On the Galois Embedding Problem for p-Extensions in Characteristic p

T. KAMBAYASHI

Department of Mathematical Sciences, Tokyo Denki University, Hatoyama-machi, Saitama, 350-03, Japan

Communicated by Richard G. Swan
Received April 29, 1991

The general Galois Embedding Problem asks whether or not a given finite Galois extension of fields K/k is embeddable in a tower of Galois extensions $k \subset K \subset L$ in such a manner that the corresponding extension of finite groups matches a pre-designated group extension. Since the 1930s there has been extensive research on the problem, particularly in the case of number fields. The reader is referred to Matzat's monograph [6] for references. What we deal with in the present note is quite a special case of the problem wherein the field characteristic is p and the group extension has kernel $\simeq \mathbb{Z}/p\mathbb{Z}$; otherwise, however, the fields appearing in our treatment are completely unrestricted. In Section 1 below we give as Theorem 1 a condition in order that a Galois extension followed by an Artin-Schreier extension be Galoisian. Our main result is Theorem 2, which gives a criterion for the Galois embeddability in the case at hand: The condition is that either the given group extension is not split, or the base field k contains elements not expressible as $u^p - u$ with $u \in K$.

Since the factor group $K/\mathcal{P}K$, $\mathcal{P}x := x^p - x$, emerges as a key player in our situation, we study this group rather closely in Section 2 and obtain Theorem 3 which gives an important special case where the group is always infinite. As an application we show as Corollary 1 to Theorem 3 that, in characteristic p, any p-group can be realized as a Galois group over any field finitely generated and of positive transcendency over another field. Also about p-groups, we retrieve the classical Witt theorem which determines exactly when a p-group can be a Galois group over a given field. (Compare Corollary 2 of Theorem 3 below with Witt [14]. Also, see closely related results of Reichhardt [8] and Scholz [9] for the case of number fields.)

The origin of the present paper is the author's study of Abhyankar's Conjecture [1] about unramified coverings of the affine line in positive

characteristics [4; 5]. In that direction, lately there have been remarkable advances made by Abhyankar himself [2] and Serre [11].

In completing this work I greatly benefited from talking with Madhav Nori. When I showed him Theorems 1 and 2 it became apparent to me that he had more or less known or anticipated these results through his earlier thesis work [7] related to Shafarevich's theorem about unramified Galois extensions of algebraic function fields [12]. More specifically, he pointed out to me how to handle Galois embedding questions from the viewpoint of profinite groups and produced for me Example 2 in the text below. I am greatly indebted to him. I am also grateful to my young colleagues, Noriyuki Suwa and Shuji Yamagata, for useful pieces of advice and information.

1. Embedding Theorems

For any \mathbb{F}_p -algebra A, the Frobenius map $\mathscr{F}: A \to A$ is defined by $\mathscr{F}(a) := a^p$ for every $a \in A$, and the map $\mathscr{P}: A \to A$ by $\mathscr{P} := \mathscr{F} - 1$, $\mathscr{P}(a) = a^p - a$.

Let $1 \to \mathbb{Z}/p\mathbb{Z} \to E \to G \to 1$ be an extension of a finite group G by $\mathbb{Z}/p\mathbb{Z}$. Given a Galois extension K/k with Galois group G, one asks whether or not one may build a Galois extension L/K with Galois group $\mathbb{Z}/p\mathbb{Z}$ such that the Galois group of L over k is E. To answer this question one must first know the conditions in order for L/k to be a Galois extension. Since L/K is always an Artin-Schreier extension, it is not hard to prove the next

THEOREM 1. Let k be a field of prime characteristic p, and let K be a finite Galois extension of k with Galois group $G = \operatorname{Gal}(K/k)$. Let $L = K(\theta)$ be an Artin-Schreier extension of K such that $\theta^p - \theta - u = 0$ with $u \in K$, $u \notin \mathcal{P}K$. Then, L is a Galois extension of k if and only if there exists a p-character $\chi: G \to (\mathbb{F}_p)^* \simeq \mathbb{Z}/(p-1)$ \mathbb{Z} such that ${}^su \equiv \chi(s)$ $u \pmod{\mathcal{P}K}$ for all $s \in G$.

Proof. Let $k_{\text{sep}} \supset K$ be a separable closure of k fixed once and for all. For any $s \in G$ let $\tilde{s} \in \text{Gal}(k_{\text{sep}}/k)$ be any one of the extensions of s. Now suppose that, for all $s \in G$, we have ${}^s u = \chi(s) u + w_s^p - w_s$ with $w_s \in K$. Then, since

$${}^{\bar{s}}\theta^{\,p} - {}^{\bar{s}}\theta - {}^{\bar{s}}u = 0 \tag{1}$$

the conjugate ${}^{s}\theta$ must equal $\chi(s) \theta + w_{s} + j$ for some $j \in \mathbb{F}_{p}$, so that $K(\theta)$ is a Galois extension of k. Conversely, assume that $K(\theta)$ is Galoisian over k.

Then, ${}^{\bar{s}}\theta$ must be a polynomial in θ of degree < p with coefficients in K: ${}^{\bar{s}}\theta = \sum_{i=0}^{p-1} b_i \theta^i$. Substitute this in (1) above and we get

$$\left(\sum_{i=0}^{p-1} b_i \theta^i\right)^p - \sum_{i=0}^{p-1} b_i \theta^i - {}^s u = \sum_{i=0}^{p-1} b_i^p (\theta + u)^i - \sum_{i=0}^{p-1} b_i \theta^i - {}^s u = 0.$$
 (2)

As θ is of degree p over K, the last expression of (2) as a polynomial in θ must have all coefficients equal to 0. It follows then

$$b_{p} = b_{p-1} = \dots = b_{2} = 0$$
 and $b_{1} \in \mathbb{F}_{p}$. (3)

Indeed, introducing $b_p := 0$, we argue by descending induction to prove that $b_p = \cdots = b_{j+1} = 0$ and $b_j \in \mathbb{F}_p$ for j = p-1, ..., 1. Firstly, in (2), (coefficient of $\theta^{p-1}) = b_{p-1}^p - b_{p-1} = 0$, so $b_{p-1} \in \mathbb{F}_p$, which takes care of the case j = p-1. Next suppose our claim to be true for one j as above. Then, the last equality in (2) becomes $\sum_{i=0}^{j} b_i^p (\theta + u)^i - \sum_{i=0}^{j} b_i \theta^i - {}^s u = 0$ with $b_j \in \mathbb{F}_p$. In this last, the coefficient of θ^{j-1} is $b_j^p \cdot ju + b_{j-1}^p - b_{j-1}$ which equals 0. So, $-jb_ju = b_{j-1}^p - b_{j-1}$ and, since u is not in $\mathscr{P}K$, we see that $b_j = 0$ and $b_{j-1} \in \mathbb{F}_p$. This proves (3). We have now established

$$u = b_1 u + b_0^p - b_0, b_1 \in \mathbb{F}_p, b_0 \in K \text{ for all } s \in G.$$
 (4)

It is easy to see that the b_1 in (4) depends only on s and not on \tilde{s} , and that the correspondence $s \mapsto b_1$ gives a homomorphism of G to \mathbb{F}_p^* .

Remark. Theorem 1 is the counterpart in our case of Reichhardt's criterion [8, p. 3] in the case of Kummer extensions over number fields.

THEOREM 2. Let k be a field of prime characteristic p, and let K be a finite Galois extension field of k with Galois group G = Gal(K/k). Let $1 \rightarrow \mathbb{Z}/p\mathbb{Z} \rightarrow E \rightarrow G \rightarrow 1$ be a central extension of G by $\mathbb{Z}/p\mathbb{Z}$. Then, the extension K/k is embeddable in a Galois extension L/K such that $Gal(L/K) \simeq \mathbb{Z}/p\mathbb{Z}$ and $Gal(L/k) \simeq E$ if and only if either (a) the given group extension is NOT split, or (b) k is NOT contained in $\mathcal{P}K$.

Proof. (If) To begin with, observe that the exact sequence of additive groups $0 \to \mathbb{F}_p^* \to K^+ \to K^+/\mathbb{F}_p^+ \to 0$, combined with the fact that $H^i(G, K^+) = 0$ for i > 0, gives the isomorphism of Galois cohomology groups $H^1(G, K^+/\mathbb{F}_p^+) \simeq H^2(G, \mathbb{F}_p^+)$. Also observe that, since G here acts trivially on \mathbb{F}_p^+ , one may (and shall) identify $H^2(G, \mathbb{F}_p^+)$ with $H^2(G, \mathbb{Z}/p\mathbb{Z})$ (with a trivial G-action) that controls central extensions of G by $\mathbb{Z}/p\mathbb{Z}$. From now on in the current proof we just write P in place of $\mathbb{F}_p^+ = \mathbb{Z}/p\mathbb{Z}$ with a trivial G-action. Now let $\gamma \in H^2(G, P)$ be the given central group extension. Then, $\gamma = c(-,-) \mod B^2(G, P)$ for some $c(-,-) \in \mathbb{Z}^2(G, P)$, there is a unique $\beta \in H^1(G, K^+/P)$ that corresponds to γ under the isomorphism

above, and one can write $\beta = \bar{b}(-) \mod B^1(G, K^+/P)$, $\bar{b}(-) = b(-) \mod P$ with $b(-) \in C^1(G, K^+)$. So, for all $s, t \in G$, we have $b(st) - b(s) - {}^sb(t) \in P$ and, by definition of the connecting homomorphism which is our isomorphism now, we have

$$c(s, t) \equiv b(st) - b(s) - {}^{s}b(t) \pmod{B^{2}(G, P)}.$$
 (5)

Let us now define $f(-) \in C^1(G, K^+)$ by setting $f(s) := b(s)^p - b(s) = \mathcal{P}b(s)$ for all $s \in G$. Then, $f(st) = b(st)^p - b(st) = (b(s) + {}^sb(t) + j(s,t))^p - (b(s) + {}^sb(t) + j(s,t))$ where $j(s,t) \in P$, which in turn is $= b(s)^p - b(s) + {}^sb(t)^p - {}^sb(t) = f(s) + {}^sf(t)$. Therefore, $f(-) \in Z^1(G, K^+)$. But, then, $f(-) \in B^1(G, K^+)$ because $H^1(G, K^+) = 0$, and this means that there exists some $u \in K^+$ such that $f(s) = {}^su - u$ for all $s \in G$. We conclude that

$$b(s)^{p} - b(s) = {}^{s}u - u \qquad \text{for all} \quad s \in G.$$
 (6)

Our aim is to construct the field L by adjoining a root of $X^p - X - u = 0$. But, before doing that, we need to ensure that $u \notin \mathcal{P}K$. So, assume that $u = w^p - w$ for some $w \in K$. In that case, $b(s)^p - b(s) = {}^s(w^p - w) - ({}^sw - w)$ and, consequently, $(b(s) - ({}^{s}w - w))^{p} = b(s) - ({}^{s}w - w)$. Therefore, for all $s \in G$, $b(s) \equiv {}^{s}w - w \pmod{P}$, i.e., b(-) is cohomologous to 0 modulo P, or $\bar{b}(-) \in B^1(G, K^+/P)$. This implies $\beta = 0$ so that $\gamma = 0$. It follows that the assumption of (a), $\gamma \neq 0$, guarantees $u \notin \mathcal{P}K$. If on the other hand the condition (b) $k \neq \mathscr{P}K$ is satisfied, then take $\alpha \in k$, $\alpha \notin \mathscr{P}K$. In case the initially chosen $u \in K$ is in $\mathscr{P}K$, replace u by $u + \alpha \notin \mathscr{P}K$. Then, $u \in K$ is in $u \in K$ is in $u \in K$. ${}^{s}u - u = b(s)^{p} - b(s)$ for all $s \in G$, so (6) holds with $u + \alpha$ substituted for u. Now let θ be a root of $X^p - X - u = 0$ with $u \notin \mathcal{P}K$ and (6) sustained, and let $L := K(\theta)$. Then, L is a proper Artin-Schreier extension of K with Galois group $P = \mathbb{Z}/p\mathbb{Z}$, and L/k is indeed a Galois extension by virtue of (6) and Theorem 1. It remains to verify that $Gal(L/k) \simeq E$. To see that, let each $s \in G$ be extended to a k-automorphism of L. Since such an extended automorphism maps θ to $\theta + b(s) + i$ for i = 0, 1, ..., p - 1 because of (6), let us choose for each $s \in G$ its standard extension \tilde{s} defined by $\tilde{s}\theta = \theta + b(s)$. Doing this amounts to choosing a section $G \to Gal(L/k)$, and one can now calculate the 2-cocycle corresponding to the extension $1 \to P \to Gal(L/k) \to I$ $G \to 1$ as follows: For any $s, t \in G$, $\tilde{st}: \theta \mapsto \theta + b(t) \mapsto \theta + b(s) + {}^{s}b(t)$ and $(st)^{\sim}:\theta\mapsto\theta+b(st)$. So, the 2-cocycle z(-,-) satisfying $\tilde{st}=(st)^{\sim}\cdot z(s,t)$ is given by $z(s, t) = b(st) - b(s) - {}^{s}b(t)$ for all $s, t \in G$. By (5), then, $z(s, t) \equiv c(s, t) \pmod{B^2(G, P)}$, and this tells us that $1 \to P \to \operatorname{Gal}(L/k) \to R$ $G \rightarrow 1$ is equivalent to the group extension originally given. In particular, $Gal(L/k) \simeq E$.

(Only If) Suppose that the given central extension is realized as Galois groups of the tower of Galois extensions $k \subset K \subset L$ with $Gal(L/k) \simeq E$. Then, $L = K(\theta)$ for some θ with $\theta^p - \theta - u = 0$, $u \in K$, $u \notin \mathcal{P}K$. Moreover, by

Theorem 1, for any $s \in G$ there is a $b(s) \in K$ such that ${}^su - u = b(s)^p - b(s)$, and the choice of b(s) is unique modulo P. Now, for any $s, t \in G$, $b(st)^p - b(st) = {}^{st}u - u = {}^{s}({}^tu - u) + {}^su - u = {}^s(b(t)^p - b(t)) + b(s)^p - b(s) = (b(s) + {}^sb(t))^p - (b(s) + {}^sb(t))$, which shows that $b(st) - (b(s) + {}^sb(t)) \in P$ always. It follows that $b(-) \mod P \in Z^1(G, K^+/P)$. By means of calculations just as in the (If) part above, the 2-cocycle in $Z^2(G, P)$ corresponding to our extension fields is easily found to be a z(-, -) satisfying $z(s, t) = b(st) - b(s) - {}^sb(t)$ for all $s, t \in G$. Now, assume that $z(-, -) \in B^2(G, P)$, or equivalently that $b(-) \mod P \in B^1(G, K^+/P)$. Then, there is $w \in K$ such that, for all $s \in G$, $b(s) = {}^sw - w + i(s)$ with $i(s) \in P$. When that is so, we have

which then gives ${}^s(u-(w^p-w))=u-(w^p-w)$ for all $s\in G$. Hence, $u=w^p-w+\alpha$ for some $\alpha\in k$. Since $u\notin \mathcal{P}K$, we see $\alpha\notin \mathcal{P}$.

This proves the (Only If) part, and hence the theorem.

2. Examples and Corollaries

In this section we examine the conditions (a) and (b) of Theorem 2 to see which Galois extensions are p-embeddable.

EXAMPLE 1. Let L/K be a Galois extension of *finite* fields with $Gal(L/K) \simeq \mathbb{Z}/p\mathbb{Z}$. Since $\mathscr{P}K$ is of index p in K^+ and L contains an element u such that $\mathscr{P}u \in K^+ \setminus \mathscr{P}K$, we have $\mathscr{P}L \cap K^+ = K^+$, or $\mathscr{P}L \supset K$. It follows by Theorem 2 that the only extension $0 \to \mathbb{Z}/p\mathbb{Z} \to E \to \mathbb{Z}/p\mathbb{Z} \to 0$ in which L/K is embeddable is a non-split one, i.e., a cyclic extension. Arguing by induction and observing that the only non-split extension of a cyclic group by $\mathbb{Z}/p\mathbb{Z}$ is cyclic, one retrieves the well-known fact that all Galois p-extensions (indeed any Galois extensions) of a finite field are cyclic.

Next we consider finitely generated extension fields as our ground field. In preparation we give a lemma found in [3, Sect. 64.5, pp. 225ff] where, though, the assumption on G appears to be needlessly restrictive. We rehash:

LEMMA 1. Let L/K be a finite Galois extension whose Galois group G is a p-group. Let $A(L/K) := \{u \in L : \mathcal{P}u = u^p - u \in K\}$. Then, there is a natural isomorphism $\operatorname{Hom}(G, \mathbb{Z}/p\mathbb{Z}) \simeq A(L/K)/K^+ \simeq (\mathcal{P}L \cap K^+)/\mathcal{P}K$ of additive groups.

Proof. Given $\chi \in \text{Hom}(G, \mathbb{Z}/p\mathbb{Z}) = \text{Hom}(G, \mathbb{F}_p)$, one can regard χ as an element of 1-cocycle group $Z^1(G, L^+)$ in Galois cohomology because the action of G on $\mathbb{F}_p \subset L^+$ is trivial. So, there exists $u \in L$ such that $\chi(s) = {}^s u - u$ for all $s \in G$ by the nullity of $H^1(G, L^+)$, and $({}^s u - u)^p = {}^s u - u$. It follows that $u^p - u \in K$. Clearly, for a given χ , such u is uniquely determined modulo K^+ . Conversely, for any $u \in A(L/K)$ one just puts $\chi(s) := {}^s u - u$ to define a $\chi \in \text{Hom}(G, \mathbb{Z}/p\mathbb{Z})$. Finally, $A(L/K)/K^+ \simeq (A(L/K)/\mathbb{F}_p^+)/(K^+/\mathbb{F}_p^+) \simeq (\mathscr{P}L \cap K)/\mathscr{P}K$ because $\text{Ker}(\mathscr{P}) = \mathbb{F}_p^+$.

We now prove the main result of this section:

THEOREM 3. Let $K = k(x_1, ..., x_n)$ be a finitely generated extension field of positive transcendence-degree over a field k of characteristic p > 0. Then, the index $[K^+: \mathcal{P}K] = +\infty$.

Proof. We break up the proof in several steps:

(3.1) If R is a normal domain of characteristic p and $K := \mathcal{Q}(R)$ is the field of quotients of R, then $[R^+ : \mathcal{P}R] = +\infty$ implies $[K^+ : \mathcal{P}K] = +\infty$.

Let $u_1, ..., u_n, ...$ be an infinite sequence of elements of R that are mutually distinct modulo $\mathcal{P}R$. Suppose for a moment that $u_i - u_j$ for some $i \neq j$ belonged to $\mathcal{P}K$, or $u_i - u_j = w^p - w$ for $w \in K$. Since R is integrally closed in K, this means $w \in R$, or $u_i \equiv u_j \pmod{\mathcal{P}R}$, which is a contradiction.

(3.2) For $K = k(t_1, ..., t_n) = a$ purely transcendental extension of a field k, we have $[K^+ : \mathcal{P}K] = +\infty$.

We consider K as the field of quotients of $k(t_2, ..., t_n)[t_1]$ and make use of (3.1). So, we only need to show $\lfloor k[t] : \mathcal{P}k[t] \rfloor = +\infty$ where k[t] denotes the polynomial ring over k. But it is immediately clear that the elements of the set $\{t^j | j > 0 \text{ not divisible by } p\}$ are mutually distinct modulo $\mathcal{P}k[t]$.

(3.3) Let L/K be a finite algebraic extension of fields, and let $A := A(L/K) = \{u \in L \mid \mathcal{P}u \in K\}$. Then, $[\mathcal{P}A : \mathcal{P}K] < +\infty$.

Since A is contained in the separable closure of K within L, it suffices to prove the assertion in case L is separably algebraic over K. Further, we may clearly assume that L is Galoisian over K with $G := \operatorname{Gal}(L/K)$ a p-group. Then, by Lemma 1 above, $\mathscr{P}A/\mathscr{P}K \simeq \operatorname{Hom}(G, \mathbb{Z}/p\mathbb{Z})$, which is of course finite.

Theorem 3 is now obvious from (3.1), (3.2), and (3.3) above.

COROLLARY 1. Let K be a finitely generated extension field of positive transcendence-degree over a field k of characteristic p. Then, for any given

finite p-group G one can find a Galois extension L of K such that its Galois group Gal(L/K) is G.

Proof. For any finite extension field $F \supset K$ we have $[\mathscr{P}A : \mathscr{P}K] < +\infty$ where $A := A(F/K) = \{u \in F | \mathscr{P}u \in K\}$ as in (3.3), while $[K : \mathscr{P}K] = +\infty$ by Theorem 3. This implies $[K : \mathscr{P}A] = +\infty$, so that any Galois extension of K is embeddable in any given extension of its Galois group by $\mathbb{Z}/p\mathbb{Z}$ by virtue of Theorem 2.

In the same vein as Corollary 1 above, there is a classical result due to Witt [14] which we briefly discuss now. Before that, for any p-group G, let G^* be the subgroup generated by all commutators $[x, y] = xyx^{-1}y^{-1}$ and all pth powers z^p . Then G^* is normal, and every homomorphism $G \to (abelian group of exponent <math>p)$ factors uniquely through $G \to G/G^*$. Further, a theorem due to Burnside states that if one writes the order $|G/G^*| = p^n$ then G can be generated by n elements, but never by fewer than n elements (cf. [14, Sect. 1]). Let us denote this number n by n(G).

COROLLARY 2 (Witt's Theorem). Let K be any field of characteristic p, and let $[K^+: \mathcal{P}K] = p^N$. Let G be a p-group. Then, a Galois extension field L of K with Gal(L/K) = G exists if and only if $n(G) \leq N$.

Proof. (Only If) Let n := n(G). Then, $\operatorname{Hom}(G, \mathbb{Z}/p\mathbb{Z}) = \operatorname{Hom}(G/G^*, \mathbb{Z}/p\mathbb{Z}) \simeq \operatorname{Hom}((\mathbb{Z}/p\mathbb{Z})^n, \mathbb{Z}/p\mathbb{Z}) \simeq (\operatorname{dually}) (\mathbb{Z}/p\mathbb{Z})^n$. So, by Lemma 1, $[\mathscr{P}L \cap K : \mathscr{P}K] = p^n \leq [K^+ : \mathscr{P}K] = p^N$.

(If) Write $|G| = p^f$ and use induction on f, the case f = 1 being obvious. So, for f > 1, make out a central extension $1 \to \mathbb{Z}/p\mathbb{Z} \to G \to H \to 1$ and construct a Galois extension field $B \supset K$ with Gal(B/K) = H. Now, in case this group extension is not split, we are done because of Theorem 2. In case it is split, $G \simeq H \times \mathbb{Z}/p\mathbb{Z}$, so that $G^* \simeq H^* \times \{1\}$. This implies n(H) = n(G) - 1 = n - 1 and, therefore, n(H) < N. By looking at the inclusion $\mathscr{P}K \subset \mathscr{P}B \cap K^+ \subset K^+$ with $[\mathscr{P}B \cap K^+ : \mathscr{P}K] = p^{n(H)}$, we find at once that K^+ properly contains $\mathscr{P}B \cap K^+$. Applying our Theorem 2 to B and B, we establish our assertion.

The above Example 1 and Corollary 1 give the two extreme cases of fields K: one in which only cyclic p-groups can occur and the other in which any p-group can occur—as Galois groups over K. Note that in these cases $[K: \mathcal{P}K]$ was p and $+\infty$, respectively. We then ask, can the index $[K: \mathcal{P}K]$ be anything else? The answer is yes and is provided by an example due to Madhav Nori as follows:

EXAMPLE 2 (M. Nori). We can construct a field K for which the group $K/\mathcal{P}K$ is isomorphic to $(\mathbb{Z}/p\mathbb{Z})^m$ for any m>1. It is sufficient to establish this for m=2, as seen readily from what follows, so we stick to this case.

For our purpose, though, it is necessary to draw on the theory of profinite p-groups as founded by Serre [10] (see Shatz [13] also) and to deal with infinite ground field extensions—something we have avoided up to now in order to make our constructions algorithmic. Let k be a field of characteristic p subject to $[k:\mathcal{P}k]=+\infty$. (For instance, $k:=\mathbb{F}_p(t)$ will do, in view of Theorem 3.) Within a fixed separably algebraic closure of k take the union E of all Galois p-extensions of k. Then, E/k is an infinite Galois extension with a free profinite p-group Γ as its Galois group. It is known and is also easy to see from Lemma 1 that $H^1(\Gamma, \mathbb{Z}/p\mathbb{Z}) = \operatorname{Hom}(\Gamma, \mathbb{Z}/p\mathbb{Z}) \simeq k/\mathcal{P}k$, so that Γ is of infinite rank (cf. [10, II-5, Sect. 2, Corollary 1; 13, Chap. 3, Sect. 3, Corollaries 1, 2, p. 72]). Let Δ be a free pro-p-subgroup of Γ of rank 2, and let K be the subfield of E consisting of elements fixed by Δ . Then, $\operatorname{Gal}(E/K) \simeq \Delta$, so that $K/\mathcal{P}K \simeq \operatorname{Hom}(\Delta, \mathbb{Z}/p\mathbb{Z}) \simeq (\mathbb{Z}/p\mathbb{Z}) \times (\mathbb{Z}/p\mathbb{Z})$, as desired.

REFERENCES

- 1. S. S. ABHYANKAR, Coverings of algebraic curves, Amer. J. Math. 79 (1957), 825-826.
- S. S. ABHYANKAR, Galois theory on the line, in "Abstracts Amer. Math. Soc.," No. 855-14-07, Amer. Math. Soc., Providence, RI, 1990.
- 3. A. Babakhanian, "Cohomological Methods in Group Theory," Pure Appl. Math., Vol. 11, Dekker, New York, 1972.
- T. KAMBAYASHI AND V. SRINIVAS, On etale coverings of the affine space, in "Algebraic Geometry—Proc. Ann Arbor Conf.," Lecture Notes in Math., Vol. 1008, Springer, Berlin/New York, 1983.
- T. KAMBAYASHI, Nori's construction of Galois coverings in positive characteristics, in "Algebraic and Topological Theories—To the Memory of Dr. Takehiko Miyata," Kinokuniya Bookstores, Ltd., Tokyo, 1985.
- B. H. Matzat, "Konstruktive Galoistheorie," Lecture Notes in Math., Vol. 1284, Springer, Berlin/Heidelberg/New York, 1987.
- 7. M. Nori, The fundamental group-scheme, *Proc. Indian Acad. Sci. Math. Sci.* 91 (1982), 73-122.
- 8. H. REICHHARDT, Konstruktion von Zahlkörpern mit gegebener Galoisgruppe von Primzahlpotenzordnung, J. Reine Angew. Math. 177 (1937), 1-5.
- A. SCHOLZ, Konstruktion algebraischer Zahlkörper mit beliebiger Gruppe von Primzahlpotenzordnung, I, Math. Z. 42 (1937), 161–188.
- J.-P. Serre, "Cohomologie Galoisienne," Lecture Notes in Math., Vol. 5, Springer, Berlin/ Heidelberg/New York, 1965.
- J.-P. SERRE, Construction de revêtements étales de la droite affine en caractéristique p, C.R. Acad. Sci. Paris Sér. 1 Math. 311 (1990), 341-346.
- I. SHAFAREVICH, On p-extensions, Mat. Sb. 20, No. 62 (1956); Amer. Math. Soc. Transl. Ser. 2 4 (1956), 59-72.
- 13. S. S. Shatz, "Profinite Groups, Arithmetic, and Geometry," Annals of Math. Studies, Vol. 67, Princeton Univ. Press, Princeton/Tokyo, 1972.
- E. Witt, Konstruktion von galoisschen Körpern der Charakteristik p zu vorgegebener Gruppe der Ordnung p¹, J. Reine Angew. Math. 174 (1936), 237-245.