y] \Rightarrow P_{n / 2}(u, v)\right) . \tag{3}
\end{equation*}
$$

We have now written P_{n} with $O[\log (n)]$ symbols, thus proving that $G A P$ is in Size $[\log (n)]$, to be defined.

Continuing in our refinement notice that when we write $P_{n / 2}(u, v)$ we may reuse x, y, z-their current values are no longer needed. Being slightly wasteful for the sake of clarity, write:

$$
\begin{equation*}
P_{n}(x, y) \equiv \exists z \forall u \forall v\left([u=x \& v=z \text { or } u=z \& v=y] \Rightarrow \exists x \exists y\left|x=u \& y=v \& P_{n / 2}(x, y)\right|\right) . \tag{4}
\end{equation*}
$$

We have succeeded in expressing GAP by a uniform sequence of sentences,
$\left\{P_{n}(a, b) \mid n \geqslant 1\right\}$, such that P_{n} has five variables and size $O[\log (n)]$. This suggests the following:

Definition. A set C of structures of type τ is expressible in $v(n)$ variables and size $z(n)$, (in symbols, C is in $\operatorname{Var} \& S z[v(n), z(n)]$), if there exists a uniform sequence of sentences $F_{1} F_{2} \ldots$ from $L(\tau)$ such that:
a. For all structures G of type τ with $|G| \leqslant n$,

$$
G \in C \leftrightarrow G \vDash F_{n}
$$

b. $\quad F_{n}$ has $v(n)$ distinct variables and a total of $O[z(n)]$ symbols.

As Ruzzo has shown in [20], uniformity conditions may be greatly varied without significantly changing a definition. The following condition will suffice in what follows:

Uniformity Condition (*): The map $n \rightarrow F_{n}$ can be generated in $\operatorname{DSPACE}[v(n) \cdot \log (n)]$ and $\operatorname{DTIME}[z(n)]$.

Of course (*) does not capture our intuitive feeling that the F_{n} 's are all the same sentence with varying numbers of quantifiers. To make the latter notion more precise abbreviate quantifiers with restricted domains as follows:

$$
\begin{aligned}
& (\exists x \cdot M)[\cdots] \equiv z[M \& \cdots] \quad \text { read, "There exists } x \text { such that } M . " \\
& (\forall x \cdot M)[\cdots] \equiv \forall x[M \Rightarrow \cdots] \text { read, "For all } x \text { such that } M . "
\end{aligned}
$$

Now we can write Eq. (4) more compactly as:

$$
\begin{equation*}
P_{n}(x, y) \equiv \exists z \forall u\left(\forall v \cdot M_{3}\right) \exists x\left(\exists y \cdot M_{5}\right) P_{n / 2}(x, y) \tag{5}
\end{equation*}
$$

Here $M_{3}=[u=x \& v=z$ or $x=z \& v=y]$, and $M_{5}=\{x=u \& y=v\rceil$. Let $A \equiv$ $(\exists x \cdot x=a)(\exists y \cdot y=b)$. We can now write the sentences $G A P_{n}$ expressing the existence of a path of length at most n from a to b in a very neat form:

$$
\begin{equation*}
G A P_{n} \equiv A\left[(\exists z)(\forall u)\left(\forall v \cdot M_{3}\right)(\exists x)\left(\exists y \cdot M_{5}\right)\right]^{\log (n)} P_{1} \tag{6}
\end{equation*}
$$

Equation (6) give a model for the following totally syntactical definition of uniformity for $\operatorname{Var\& Sz}[v, z(n)]$:

Uniformity Condition (**): There exist constant c, prefix A, and quantifier free formulas $B, M_{1} \cdots M_{v}$ all of which have variables only $x_{1} \cdots x_{v}$, such that:

$$
F_{n} \equiv A\left[\left(Q_{1} x_{1} \cdot M_{1}\right) \cdots\left(Q_{v} x_{v} \cdot M_{v}\right)\right]^{c \cdot z(n)} B
$$

We adopt $\left({ }^{* *}\right)$ as our definition of uniformity for $\operatorname{Var\& ~} \operatorname{Sz}[v, z(n)]$ when v is a constant, otherwise we use (*). Equation (6) demonstrates that GAP is in Var\&Sz[5, $\log (n)]$. More generally we can show:

Theorem A.1. (a) For $s(n)>O[\log (n)]$,
$N S P A C E \mid s(n)] \subseteq \operatorname{Var\& Sz}\left[O[s(n) / \log (n)], s(n)^{2} / \log (n)\right] \subseteq D S P A C E\left[s(n)^{2} \mid\right.$.
(b):

$$
\left.\left.N S P A C E[\log (n)] \subseteq \operatorname{Var\& Sz}\right|^{*}, \log (n)\right] \subseteq D S P A C E\left|\log ^{2}(n)\right|
$$

Proof. The proof of (a) is nearly the same as for Theorem 2 in |15|. We showed there that $\operatorname{NSPACE}[s(n)] \subseteq \operatorname{Size}\left[s(n)^{2} / \log (n)\right] \subseteq D S P A C E\left[s(n)^{2} \mid\right.$. That proof noted that a Turing machine instantaneous description (ID) of size $s(n)$ could be coded in $O \mid s(n) / \log (n)]$ variables since the variables range over an n element universe. Thus using Eq. (3) we asserted the existence of a computation path of length $c^{s(n)} ; O|s(n)|$ $I D$'s were needed. For the proof of the first inclusion in (a) we use Eq. (4) instead. Thus only a constant number of ID's, requiring $O[s(n) / \log (n) \mid$ variables, must be remembered at once.

Part (b) seems to be a special case of (a) but the proof of the first inclusion is more subtle because we must satisfy the syntactic uniformity condition $\left({ }^{* *}\right)$. The following proof is quite technical and may easily be skipped at first reading without affecting the understanding of the remainder of the paper.

We are given a nondeterministic Turing machine M running in space $\log (n)$ and accepting a subset of all the structures of some type. Assume for convenience that M accepts a set of graphs, i.e., $\tau=\langle E(-,-)\rangle$, and that the inputs are adjacency matrices. We must build sentences φ_{n} expressing the acceptance property of M for graphs of size n. Furthermore the φ_{n} 's must be syntactically uniform, have constantly many variables, and be of size $O[\log (n)]$.

Since the variables range over an n-element universe they may be thought of as $\log (n)$ bits of memory. We can thus code M s $\log (n)$ size instantaneous description (ID) with a constant number of variables. An $I D$ is coded as $\left\langle q, r_{1}, r_{2}, w_{1} \cdots w_{k}, h_{1} \cdots h_{k}\right\rangle$, where q gives the state and $w_{1} \cdots w_{k}$ and $h_{1} \cdots h_{k}$ code the $k(\log (n))$ bits of work tape, and the position of the work head, respectively. Finally, r_{1} and r_{2} encode the read head position, i.e., they indicate that the read head is looking at the cell corresponding to the pair $\left\langle r_{1}, r_{2}\right\rangle$ in the adjacency matrix. Thus the read head is looking at a 1 if $E\left(r_{1}, r_{2}\right)$ holds for the input graph, otherwise it is looking at a 0 . Note that the ordering \leqslant is used to indicate that the read head moves one space to the left or right. This is the crucial use of \leqslant. A less important use is to code and decode $\log (n)$ bits as a single variable.

It is a small matter to recognize M 's initial and final $I D$'s. We will show how to write the formula $P_{1}\left(I D_{a}, I D_{b}\right)$ meaning that $I D_{b}$ follows from $I D_{a}$ in one move of M. We then use Eq. (6) to express $P_{n^{k}}\left(I D_{i}, I D_{f}\right)$, that there is a computation path of length n^{k} from M 's initial $I D$ to M 's final $I D$.

To write P_{1} we must be able to say, "The symbol being read by the work head is 0 ." It is thus necessary to decode the i th bit of a vertex's number. We will identify a vertex with its number. Let $O N_{n}(x, y)$ mean that $y<\log (n)$ and bit y of x is a 1 .

Proof. We build up to $O N_{n}(x, y)$ using a sequence of inductive definitions and repeatedly using an abbreviation trick as in [9]. We will use the symbols 0 and 1 for convenience but they are of course definable from \leqslant. Define the successor relation by

$$
\operatorname{Suc}(x, y) \equiv(x \leqslant y) \&(x \neq y) \&(\forall z)[(x \leqslant z) \Rightarrow(z=x \text { or } y \leqslant z)]
$$

(a) Define $\operatorname{Plus}_{n}(x, y, z)$ to mean $(x \leqslant n)$ and $x+y=z$:
$\operatorname{Plus}_{1}(x, y, z) \equiv(x=0 \& y=z)$ or $(x=1 \& \operatorname{Suc}(y, z))$.
$\left.\operatorname{Plus}_{2 k}(x, y, z) \equiv \exists u_{1}\right\lrcorner u_{2} \exists u_{3}\left(\operatorname{Plus}_{k}\left(u_{1}, u_{2}, x\right) \& \operatorname{Plus}_{k}\left(u_{1}, y, u_{3}\right) \& \operatorname{Plus}_{k}\left(u_{2}, u_{3}, z\right)\right)$.
Using the abbreviation trick:

$$
\begin{aligned}
& \operatorname{Plus}_{2 k}(x, y, z) \equiv \exists u_{1} \exists u_{2} \exists u_{3} \forall s_{1} \forall s_{2}\left(\forall s _ { 3 } \cdot \left[\left(s_{1}=u_{1} \& s_{2}=u_{2} \& s_{3}=x\right)\right.\right. \text { or } \\
& \left.\left.\left(s_{1}=u_{1} \& s_{2}=y \& s_{3}=u_{3}\right) \text { or }\left(s_{1}=u_{2} \& s_{2}=u_{3} \& s_{3}=z\right)\right]\right) \text { Plus }_{k}\left(s_{1}, s_{2}, s_{3}\right)
\end{aligned}
$$

Let

$$
\begin{aligned}
A_{1} \equiv & {\left[\left(s_{1}=u_{1} \& s_{2}=u_{2} \& s_{3}=x\right) \text { or }\left(s_{1}=u_{1} \& s_{2}=y \& s_{3}=u_{3}\right)\right.} \\
& \text { or } \left.\left(s_{1}=u_{2} \& s_{2}=u_{3} \& s_{3}=z\right)\right]
\end{aligned}
$$

and

$$
A_{2} \equiv\left(x=s_{1} \& y=s_{2} \& z=s_{3}\right)
$$

We thus obtain a syntactically uniform form of Plus:

$$
\operatorname{Plus}_{n}(x, y, z) \equiv\left[\exists u_{1} \exists u_{2} \exists u_{3} \forall s_{1} \forall s_{2}\left(\forall s_{3} \cdot A_{1}\right) \exists x \exists y\left(\exists z \cdot A_{2}\right)\right]^{\log (n)} P_{1}(x, y, z)
$$

(b) Define $M_{n}(p, q, r)$ to mean $(p \leqslant n \& r \leqslant n \& p q=r)$:

$$
\begin{aligned}
& M_{1}(p, q, r) \equiv(p=r=0) \text { or }(p=1 \& q=r \&(r=0 \text { or } r=1)) . \\
& M_{2 k}(p, q, r) \equiv \exists u_{1} \exists u_{2} \exists u_{3} \exists w_{1} \exists w_{2}\left(M_{k}\left(u_{1}, q, w_{1}\right) \& M_{k}\left(u_{2}, q, w_{2}\right) \&\right. \\
&\left.\operatorname{Plus}_{k}\left(u_{1}, u_{2}, p\right) \& \operatorname{Plus}_{k}\left(w_{1}, w_{2}, r\right)\right) .
\end{aligned}
$$

This definition works because $p=u_{1}+u_{2}$, and so $p q=u_{1} q+u_{2} q$. To put M_{n} into syntactically uniform we need a lemma.

Lemma A. 3 "Combining Lemma". Suppose that $A_{n}(x)$ can be written in syntactically uniform form

$$
A_{n}(x) \equiv[A B L O C K]^{\log n} A_{0}(x)
$$

and suppose that B_{n} may be defined inductively as

$$
B_{2 m}(y) \equiv\left(Q_{1} y_{1}\right) \cdots\left(Q_{k} y_{k}\right) R\left(y, A_{m}, B_{m}\right)
$$

where R is a quantifier free formula. Then B_{n} may be written in the syntactically uniform form,

$$
B_{n}(x) \equiv[B B L O C K]^{\log n} B_{0}(x) .
$$

Proof. We must combine occurrences of A_{m} and B_{m} in R into a single occurrence of a formula C_{m} of size $O[\log m]$. $C_{m}(\alpha, x, y)$ will be equivalent to:

$$
\left(\alpha=0 \Rightarrow A_{m}(x)\right) \&\left(\alpha=1 \Rightarrow B_{m}(y)\right) .
$$

Thus an inductive definition for C_{m} is:

$$
\begin{aligned}
C_{0}(\alpha, x, y) \equiv & \left(\alpha=0 \Rightarrow A_{0}(x)\right) \&\left(\alpha=1 \Rightarrow B_{0}(y)\right), \\
C_{2 m}(\alpha, x, y) \equiv & {[\operatorname{ABLOCK}]\left(Q_{1} y_{1}\right) \cdots\left(Q_{k} y_{k}\right)\left(\left(\alpha=0 \Rightarrow C_{m}(0, x, y)\right)\right.} \\
& \&\left(\alpha=1 \Rightarrow R\left(y, C_{m}(0,-, y), C_{m}(1, x,-)\right)\right), \\
\equiv & {[Q-B-L-O-C-K]\left(P\left(\alpha, x, y, C_{m}\right)\right) . }
\end{aligned}
$$

Here $Q B L O C K$ is a quantifier block and P is a quantifier free formula. By induction $C_{m}(0,-, y)$ is equivalent to $A_{m}(-)$, and $C_{m}(1, x,-)$ is equivalent to $B_{m}(-)$. We will assume that all occurrences of A_{m} and B_{m} in R are positive. Thus so are the occurrences of C_{m} in P. If this were not true then we would expand C_{m} to include such cases as ($\alpha=2 \Rightarrow \neg A_{n}(x)$). Assume that P is in disjunctive normal form, i.e.,

$$
P\left(\alpha, x, y, C_{m}\right) \equiv \bigvee_{i=1 \ldots, i=1 \ldots \max _{i}} F_{i j},
$$

where each $F_{i j}$ is either $C_{m}\left(b_{i j}, x_{i j}, y_{i j}\right)$, or $\tau_{i j}$-a quantifier free formula not involving C_{m}. A formula equivalent to $P\left(\alpha, x, y, C_{m}\right)$ is,

$$
L\left(\alpha, x, y, C_{m}\right) \equiv(\exists i \cdot 1 \leqslant i \leqslant r)(\forall j)(\exists \beta u v \cdot S) C_{m}(\beta, u, v) .
$$

Here S is a conjunction over i and j saying that $C_{m}(\beta, u, v)$ is equivalent to $F_{i j}$. In the case where $F_{i j}$ is $C_{m}\left(b_{i j}, x_{i j}, y_{i j}\right)$ we must assert that $\beta=h_{i j}, u=x_{i j}$, and $v=y_{i j}$. If $F_{i j}$ is $\tau_{i j}$, we merely assert that $\tau_{i j}$ holds. In symbols,

$$
S \equiv\left|(i=1 \& j=1) \Rightarrow T_{11}\right| \& \cdots \&\left[\left(i=r \& j=\max _{r}\right) \Rightarrow T_{r \text { max }_{x}} \mid,\right.
$$

where

$$
\begin{aligned}
T_{i j} & \equiv\left[\beta=b_{i j} \& u=x_{i j} \& v=y_{i j}\right] & & \text { if } F_{i j} \text { is } C_{m}\left(b_{i j}, x_{i j}, y_{i j}\right) \\
& \equiv \tau_{i j} & & \text { if } F_{i j} \text { is } \tau_{i j} .
\end{aligned}
$$

$L\left(\alpha, x, y, C_{m}\right)$ is clearly equivalent to $P\left(\alpha, x, y, C_{m}\right)$. Thus,

$$
\begin{aligned}
C_{2 m}(\alpha, x, y) & \equiv[Q B L O C K] L\left(\alpha, x, y, C_{m}\right) \\
& \equiv[Q B L O C K](\exists i \cdot 1 \leqslant i \leqslant r)(\forall j)(\exists \beta u v \cdot S) C_{m}(\beta, u, v) \\
& \equiv[Q B L O C K](\exists i \cdot 1 \leqslant i \leqslant r)(\forall j)(\exists \beta u v \cdot S)(\exists \alpha x y \cdot E) C_{m}(\alpha, x, y) \\
& \equiv[C B L O C K] C_{m}(\alpha, x, y) .
\end{aligned}
$$

Here E says $(\beta=\alpha \& u=x \& v=y)$. Thus we have written C_{n} and thus B_{n} in the form desired:

$$
C_{n} \equiv[C B L O C K]^{\log n} C_{0}
$$

(c) Define $E X P_{n}(a, b)$ to mean $\left.(a \leqslant \log (n)) \&\left(2^{a}=b\right)\right)$:

$$
\begin{aligned}
E X P_{1}(a, b) & \equiv(a=0 \& b=1) \\
E X P_{2 k}(a, b) & \equiv(\exists c d)\left(E X P_{k}(c, d) \& \operatorname{Suc}(c, a) \& \operatorname{Plus}_{k}(d, d, b)\right)
\end{aligned}
$$

(d) Define $O N_{n}(x, y)$ to mean $(y \leqslant \log (n)) \&$ (the y th bit of x is a 1):

$$
O N_{n}(x, y) \equiv(\exists u v w t)\left(E X P_{n}(y, v) \& u+v+w=x \& M_{n}(v, t, w)\right)
$$

By the combining lemma, $E X P_{n}$ and $O N_{n}$ can be written in a syntactically uniform form. This proves Lemma A. 2 .

Now that we have $O N_{n}(x, y)$ we can write $P_{1}\left(I D_{a}, I D_{b}\right) . P_{1}$ is just a disjunction over all triples of states and read and work symbols saying what the Turing machine M will do in one step. Then as claimed we can write $P_{n^{k}}\left(I D_{i}, I D_{f}\right)$, expressing the acceptance property for M uniformly with $O[1]$ variables and size $O[\log (n)]$.

Let's return to Eq. (4) and notice that in simulating an $N S P A C E[\log (n)]$ property, two universal quantifiers ranging from 1 to n are used. Their purpose is only to make a choice between the first half and the second half of the path. It makes sense to minimize the universal choices when simulating an existential class so we replace " $\forall u \forall v$ " in Eq. (4) by " $\forall b$ ", where b is boolean valued. Thus:

$$
\begin{align*}
P_{n}(x, y) \equiv & \exists z \forall b \exists u[\exists v \cdot[(b=0 \& u=x \& v=z) \text { or }(b=1 \& u=z \& v=y)]) \\
& \exists x(\exists y \cdot[x=u \& y=v)) P_{n / 2}(x, y) . \tag{7}
\end{align*}
$$

Define $\operatorname{Var\& } \mathrm{Sz}(B \forall)[v(n), z(n)]$ to be the family of properties expressible in $v(n)$ variables and size $O[z(n)]$, where the existential quantifiers still range from 1 to n, but the universal quantifiers are boolean. We will always assume that $z(n) \geqslant O[\log n]$, and allow the sentences in question to contains constantly many ordinary universal quantifiers, i.e., $O[\log n]$ bits. This is useful for example in defining 0 and 1 which are needed in the proof of Theorem A.1. For the definition to
make sense we assume that the formulas are in prenex form with all the - 's pushed inside. It is easy to see that $G A P$ is in $\operatorname{Var\& Sz}(B \forall)[k, \log (n)]$, and more generally,

ThEOREM A.4. For $s(n) \geqslant \log (n)$,

$$
N S P A C E[s(n)] \subseteq \operatorname{Var\& Sz}(B \forall)\left[O[s(n) / \log (n)], s(n)^{2} / \log (n) \mid\right.
$$

B. Variables \& Size versus Time \& Space

Recall a definition and result of Sudborough [22]:
DEfinition. $A u x P D A[s(n), t(n)]$ is the class of languages accepted by a two way nondeterministic push down automaton with auxiliary work tape of size $s(n)$, running in time $t(n)$.

FACT (Sudborough). $A u x P D A\left[\log (n), n^{*}\right]=\log (C F L)$.
Ruzzo [19] defines an accepting computation tree of an alternating Turing machine M to be a tree whose root is a starting $I D$ of M, whose nodes are intermediate $I D$'s and whose leaves are accepting configurations. Each universal node, u, has all its possible next moves as offspring, while the existential nodes, e, lead to exactly one of e 's possible next moves. We say that a language C is in $A S P A C E \& T S[s(n), z(n)]$ if all members of C of size n are accepted in a computation tree using space $s(n)$ and tree size, (number of nodes), $z(n)$. Ruzzo relates this new measure to auxiliary pda's via his Theorem 1 which implies:

$$
\text { FACT (Ruzzo). } \quad A S P A C E \& T S\left[s(n), z(n)^{*}\right]=\operatorname{Aux} P D A\left|s(n), z(n)^{*}\right|
$$

Notice that both the tree size model and the AuxPDA charge much more for universal moves than for existential ones. The following theorem shows that we get the same classes in our expressibility measure by restricting all universal quantifiers to be boolean. In a sense we charge $\log (n)$ times as much for a universal choice as for an existental one.

Theorem B.l.

$$
\begin{aligned}
\operatorname{Var\& } \mathrm{Sz}(B \forall) \mid O[v(n)], z(n)] & \subseteq A S P A C E \& T S\left|v(n) \log (n), *^{z(n)}\right| \\
& \subseteq \operatorname{Var\& Sz}(B \forall)|O| v(n)|, v(n) \cdot z(n)|
\end{aligned}
$$

Proof. $\left(\subseteq_{1}\right)$: Given an input structure G with n element universe we can generate F_{n}, the nth sentence in our uniform sequence. We must show that in $A S P A C E \& T S\left[v(n) \log (n), *^{z(n)}\right]$ we can check if $G \vDash F_{n}$.

To test if G satisfies F_{n} we read the sentence from left to right holding the present values of variables $x_{1} \cdots x_{v(n)}$ in our $v(n) \log (n)$ memory. Note that each non-
boolean variable may have value 1 to n corresponding to an element of G. At existential quantifiers, $\exists x_{i}$, we existentially choose some x_{i} from the universe of G and at universal choices, $\forall b_{j}$, we universally choose b_{j}. When we come to atomic predicates, e.g., $E\left(x_{1}, x_{2}\right)$ or $b_{17}=0$, we can check their truth because we have the current values of the variables. Note that this accepting procedure has tree size $*^{z(n)}$ because we may make a binary universal split $O[z(n)]$ times.
$\left(\subseteq_{2}\right)$: Here we follow a proof of Ruzzo [19]. We must express the property $\operatorname{Accept}(r, z)$ which means that the alternating Turing machine M will accept in tree size z when started with $I D r$. We express $\operatorname{Accept}(r, z)$ by choosing a point p in the middle of the tree whose subtree is of size between $1 / 3$ and $2 / 3$ of the original tree. We may assume that the alternating machine has at most two choices at each move. Thus it is obvious that such a p exists. Thus,

$$
\operatorname{Accept}(r, z) \equiv \exists p(\operatorname{Accept}(r,\langle p\rangle,(2 / 3) z) \& \operatorname{Accept}(p,\langle \rangle,(2 / 3) z))
$$

Here $\operatorname{Accept}\left(r,\left\langle q_{1} \cdots q_{k}\right\rangle, z\right)$ means that there is a computation tree of size z starting at r such that each leaf is either an accepting configuration or one of $q_{1} \cdots q_{k}$.

Our only trouble is to ensure that the list $\left\langle q_{1} \cdots q_{k}\right\rangle$ stays of constant size. Whenever the list is of length three we take an extra move to split it in half by finding a point p above two of the three nodes in the list,

$$
\operatorname{Accept}\left(r,\left\langle q_{1}, q_{2}, q_{3}\right\rangle, z\right) \equiv \exists p\left(\operatorname{Accept}\left(r,\left\langle q_{1}, p\right\rangle, z\right) \& \operatorname{Accept}\left(p,\left\langle q_{2}, q_{3}\right\rangle, z\right)\right)
$$

Note that in the above we can add a boolean universal quantifier and use the abbreviation trick to write Accept(-) only once on the right. Also note that the above is a slight lie since we don't know which pair of q 's p will be above. In fact we would have to say,
$\exists p\left(\exists s_{1}, s_{2}, s_{3}\right.$, a permutation of $\left.q_{1} q_{1} q_{3}\right)\left(\operatorname{Accept}\left(r,\left\langle s_{1}, p\right), z\right) \& \operatorname{Accept}\left(p,\left\langle s_{2}, s_{3}\right\rangle, z\right)\right)$.
Thus we can write Accept(-) with a constant number of ID's, i.e., $O[v(n)]$ variables, and the size of the sentence is $O[v(n) \cdot \log (z)]$. This proves Theorem B.1.
$\operatorname{Corollary}$ B.2. $\operatorname{Var\& Sz}(B \forall)[* \log (n)]=\log (C F L)$.
Proof. From the above theorem, together with the results from Ruzzo and from Sudborough:

$$
\begin{aligned}
\operatorname{Var\& Sz}(B \forall)\left[^{*}, \log (n)\right] & =A S P A C E \& T S\left[\log (n), n^{*}\right] \\
& =\operatorname{AuxPDA}\left[\log (n), n^{*}\right] \\
& =\log (C F L) .
\end{aligned}
$$

There is a close relationship between expressibility and the complexity of alter-
nating Turing machines $[3,16]$. As we see in the next theorem the number of variables corresponds to alternating space while the size of the sentence is similar to alternating time.

Theorem B.3. For $s(n) \geqslant \log (n)$,

$$
\begin{aligned}
A S P A C E \& T I M E|s(n), t(n)| & \subseteq \operatorname{Var\& Sz}|O| s(n) / \log (n)|, t(n)| \\
& \subseteq A S P A C E \& T I M E|s(n), t(n) \log (n)|
\end{aligned}
$$

Proof. ($\subseteq)_{1}$ Given an alternating machine M, we must write sentences φ_{n} so that an input G of size n is accepted by M if and only if G satisfies φ_{n}. We write the sentences Accept $t_{t}(x)$ to mean that M started at $I D x$ will accept within t steps. We accomplish this by saying that if x is in an existential state then there is some next $I D y$ such that Accept $_{t-1}(y)$ whereas if x is universal then all next $I D$'s y satisfy Accept $_{t-1}(y)$.

$$
\begin{aligned}
\operatorname{Accept}_{t}(x) \equiv & (\exists y)\left(P_{1}(x, y) \& \operatorname{Accept}_{t-1}(y)\right) \& \\
& \left(" x \text { is universal" } \Rightarrow\left[(\forall y)\left(P_{1}(x, y) \Rightarrow \operatorname{Accept}_{t-1}(y)\right]\right) .\right.
\end{aligned}
$$

Here x and y code $I D$'s of the form $\left\langle q, x_{1}, h_{1}, x_{2}, h_{2}, \ldots, x_{r}, h_{r}\right\rangle$ where $r=O[s(n) / \log (n)], q$ is the state, $x_{1} \cdots x_{r}$ hold the tape contents, and all the h_{i} 's are 0 except one indicating the location of the head at a cell, $1 \leqslant h_{i} \leqslant \log (n)$ of $x_{i} . P_{1}(x, y)$ is as in the proof of Theorem A.1; it means that IDy follows from IDx in one move of M. First we rewrite Accept ${ }_{t}$ using the abbreviation trick:

$$
\begin{aligned}
& \operatorname{Accept}_{t}(x) \\
& \qquad \equiv(\exists y)(\forall z)\left(P_{1}(x, y) \& \mid z=y \text { or }\left(" x \text { is universal" } \& P_{1}(x, z)\right) \mid \Rightarrow \operatorname{Accept}_{t-1}(z)\right)
\end{aligned}
$$

We have written Accept ${ }_{t}$ using $O[t]$ blocks of quantifiers where each block quan tifies the $O[s(n) / \log (n)]$ variables needed to code one $I D$. If $s(n)>[\log n]$ then this is wasteful because the whole $I D$ need not be requantified at each step. We will sketch why it suffices to requantify two adjacent pieces of the tape at each move, and to requantify the whole $I D$ only once every r steps, thus keeping the formula size linear in $t(n)$. Let symbols a and b abbreviate 6-tuples of the form $\left\langle q, x_{i}, h_{i}, x_{i+1}, i\right\rangle$ representing the state and the i th and $i+1$ st pieces of an instantaneous description. The idea is to requantify such 6 -tuples rather than the whole $I D$ at each move. Thus,

$$
\begin{aligned}
\text { Accept }_{t}(x) \equiv & (\exists a)(\forall b)\left(P_{1}(x, a) \&\left[b=a \text { or }\left(" x \text { is universal" } \& P_{1}(x, b)\right)\right]\right. \\
& \left.\Rightarrow \operatorname{Accept}_{t-1}(\langle x, b\rangle)\right) .
\end{aligned}
$$

In order to repeat r blocks of these a 's and b 's it is convenient to use extra variables c to keep track of what is going on. Let c_{i} be 0 if $a_{i}=b_{i}$ or if b_{i-1} is
universal and b_{i} is a possible next move after IDx followed by $b_{1} \cdots b_{i-1}$, in symbols $P_{1}\left(\left\langle x, b_{1} \cdots b_{i-1}\right\rangle, b_{i}\right)$. Let c_{i} be 1 otherwise. Thus:

$$
\begin{aligned}
\operatorname{Accept}_{t}(x) \equiv & (\exists a)(\forall b)(\exists c)\left(\left[c=0 \& \text { Accept }_{t-1}(\langle x, b\rangle)\right]\right. \text { or } \\
& \left.\left(c=1 \& a \neq b \&\left(" x \text { is existential" or } \backslash P_{1}(x, b)\right)\right]\right)
\end{aligned}
$$

Once each r steps a whole new $I D x^{\prime}$ is requantified:

$$
\begin{aligned}
\operatorname{Accept}_{t}(x) \equiv & \left(\exists a_{1}\right)\left(\forall b_{1}\right)\left(\exists c_{1}\right)\left(\exists a_{2}\right)\left(\forall b_{2}\right)\left(\exists c_{2}\right) \cdots\left(\exists a_{r}\right)\left(\forall b_{r}\right)\left(\exists c_{r}\right)\left(\exists x^{\prime}\right) \\
& \left(M \text { or }\left[N \& \operatorname{Accept}_{t-r}\left(x^{\prime}\right)\right]\right) .
\end{aligned}
$$

Here M says " $(\exists k) c_{1}=c_{2}=\cdots=c_{k-1}=0$ and $x \rightarrow b_{1} \rightarrow \cdots \rightarrow b_{k-1}$ codes $k-1$ steps of a valid computation of M, and $c_{k}=1$ and c_{k-1} is existential or $\neg P_{1}\left(\left(x, b_{1} \cdots b_{k-1}\right\rangle, b_{k}\right)$." N says, " $c_{1}=c_{2}=\cdots=c_{r}=0$ and $x \rightarrow b_{1} \rightarrow \cdots \rightarrow b_{r}$ codes r steps of a valid computation of M resulting in x^{\prime}."
M and N can be written with $O[r]$ symbols, using predicate P_{1} and a new predicate $T\left(x, b_{1}, \ldots, b_{r}, i, j, w\right)$ meaning that at step $i, 1 \leqslant i \leqslant r$, the contents of section j of the $I D$ is w. Finally, as in the combining lemma we can combine P, T, and Accept into one predicate which can be defined as a formula of length $O[t(n)]$ using $O[s(n) / \log (n)]$ variables. The desired φ_{n} is $\operatorname{Accept}_{t(n)}\left(I D_{i}\right)$, where $I D_{i}$ is M 's initial instantaneous description.
$(\subseteq)_{2}$: Here we must show that given a structure G of size n and a sentence φ_{n} with $s(n) / \log (n)$ variables and size $t(n)$ we can check in ASPACE\& TIME $[s(n), t(n) \log (n)]$ whether or not G satisfies φ_{n}. To test if G satisfies φ_{n} we read the sentence from left to right holding the present values of the variables $x_{1} \cdots x_{s(n) / \log (n)}$ in our $s(n)$ bit memory. At quantifiers $\left(\exists x_{i}\right)$ or $\left(\forall x_{i}\right)$ we make the appropriate existential or universal choice of a new value for x_{i}. Similarly at \&'s or "or"s we can universally or existentially choose one branch and proceed. The atomic sentences can be checked in constant time assuming we are dealing with indexing alternating Turing machines. Note that this simulation requires up to $\log (n)$ steps for each symbol of φ_{n}.

Theorem B. 3 would be nicer if we could improve the size bound in the middle term to $t(n) / \log (n)$. This seems unlikely however, because the alternating time $t(n)$ machine can make $t(n)$ alternations while the sentence could make only $t(n) / \log (n)$ alternations. We can get an exact relation between expressibility and alternating complexity by restricting the number of alternations the machine may make.

Theorem B.4. For $s(n) \geqslant \log (n)$,
(a) $A S P A C E \& T I M E \& A l t[s(n), t(n), t(n) / \log (n)]$

$$
=\operatorname{Var\& Sz}[O(s(n) / \log (n)], t(n) / \log (n)]
$$

(b) ASPACE\&Alt[s(n),a(n)]

$$
\subseteq \operatorname{Var\& Sz}[O[s(n) / \log (n)], a(n)+s(n)) s(n) / \log (n)]
$$

(c) $A S P A C E \& A l t[\log (n), \log (n)]=\operatorname{Var\& Sz}\left[{ }^{*}, \log (n)\right]$.

Proof sketches: (a) Here the class on the left consists of languages recognizable by an alternating Turing machine simultaneously in space $s(n)$, time $t(n)$, and making $t(n) / \log (n)$ alternations. The proof is similar to the proof of Theorem B.3. The difference is that when the next $\log (n)$ steps involve no alternation we skip ahead $\log (n)$ steps with one quantifier and check later that all such jumps were valid $\log (n)$ step computations. In this way we use a constant number of quantifiers for each alter nation and for each $\log (n)$ moves.
(b) The proof of (b) is similar except that we have no time bound between alternations. Thus we must write out the whole $I D$, i.e., $O[s(n) / \log (n)]$ variables, at the endpoints of each of the $a(n)$ alternations. We check once that within an alternation the final $I D$ follows from the initial $I D$. By Theorem A. 1 this may be expressed with $s(n)^{2} / \log (n)$ symbols.
(c) One half of (c) is a special case of (b). The other half is similar to the second containment of Theorem B.3. Evaluating a sentence with $O[1]$ variables and size $O[\log n]$ requires $\log (n)$ memory to store the contents of the variables, and at most one alternation per symbol.

Corollary B. 2 and Theorem B.4(c) interested us especially because we now have natural classes, $\log (C F L)$ and $A S P A C E \& A l t[\log (n), \log (n)]$, identified with each of the two intermediate terms in the following containment which is immediate from Theorems A. 1 and A.4:

$$
\begin{aligned}
N S P A C E[\log (n)] & \subseteq \operatorname{Var\& Sz}(B \forall)\left[{ }^{*}, \log (n)\right] \subseteq \operatorname{Var\& Sz}\left[{ }^{*}, \log (n)\right] \\
& \subseteq D S P A C E\left[\log ^{2}(n)\right] .
\end{aligned}
$$

The above relations between expressibility and alternating complexity lead to corollaries concerning the relations between expressibility and deterministic complexity. It is, however, interesting to prove the following directly:

Theorem B.5. Let $t(n) \geqslant n$,

$$
\bigcup_{k=1,2, \ldots} D S P A C E \& T I M E\left[n^{k}, t(n)^{k}\right]=\bigcup_{k=1,2, \ldots} \operatorname{Var\& Sz}\left|k, t(n)^{k}\right| .
$$

Proof. (\subseteq) This is similar to the usual proof that $P \subseteq A S P A C E[\log (n) \mid$. Let M be a deterministic Turing machine running in space n^{k} and time $t(n)^{k}$. We describe M 's computation via the sentences Cell (p, a) meaning that tape cell number " p " contains symbol number " a " at step t of the computation. Note that the cell location requires $O[\log (n)]$ bits or a constant number of variables to specify. For simplicity we assume a one tape Turing machine. If there were k tapes then a sentence, Cells $\left(p_{1} \cdots p_{k}, a_{1} \cdots a_{k}\right)$ would keep track of all the tape heads in a similar way.

The idea is to say that there exists a triple of cell values a_{-1}, a_{0}, a_{1} in the previous
move which lead to a in one move of M, and a_{i} occurs in cell $p+i$ at time $t=1$. In symbols:

$$
\operatorname{Cell}_{t}(p, a) \equiv\left(\exists a_{-1} a_{0} a_{1}\right)\left(a_{-1} a_{0} a_{1} \rightarrow a \& \bigwedge_{i=-1,0,1} \operatorname{Cell}_{t-1}\left(p+i, a_{i}\right)\right)
$$

Here " $a_{-1} a_{0} a_{1} \rightarrow a$ " is a finite disjunction over all possible triples, and their consequences. To write our " $\wedge_{i=-1,0,1} \operatorname{Cell}_{t-1}\left(p+i, a_{i}\right)$ " we use the abbreviation trick:
$\left(\forall p^{\prime}\right)\left(\forall a^{\prime}\right)\left(\left[\left(p^{\prime}=p-1 \& a^{\prime}=a_{-1}\right)\right.\right.$ or $\left(p^{\prime}=p \& a^{\prime}=a_{0}\right)$ or

$$
\left.\left.\left(p^{\prime}=p+1 \& a^{\prime}=a_{1}\right)\right] \Rightarrow \operatorname{Cell}_{t-1}\left(p^{\prime}, a^{\prime}\right)\right)
$$

Thus $\operatorname{Cell}_{t(n)^{k}}\left(0, q_{f}\right)$, meaning that the first cell in M 's $I D$ at time $t(n)^{k}$ is the final state symbol, can be written uniformly with a constant number of variables and $O\left[t(n)^{k}\right]$ symbols.
(\supseteq) : Going the other way we must produce a deterministic Turing machine which given a structure G of size n, and a sentence φ_{n} with k variables and $t(n)$ symbols, determines if G satisfies φ_{n} using polynomial space and $t(n)^{*}$ time.

To test if G satisfies φ_{n} we examine the parse tree for φ_{n}. Each of the k variables may take on any of the n values of the universe of G. Thus to each node in the parse tree we can systematically attach the list of at most n^{k} assignments to the variables which make that node true. The leaves of the parse tree are atomic formulas such as $E\left(x_{2}, x_{3}\right)$; such a node's associated list contains all those k-tuples $\left\langle g_{1} \cdots g_{k}\right\rangle$ such that $G=E\left(g_{2}, g_{3}\right)$.

We can pass up the tree towards the root computing the list of k-tuples making each node true, as we go. For example, an " $\&$ " node's list is derived by intersecting the two lists it leads to, a " $\forall x_{1}$ " node's list consists of those tuples $\left\langle g_{1} \cdots g_{k}\right\rangle$ such that $\left\langle h, g_{2} \cdots g_{k}\right\rangle$ appears on the preceding node's list for all values of h.

When we reach the root either our list will contain all n^{k} possibilities or it will be empty since φ_{n} has no free variables. G satisfies φ_{n} if and only if we are in the former case.

Each node's list requires $n^{k} \log (n)$ space to store. Furthermore at most $\log (t(n))$ lists must be remembered at once-the number of pebbles needed to pebble a tree of size $t(n)$. (Note that in the case in hand φ_{n} satisfies the syntactic uniformity condition and so is essentially linear. Thus only two lists need be remembered at once.) Thus polynomial space suffices. The time required to compute a node's list from its predecessors is certainly bounded by $n^{2 k}$. Thus the number of steps involved in the entire computation is less than $t(n) \cdot n^{2 k}$ which is in turn bounded by $t(n)^{*}$.

We conclude this section with a corollary which summarizes some of the relationships between classical complexity classes and expressibility with a constant number of quantifiers. Recall that the latter notion comes entirely from logic. The following thus casts the classic problems $P=$?PSPACE and $L=? P$ in a new light. (L is $D S P A C E[\log n]$.)

Corollary B. 6.
(a) $L \subseteq A S P A C E \& A l t[\log (n), \log (n)]=U_{k=1,2 \ldots .} \operatorname{Var\& Sz}[k, \log (n) \mid$.
(b) $P=\bigcup_{k=1,2, \ldots} \operatorname{Var} \& \mathrm{Sz}\left[k, n^{k}\right]$.
(c) $\operatorname{PSPACE}=\bigcup_{k=1,2, \ldots} \operatorname{Var\& Sz}\left[k, 2^{n^{k}}\right]$.

C. Alternating Pebbling Games

In this section we present a new pebbling game to obtain lower bounds for Var\& $\mathrm{Sz}($ w.o. \leqslant). This game is a modification of Ehrenfeucht-Fraisse games. (See [10] or [6].) Two players play the p-pebble, m move game on a pair of structures G, H. Player I places pebbles on points from G or H trying to demonstrate a difference between them while Player II matches these points trying to keep the structures looking the same. We will see in Theorem C. 1 that if Player II has a win for the p pebble, m-move game on G and H, then G and H agree on all properties expressible in $\operatorname{Var\& Sz}($ w.o. $\leqslant)[p, m]$.

Definition. The p-pebble, m-move game on G and H is defined as follows: Initially the pebbles, $g_{1} \cdots g_{p}, h_{1} \cdots h_{p}$, are off the board. On move i, Player I picks up a pebble g_{j} (or h_{j}), $1 \leqslant j \leqslant p$, and places it on a vertex of G (or H). Player II answers by placing h_{j} (or g_{j}) on a corresponding point of H (or G). Let $g_{j}(i)$ be the point on which g_{j} is sitting just after move i. After each move $i, 0 \leqslant i \leqslant m$, define the map f_{i} as follows.

$$
f_{i}: c^{G} \rightarrow c^{H}, \quad g_{j}(i) \rightarrow h_{j}(i) .
$$

The map f_{i} takes the constants in G to the constants in H, and chosen points in G to the respective chosen points in H. We say that Player II wins if for each i, $0 \leqslant i \leqslant m, f_{i}$ is an isomorphism of the induced substructures.

The quantifier rank of a sentence, φ, is the depth of nesting of quantifiers in φ. Since the quantifier rank of φ is obviously less than or equal to the size of φ, the following theorem shows that the p, m game gives a Var\&Sz $[p, m]$ lower bound on the expressibility of any property on which G and H differ.

Theorem C.1. Player II has a winning strategy for the p, m game on G, H if and only if G and H agree on all sentences with p variables and quantifier rank m.

We will give the proof, a minor modification of proofs in [10, 5], shortly. First we will give an example. Consider the 4 -pebble, $d+1$-move game on undirected graphs G and H where H is disconnected while G is connected with diameter d. See Fig. 1.

Player I wins the game as follows: On the first two moves he puts pebbles h_{2}, h_{3} on vertices a, b such that a and b are in distinct components of H. Player II must place g_{2}, g_{3} on some vertices e, f from G. There is a path of length at most d from e to f. Player I now uses the next $d-1$ moves to walk along this path with pebbles g_{0}

Fig. 1. The $4, d+1$ game on G and H.
and g_{1}. Player II must answer with a path in H starting at a, and thus never reaching b. Thus at move $d+1$, two pebbles will coincide in G but not in H and Player I wins.

Notice that Player I's strategy was to follow the following sentence, true in G but not in H : (Let $M(u, v) \equiv E(u, v)$ or $u=v$.)
$\operatorname{Diam}(d) \equiv \forall x_{2} \forall x_{3} \exists_{3} x_{0}\left(M\left(x_{2}, x_{0}\right) \& \exists_{4} x_{1}\left(M\left(x_{0}, x_{1}\right) \& \exists_{5} x_{0}\left(M\left(x_{1}, x_{0}\right) \& \cdots\right.\right.\right.$

$$
\left.\& \exists_{d+1} x_{i}\left(M\left(x_{1-i}, x_{i}\right) \& M\left(x_{i}, x_{3}\right)\right) \cdots\right)
$$

Also note that there is a sentence equivalent to $\operatorname{Diam}(d)$ with only three variables and $\log (d)+1$ quantifier depth which Player I would have played had he known about it.

Proof of Theorem C.1. We prove a slightly stronger result.
Claim. Let $0 \leqslant k \leqslant p$, and for $1 \leqslant i \leqslant k$, let c_{i}^{G} and c_{i}^{H} be new constants in G and H respectively. Then the following are equivalent:
(i) Player II has a win for the p-pebble m-move game on G and H when started with the first k pebbles on $c_{1}^{G} \cdots c_{k}^{G}$ and $c_{1}^{H} \cdots c_{k}^{H}$, respectively.
(ii) $\left\langle G, c_{1}^{G} \cdots c_{k}^{G}\right\rangle$ and $\left\langle H, c_{1}^{H} \cdots c_{k}^{H}\right\rangle$ agree on all sentences, S, with new constant symbols $c_{1} \cdots c_{k}$, variables $x_{1} \cdots x_{p}$, quantifier rank m, and such that nowhere in S does c_{i} occur within the scope of a quantifier for x_{i}.

Note that with $k=0$ the claim reduces to what we need to show. We prove the claim by induction on m :

Base case. If $m=0$ then $\left\langle G, c_{1}^{G} \cdots c_{k}^{G}\right\rangle$ and $\left\langle H, c_{1}^{H} \cdots c_{k}^{H}\right\rangle$ agree on all quantifier free sentences if and only if the map from the constants in G (including the new ones) to the respective constants in H is an isomorphism. That is, if and only if Player II has won the 0 -move game.

Inductive step: Assume the claim for all $m^{\prime}<m$.
(i) \Rightarrow (ii). Suppose (i) holds but (ii) does not, and let S be the sentence of quantifier rank m on which $\left\langle C, c_{1}^{G} \cdots c_{k}^{G}\right\rangle$ and $\left\langle H, c_{1}^{H} \cdots c_{k}^{H}\right\rangle$ disagree. If S is of the form $\neg A$, or $A \& B$, then the structures must disagree on one of A or B. Thus we may assume that S is of the form $\exists x_{1}\left(M\left(x_{1}\right)\right)$, and $\left\langle G, c_{1}^{G} \cdots c_{k}^{G}\right\rangle \vDash S$, while $\left\langle H, c_{1}^{H} \cdots c_{k}^{H}\right\rangle \vDash \neg S$. Player I now places pebble g_{1} on some vertex $g_{1}(1)$ from G so that $\left\langle G, g_{1}(1), c_{2}^{G} \cdots c_{k}^{G}\right\rangle \models M\left(c_{1}\right)$. Player II must reply by putting h_{1} on some $h_{1}(1)$ such that $\left\langle H, h_{1}(1), c_{2}^{H} \cdots c_{k}^{H}\right\rangle \models \neg M\left(c_{1}\right)$. Thus Player II still has a winning strategy for the $m-1$ move game, and the two structures differ on $M\left(c_{1}\right)$, a sentence of quantifier rank $m-1$ in which no c_{i} occurs within the scope of some quantifier for x_{i}. This violates the inductive assumption.
(ii) \Rightarrow (i). Assume (ii) and let Player I move placing, let us say, pebble, g_{1} on g_{1} (1). Consider the finite collection (up to equivalence) of sentences $S_{1}\left(x_{1}\right), \ldots, S_{r}\left(x_{1}\right)$ in the language of G together with variables $x_{1} \cdots x_{p}$, constant symbols $c_{2} \cdots c_{k}$, of quantifier rank $m-1$, such that no c_{i} occurs within the scope of a ($Q x_{i}$) and such that $\left\langle G, g_{1}(1), c_{2}^{G} \cdots c_{k}^{G}\right\rangle \models S_{i}\left(c_{1}\right)$.

Let

$$
S \equiv\left(\exists x_{1}\right)\left(\bigwedge_{i=1} S_{i}\left(x_{1}\right)\right) .
$$

Thus

$$
\left\langle G, c_{1}^{G}, c_{2}^{G} \cdots c_{k}^{G}\right\rangle \models S .
$$

Thus, by our assumption, $\left\langle H, c_{1}^{H} \cdots c_{k}^{H}\right\rangle$ also satisfies S. Let $h_{1}(1)$ be a witness in H for x_{1}. Now $\left\langle G, g_{1}(1), c_{2}^{G} \cdots c_{k}^{G}\right\rangle$ and $\left\langle H, h_{1}(1), c_{2}^{H} \cdots c_{k}^{H}\right\rangle$ agree on all sentences, R, of quantifier rank $m-1$, variables $x_{1} \cdots x_{p}$, and constants $c_{1} \cdots c_{k}$ such that no c_{i} occurs within the scope of a quantifier for x_{i}. This is because any such R satisfied by G would be an $S_{i}\left(c_{1}\right)$ above and therefore also satisfied by H.

Our inductive assumption now shows that Player II wins the remaining $m-1$ moves of the game, proving the claim. This proves Theorem C.1.

Define $G \equiv_{\text {var }[k]} H$ to mean that G and H agree on all k-variable sentences in the language of their similarity type. What does it mean when G and H agree on all k variable sentences without ordering? Theorem C. 1 shows that if Player I chooses any r-tuple of points from $G, r \leqslant k$, then there is a corresponding isomorphic r-tuple from H. Furthermore if Player I adds a point to the tuple in G, and $r<k$, then there is a corresponding points in H which may be added preserving the isomorphism.

We have thus deduced the existence of a relation R on pairs of r-tuples from G and r-tuples from H, i.e., $R \subseteq \bigcup_{r=0, \ldots, k} G^{k} \times H^{k}$, satisfying:
(a) $R(\rangle,\langle \rangle)$.
(b) $R(g, h) \Rightarrow g \simeq h$.
(c) $(R(g, h) \&|g|<k) \Rightarrow(\forall x \in G \exists y \in H R(\langle g, x\rangle,\langle h, y)) \&(\forall y \in H \exists x \in$ $G R(\langle g, x\rangle,\langle h, y\rangle))$.
(d) If $g=\left\langle g_{1} \cdots g_{r}\right\rangle$, let $g_{i}=\left\langle g_{1} \cdots g_{i-1}, g_{i+1} \cdots g_{r}\right\rangle$ be the $r-1$ tuple with g_{i} removed. Then:

$$
R(g, h) \Rightarrow R\left(\hat{g}_{i}, \hat{h}_{i}\right), \quad i=1, \ldots, r
$$

Proposition C.2. $G \equiv_{\operatorname{var}[k]} H$ if and only if there exists a relation R satisfying (a)-(d) above.

Proof. It should be clear that R corresponds to Player II's winning strategy in the k-pebble game on G and H. Thus if such an R exists then Player II can always win by matching chosen r-tuples in G with R-related r-tuples in H. Assume $R\left(\left\langle g_{1}(s) \cdots g_{k}(s)\right\rangle,\left\langle h_{1}(s) \cdots h_{k}(s)\right\rangle\right)$, i.e., the chosen points after move s are R related. Think of Player I's moving of pebble g_{i} as two actions. First he picks up g_{i}. By (d) we know $\left.R\left(g_{i}(s), h_{i}(s)\right)\right\rangle$. Next he places g_{i} back on some new point $g_{i}(s+1)$. By (c) there exists y in H preserving the relation, i.e., with $h_{i}(s+1)=y$, $R(g(s+1), h(s+1))$. In particular $g(s+1)$ and $h(s+1)$ are isomorphic, and Player II wins.

Conversely, if $G \equiv_{\operatorname{Var}[k]} H$ then define R from Player II's winning strategy as follows:
$R=\left\{\left(\left\langle x_{1} \cdots x_{1}\right\rangle,\left\langle y_{1} \cdots y_{1}\right\rangle\right) \mid\right.$ The k-pebble game on G and H, started with $g_{i}(0)=x_{i}$, $\mid g_{i}(0)=y_{i}, i=1 \cdots r$, is a forced win for Player II. $\}$

The fact that Player II has a winning strategy for the k-pebble game on G and H gives us (a). Parts (b), (c), and (d) follow from the rules of the game.

D. Lower Bounds for $\operatorname{Var}($ w.o. $<0)[k]$

In this section we will use the alternating pebbling games to prove lower bounds on the number of variables needed to express certain combinatorial properties in the language without \leqslant. Recall that the results of section A and B use descriptions of Turing machine computations in first order languages containing \leqslant. Thus the results of this section do not translate directly into lower bounds for time and space. Their value is as an intuition and a starting point for similar lower bounds in stronger languages.

Following [8] and [2], we write certain axioms for graphs. First:

$$
T_{0} \equiv \forall x \forall y(-E(x, x) \&[E(x, y) \Rightarrow E(y, x)]) .
$$

T_{0} says that G is loop free and undirected. We will assume in this section that all graphs satisfy T_{0}.

Fix k and let $1 \leqslant j \leqslant k-1$. The following sentences, $S_{k, j}$, say that for any choice of distinct vertices, $x_{1} \cdots x_{j}$ and $x_{j+1} \cdots x_{k-1}$, there exists a vertex y different from
the x_{i} 's with an edge to every vertex in the first groups and no edge to the sccond group.

$$
\begin{aligned}
S_{k, j} & \equiv \forall x_{1} \cdots \forall x_{k-1}\left(\left(\bigwedge_{0<i<r<k} x_{i} \neq x_{r}\right)\right. \\
& \Rightarrow \exists y\left[\bigwedge_{0<i<j+1} E\left(y, x_{i}\right) \& \bigwedge_{j<i<k}\left(y \neq x_{i} \& \neg E\left(y, x_{i}\right)\right]\right) .
\end{aligned}
$$

We use the $S_{k, j}$'s to write T_{k}, an axiom which says that every conceivable extension of a configuration of $k-1$ points to a configuration of k points is realizable.

$$
T_{k} \equiv \bigwedge_{0<j<k} S_{k j}
$$

A counting argument shows that almost all graphs satisfy T_{k}. Define $P_{n}(S)$, the probability that a graph of size n satisfies a sentence S, as follows:

$$
P_{n}(S) \equiv \#\{G|G \vDash S,|G|=n\} / \#\{G| | G \mid=n\} .
$$

Theorem D. $1[8,2]$. For any fixed $k>0, \lim _{n \rightarrow \infty}\left[P_{n}\left(T_{k}\right)\right]=1$.
Proof. Given $j<k$, and distinct vertices $x_{1} \cdots x_{k-1}$ what is the probability that a random vertex y is a witness for $S_{k, j}$? It's just the probability that the $k-1$ possible edges $E\left(x_{i}, y\right)$ are correctly present or absent, i.e., $1 / 2^{k-1}$.

Thus the probability that none of a random $n-(k-1)$ vertices is a witness for $S_{k, j}$ is:

$$
a^{n-k+1}, \quad \text { where } \quad \alpha=1-\left(1 / 2^{k-1}\right)
$$

The probability that any of the fewer than n^{k} sequences, $x_{1} \cdots x_{k-1}, j$, cause T_{k} to fail is less than

$$
n^{k} \cdot \alpha^{n-k+1}
$$

and this last probability goes to 0 as n goes to infinity.
We are interested in T_{k} because of the next result:
Theorem D.2. For any two graphs G and H,

$$
\left(G \vDash T_{k} \& H \models T_{k}\right) \Rightarrow G \equiv \equiv_{\operatorname{varlk} \mid} H .
$$

Proof. $\quad T_{k}$ says that every $\mathrm{k}-1$ tuple may be extended to a k tuple in any conceivable way. It follows that the relation:

$$
R=\left\{\left(\left\langle a_{1} \cdots a_{r}\right\rangle,\left\langle b_{1} \cdots b_{r}\right\rangle\right) \mid 0 \leqslant r \leqslant k, a_{i} \in G, b_{i} \in H, \&\left\langle a_{1} \cdots a_{r}\right\rangle \simeq\left\langle b_{1} \cdots b_{r}\right\rangle\right\}
$$

satisfies (a)-(d) of Proposition C.2. Therefore $G \equiv_{\operatorname{Var}[k]} H$.

Corollary D.3. Graph Isomorphism is not in $\operatorname{Var}($ w.o. $\leqslant)[k]$.
Proof. If GraphIso where in $\operatorname{Var}($ w.o. $\leqslant)[k]$ then there would be sentences F_{1}, $F_{2} \ldots$ with k variables each such that for graphs G and H of size n,

$$
\langle G, H\rangle \models F_{n} \leftrightarrow G \simeq H .
$$

Here $\langle G, H\rangle$ is the structure consisting of a disjoint union of G and H with a monadic predicate true for exactly the points of G. By Theorem D. 1 there exist two non-isomorphic graphs G_{k} and H_{k} both satisfying T_{k}. Clearly $\left\langle G_{k}, G_{k}\right\rangle \vDash F_{n}$. But by Theorem D.2, $G_{k} \equiv_{\text {var }[k]} H_{k}$. It follows that Player II wins the k-pebble game on $\left\langle G_{k}, H_{k}\right\rangle$ and $\left\langle G_{k}, G_{k}\right\rangle$. Her strategy is to answer points in the first component with the same point in the other copy of G_{k}, and to use Player II's winning strategy for the k-pebble game on G_{k} and H_{k} to answer moves in the second component. This strategy preserves an induced isomorphism between points chosen in each component and is thus a win for Player II. It follows that $\left\langle G_{k}, G_{k}\right\rangle \equiv_{\operatorname{var}[k]}\left\langle G_{k}, H_{k}\right\rangle$. Thus,

$$
\left\langle G_{k}, H_{k}\right\rangle \models F_{n} \text {, but } G_{k} \text { is not isomorphic to } H_{k} \text {. }
$$

This contradiction proves the corollary.
Almost all graphs have a Hamilton circuit; however, in [8] it is shown that for any k there is a graph H_{k} which satisfies T_{k} and yet has no Hamilton circuit. It follows that there exist two graphs, G_{k}, H_{k}, both satisfying T_{k} and yet differing on the property of having a Hamilton circuit. Thus:

Theorem D.4. "Hamilton Circuit" is not in $\operatorname{Var}($ w.o. $\leqslant)\left[{ }^{*}\right]$.
Using similar techniques we can show the following:
Theorem D.5. Clique $(k+1)$ is not in $\operatorname{Var}(w . o . \leqslant)[k]$.
Proof. Recall that Clique $(k+1)$ is the set of graphs with a complete subgraph of size $k+1$. Clearly any graph satisfying T_{k+1} is in Clique $(k+1)$. We show that there exists a graph $H_{k} \vDash T_{k}$ such that H_{k} has no $k+1$ clique. Define the graph $A_{n}=\left(V_{n}, E_{n}\right)$ as follows:

$$
\begin{aligned}
& V_{n}=\{\langle i, j\rangle \mid 1 \leqslant i \leqslant k, 1 \leqslant j \leqslant n\}, \\
& E_{n}=\left\{\left(\left\langle i_{1}, j_{1}\right\rangle,\left\langle i_{2}, j_{2}\right\rangle\right) \mid i_{1} \neq i_{2}\right\} .
\end{aligned}
$$

Notice that A_{n} has no $k+1$ clique because any set of $k+1$ vertices will have two with the same first coordinate.

Let $A_{n}^{\prime}=\left(V_{n}, E_{n}^{\prime}\right)$ be a random subgraph of A_{n}, i.e. each edge of E_{n} has probability $1 / 2$ of being in E_{n}^{\prime}. Now $\lim _{n \rightarrow \infty} \operatorname{Prob}\left(A_{n}^{\prime}=T_{k}\right)=1$. (This follows from the same argument as in the proof of Theorem D.1, noting that every $k-1$ tuple from V_{n} has n points potentially satisfying T_{k}.) Let H_{n} be such a random A_{n}^{\prime}. Thus H_{n} satisfies T_{k} but has no $k+1$ clique.

F. Conclusions

We feel that first order expressibility is a natural way to obtain both upper and lower bounds. The alternating pebbling games make the finding of optimal descriptions of graph properties (without ordering) a tractable problem. Furthermore our simulation theorems show that optimal sentences (with ordering) for a property C can be easily translated to nearly optimal algorithms for checking C.

The following general areas of exploration are sugested:
(1) Find upper and lower bounds on Var\&Sz(w.o. \leqslant) for a collection of graph problems such as planarity, graph homeomorphism, vertex matching, etc.
(2) Improve the simulations of Section B, and then try to prove optimality. Exactly how many variables are needed to describe a $D T I M E\left|n^{k}\right|$ computation?
(3) Develop techniques to prove lower bounds on $\operatorname{Var\& Sz}$, i.e., with ordering. This seems worthwhile but hard. One possible method would be to consider sentences true for "most" orderings. See $[17,4]$ for some results concerning the probability that a formula is satisfied by a large finite structure. Other possible techniques are discussed in $[13,15]$.

Acknowledgments

Warm thanks to Juris Hartmanis, my thesis adviser. Many thanks to John Hopcroft, Albert Meyer, and Michael Morley for helpful technical discussions. Thanks to MIT's Laboratory for Computer Science for letting me visit since June, 1980. Much thanks to the referees whose patient and thorough readings of this paper have helped to remove many of the ambiguities and errors.

References

1. A. Aho, J. Hopcroft, and J. Ullman, "The Design and Analysis of Computer Algorithms," Addison-Wesley, Reading, Mass., 1974.
2. A. Blass and F. Harary, Properties of almost all graphs and complexes, J. Graph Theory 3 (1979), 225-240.
3. S. Chandra and L. Stockmeyer, Alternation, "Proc. 17th FOCS, 1976,"pp. 98-108.
4. K. Compton, Ph.D. Thesis, University of Wisconsin, Madison, 1980.
5. A. Ehrenfeucht, An application of games to the completeness problem for formalized theories. Fund. Math. 49 (1961), 129-141.
6. H. Enderton, "A Mathematical Introduction to Logic," Academic Press, New York, 1972.
7. R. Fagin, "Generalized first-order spectra and polynomial-time recognizable sets, in "Complexity of Computation," (R. Karp, Ed.), SIAM-AMS Proc. No. 7, pp. 43-73, Amer. Math. Soc., Providence, R. I., 1974.
8. R. Fagin, Probabilities on finite models, J. Symbol Logic 41, No. 1 (1976), 50-58.
9. M. Fischer, and M. Rabin, Super-exponential complexity of Presburger arithmetic, in "Complexity of Computation" (R. Karp, Ed.), SIAM-AMS Proc. No. 7, pp. 27-41, Amer. Math. Soc.. Providence, R.I., 1974.
10. R. Fraisse, Sur les classifications des systems de relations, Publ. Sci. Univ. Alger 1 (1954).
11. J. Hartmanis, N. Immerman, and S. Mahaney, One-way Log tape reductions, in "Proc. 19th FOCS, 1978," pp. 65-72.
12. N. Immerman, Length of predicate calculus formulas as a new complexity measure, in "Proc. 20th FOCS, 1979," pp. 33747.
13. N. Immerman, "First Order Expressibility as a New Complexity Measure," Ph.D. Theis, Cornel University, August, 1980.
14. N. Immerman, Upper and lower bounds for first order expressibility, in "Proc. 21 st FOCS, 1980," pp. 74-82.
15. N. Immerman, Number of quantifiers is better than number of tape cells, J. Comput. System Sci., in press.
16. D. Kozen, On parallelism in Turing machines, in "Proc. 17th FOCS, 1976," pp. 89-97.
17. J. Lynch, Almost sure theories, Ann. Math. Logic 18 (1980, 91-135.
18. J. Reif, Universal games of incomplete information, in "Proc. 11th SIGACT, 1979," pp. 288-308.
19. W. Ruzzo, Tree-size bounded alternation, in "Proc. 11th SIGACT, 1979," pp. 352-359.
20. W. Ruzzo, On uniform circuit complexity, in "Proc. 20th FOCS, 1979," pp. 312-318.
21. W. Savitch, Maze recognizing automata and nondeterministic tape complexity, J. Comput. System Sci. 7 (1973), 389-403.
22. L. Sudborough, On the tape complexity of deterministic CFL's J. Assoc. Comput. Mach. No. 3 (1978), 405-414.

[^0]: ${ }^{1}$ Research partly supported by NSF Grant MCS 81-05754.

