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The general Galois Embedding Problem asks whether or not a given
finite Galois extension of fields K/k is embeddable in a tower of Galois
extensions k = K< L in such a manner that the corresponding extension of
finite groups matches a pre-designated group extension. Since the 1930s
there has been extensive research on the problem, particularly in the case
of number fields. The reader is referred to Matzat’s monograph [6] for
references. What we deal with in the present note is quite a special case of
the problem wherein the field characteristic is p and the group extension
has kernel ~ Z/pZ; otherwise, however, the fields appearing in our treat-
ment are completely unrestricted. In Section 1 below we give as Theorem 1
a condition in order that a Galois extension followed by an Artin-Schreier
extension be Galoisian. Our main result is Theorem 2, which gives a
criterion for the Galois embeddability in the case at hand: The condition
is that either the given group extension is not split, or the base field &
contains elements not expressible as u” — u with ve K.

Since the factor group K/2K, #x :=x” — x, emerges as a key player in
our situation, we study this group rather closely in Section 2 and obtain
Theorem 3 which gives an important special case where the group is always
infinite. As an application we show as Corollary 1 to Theorem 3 that, in
characteristic p, any p-group can be realized as a Galois group over any
field finitely generated and of positive transcendency over another field.
Also about p-groups, we retrieve the classical Witt theorem which deter-
mines exactly when a p-group can be a Galois group over a given field.
(Compare Corollary 2 of Theorem 3 below with Witt [14]. Also, see
closely related results of Reichhardt [8] and Scholz [9] for the case of
number fields.)

The origin of the present paper is the author’s study of Abhyankar’s
Conjecture {1] about unramified coverings of the affine line in positive
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characteristics [4; 5]. In that direction, lately there have been remarkable
advances made by Abhyankar himself [2] and Serre [11].

In completing this work T greatly benefited from talking with Madhav
Nori. When I showed him Theorems 1 and 2 it became apparent to me that
he had more or less known or anticipated these results through his earlier
thesis work [7] related to Shafarevich’s theorem about unramified Galois
extensions of algebraic function fields [12]. More specifically, he pointed
out to me how to handle Galois embedding questions from the viewpoint
of profinite groups and produced for me Example 2 in the text below. I am
greatly indebted to him. T am also grateful to my young colleagues,
Noriyuki Suwa and Shuji Yamagata, for useful pieces of advice and
information.

1. EMBEDDING THEOREMS

For any F,-algebra A, the Frobenius map #:4 — A4 is defined by
F(a):=a” for every ae A, and the map 2. 4—-A4 by =% —1,
Pla)=a’ —a.

Let | » Z/pZ - E— G — 1 be an extension of a finite group G by Z/pZ.
Given a Galois extension K/k with Galois group G, one asks whether or
not one may build a Galois extension L/K with Galois group Z/pZ such
that the Galois group of L over k is E. To answer this question one must
first know the conditions in order for L/k to be a Galois extension. Since
L/K is always an Artin—Schreier extension, it is not hard to prove the next

THEOREM 1. Let k be a field of prime characteristic p, and let K be a
Sfinite Galois extension of k with Galois group G = Gal(K/k). Let L = K(8) be
an Artin—Schreier extension of K such that 8" — 0 —u=0withue K, u¢ PK.
Then, L is a Galois extension of k if and only if there exists a p-character
1G> (F)*=Z/(p~1)Z such that “u= y(s) u (mod ZK) for all seG.

Proof. Let k,,> K be a separable closure of & fixed once and for all.
For any se G let §e Gal(k,,/k) be any one of the extensions of s. Now
suppose that, for all se€ G, we have v = y(s) u+w” —w, with w, e K. Then,
since

9e— 70— u=0 (1)

the conjugate ‘0 must equal x(s) 8 + w, + j for some jeF,, so that K(8) is
a Galois extension of k. Conversely, assume that K(8) is Galoisian over k.
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Then, *# must be a polynomial in # of degree < p with coefficients in K:
9=%7_, b0 Substitute this in (1) above and we get

po- 1l AL AR ) p—1 o op—1 v
(Z b,-H') =Y b0 —u=3 b O+u)—3 b —u=0. (2)
i=0 i=0 i=0 i=0
As 0 is of degree p over K, the last expression of (2) as a polynomial in 0
must have all coefficients equal to 0. It follows then

b,=b, ,=---=b=0 and b eF,. (3)

Indeed, introducing b, :=0, we argue by descending induction to prove
that b,= ---=b;,, =0 and b,eF, for j=p—1,.,1 Firstly, in (2),
(coefficient of 8”7 ")=b? ,—b, =0, s0 b, ,€F,, which takes care of
the case j= p— 1. Next suppose our claim to be true for one j as above.
Then, the last equality in (2) becomes 3/ _ 670+ u) =3 _ b,0'—u=0
with b, F,,. In this last, the coefficient of 6/~ ' is b7 - ju+ b7 | —b, | which
equals 0. So, —jbu=>b?_,—b; , and, since u is not in #K, we see that

b,=0and b, €F,. This proves (3). We have now established
‘u=bu+bf— by, bieF,, bpe K for all seG. 4)

It is easy to see that the b, in (4) depends only on s and not on §, and that
the correspondence s+ b, gives a homomorphism of G to F*. |

Remark. Theorem 1 is the counterpart in our case of Reichhardt’s
criterion [8, p. 3] in the case of Kummer extensions over number fields.

THEOREM 2. Let k be a field of prime characteristic p, and let K be a
finite Galois extension field of k with Galois group G = Gal(K/k). Let
1> Z/pZ—>FE—->G-—-1 be a central extension of G by Z/pZ. Then, the
extension K/k is embeddable in a Galois extension L/K such that
Gal(L/K) ~ Z/pZ and Gal(L/k)~ E if and only if either (a) the given group
extension is NOT split, or (b) k is NOT contained in K.

Proof. (If) To begin with, observe that the exact sequence of additive
groups 0 — F¥ - K* —» K*/F* — 0, combined with the fact that
H(G,K*)=0 for i>0, gives the isomorphism of Galois cohomology
groups H'(G, K*/F )~ H?(G, F}). Also observe that, since G here acts
trivially on F 7, one may (and shall) identify H*(G, F ) with H*(G, Z/pZ)
(with a trivial G-action) that controls central extensions of G by Z/pZ.
From now on in the current proof we just write P in place of F, =Z/pZ
with a trivial G-action. Now let ye H%(G, P) be the given central group
extension. Then, y = ¢(—,~) mod B*(G, P) for some ¢(-,-)e Z*(G, P), there
is a unique fe H'(G, K*/P) that corresponds to 7 under the isomorphism
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above, and one can write ff=5h(-) mod B'(G, K*/P), b(-)=b(-) mod P
with h(-)e CY(G, K*). So, for all s, 1€ G, we have b(st)—b(s)—"b(1)e P
and, by definition of the connecting homomorphism which is our
isomorphism now, we have

o(s, t) = b(st) — b(s) — *b(1) (mod B*(G, P)). (5)

Let us now define f(—)e C'(G, K*) by setting f(s) := b(s)” — b(5s) = Pb(s)
for all se G. Then, f(st) = b(st)” — b(st) = (b(s) + *b(1) + j(s, 1))* —
(b(s)+*b(t)+ j(s, t)) where j(s, 1)e P, which in turn is =b(s)” —b(s)+
sh(1)? —*b(t) = f(s) + *f(t). Therefore, f(-)e Z'(G, K*). But, then, f(-)e
BY(G, K*) because H'(G, K*)=0, and this means that there exists some
ue K* such that f(s)="u—u for all se G. We conclude that

b(s) —b(s)="u—u for all seG. (6)

Our aim is to construct the field L by adjoining a root of X — X —u=0.
But, before doing that, we need to ensure that u¢ #K. So, assume that
u=w’—w for some we K. In that case, b(s)” — b(s)="(W" —w)— (Cw—w)
and, consequently, (b(s)— ("w—w))” =5b(s)— (‘w—w). Therefore, for all
se€@G, b(s)="w—w (mod P), re., b(-) is cohomologous to 0 modulo P, or
b(-) € B'(G, K*/P). This implies $=0 so that y=0. It follows that the
assumption of (a), y #0, guarantees u ¢ ZK. If on the other hand the condi-
tion (b) k& ¢ #K is satisfied, then take a ek, a¢ #K. In case the initially
chosen ue K is in #K, replace u by u+o¢ #K. Then, (u+a)— (u+a)=
*‘u—u=b(s)? — b(s) for all se G, so (6) holds with u+ « substituted for u.
Now let 8 be a root of X7 — X —u=0 with u¢ 2K and (6) sustained, and
let L:=K(6). Then, L is a proper Artin-Schreier extension of K with
Galois group P=1Z/pZ, and L/k is indeed a Galois extension by virtue of
(6) and Theorem 1. It remains to verify that Gal(L/k) ~ E. To see that, let
each se G be extended to a k-automorphism of L. Since such an extended
automorphism maps 0 to 0 + b(s)+ifor i=0, 1, .., p— 1 because of (6), let
us choose for each se G its standard extension § defined by *0 =0 + b(s).
Doing this amounts to choosing a section G — Gal(L/k), and one can now
calculate the 2-cocycle corresponding to the extension 1 - P — Gal(L/k) —
G — 1 as follows: For any s, teG, §t: 0 0+ b(1)— 0 + b(s) + °b(¢) and
(st)~: 0> 0 4+ b(st). So, the 2-cocycle z(-,~) satisfying 57=(st)~ -z(s, 1)
is given by z(s, t)=b(st)—b(s)—"b(z) for all s,teG. By (5), then,
z(s, t)=¢(s, 1) (mod B*(G, P)), and this tells us that | - P — Gal(L/k)—
G — 1 is equivalent to the group extension originally given. In particular,
Gal(L/k)~ E.

(Only If) Suppose that the given central extension is realized as Galois
groups of the tower of Galois extensions k< K< L with Gal(L/k)~ E.
Then, L = K(6) for some 6 with 67 —0 —u=0, ue K, u¢ K. Moreover, by
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Theorem 1, for any se G there is a b(s) € K such that *u—u= b(s)” — b(s),
and the choice of b(s) is unique modulo P. Now, for any s, reG,
b(st)? =b(sty = "u—u="Cu—u)+ u—u="(b(t)"—b(t)) + b(s)” — b(s) =
(b(s)+°b(t))” — (b(s)+°b(t)), which shows that b(st)— (b(s)+ °b(1))e P
always. It follows that #(-) mod Pe Z'(G, K*/P). By means of calculations
just as in the (If) part above, the 2-cocycle in Z*(G, P) corresponding to
our extension fields is easily found to be a z(—, -) satisfying z(s, f)=
b(st)— b(s)—*b(1) for all s, te G. Now, assume that z(-, —) e B*(G, P), or
equivalently that A(—) mod Pe B'(G, K*/P). Then, there is w € K such that,
for all se G, b(s) ="w—w+i(s) with i(s)e P. When that is so, we have

U= u=b(s)" —b(s)
- (xu, — w4+ i(s)}” — (SM' — W+ l(s))

=*(wl —w)— (w’—w),

which then gives ‘(u—(w”—w))=u—(w”—w) for all seG. Hence,
u=w"—w+a for some aek. Since u¢ PK, we see a ¢ P.
This proves the (Only If) part, and hence the theorem. |

2. EXAMPLES AND COROLLARIES

In this section we examine the conditions (a) and (b) of Theorem 2 to
see which Galois extensions are p-embeddable.

ExampLE 1. Let L/K be a Galois extension of finite fields with
Gal(L/K) ~ Z/pZ. Since #K is of index p in K* and L contains an element
u such that Pue K*\ZK, we have LN K* =K™*, or 2L > K. It follows
by Theorem 2 that the only extension 0 —» Z/pZ - E— Z/pZ — 0 in which
L/K is embeddable is a non-split one, ie., a cyclic extension. Arguing by
induction and observing that the only non-split extension of a cyclic
group by Z/pZ is cyclic, one retrieves the well-known fact that all Galois
p-extensions (indeed any Galois extensions) of a finite field are cyclic.

Next we consider finitely generated extension fields as our ground field.
In preparation we give a lemma found in [3, Sect. 64.5, pp. 225ff] where,
though, the assumption on G appears to be needlessly restrictive. We
rehash:

LEMMA 1. Let L/K be a finite Galois extension whose Galois group G is
a p-group. Let A(L/K):={ueL: Pu=u"—ueK}. Then, there is a natural
isomorphism Hom(G, Z/pZ)~ A(L/KY/K* ~(PLK*)/PK of additive
groups.

481/154;2-15



504 T. KAMBAYASHI

Proof. Given ye Hom(G, Z/pZ)=Hom(G, F,), one can regard y as an
element of 1-cocycle group Z'(G, L) in Galois cohomology because the
action of G on F,= L™ is trivial. So, there exists uel such that
7(s)="‘u—u for all seG by the nullity of H'(G, L"), and (‘u—u)"=
Su—u. It follows that u? —u e K. Clearly, for a given g, such u is uniquely
determined modulo K*. Conversely, for any ue A(L/K) one just puts
y(s):="u—u to define a yeHom(G, Z/pZ). Finally, A(L/K)/K* ~
(A(L/KYE H(K*JF S )~ (PLAK)/PK because Ker(Z)=F . |

We now prove the main result of this section:

THEOREM 3. Let K=k(x,, .., X,) be a finitely generated extension field
of positive transcendence-degree over a field k of characteristic p> 0. Then,
the index [K* : K] = + o0.

Proof. We break up the proof in several steps:

(3.1) If Ris a normal domain of characteristic p and K := 2(R) is the
field of quotients of R, then [R* : ZR] = + o« implies [K* : K] = + oc.
Let u,,..u,,.. be an infinite sequence of elements of R that are
mutually distinct modulo #R. Suppose for a moment that u,—u, for
some i#j belonged to #K, or u,—u;=w’”—w for we K. Since R is
integrally closed in K, this means we R, or ;=u; (mod #R), which is a
contradiction.
(3.2) For K=k(¢,,..t,)=a purely transcendental extension of a
field k, we have [K* : 2K] = + .

We consider K as the field of quotients of k(¢,, .., 7,)[#,] and make use
of (3.1). So, we only need to show [k[z]:2k[t]]= + o0 where k[¢]
denotes the polynomial ring over k. But it is immediately clear that the
elements of the set {+/|;>0 not divisible by p} are mutually distinct
modulo 2k{1].

(3.3) Let L/K be a finite algebraic extension of fields, and let
A:=A(L/K)={ue L|PueK). Then, [#A4: PK] < + .

Since A4 is contained in the separable closure of K within L, it suffices to
prove the assertion in case L is separably algebraic over K. Further, we
may clearly assume that L is Galoisian over K with G :=Gal(L/K) a
p-group. Then, by Lemma 1 above, #4/?K ~ Hom(G, Z/pZ), which 1s of
course finite.

Theorem 3 is now obvious from (3.1), (3.2), and (3.3) above. |

COROLLARY 1. Let K be a finitely generated extension field of positive
transcendence-degree over a field k of characteristic p. Then, for any given
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finite p-group G one can find a Galois extension L of K such that its Galois
group Gal(L/K) is G.

Proof. For any finite extension field F> K we have [#A4 : ZK] < + o
where A := A(F/K)= {ue F|Pue K} as in (3.3), while [K: K] = + o0 by
Theorem 3. This implies [K: 4] = + oo, so that any Galois extension of
K is embeddable in any given extension of its Galois group by Z/pZ by
virtue of Theorem 2. |

In the same vein as Corollary 1 above, there is a classical result due to
Witt [14] which we briefly discuss now. Before that, for any p-group G, let
G* be the subgroup generated by all commutators [x, y]=xyx "'y ! and
all pth powers z”. Then G* is normal, and every homomorphism
G — (abelian group of exponent p) factors uniquely through G — G/G*.
Further, a theorem due to Burnside states that if one writes the order
|G/G*| = p” then G can be generated by n elements, but never by fewer
than # elements (cf. [14, Sect. 1]). Let us denote this number n by n(G).

CoRrOLLARY 2 (Witt's Theorem). Ler K be any field of characteristic p,
and let [K* : K] = p". Let G be a p-group. Then, a Galois extension field
L of K with Gal(L/K)= G exists if and only if n(G)< N.

Proof. (Only If) Let n:=n(G). Then, Hom(G, Z/pZ)=Hom(G/G*,
Z/pZ) ~ Hom((Z/pZ)", Z/pZ) ~ (dually) (Z/pZ)". So, by Lemma 1,
[PLAK:PK]=p"<[K* :2K]=p".

(If) Write |G| = p” and use induction on f; the case f = | being obvious.
So, for f>1, make out a central extension 1 ->2Z/pZ - G— H—1 and
construct a Galois extension field B> K with Gal(B/K)= H. Now, in
case this group extension is not split, we are done because of Theorem 2.
In case it is split, G~ HxZ/pZ, so that G*~ H* x {1}. This implies
n(H)=n(G)—1=n—1 and, therefore, n(H) < N. By looking at the inclu-
sion PKc PBNK* <K+ with [ZBnK* : K] = p™*), we find at once
that K* properly contains B~ K*. Applying our Theorem 2 to B and H,
we establish our assertion. |

The above Example ! and Corollary 1 give the two extreme cases of
fields K: one in which only cyclic p-groups can occur and the other in
which any p-group can occur—as Galois groups over K. Note that in these
cases [K:2K] was p and + oo, respectively. We then ask, can the index
[K:2K] be anything else? The answer is yes and is provided by an
example due to Madhav Nori as follows:

ExaMPLE 2 (M. Nori). We can construct a field K for which the group
K/#K is isomorphic to (Z/pZ)™ for any m > 1. It is sufficient to establish
this for m =2, as seen readily from what follows, so we stick to this case.
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For our purpose, though, it is necessary to draw on the theory of profinite
p-groups as founded by Serre [10] (see Shatz [13] also) and to deal with
infinite ground field extensions—something we have avoided up to now in
order to make our constructions algorithmic. Let & be a field of charac-
teristic p subject to [k: k] = 4 . (For instance, k :=[F,(¢) will do, in
view of Theorem 3.) Within a fixed separably algebraic closure of & take
the union E of all Galois p-extensions of k. Then, E/k is an infinite Galois
extension with a free profinite p-group [ as its Galois group. It is known
and is also easy to see from Lemma 1 that H'(I", Z/pZ) = Hom(I", Z/pZ) ~
k/Pk, so that I is of infinite rank (cf. [10, 1I-5, Sect. 2, Corollary 1; 13,
Chap. 3, Sect. 3, Corollaries 1, 2, p. 72]). Let 4 be a free pro- p-subgroup of
I' of rank 2, and let K be the subfield of E consisting of elements fixed by
4. Then, Gal(E/K) ~ 4, so that K/?K ~Hom(4, Z/pZ)~ (Z/pZ) x (Z/pZ),
as desired.
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