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0. INTRODUCTION

From the classification theorem for finite simple groups we know that
Ž .4there are precisely eight sporadic simple groups which have Zr2 as their

Žlargest elementary abelian 2-subgroup i.e., they have rank equal to 4 at
.the prime p s 2 : the two Mathieu groups M , M ; the two Janko groups22 23

J , J ; the McLaughlin group McL; the Lyons group Ly; and two groups2 3
Ž . Žwith much larger 2-Sylow subgroups HS Higman]Sims and Co one of3

.Conway’s groups . In previous work the mod 2 cohomology rings of M22
w x w x w x w xAM2 , M M , J and J CMM , and McL AM3 were computed. One23 2 3
of the main objectives of this paper is to determine the cohomology ring

Ž .H* Ly; F .2
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LYONS GROUP AND ALTERNATING GROUPS 453

ŽEven though Ly is a large and complicated group it is the largest of
6.those in the list of above, having order equal to 51,765,179,004 = 10 , the

answer turns out to be surprisingly simple. We show that Ly has two
conjugacy classes of maximal 2-elementary subgroups, one 24 with Weyl

3 Ž .group A , and one 2 with Weyl group L 2 , and we prove that these7 3
Ž . w xsubgroups detect H* Ly . In AM4 we determine the ring of invariants

A74 w xH* 2 s F d , d , d , d 1, a , a , a , a , a , a , a ,Ž . Ž .2 8 12 14 15 18 20 21 24 25 27 45

Ž 3.L3Ž2. w xwhile it is well known that the invariants H* 2 are F d , d , d , the2 4 6 7
Dickson algebra. From this we obtain

THEOREM 7.3. There is a short exact sequence of rings

A74 2 20 ª H* LY ; F ª H* 2 [ F d , d , d 1, d d , d d , d d dŽ . Ž . Ž .2 2 4 6 7 4 7 6 7 4 6 7

w xª F h , h ª 02 8 12

2 Ž .with h the image of d in the A in¨ariants and d in the L 2 in¨ariants,8 8 7 4 3
while h is the image of d and d2, respectï ely.12 12 6

Thus we can write

A74 w xH* Ly , F ( H* 2 [ d F d , d , d ,Ž . Ž .2 7 2 4 6 7

where the role of d and d d is to have Zr8-Bocksteins to d and d ,7 4 7 8 12
respectively. In the course of obtaining this result we determine the
cohomology of a number of groups which arise in other contexts, and
perhaps our results for these further groups are even more intriguing.

The double covers of the alternating groups 2 A arise in studying then
Ž 0.two connected cover of the infinite loop space Q S , which can actually

be identified with the plus construction Bq . The mod 2 cohomology of2 A`

Ž .B is easily determined since H* B , F is known as a polynomial2 A A 2` `

algebra on a specified but infinite set of generators, and the elements
1Ž . 2 1Ž . 2 n 2 ny 1 2 1Ž .s , Sq s , Sq Sq s , . . . , Sq Sq ??? Sq Sq s , . . . , form a regu-2 2 2 2

lar sequence, where s is the nonzero element in dimension 2. However,2
the cohomology of the individual double covers is much more complex and
the inclusions 2 A ¨ 2 A tend to often have very large cokernels inn nq1
cohomology.

By studying these cokernels it appears that they give information related
Žto the structure of periodicity operators in homotopy theory and as one

sees in the proof of 4.2, where the exact structure of the cokernel for 2 A8
.is seen to be equivalent to the determination of the ring of invariants also

appear to play an intriguing role in modular invariant theory.
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Moreover, 2 A is a maximal, odd index subgroup of Ly while the Sylow11
2-subgroup of 2 A is the Sylow 2-subgroup of M , M , and McL. Our8 22 23
route to the cohomology of Ly determines the cohomology of the follow-
ing groups in succession

2 A ¨ 2S ¨ 2 A ¨ 2 A ,8 8 10 11

where the last inclusion is a 2-local equivalence. We now describe how this
goes.

2Ž .It is well known that H A , F ( F , hence for each of them theren 2 2
exists a unique nontrivial double cover

1 ª Zr2 ª 2 A ª A ª 1.n n

An interesting group-theoretic fact is that, for n F 7, 2 A does notn
Ž .contain Zr2 = Zr2 as a subgroup. Hence H* 2 A , F is periodic in thisn 2
w x Ž .range, and in fact they are all isomorphic to F u m L x , a polynomial2 4 3

algebra on a four-dimensional generator tensored with an exterior algebra
on a three-dimensional class. This pleasant behaviour breaks down when

Ž .n s 8 and in fact the calculation of H* 2 A , F has been an open8 2
Ž .problem for some time. Attempts to use the description of H* A , F8 2

w xprovided in AMM have been unsuccessful due to the a priori complicated
nature of the spectral sequence associated with the extension above. We
show:

THEOREM 3.3. The mod 2 cohomology of 2 A can be described by a long8
exact sequence

Ž . Ž .L 2 L 23 3w x0 ª F d , d u , u , u ª H* 2 A , F ª H* E [ H* FŽ . Ž . Ž . Ž .2 4 8 3 7 9 8 2

w xª F d , d ª 0,2 4 8

where E and F are rank 4 elementary abelian subgroups in 2 A , and8

Ž . Ž .L 2 L 23 3H* E s H* FŽ . Ž .
w xs F d , d , d , d 1, a , a , a , a , a , a , a .Ž .2 4 6 7 8 8 9 10 11 12 13 21

In the expression above, E and F represent the two conjugacy classes of
maximal elementary abelian subgroups. The term on the left is the radical
Ž . Ž .i.e., the nilpotent elements in H* 2 A . The term on the right represents8

Ž .the double image classes. We use the above to compute H* 2S , F ,8 2
where 2S is the double cover of S which extends the double cover of the8 8
alternating group. Unexpectedly, it turns out that the elementary abelian
subgroups detect the cohomology of this double cover. More precisely
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we have

THEOREM 5.4. The cohomology of 2S is determined by the following8
exact detection sequence:

w x0 ª H* 2S , F ª F d , d , d , d 1, a , a , a , a , a , a , aŽ . Ž .8 2 2 4 6 7 8 8 9 10 11 12 13 21

2 2[ F w , d , d 1, d , d d , t t q w d dŽ .Ž .2 1 2 4 3 3 4 3 4

w xª F h , h ª 0,2 4 8

Ž 2 . Ž 2 .where h , h correspond to the double image classes d , d and d , d ,4 8 4 2 8 4
respectï ely.

One can deduce from this that the spectral sequence for the extension
2 A e2S collapses at E ; the notation reflects this fact. Here we have8 8 2
once again two conjugacy classes of maximal elementary abelian sub-

Ž .groups, one of rank 4 obtained by fusing the two representatives for 2 A8
and one of rank 3. As before, the term on the right represents the double
image classes.

Noting that 2S ; 2 A is an odd index subgroup, we infer that8 10
Ž .H* 2 A , F is also detected on elementary abelian subgroups. The maxi-10 2

mal elementary abelian subgroups are weakly closed in 2S ; 2 A and8 10
Ž w x.hence, using the Cardenas]Kuhn theorem see AM1 the image of the´

restriction maps can be obtained as the intersection of the restriction from
Ž .H* 2S , F with the invariants under the appropriate Weyl groups: still8 2
Ž . 4 Ž . 3L 2 for the 2 and now S instead of D for the 2 . In fact it can be3 4 8

described as follows.

THEOREM 6.1. The cohomology of 2 A is determined by the following10
exact detection sequence:

0 ª H* 2 A , FŽ .10 2

Ž .L 234 2 2ª H* 2 [ F d , d , d 1, d d , d d , d d dŽ . Ž .2 3 2 4 2 3 3 4 2 3 4

w xª F h , h ª 0,2 4 8

Ž 2 . Ž 2 .where h , h correspond to the double image classes d , d and d , d ,4 8 4 2 8 4
respectï ely.

Ž .To obtain H* Ly, F from the expression above, we simply need to take2
Ž .A invariants and compute the intersection of the image of H* 2 A in7 10

Ž 3. Ž .H* 2 with the Dickson Algebra of L 2 -invariants.3
It would seem that Theorem 5.4 should admit an extension to double

covers of S i for i G 4. These groups carry important homotopy-theoretic2
data in their cohomology and hence deserve further attention. We will
defer this to a sequel.
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This paper is organized as follows: in Section 1 we discuss preliminaries;
in Section 2 we determine the double image classes for the cohomology of

Ž .2 A ; in Section 3 we determine the radical of H* 2 A ; in Section 4 we8 8
consider the spectral sequence associated with the central extension 1 ª
Zr2 ª 2 A ª A ª 1; in Section 5 we describe facts about the 2-Sylow8 8
subgroup of Ly and determine the cohomology of 2S ; in Section 6 we8
determine the cohomology of 2 A ; and in Section 7 we calculate10

Ž .H* Ly, F .2
Throughout this paper, coefficients will be assumed taken in the field F2

with two elements, so they are suppressed.

1. PRELIMINARIES

We begin by discussing the mod 2 cohomology of the double covers 2 An
for n F 7. In this range all these groups have periodic cohomology rings at
the prime 2, and they can be easily computed. In fact we have the

Ž . Ž . Ž .isomorphisms 2 A ( SL F , 2 A ( SL F , 2 A ( SL F , while a4 2 3 5 2 5 6 2 9
simple double coset argument shows that 2 A is mod 2 cohomologous to7
2 A . Note that for the same reason 2 A is mod 2 cohomologous to 2 A .6 4 5

Ž wWe state their cohomology, leaving details to the reader or see AM1,
x.Chap. IV :

Ž . w xPROPOSITION 1.0. If G s 2 A , where n F 7, then H* G ( F ¨ mn 2 4
Ž .E y .3

This remarkably simple behaviour breaks down rather dramatically for
w xn s 8. Even though the mod 2 cohomology of A was computed in AMM8

some time ago, the computation for its double cover poses serious techni-
Ž .cal difficulties. Our strategy will be to determine H* 2 A using tech-8

niques developed to study the cohomology of certain sporadic simple
groups. This calculation in turn will allow us to compute the cohomology
of 2 A and from there that of the sporadic simple group Ly.10

To begin we provide background information needed to compute the
mod 2 cohomology of the group G s 2 A . First we recall that G has8
precisely two conjugacy classes of maximal elementary abelian 2-sub-

Žgroups, both of rank 4, which from now on we will denote by E and F see
w x.AM3 . These are constructed as follows. First consider the regular

Ž .3representation of Zr2 s V ; S . This representation has Weyl group3 8
ŽŽ .3. Ž . ŽAut Zr2 s GL 2 . As is always the case for the regular representa-3

Ž . Ž . .tion G ¨ S , we have N G rG s Out G . However, restricting V to<G < 3
A gives two nonconjugate subgroups V , V X in A which fuse in S , and8 3 3 8 8

Ž .4 Ž .both V, V 9 lift to Zr2 s in 2 A . In fact, if H s Syl 2 A , then it8 2 8
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Ž .4contains precisely two copies of Zr2 . The subgroups E and F intersect
in the rank 2 subgroup V s E l F and

LEMMA 1.1. The normalizers of E, F in 2 A are split extensions of the8
Ž . Ž . Ž .4form E : L 2 and F : L 2 , which are isomorphic since the two Zr2 s fuse3 3

Ž . Ž .in 2S s 2 A : 2. In particular both of these maximal 2-tori ha¨e L 2 as8 8 3
their Weyl group.

The action of these matrix groups on E, F can be written down explicitly
Ž . Ž .as follows: L 2 is the subgroup of L 2 generated by the following two3 4

matrices:

1 1 1 0 0 0 1 0
1 0 1 0 0 1 0 0A s , B s ,
1 1 0 0 1 1 1 0� 0 � 0
1 1 0 1 1 1 0 1

Ž . Ž .3with simple components the usual action of L 2 on Zr2 and the trivial3
action on Zr2. But the representation is nonsplit and this will be reflected

ŽŽ .4.L3Ž2.in the structure of the ring of invariants H* Zr2 .
Ž . 4 Ž 4.Recall that the mod 2 cohomology of 2 , H* 2 , is the polynomial ring

w xon four one-dimensional variables, F x , y , z , w , and the action of2 1 1 1 1
Ž .L 2 is given by the transposes of A and B above. Consequently, the3

w xsubring F x , y , z is invariant under the action and the Dickson algebra2 1 1 1
w xL3Ž2. w x w xL3Ž2.F x , y , z s F d , d , d ; F x , y , z , w . In fact, by a stan-2 1 1 1 2 4 6 7 2 1 1 1 1

dard computer assisted computation of invariants, we have

w xL3Ž2.PROPOSITION 1.2. The ring of in¨ariants F x , y , z , w can be2 1 1 1 1
described as

w xF d , d , d , d 1, a , a , a , a , a , a , a ,Ž .2 4 6 7 8 8 9 10 11 12 13 21

where the subscript denotes the dimensions of the generators. The ring is freely
generated o¨er the polynomial subring spanned by d , d , d , d ; furthermore4 6 7 8
we ha¨e a s Sq1a , a s Sq2Sq1a , a s Sq2a , a s Sq1Sq2a , and9 8 11 8 12 10 13 10
a s a a .21 10 11

Ž . w xProof. Write W ( L 2 . It was shown in AM2 that, for a 2-Sylow3
Ž .Psubgroup P ; W, the invariant ring H* E is Cohen]Macaulay; it there-

Ž w x. Ž .Wfore follows see B that H* E is Cohen]Macaulay also.
Using the modular invariant theory package developed by Gregor Kem-

w x Ž .Wper K in Maple, one obtains a system of primary invariants for H* E
having degrees 4, 6, 7, and 8. Suitable choices for these invariants are the
Dickson invariants d , d , d , described above, and d , the first Dickson4 6 7 8
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ŽŽ .4.invariant for H* Zr2 ,

d s w8 q w4d q w2d q w d q d2 .8 1 1 4 1 6 1 7 4

w xThe ‘‘folk-theorem’’ given by Kemper in K now tells us how many
secondary invariants are necessary to generate the invariant ring. The
number of secondary invariants is

4 ? 6 ? 7 ? 8Ž .
s 8.

< <W

To obtain the secondary invariants one determines, using Kemper’s pack-
age, the dimensions of the spaces of homogeneous invariants in degrees
F 13, which are given in the following table:

degree 0 1 2 3 4 5 6 7 8 9 10 11 12 13
dimension 1 0 0 0 1 0 1 1 3 1 2 2 5 3

Through degree 13, the polynomial algebra generated by the primary
invariants has the following dimensions:

degree 0 1 2 3 4 5 6 7 8 9 10 11 12 13
dimension 1 0 0 0 1 0 1 1 2 0 1 1 3 1

Thus, the first degree in which there is s shortfall is 8. Therefore we must
w xhave secondary invariant a of degree 8. Writing R for F d , d , d , d ,8 2 4 6 7 8

we can compute the graded dimension in degrees 0 through 13 of the
R-module R q R ? a , which is of course an R-submodule of the invariant8
ring:

degree 0 1 2 3 4 5 6 7 8 9 10 11 12 13
dimension 1 0 0 0 1 0 1 1 3 0 1 1 4 1

We see now that the next shortfall is in dimension 9; therefore there must
be a secondary invariant of degree 9, call it a . Again, we can compute the9
graded dimension of R q R ? a q R ? a , we obtain8 9

degree 0 1 2 3 4 5 6 7 8 9 10 11 12 13
dimension 1 0 0 0 1 0 1 1 3 1 1 1 4 2

A comparison of this table with the table of dimensions of the full
invariant ring, in just the manner of the previous two examples, shows that
there must be secondary invariants in degrees 10, 11, 12, and 13, which we
will call a , a , a , and a .10 11 12 13
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Finally we may check that W contains no ‘‘pseudo-reflection,’’ using
Maple, and that we may therefore apply the Carlisle]Kropholler conjec-

w xture B to obtain the fact that the final secondary invariant must have
degree 21. We call this final secondary invariant a and note that the21
computer tells us that we may in fact take a s a ? a . Furthermore,21 8 13
using the package’s ability to compute Steenrod operations, we note that
we may take a s Sq1a , a s Sq2a , a s Sq2a , and a s Sq1a .9 8 11 9 12 10 13 12

Finally we note that this implies the Poincare series of the invariant´
ring is

1 q t 8 q t9 q t10 q t11 q t12 q t13 q t 21

4 6 7 81 y t 1 y t 1 y t 1 y tŽ . Ž . Ž . Ž .

and that the invariants are of the form

w xF d , d , d , d 1, a , a , a , a , a , a , a a .Ž .2 4 6 7 8 8 9 10 11 12 13 8 13

If we restrict ourselves to the 2-sylow subgroup H, then the correspond-
w xing Weyl group for E and F is the dihedral group D . In AM2 it was8

Ž .shown that the cohomology H* H, F maps onto the D invariants in2 8
Ž . Ž . Ž .H* E and H* F . Clearly the image of the restriction from H* 2 A will8

Ž .map into the L 2 invariants; however, we in fact claim that it maps onto3
them in both cases. To show this we first recall a basic notion useful in

Ž .cohomology calculations. A triple Q, H, K of groups with K ; H ; Q
are said to form a weakly closed system if any subgroup in Q conjugate to

ŽK is already conjugate to K in H. The Cardenas]Kuhn theorem see´
w x. Ž . Ž . rAM1 asserts that if Q, K, V is a weakly closed system with V s Zr2

w x Ž .and Q : K odd, then the image of the restriction map from H* Q to
Ž .H* V is precisely the image of the restriction from the cohomology of K

Ž . Ž .intersected with the invariants under W V s N V rV. In our case it isQ G
Žclear that E and F are both weakly closed in H ; 2 A since they are the8

Ž .4 .only Zr2 s in H , and so we deduce that in fact

Ž .PROPOSITION 1.3. The restriction homomorphism from H* 2 A , F to8 2
Ž .the cohomology of both E and F maps onto the L 2 in¨ariants described3

abo¨e.

Ž w x.The Quillen]Venkov theorem see AM1 shows that we have an exact
sequence

resG[resG
E F Ž . Ž .L 2 L 23 3

6

0 ª Rad H* 2 A ª H* 2 A H* E [ H* FŽ . Ž . Ž . Ž .Ž .8 8

ª MM ª 0,GG
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where the term on the left is the radical, i.e., the ideal of nilpotent
elements in the cohomology while the term on the right is the quotient
ring of double image classes}classes which must restrict nontrivially to

Ž . Ž .both H* E and H* F .
w xIn what follows we will show that MM ( F d , d , whereasGG 2 4 8

w xRad H* 2 A ( F d , d u , u , u .Ž . Ž .Ž .8 2 4 8 3 7 9

2. DOUBLE IMAGE CLASSES

Ž .To continue the calculation of H* G we now determine the term

MM s coker resG [ resG ,Ž .GG F E

Ž . Ž .which we can identify with ‘‘double image classes’’ in H* E [ H* F
w x Ž .L3Ž2.following the notions in AM2 . We begin by observing that H* E

will map onto MM . Using this projection, we can endow the vector spaceGG

Ž .L3Ž2.MM with a ring structure; using the other component H* F we obtainGG

the same structure, by symmetry. Next we relate the structure of MM toGG

Ž .the corresponding gadget for H s Syl 2 A , which we denote by MM .2 8 HH

Using a stability argument it is easy to see that

PROPOSITION 2.1. The inclusion H ; 2 A induces a monomorphism of8
rings MM ª MM .GG HH

We also need the following elementary lemma.

Ž .L3Ž2. Ž .L3Ž2.LEMMA 2.2. Let V s E l F, then the map H* E [ H* F ª
Ž .H* V factors through MM . Furthermore the ring structure on MM is compat-GG GG

Ž .ible with that in H* V .

Now we determine the structure of the double image classes as follows.

w xLEMMA 2.3. The ring MM s F d , d .GG 2 4 8

w xProof. The ring MM was computed in AM2 , and we haveHH

w xMM ( F d , d 1, w , n .Ž .HH 2 4 8 3 7

Clearly d and d remains as double image classes for G using 2.2.4 8
On the other hand, since there are no elements in MM in dimensions 6HH

or 10, and the only element in MM having dimension 8 is d it follows thatHH 8
1 2 Ž .d is not in the double image so there are classes d and d in H* 2 A6 6 6 8

Ž . Ž .which restrict to d , 0 and 0, d , respectively. Likewise, there must exist6 6
1 2 Ž . Ž . Ž .classes a and a in H* 2 A which restrict to a , 0 and 0, a , respec-8 8 8 8 8

1 2 Ž . Ž .tively, and a , a which restrict to a , 0 and 0, a , respectively.10 10 10 10



LYONS GROUP AND ALTERNATING GROUPS 461

3. DETERMINATION OF THE RADICAL

w x Ž Ž ..As was observed in AM2 , H contains S s Syl L 4 as an index 22 3
subgroup and the restriction map induces an injection of the radical

Ž . Ž . Ž .Rad H* H ª Rad H* S and hence an embedding Rad H* 2 A ;8
Ž .Rad H* S . We recall that

w xRad H* S ( F ¨ , w g , b , g , b , a .Ž . Ž .2 4 4 2 2 3 3 5

The normalizer of S in G is an extension of the form S ? S , hence3
Ž . Ž .S3Rad H* 2 A ; Rad H* S . We now determine these invariants. If we8

² :write S s T , u , where T has order 3 and u is an involution, then the3
Ž w x.explicit actions are given by see AM3

T ¨ s ¨ , T u s u , T g s b , T b s g q b ,Ž . Ž . Ž . Ž .4 4 4 4 2 2 2 2 2

T b s b , T g s g , T a s a ,Ž . Ž . Ž .3 3 3 3 5 5

whereas

u ¨ s w , u w s ¨ , u g s b , u b s g ,Ž . Ž . Ž . Ž .4 4 4 4 2 2 2 2

u g s b , u b s g , u a s a .Ž . Ž . Ž .3 3 3 3 5 5

From this action we obtain the following invariants

PROPOSITION 3.1.

S3 w xRad H* S ( F ¨ q w , ¨ w g q b , a , ¨ g q w b .Ž . Ž .Ž . 2 4 4 4 4 3 3 5 4 3 4 3

We use the Lyndon]Hochschild]Serre spectral sequence for the exten-
sion

1 ª Zr2 ª 2 A ª A ª 18 8

to analyze the cohomology of G in low dimensions. Using the results in
w x iŽ . iŽ .AMM , we in fact see that H G s 0 for i s 1, 2, 5, whereas H G ( F2

7Ž . 9Ž . Ž .3 Žfor i s 3, 4. We also have that H G ( H G ( F details are pro-2
. w xvided in the next section . On the other hand, if as in AM2 we choose a

5Ž .non-nilpotent k g H H which restricts to a , then we may choose a5 5
8Ž . Ž . iclass g g H H which restricts to ¨ w and such that g k is non-8 4 4 8 5

nilpotent for all i G 1. The details are as follows: the products g i k8 5
Ž . Žrestrict nontrivially to the index 2 subgroup UT 2 upper triangular 4 = 44

. w xmatrices over F , according to the explicit restriction data in AM2 .2
However, the cohomology of this subgroup is detected on elementary
abelian subgroups, from which non-nilpotence follows. Note that one can

H Ž .verify explicitly that res g k s 0; indeed, following the notation inU T Ž2. 4 54
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w xAM2 this is a consequence of the fact that sg s 0 and that s, k restrict4 5
nontrivially to precisely the same conjugacy classes of maximal detecting
elementary abelian subgroups.

Ž .Now, by looking at the image of H* G in the cohomology of the
maximal elementary abelian subgroups, we infer that there are at most two
non-nilpotent seven- and nine-dimensional cohomology classes, respec-

Ž .tively, in H* G , and hence there must be a seven- and a nine-dimensional
class in the radical. Combining these fact we conclude

PROPOSITION 3.2.

w xRad H* 2 A ( F ¨ q w , ¨ w g q b , ¨ g q w b , a ¨ q w .Ž . Ž .Ž .8 2 4 4 4 4 3 3 4 3 4 3 5 4 4

Summarizing, we have determined the cohomology of 2 A :8

THEOREM 3.3. Let G s 2 A ; then we ha¨e a short exact sequence8

w x0 ª F d , d u , u , uŽ .2 4 8 3 7 9

resG[resG
E F Ž . Ž .L 2 L 23 3

6 w xª H* G H* E [ H* F ª F d , d ª 0,Ž . Ž . Ž . 2 4 8

where

Ž . Ž .L 2 L 23 3H* E s H* FŽ . Ž .
w xs F d , d , d , d 1, a , a , a , a , a , a , a .Ž .2 4 6 7 8 8 9 10 11 12 13 21

4. THE SPECTRAL SEQUENCE OF THE
CENTRAL EXTENSION

In this section we analyze the spectral sequence associated with the
central extension

1 ª Zr2 ª G ª A ª 1.8

This allows us, initially, to determine enough differentials in the spectral
7Ž . 9Ž . Ž .3sequence to show that H 2 A ( H 2 A ( F as claimed in the8 8 2

proof of 3.1. Then, using 3.3 we complete the analysis of the spectral
sequence obtaining very interesting interior differentials. To begin we

w xrecall the cohomology of the alternating group A AMM :8

² :w xH* A ( F s , s , c , s , d , e , d , e 1, x r R ,Ž . Ž .8 2 2 3 3 4 6 6 7 7 5
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where the subscript denotes the degree and R is the following set of
relations:

d s s e s s s s 3 q s s ,Ž .6 3 6 3 3 2 2 4

d e s d e s d e s 0,6 7 7 6 7 7

d s s d s s d c s d x s 0,7 2 7 3 7 3 7 5

e s s e s s e c s e x s 0,7 2 7 3 7 3 7 5

x s s c s s 0,5 3 3 3

d e s s s c x q c2s q s s 2 q s 5 q x c s ,Ž .6 6 2 2 3 5 3 4 2 4 2 5 3 4

x 2 q x s c q d q e s 2 q s c2 s 0.Ž .5 5 2 3 6 6 2 4 3

The following tables partially describe the action of the Steenrod alge-
bra:

s s c2 3 3

1Sq s q c 0 03 3
2 2Sq s s s s c q x2 2 3 2 3 5
3 2 2Sq 0 s c3 3

s x d d4 5 6 7

1 2Ž .Sq x 0 d q s s q s 05 7 3 2 4
2Sq s s q d q e s x } 02 4 6 6 2 5
3 Ž .Sq d q e q c s q s s q s x c q s x } 07 7 3 4 3 4 2 5 3 3 5
4 2 Ž .Sq s s x q c d q e } s d4 4 5 3 6 6 4 7
5 2Sq 0 x } 05
6 2Sq 0 0 d d d6 6 7

The action of the Steenrod squares on e , e is analogous to that on d , d6 7 6 7
substituting the corresponding values.

We now consider the spectral sequence of the central extension. It has

U ,U w xE ( H* A m F e ,Ž .2 8 2

where e represents the one-dimensional generator on the fiber. We have
2Ž .that d e s s . From the multiplicative relations above and a direct2

calculation using Macaulay to obtain the kernel of multiplication by s in2
Ž .H* A , we obtain the following E -term:8 3

w x w xF s q c , e , d 1, x rRR9 [ F s q c sŽ .2 3 3 6 6 5 2 3 3 3 2m F s , e .2 4½ 5w x w x[F d , d d , d e [ F e , e e , e eŽ . Ž .2 6 7 7 7 2 6 7 7 7
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Here, RR9 is the set of relations

x 2 s s c q s c ,Ž .5 4 3 3 3

d e s x s q c s ,Ž .6 6 5 3 3 4

e s s 0,6 3

d s s 0,6 3

together with the relations for the algebra in E . Note the two nontrivial2
permanent cocycles d e, e e in the E7, 1-term. They represent a and aX ,7 7 3 8 8
respectively.

3Ž 2 . 1Next we have d e s Sq s s c q s . Moreover, from the form of2 3 3
the E -term, we see that this is the only d3-differential and E has the3 4
form

w x w x 2F e , d 1, x rRR0 [ s [ F d , d d , ed , e d , e dŽ . Ž .2 6 6 5 3 2 6 7 7 7 7 3 7

2½ 5w x[F e , e e , ee , e e , e eŽ .2 6 7 7 7 7 3 7

4m F s , e , 4.1Ž .2 4

where RR0 is the pair of relations x 2 s 0, d e s 0.5 6 6
There are two possible d -differentials:4

d4 e3d s e d x ,Ž .7 6 5

d4 e3e s e 9e x ,Ž .7 6 5

where e , e 9 are 0 or 1. We will see later that these differentials actually
must occur, but, in any case there can be no d4-differential in total
dimension - 10.

2 5Ž 4.Now using Sq we see that d e s x . Again the relations imply that5
s e4 and x e4 are nontrivial permanent cocycles in dimensions F 9. Thus,3 5
in total degree seven the following classes survive to E : d , e , s e4;` 7 7 3
whereas in total degree nine we have x e4, d e2, e e2. This fills in the5 7 7

Ž .required information used in the computation of H* G .
However, we can now use 3.3 to determine the E -term in its totality,`

namely,

THEOREM 4.2. In the spectral sequence for the extension 1 ª Zr2 ª
4 4Ž 3 .2 A ª A ª 1 we ha¨e that there are two interior d -differentials, d e d8 8 7

4Ž 3 . 5Ž 4.s d x and d e e s e x . The only remaining differential is d e s x ,6 5 7 6 5 5
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so E s E is isomorphic to6 `

c , e4c , e4 xŽ .3 3 5½
2 3w x w x w xF e y q F d d [ F d , d 1, e, e , e d dŽ .2 6 2 6 6 2 6 7 7 7 4[ 1, eŽ .2 3 5w x[F e , e 1, e, e , e e eŽ .2 6 7 6 6

8m F s , e .2 4

Proof. We need to consider d4: E7, 3 ª E11, 0. If there is no d4-dif-
Ž . 5Ž 4.ferential here, then 4.1 shows that E s E and, since d e s x it4 5 5

follows that E would equal E and would have the form6 `

w x 4 4 w x 2 4F e , d 1, e x rRR0 [ s 1, e [ F d , d 1, e 1, e 1, e dŽ . Ž . Ž . Ž .Ž .2 6 6 5 3 2 6 7 7

2 4½ 5w x[F e e 1, e 1, e 1, e eŽ . Ž . Ž .2 6 7 7

8m F s , e2 4

which is clearly inconsistent with the form of the answer previously
determined. The only class available to be hit by d e3 is d x , and7 6 5
similarly the only class available to be hit by e e3 is e x . It follows that7 6 5
these differentials must be nontrivial and E has the form5

w x w x w x 2 3c , x [ F e [ F d d [ F d , d 1, e, e , e d dŽ . Ž .3 5 2 6 2 6 6 2 6 7 7 7

2 3½ 5w x[F e , d 1, e, e , e e eŽ .2 6 7 7 7

4m F s , e .2 4

The d5-differential on e4 now implies that E has the form given in 4.26
which has the same Poincare series as the answer obtained in Section 3.´

5. THE SYLOW SUBGROUP OF Ly AND THE
COHOMOLOGY OF 2S8

Ž .The Sylow subgroup of Ly}which is also Syl 2 A }can be given as2 10
an extension in many ways. For example, as a split extension it has the

Ž . Ž .form Syl J : 2 and Syl McL : 2, while as a nonsplit central extension it2 2 2
is given as

p
2eSyl Ly ª 2 X 2 X 2 s Syl SS .Ž . Ž .2 2 y8
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Ž Ž .. 2A convenient description is as the extension Syl L 4 : 2 , where2 3
Ž Ž ..Syl L 4 is the 3 = 3 upper triangular matrices with entries in F ,2 3 4

1 a b

Syl L 4 s UT 4 s a , b , g g F ,Ž . Ž .Ž . 0 1 g2 3 3 4− <� 00 0 1

2 Ž Ž ..and 2 is generated by the two automorphisms of Syl L 4 , Galois2 3
conjugation, g,

g 2 21 a b 1 a b
2s ,0 1 g 0 1 g� 0 � 00 0 1 0 0 1

Ž .and the automorphism corresponding to the automorphism of L 4 given3
yt Ž .by M l M for each M g GL F ,3 4

A
1 a b 1 g b q ag

s .0 1 g 0 1 a� 0� 0 0 0 10 0 1

Note that A is really the composite

0 0 1 0 0 1
ytm ¬ m0 1 0 0 1 0ž / ž /1 0 0 1 0 0

Ž .and thus extends to an automorphism of all of GL F leaving the3 4
Ž .subgroup of upper triangular matrices invariant. Note also that UT 43

contains exactly two copies of 24: the subgroups

1 a b 1 0 a
4 4 0 1 b2 s , 2 s .0 1 0I II− < − <� 0 � 00 0 1 0 0 1

Ž .We also denote the generators of the center of UT 4 as3

1 0 z 1 0 13

T s , Z s .0 1 00 1 0 ž /� 0 0 0 10 0 1

Ž . Ž . ² :Note that the center of Syl Ly s UT 4 : g, A is the single Zr2 s2 3
² : Ž . ² : Ž . Ž .Z . The subgroup UT 4 : g s Syl McL and is also Syl 2 A . It has3 2 2 8

² : 4 4 4center Z and exactly two subgroups isomorphic to 2 , 2 and 2 , both ofI II
which are normal.
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Ž . ² : Ž . Ž . 4The subgroup UT 4 : gA s Syl J s Syl J and here the two 2 s3 2 2 2 3
Ž . Ž . Ž .are fused. Finally, in the full group, Syl Ly s Syl 2S s Syl 2 A ,2 2 8 2 10

there are again only the two 24 subgroups above, but they are conjugate.
3 ² :However, there are a number of new 2 s, for example, g, A, Z and

² :A, T , Z . In all three of the groups 2S ; 2 A ; Ly there are precisely8 10
two conjugacy classes of maximal elementary abelian subgroups, and we

4 3 ² :can take as representatives the 2 above and the 2 defined by A, T , Z .
This of course immediately implies that both of these elementary abelian
groups form part of weakly closed systems in 2S ; 2 A and 2S ; Ly.8 10 8

Now we consider the extension 2 A : 2 s 2S ; 2 A . The action of the8 8 10
extending Zr2 exchanges the two 24s, consequently, on passing to coho-

Ž . Ž . Ž .mology it exchanges the generators corresponding to d , 0 , 0, d , d , 0 ,6 6 7
Ž . Ž . Ž .0, d and the similar elements corresponding to the terms a , 0 , 0, a ,7 i i
while it fixes the remaining generators. It follows that the E -term of the2
resulting Lyndon]Hochschild]Serre spectral sequence is

w xF d , d , d , d 1, a , a , a , a , a , a , aŽ .2 4 6 7 8 8 9 10 11 12 13 21

w x[ F d , d , w w , u , u , u ,Ž .2 4 8 3 7 9

where w represents the cohomology class dual to the extending Zr2.

LEMMA 5.1. There are two conjugacy classes of maximal elementary
2-groups in 2S , 2 A , and at the most two in Ly, the 24 discussed abo¨e8 10

Ž . 3which is weakly closed in Syl 2S ; 2S , and one of the new 2 s}the2 8 8
² :choice we will take in the following is A, T , Z }which is weakly closed in

² :2S ; 2 A . The Weyl groups of A, T , Z in 2S and 2 A are D and S ,8 10 8 10 8 4
respectï ely.

Proof. We start by verifying the following claim.

Claim. The maximal elementary abelian 2-groups in 2 A , 2S are in10 8
Ž .one-to-one correspondence via the quotient maps with the elementary

abelian 2-groups in A , S whose nonidentity elements are all products of10 8
four disjoint transpositions and are maximal with respect to this condition.

To see this, one should note that 2 A has no noncentral involutions,5
and both A and A have two conjugacy classes of involutions, one which8 10

w xlifts to an involution while the other lifts to an element of order 4 Co . We
also have the commuting diagram

2 A ¨2 A ¨2 A5 8 10
x x x
A ¨ A ¨ A5 8 10

which tells us that we must have the standard embedding of A in A .5 10
Since the noncentral involutions of A must project onto involutions not10

Ž .Ž .Ž .Ž .contained in A , they must have cycle type 1, 2 3, 4 5, 6 7, 8 .5
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Ž .Ž . Ž .Ž .If we consider S ; A generated by 1, 2 9, 10 , 2, 3 9, 10 , . . . ,8 10
Ž .Ž .7, 8 9, 10 , then we see that the remarks above apply to S as well.8

ŽClaim. The maximal elementary abelian 2-groups in S are up ton
. i1 i r jconjugacy of the form V = ??? = V , where V ( 2 and the permutation1 r j

action is the regular representation. Here, the number of letters permuted
by the subgroup is 2 i q ??? q2 r i , and this number is either n or n y 11 r
Ž w x.see, e.g., AM1, Chap. VI .

Observe that the subgroups V described above are contained in thei
alternating group if i G 2. Furthermore, note that the subgroup E of evenr
permutations contained in V r is not maximal in A if r s 2, since the1 2 r
even permutations in V = V are strictly contained in V . On the other1 1 2
hand if r G 3 then E is a maximal elementary abelian 2-group in A andr 2 r
is the unique such group with r two-element orbits.

Altering the arguments for the symmetric group to reflect these remarks
we obtain the following:

PROPOSITION 5.2. E¨ery maximal elementary abelian 2-group in A isn
conjugate to one of the form E = V i2 = ??? = V ir, where V f 2 j and thei 2 r j1

permutation action is the regular representation of 2 j. Here, the number of
letters permuted by the subgroup is 2 i q 4 i q ??? q2 r i , and this number is1 2 r
n, n y 1, n y 2, or n y 3.

To complete the classification of the conjugacy classes of elementary
abelian 2-groups in A , we need the following remark.n

Remark. Suppose that 8n s 23 i q 24 i q ??? q2 r i . Then a conjugacy1 4 r
class of maximal elementary abelian 2-groups in S or S of the form8 n 8 nq2

i3 i4 i r ŽV = V = ??? = V which is of course also maximal in A , A ,3 4 r 8 8 nq1n
.A , or A splits into two conjugacy classes of elementary abelian8 nq2 8 nq3

2-groups in A or A . The other types of maximal elementary abelian8 n 8 nq1
2-groups in A are conjugate if and only if they have the same form.m

The essential point in the proof of this remark is the fact that the
w Ž .xnumber of conjugates of a subgroup E ; G is the index G : N E of theG

normalizer. Applying this to the case E ; A , we see that the number ofm
conjugates of a E in S is either the same as the number of conjugates ofm
E in A or twice as many, depending on whether there is a transpositionm
of S normalizing E. Having made this point, our remark reduces to them

i3 i4 i r Žfact that if E s V = V = ??? = V , there is no transposition of S or3 4 r 8 n
.S normalizing E, and that there is one in the other cases.8 nq1

Ž .From what we have shown it follows that up to conjugacy the maximal
elementary abelian 2-groups in S are V , V 2, V = V 2, and V 4. The8 3 2 2 1 1
conjugacy classes of maximal elementary abelian subgroups of A are10
represented by V , V 2, V = E , and E .3 2 2 3 5
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Looking at the subgroups of the groups from the lists above, the only
ones whose elements satisfy the necessary condition on cycle type are the
conjugacy classes of

˜ ²V s 1, 2 3, 4 5, 6 7, 8 , 1, 3 2, 4 5, 7 6, 8 ,Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .3

:1, 5 2, 6 3, 7 4, 8Ž . Ž . Ž . Ž .

and

˜ ² :M s 1, 3 2, 4 5, 6 9, 10 , 1, 4 2, 3 7, 8 9, 10 .Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .3

˜ ˜Then M and V , the lifts of M and V , represent the maximal elementary3 3 3 3
abelian 2-groups of both 2 A and 2S .10 8

Finally, we need to check the Weyl groups of M in 2S and 2 A are as3 8 10
²Ž .Ž . Ž .Ž .: Ž .Ž .Ž .stated. Clearly, V s 1, 3 2, 4 , 1, 4 2, 3 and 1, 2 5, 7 6, 8 normalize2

Ž .this group, and these together generate a D . But since 9, 10 must be8
fixed by the elements of 2S it follows that there can be no element of8
order 3 which normalizes it in 2S . But the element of order 3 in 2 A8 10

Ž . Ž . Ž .which cyclically permutes the transpositions 5, 6 , 7, 8 , and 9, 10 while
Ž .Ž . Ž .Ž .simultaneously taking 1, 3 2, 4 to 1, 2 3, 4 also normalizes M , and the3

proof of 5.1 is complete.

² :We have the following calculation of the invariant subring for A, T , Z
under the action of the D -Weyl group for 2S :8 8

w xD 8 w Ž . xLEMMA 5.3. F w, t, z s F w, t t q w , d , where w is dual to the2 2 4
Ž .Ž .Ž . Ž .Ž .Ž .Ž .extending element A s 1, 2 5, 6 7, 8 , t is dual to 1, 2 3, 4 5, 8 6, 7 corre-

sponding to T , and z is dual to the central element, Z. Also,

d s z 4 q z 2d q zd q d2
4 2 3 2

is the generating element of the Dickson algebra, with d s w2 q tw q t 2,2
Ž .d s wt w q t .3

Proof. We start with the action of the element of order 2 which has the
form z ¬ z q t, t ¬ t, w ¬ w. This gives the invariant subring

F w , t , z z q t .Ž .2

Now consider the action of the second element of order 2 fixing t, w, z ¬
Ž . Ž .Ž . Ž . Ž .z q w. Then z z q t ¬ z q w z q t q w s z z q t q w t q w and

w Ž .Ž .Ž .xthe invariant subring is clearly F w, t, z z q t z q w z q t q w .2
Expanding out this last term is z 4 q z 2d q zd . Finally, the last element2 3
fixes w, z and takes t to t q w. Applying this, we clearly get the asserted
ring of invariants.
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Now here is the main result of this section.

Ž .THEOREM 5.4. In the spectral sequence abo¨e for H* 2S we ha¨e that8
Ž . Ž 4.L3Ž2. Ž 3.D 8E s E . Moreo¨er, the restriction map H* 2S ª H* 2 [ H* 22 ` 8

is injectï e in cohomology, and the quotient by the image has the form
w x Ž 4. Ž 2 Ž ..2F d , d with d being the image of d from H* 2 and w q t w q t2 4 8 4 4

Ž 3. 2from H* 2 while d is the image of d and d , respectï ely.8 8 4

w x Ž . wProof. We have AM1, p. 212 that H* S s F s , s , s , s , c , d ,8 2 1 2 3 4 3 6
xŽ .d x rR, where R is the set of relations7 5

d s s d s s 0,6 1 6 3

d s s d s s d s s d c s d x s 0,7 1 7 2 7 3 7 3 7 5

x s q c s s s 0,5 3 3 4 1

c s q s s q s x s 0,Ž .3 3 1 2 1 5

x 2 q x s c q d s 2 q s c2 s 0.5 5 2 3 6 2 4 3

We also have the commutative diagram

s s
Zr2 ª Zr2 ª Zr2

x x x
3 3 22 ¨ 2 ? 2 ¨ 2S8

x x x
D2 2W s 2 ª V = K ¨ S1 8

Ž 2 2where D is the diagonal map identifying both V and K with 2 and1
noting that the generators of W go diagonally to generators of the first and

2 .second 2 s . From this it is direct to determine the image of the restriction
Ž . Ž 3.map from the generators of H* S to H* 2 as follows:8

s ¬ s m 1 ¬ w ,1 1

s ¬ s m d ¬ w3 q d ,3 1 2 3

c ¬ 1 m d ¬ d ,3 3 3

s ¬ s m d ¬ t t q w d ,Ž .4 2 2 2

x ¬ s m d ¬ t t q w d ,Ž .5 2 3 3

d ¬ 0,6

d ¬ 0.7
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w 2 xŽ . Ž 3.This shows that the subalgebra F w, d 1, d in H* 2 is contained in2 2 3
Ž .the image from the cohomology of H* 2S as the subring coming from8

the composition

res 3H* S ª H* 2S ª H* 2 .Ž . Ž . Ž .8 8

w xAlso, by the argument of AM3, Section 6 , there is a real representation of
Ž 4.Ly so that the Stiefel]Whitney class w restricts to d in H* 2 and8 8

2 Ž² :. Ž . Ž² :.d g H* Z, w . It follows that the image of res: H* 2S ª H* ZW4 8
w 2 2 xŽ .contains the subalgebra F w, d , d 1, d .2 2 4 3

We now use the Lyndon]Hochschild]Serre spectral sequences of the
p p3central extensions 2e2 ª W and 2e2S ª S together with naturality to8 8

show that the remaining classes a and X also restrict nontrivially to7 9
Ž² :.H* Z, W .

Ž . w xIn the spectral sequence for 2S we write E s H* S m F z , while in8 2 8 2
the spectral sequence for 23 we have

w xE s H* W m F zŽ .2 2

w x w xs F w , t m F z .2 2

Ž . Ž 3.Moreover, the restriction map res: E 2S ª E 2 has the form res m id,2 8 2
and is natural with respect to differentials. Of course, the differentials in
the spectral sequence for 23 are all trivial, which implies that no element

Ž .in the spectral sequence for H* 2S which restricts nontrivially to the8
sequence for 23 can be in the image of a differential in the spectral
sequence for 2S .8

2 2Ž . 2The differential d is given by d z s s q s while the basic higher2 1
differentials are given by

d3 z 2 s s s q s q c ,Ž . 1 2 2 3

d5 z 4 s x q c s 2 q s s .Ž . 5 3 1 1 4

5Ž 4. 10Ž .An easy calculation shows that d x z g H S is in the image of the5 8
differentials d2 and d3, and a similar calculation shows the same thing for

5Ž 4.d c z . Consequently, since these classes restrict nontrivially to the3
Ž 3.spectral sequence for H* 2 , it follows that they survive to E and`

Ž .represent nontrivial classes in H* 2S .8
But the argument above actually shows more. It shows that, up to

4 Ž . 4filtration, the class represented by x z restricts to res x z , i.e., the5 5
image of restriction on this class has the form

t t q w d z 4 q ¨ t , w z 3 q ¨ t , w z 2 q ¨ t , w z q ¨ t , w .Ž . Ž . Ž . Ž . Ž .3 6 7 8 9
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On the other hand the image of this class lies in the invariant subring, so it
Ž . Ž . Ž .must have the form t t q w d d q ¨ t, w with ¨ t, w also in the3 4 9 9

invariant subring. However, it is direct to check that every element in
w Ž .xdimension 9 in F w, t t q w is already in the image of restriction from2

Ž . Ž . Ž .H* S , and t t q w d d is in the image of restriction from H* 2S .8 3 4 8
A similar argument with c z 4 shows that d d is in the image of3 3 4

Ž . Ž 3.restriction from H* 2S . But the smallest subring of H* 2 containing8
Ž Ž ..these elements and res H* S has the form8

2 2F w , d , d 1, d , d d , t t q w d d .Ž .Ž .2 2 4 3 3 4 3 4

This completes the proof.

² :COROLLARY 5.5. The group A, T , Z ( M is weakly closed in 2S ;3 8
² : Ž .Ly. Also, the Weyl groups of A, T , Z in Ly is L 2 .3

Ž .Proof. Note that from the work on 2S we already know that H* Ly8
Ž 4. A7 Ž 3. 3 4is detected by restriction to H* 2 [ H* 2 . If the 2 fused into 2

Ž . Ž 4. A7 wthen H* Ly would be detected by H* 2 alone. But from AM3,
xSection 6 we have

PROPOSITION 5.6. There is a real representation of Ly so that the
Ž 4. 2 Ž² :.Stiefel]Whitney class w restricts to d in H* 2 and to d g H* A, T , Z .8 8 4

Since there are no other invariants in dimensions 7 or 9 it follows that
d must be the restriction of a torsion free cohomology class and this is8
impossible. Consequently the 23 cannot fuse into the 24.

3 Ž .Similarly, we show that the Weyl group of this 2 is L 2 . Indeed, since3
the part of the proof of 5.1 already finished shows that the Weyl group is

Ž .at least S , which is maximal in L 2 , it follows that the Weyl group is4 3
Ž .either S or L 2 . But if it were S then weak closure would imply that the4 3 4

Ž 3. Ž .restriction to H* 2 is the same as the restriction of H* 2 A . On the10
other hand both d and d2 are in this image, but d2 is a double image3 2 2

Ž 4. A7class, and hence d would have to be in the invariant subring H* 2 .4
Ž .This is impossible, so it follows that the Weyl group is L 2 .3

Summarizing we have the following result which reduces the calculation
Ž . Ž .of H* 2 A and H* Ly to direct calculations with rings of invariants.10

Ž . Ž .COROLLARY 5.7. H* 2 A and H* Ly are both detected by restriction10
Ž 4. Ž² :.to the direct sum H* 2 [ H* A, T , Z . In particular, since

2 A10² : ² :Z, A , T s Z, W ; 2S ;8 ½ Ly
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are both weakly closed systems it follows that the image of restriction from
Ž . Ž² :.H* 2 A to H* Z, W is gï en as the intersection10

S2 2 4² :F w , d , d 1, d , d d , t t q w d d l H* Z, WŽ . Ž .Ž .2 2 4 3 3 4 3 4

Ž .while the image of restriction from H* Ly is gï en as

2 2 w xF w , d , d 1, d , d d , t t q w d d l F d , d , d .Ž .Ž .2 2 4 3 3 4 3 4 2 4 6 7

6. THE COHOMOLOGY OF 2 A10

We will now make explicit the cohomology of 2 A using the results in10
Section 5. First we recall that the S -invariants can be computed from the4
usual symmetric invariants and in our notation can be expressed as

S4w x w xF w , t , z s F d , d , d .2 2 3 3 4

Hence we immediately obtain the classes d , d2, d d , and d2 in the3 2 3 4 4
intersection. Moreover note the relations

w2d q wd2 q w5 s d d , w2 q t t q w d d s d d d .Ž .3 2 2 3 3 4 2 3 4

From this we see that the classes d d and d d d are also in the3 3 2 3 4
intersection, and hence it is at least as big as

2 2F d , d , d 1, d d , d d , d d d .Ž .2 3 2 4 2 3 3 4 2 3 4

This is in fact the totality of the intersection; complete details for this
computation are provided in an appendix. We can describe the cohomol-
ogy of 2 A as follows:10

THEOREM 6.1. The cohomology of 2 A is described by a short exact10
detection sequence of the form

0 ª H* 2 AŽ .10

Ž .L 234 2 2ª H* Zr2 [ F d , d , d 1, d d , d d , d d dŽ . Ž .Ž . 2 3 2 4 2 3 3 4 2 3 4

w xª F h , h ª 0,2 4 8

2 2Ž . Ž .where h , h correspond to the double image classes d , d and d , d .4 8 4 2 8 4
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7. THE COHOMOLOGY OF THE LYONS GROUP

Now we turn to the determination of the cohomology of the sporadic
group Ly. From our previous results it will be completely determined once
we have

2 2 w xF d , d , d 1, d d , d d , d d d l F d , d , d .Ž .2 3 2 4 2 3 3 4 2 3 4 2 4 6 7

LEMMA 7.1. The intersection abo¨e is gï en as

2 2 2 2 w xF d , d , d 1, d d , d d , d d d s F d , d [ F d , d , d d .Ž .2 4 6 7 4 7 6 7 4 6 7 2 4 6 2 4 6 7 7

Proof. We can write the ring

2 2F d , d , d 1, d d , d d , d d dŽ .2 3 2 4 2 3 3 4 2 3 4

2 2 2s F d , d , d 1, d d [ F d , d , d d d .Ž .2 3 2 4 2 3 2 2 3 4 3 4

On the other hand we have the decompositions

d s d d q d3 q d2 ,6 2 4 2 3

d s d d q d2 d ,7 3 4 2 3

so we can modify the decomposition above to the new decomposition

2 2 2F d , d , d 1, d d [ F d , d , d d .Ž .2 3 2 4 2 3 2 2 3 4 7

But we can further write the first summand in the form

2 2 2 2F d , d , d 1, d , d d , d d .Ž .2 2 3 4 3 2 3 2 3

Using this we can prove

w xSUBLEMMA 7.2. The intersection of the ring abo¨e with F d , d is2 4 6
w 2 2 xF d , d .2 4 6

w x w 2 2 2 xProof. Clearly, the intersection is F d , d l F d , d , d2 4 6 2 2 3 4
Ž 2 . i1, d , d d , d d . But to get a term involving d we must a term involving3 2 3 2 3 6
di di . Moreover, it cannot have any d s involved. Hence the intersection2 4 3

w 2 2 2 x w xmust lie in F d , d , d . But this intersection with F d , d , d is2 2 3 4 2 4 6 7
w 2 2 2 xF d , d , d .2 4 6 7

w 2 2 xŽ 2 2 . w 2 2Note that we can replace F d , d , d d d , d d d by F d , d ,2 2 3 4 3 4 2 3 4 2 2 3
2 x w 2 x w xd d d , and this summed with F d , d , d d is F d , d , d d . It4 7 4 2 2 3 4 7 2 2 3 4 7
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w xfollows that the intersection contains F d , d , d d and since the2 4 6 7 7
w x w xquotient of F d , d , d by this ideal is F d , d is follows that the2 4 6 7 2 4 6

intersection is given as
2 2w xF d , d l F d , d , d 1, d d , d d , d d dŽ .2 4 6 2 3 2 4 2 3 3 4 2 3 4

Ž .direct summed with the ideal d .7

Now we are able to describe the cohomology of Ly. Recall that the Weyl
group of the 24 in Ly is A , and that the ring of A -invariants has been7 7

w xdetermined in AM4 as
A74 w xH* 2 s F d , d , d , d 1, x , x , x , x , x , x .Ž . Ž .2 8 12 14 15 18 20 21 25 27 45

THEOREM 7.3. The cohomology of Ly is gï en by the short exact detection
sequence

A74 2 20 ª H* Ly ª H* 2 [ F d , d , d 1, d d , d d , d d dŽ . Ž . Ž .2 4 6 7 4 7 6 7 4 6 7

w xª F h , h ª 0,2 8 12

Ž 2 .where h and h correspond to the double image classes d , d and8 12 8 4
Ž 2 .d , d .12 6

Remark. We would like to point out that from the spectral sequences
Ž . Ž .for computing H* 2 A and H* 2S it is apparent that their cohomol-10 8

ogy rings have depth equal to 3, i.e., there is a regular sequence of length
3. On the other hand, an explicit computer algebra verification shows that

Ž .3the centralizers of the Zr2 subgroups in these groups are either the
Ž .3 Ž .4 w xZr2 themselves or a Zr2 . A theorem due to Carlson C indicates
that a depth 3 cohomology ring must be detected on the centralizers of
rank 3 elementary abelian subgroups. Of course, currently, the only way to
verify the conditions of Carlson’s result is to complete the calculations of
the cohomology groups since differentials in the spectral sequences can
lower ranks. But it would be very interesting if one could find independent
methods for showing that these conditions are satisfied.

APPENDIX

w xLet k be the field of two elements and k d , d , d the Dickson algebra4 6 7
Ž . w xof GL k -invariants in the polynomial ring k w, t, z . Let d , d be the3 2 3

Ž . w xgenerators of the GL k -invariants in k w, t . In this Appendix we will2
show that

2 2 w xk w , d , d 1, d , d d , t t q w d d l k d , d , dŽ .Ž .2 4 3 3 4 3 4 2 3 4

2 2s k d , d , d 1, d d , d d , d d d .Ž .2 3 4 2 3 3 4 2 3 4
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2 Ž .To begin we observe that, since d s w q t t q w , it must follow that2

2 2k w , d , d 1, d , d d , t t q w d dŽ .Ž .2 4 3 3 4 3 4

2 2s k w , d , d 1, d , d d , d d d .Ž .2 4 3 3 4 2 3 4

We will require the following

w x w x w xLEMMA A1. The subalgebra k w, d , d of k w, t is a free k d , d -2 3 2 3
� 24module with basis 1, w, w .

Proof. This is a special case of a more general fact about polynomial
Ž w x.invariants see Mit . However, for the sake of completeness we indicate a

proof here: first, from the usual lemma on integral extensions, we have
� 24 w x w xthat 1, w, w generates k w, d , d as a k d , d -module. So it is enough2 3 2 3

to prove that there is no relation p q qw q rw2 s 0 with p, q, r g
w xk d , d . Such a relation would be an equation in the polynomial ring2 3
w xk w, t and therefore remains true after applying an automorphism of that

Ž . Ž . Ž .ring. So, choosing w, u g GL k such that w w s t, u w s w q t, we2
2 Ž . Ž 2 2 .have the relations p q qt q wt s 0 and p q q w q t q r w q t s 0.

w x 2Adding gives p s 0. Since k w, t is a domain, it follows from qw q rw s 0
that q q rw s 0. The same argument gives q s 0 and it then follows that
r s 0.

w xŽ 2 .It follows from the lemma that k d , d , d 1, w, w is a free2 3 4
w x � 24 w xk d , d , d -module with basis 1, w, w . Since k d , d , d is a free2 3 4 2 3 4

w 2 2 x � 4module over k d , d , d with basis 1, d , d , d d , it follows that2 3 4 2 4 2 4
w xŽ 2 . w 2 2 xk d , d , d 1, w, w is a free module over k d , d , d with basis the 122 3 4 2 3 4

� 24 � 4elements obtained from the product 1, w, w ? 1, d , d , d d , i.e.,2 4 2 4

1, d , d , d d , w , wd , wd , wd d , w2 , w2d , w2d , w2d d .2 4 2 4 2 4 2 4 2 4 2 4

We will call the free R-module mentioned above M. We use the fact
that if A ; B ; C are rings and C is a finitely generated free B-module

� 4 � 4with basis c and B is a finitely generated free A-module with basis b ,i j
� 4then C is a finitely generated free A-module with basis b c .j i

In what follows we will need the following formal lemma on the same
theme.

� 4LEMMA A.2. If a , b are integral elements o¨er R and a , . . . , a1 n
w x � 4 w xgenerate R a as an R-module, while b , . . . , b generate R b as an1 m

� 4 w xR-module, then a b is a set of R-module generators for R a , b .i j

w x w xw xThe proof follows from regarding R a , b as R a b , which makes
w xsense since b integral over R implies b integral over R a . We note that

they system of generators in this lemma may be ¨ery redundant.
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The Intersection

w 2 2 xLet R s k d , d , d . It follows from the remarks in the previous2 3 4
section that w is integral over R. In fact, X 6 q d2 X 2 q d2 s 0 is an2 3

w 2 2 xŽ .integral equation for w over R. It follows that k w, d , d 1, d is an2 4 3
� 54integral extension of R with 1, w, . . . , w as a set of R-module genera-

tors. Furthermore d d , d d d are integral over R, with equations X 2 q3 4 2 3 4
d2d2 and X 2 q d2 d2d2, respectively.3 4 2 3 4

It follows from Lemma A2 that the 24 elements given by all triple
� 54 � 4 � 4products from the set 1, w, . . . , w ? 1, d d ? 1, d d d generate3 4 2 3 4

2 2k w , d , d 1, d , d d , d d dŽ .2 4 3 3 4 2 3 4

w 2 2 xŽ .as an R-module. We denote k w, d , d 1, d , d d , d d d by U when2 4 3 3 4 2 3 4
w xregarding it as an R-module. When k d , d , d is regarded as an R-mod-2 3 4

ule, it will be denoted by V. Notice that U and V are R-submodules of M.
In the notation just described, the purpose of this note is to find genera-
tors for U l V.

To begin describing a simpler generating set for the R-module U, let us
� 54first examine the subset 1, w, . . . , w of the generators of U. Since

w3 q d w q d s 0 and d g R, the R-submodule of U generated by2 3 3
� 2 34 � 2 41, w, w , w is the same as that generated by 1, w, w , d w . Similar2
reasoning, plus the equation w5 q d2 w q d d s 0, gives that the R-sub-2 2 3

� 54module generated by 1, w, . . . , w is the same as that generated by
� 2 2 41, w, w , wd , w d , d d .2 2 2 3

Thus we can replace the first set in the 24 generators remark above with
� 2 2 4the set 1, w, w , wd , w d , d d .2 2 2 3

As U is a submodule of the free module M defined in the previous
section we can write our new generating set in terms of the basis previ-
ously described from the free module M. To make it clear when we are
regarding a polynomial as one of the free generators of M, we will
represent the free generators in boldface. Thus M is the free R-module on
generators

1, d , d , d d , w, wd , wd , wd d , w 2 , w 2d , w 2d , w 2d d .2 4 2 4 2 4 2 4 2 4 2 4

Multiplying out the 24 triple products yields the following generators of
Ž .U regarded here as elements of M :

1, w, w 2 , wd , w 2d , d d , d d , d wd , d w 2d , d wd d , d w 2d d ,2 2 3 2 3 4 3 4 3 4 3 2 4 3 2 4

d d d , d d d , d wd d , d w 2d d , d2 d wd , d2 d w 2d , d2 d2d ,3 2 4 3 2 4 3 2 4 3 2 4 2 3 4 2 3 4 2 3 4

d2d2d , d2d2d w, d2d2d w 2 , d2d2 d2 w, d2d2 d2 w 2 , d2 d3d21.3 4 2 3 4 2 3 4 2 3 4 2 3 4 2 2 3 4



ADEM ET AL.478

On the other hand the R-submodule V of M is much simpler, being
� 4generated by 1, d , d , d d . Since every generator of U in the long list2 4 2 4

above is an R-multiple of a generator of M, we need only consider what
R-multiples of the four generators 1, d , d , d d occur.2 4 2 4

More explicitly, we are quoting the following:

� 4LEMMA A3. Let R be a ring and M a free R-module with basis e , . . . , e .1 n
� 4Let V be the submodule generated by e , . . . , e for some k - n. Let U be a1 k

� 4R-module generated by r ? e . Theni j i

U l V s J [ ??? [ J [ 0 [ ??? [ 0,1 k

� 4 Ž .where J is the ideal of R generated by r for fixed t, but j ¨arying .t t j

In any case, a brief examination of the list shows that the relevant
Ž . Ž . Ž . Ž .multiples, or ideals as in the lemma, are 1 , d , d , d . Thus, the3 3 3

R-submodule U l V of M is generated by 1, d d , d d , d d d . Now all3 2 3 4 3 2 4
the R-modules involved are actually rings, and a set of R-module genera-
tors is also a set of ring generators, so we have shown what we claimed at
the outset, namely, that

2 2 w xk w , d , d 1, d , d d , t t q w d d l k d , d , dŽ .Ž .2 4 3 3 4 3 4 2 3 4

2 2s k d , d , d 1, d d , d d , d d d .Ž .2 3 4 2 3 3 4 2 3 4
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