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1. Introduction

In recent years, two-dimensional conformal field theory has attracted the
attention of many mathematicians and physicists. Borcherds [Bo] introduced the
notion of a vertex algebra, which encodes the operator product expansion (OPE)
of chiral fields in this theory. The singular parts of the OPE (or, equivalently, the
commutators of fields) are encoded by a Lie conformal superalgebra [K2,K3]. By
means of this formalism, computations of OPE’s are greatly simplified.

In the language of the-bracket, a Lie conformal superalgehRais a C[d]-
module endowed with &-linear map

R®R—CIAJ®R, a®br [ayb],
satisfying the following axioms [DK,K2{a, b, c € R):

[0ayb] = —Ala,b], [adb] = (3 + M) [ayb], (sesquilinearity)
[bral = —(—1)P@PO[a_; _4b], (skew-commutativity)
[ax[bucl] = [[arbliguc] + (=1)P@OPO b [a;c]]. (Jacobi identity)

* Corresponding author.
E-mail addressedattori@dm.unito.it (D. Fattori), kac@math.mit.edu (V.G. Kac).
1 The author was partially supported by CNR-GNSAGA. This research was partially conducted by
the author for the Clay Mathematics Institute.
2 The author was partially supported by NSF grant DMS-9970007.

0021-8693/02/$ — see front mattér 2002 Elsevier Science (USA). All rights reserved.
Pll: S0021-8693(02)00504-5


https://core.ac.uk/display/82141705?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

24 D. Fattori, V.G. Kac / Journal of Algebra 258 (2002) 23-59

Finite (i.e. finitely generated as@[d]-module) simple Lie conformal algebras
were classified in [DK] and their representation theory was further developed in
[CK1,BKV].

On the other hand, Lie conformal superalgebras are closely connected to the
notion of a formal distribution Lie superalgebi@® F), i.e. a Lie superalgebrg
spanned by the coefficients of a family of mutually local formal distributions.
Namely, to a Lie conformal superalgebra one canonically associates the
maximal formal distribution Lie superalgebra LRe= R[¢, t—l]/éR[t, t~1] (see
Section 3), which establishes an equivalence between the category of Lie
conformal superalgebras and the category of equivalence classes of formal
distribution Lie superalgebras obtained as quotients oRLiwy irregular ideals,
see [K2].

In the present paper, we give the classification of finite simple Lie conformal
superalgebras. The main result is the following theorem (announced in [K2,K6]):

Theorem 1.1. Any finite simple Lie conformal superalgebRais isomorphic to
one of the Lie conformal superalgebras of the following (&&te Sectio.2 for
their construction:

(1) Wy (N =0);

(2) Sna (N 22, a€C);

(3) Sy (N even N > 2);

(4) Ky (N >0, N #4),

(5) Ky

(6) CKe;

(7) Curs, wheres is a simple finite-dimensional Lie superalgebra.

The general outline of the proof of this theorem is similar to that of [DK] in the
non “super” case. First of all, we extend to Lie superalgebras the classical Cartan—
Guillemin theorem [G1,B,BB] which asserts that any minimal non-abelian closed
ideal in a linearly compact Lie algebfais of the formC[t, ..., #,] ® s, wheres
is a simple linearly compact Lie algebra (see Theorem 2.7 and Corollary 2.8).

Secondly, we deduce that the annihilation algeldr&) is an irreducible
central extension of[r1,...,t.] ® s, wheres is simple linearly compact Lie
superalgebra (Lemma 5.3). Recall thé&tR) is the completion of the image of
R[t]in Lie R. Itis linearly compactifr is finite. The operator9,/dr onR[z, t 1]
induces a derivatiof of A(R), and the semi-direct produ€tl” x A(R) is called
the extended annihilation algebra.

Thirdly, we remark that the growth of(R) is smaller or equal than one, so that
we obtain that either = 1 ands is a simple finite-dimensional Lie superalgebra
or r = 0 ands is a simple linearly compact Lie superalgebra of growth 1, and
we may use the classifications of the papers [K4] and [K5], respectively. This
produces a list of all possible annihilation algebras (Proposition 5.5).
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The fourth step is the classification (up to conjugacy) of all even surjective
continuous derivations of these candidates for the annihilation algebras. This
leads to the list of all possibilities for the extended annihilation algebras
(Theorem 5.11).

Finally, we reconstruck from the extended annihilation algebra to obtain the
main result (Theorem 5.12). An immediate corollary of this result is a classifica-
tion of all finite simple formal distribution Lie superalgebras (Corollary 5.13).

Along the way we show in Section 2.2 that the growth of a simple linearly
compact Lie superalgebra is independent of its algebra filtration, and we classify
in Section 4 all central extensions of finite simple Lie conformal superalgebras
(which are important for the construction of simple vertex algebras).

2. Linearly compact Lie superalgebras
2.1. The Cartan—Guillemin theorem

Recall that avector superspacis aZ/2Z-graded vector spac, = V5 @ Vj.
We denote byp(a) = « the parity of an homogeneous elemeat a € V,,
o € 7)27 = {0, 1}. A subspacé/ of V is by definitionZ/2Z-graded, i.elU =
(U NV @ (U N Vy). All vector superspaces, linear maps and tensor products are
over the fieldC of complex numbers. Exterior and symmetric powers of a vector
superspace are to be understood in the super-sense (see [K4]).

A superalgebraA is a vector superspace endowed with an algebra structure
such thatA,Ag C Ay, With o, B € Z/27.

A Lie superalgebras a superalgebra satisfying super-anticommutativity and
the super-Jacobi identity (see [K4]).

We endowC with the discrete topology. LeV = V5 @ V; be a Hausdorff
topological vector superspace. We will say thatis alinearly compactvector
superspace if every family of closed affine linear varietied/dfias non-empty
intersection whenever every finite subset of the family has non-empty intersection.
A topological Lie superalgebra is called linearly compact if the underlying
topological space is linearly compact.

Let V* be the topological dual o¥. Let U be a linearly compact subspace
of V. We denote byU~ the set of all continuous linear functionals which
annihilateU. We define a topology o¥* by taking the collection of all sets
of the formU to be a fundamental system of neighborhoods of the origin.

In the following we list some properties of linearly compact vector super-
spaces.

Proposition 2.1 (see [G1]).
(1) If A is a linearly compact subspace in a linearly compact vector super-
spaceV, thenA is closed.
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(2) Direct products and inverse limits of linearly compact vector superspaces are
linearly compact.

(3) A subspace oV is open if and only if it is closed and has finite codimension.

(4) A discrete topological vector superspace is linearly compact if and only if it
is finite-dimensional.

(5) If V is discrete(respectively linearly compagtthenV* is linearly compact
(respectively discreje

(6) If V is discrete or linearly compact, the canonical linear médp~> V** is an
isomorphism.

(7) Vislinearly compactif and only if it is isomorphic to(eopologica) product
of finite-dimensional discrete spaces.

(8) If V is linearly compact, then it is complete.

(9) The image of a linearly compact space under a continuous linear map is
linearly compact.

(10) (Chevalley’'s principlg SupposeF; D F> D --- is a sequence of closed
subspaces in a linearly compact vector superspécsuch tha{"), F; = {0}.
If U is a neighborhood 00 in V, then there exists an integég such that
F,CU.

The basic examples of linearly compact spaces are finite-dimensional vector
superspaces with the discrete topology (see Proposition 2.1(4)) and the space
of formal power seriesV[t], whereV is a finite-dimensional vector super-
space, with theformal topologydefined by taking as a fundamental system
of neighborhoods of the origin the satjv[[t]}}jez+ (see Proposition 2.1(2)).

A closely related important example is the associative linearly compact super-
algebraClr1, ..., ] ® A(m), whereA(m) denotes the Grassman algebraron
anticommuting indeterminatés, .. ., &, and p(s;) = 0, p(&) = 1, with thefor-
maltopology defined by(r1, ..., %)/} jez, -

Let V., W be linearly compact vector superspaces. L&t W* be their
topological duals. We form the tensor produét @ W*, endow it with the
discrete topology, and define tmempleted tensor productf V and W to be
the spacegV* @ W*)*. It is denoted byV ® W. Note that, if dimV < oo, then
VEW=VeW.

A linearly compact Lie superalgebiais calledsimpleif it contains no non-
trivial closed graded ideals. The same proof as in [G1, Proposition 4.3] shows
that thenL has no non-trivial graded ideals (closed or not). Due to [Sc, Proposi-
tion 2.1] thenL has no non-trivial left or right ideals (graded or not) as well.

Lemma 2.2 (Schur's Lemma)For a topological Lie superalgebra we set
Ay ={re @ndLy, «ez/22 | (1x, y]) = (D" [x, 7 ()]
foranyx, y e L}.

If L is simple and linearly compact, thetn, = C.
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Proof. Let T € A;. Note that ket is an ideal ofZ. SinceL is simple, by the
above discussion either= 0 or 7 is invertible, i.e.A, is a skew-field. Now one
can argue as in [G1, Proposition 4.4]0

Lemma 2.3. Let H be a closed subalgebra of the linearly compact Lie
superalgebral. Let V be a linearly compacti-module. Endow the induced
L-moduleU (L) ®y ) V* with the discrete topology, so thél/ (L) ®y ) V*)*

is a linearly compact space. Endow tliemodule Homy (U (L), V) with
the finite-open topology. Thedomy (U (L), V) is linearly compact and is
homeomorphic teU (L) @y uy V*)* as anU (L)-module.

Proof. The proof is the same as in the “even” case, see [B, Proposition 1] and
[BB, Lemmal.1]. O

Let L be a linearly compact Lie superalgebra andiebe a linearly compact
(respectively discrete).-module. The spac# is calledtopologically (respec-
tively algebraically) irreducible if it contains no non-trivial closed submodules
(respectively no non-trivial submodules). The moduléas calledtopologically
(respectivelyalgebraically) absolutely irreducible if it is topologically (respec-
tively algebraically) irreducible and the commuting ringofn Hom%om(v, V)
(respectively Hom(V, V)) consists only of scalar operators. Remark thaits
topologically absolutely irreducible if¥ * is algebraically absolutely irreducible.

Let I be a closed ideal of the linearly compact Lie superalgébriet V be
a topologicall-module. Thestabilizerof V is defined as follows:

H={xeL|3s e HomE™(V, V): [x,zlv=[s,zlvforanyz e I, ve V}.

ThenH is a closed subalgebra éfcontaining!.

Theorem 2.4 (Blattner). Let I be a closed ideal in a linearly compact Lie
superalgebralL. Let V be an algebraically absolutely irreducible discrete
I-module, and letH be its stabilizer. LetW be an algebraically absolutely
irreducible discreteH-module such that, as afrmodule, it is a direct sum of
copies of V. ThenU (L) @y @y W is an algebraically absolutely irreducible
L-module.

Proof. As in the “even” case, see [BB, Theorem 3(b)ja

Proposition 2.5. In the notation of Theoren2.4, let V be a topologically
absolutely irreducible/-module. LetW be a topologically irreducible lin-
early compactH-module. Suppose that, as damodule, it is topologically
module-isomorphic to a direct product of copies ¥f Then theL-module
Homy (uy (U (L), W) is topologically absolutely irreducible.
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Proof. As in the “even” case, see [B, Theorem 1.21

Proposition 2.6. Let L be a linearly compact Lie superalgebra. Suppdse
admits a non-abelian minimal closed iddalThen! possesses a maximal proper
ideal J, which is closed] := I/J is a simple non-abelian linearly compact
Lie superalgebra andV := N (J) is open. Letp be the canonical map of
onto /. Then! is a N-module andy is a N-homomorphism. Furthermore, we
have aL-module homomorphism

O :1— Homy ) (U(L), 1),
where® (x)(a) = (—=1)P@PMy((ada)(x)) (x € I, a € U(L)).

Proof. Asin the “even” case, see [B, Lemma 2.2]0

Theorem 2.7 (Cartan—Guillemin)Let I be a non-abelian minimal closed ideal
in a linearly compact Lie superalgebra. Then! is homeomorphic vi@® to
Homy vy (U (L), I) both as a Lie superalgebra and asiamodule.

Proof. We can apply the Schur Lemma 2.2t@nd Propositions 2.5 and 2.6 in
order to use the same argument as in [B, Theorem 24].

Corollary 2.8. Letdim(L/N)z = r anddim(L/N); = m. Then, in the notation
of Theoren?.7,

I — (Clr,....t] @ A(m)) & T
as topological Lie superalgebras.
Proof. By [B, Corollary to Proposition 7], Hom(N)(U(L),f) is isomorphic
to Homc(S(L/N),I) as a topological Lie superalgebra. Sinde is open,
dim(L/N) < oco. The fact that a linearly compact space can be identified with

its double dual implies that HogtS(L/N), I) is isomorphic to(C[z1, ..., 4] ®
AmN®I. O

2.2. Growth

A filtration of a vector superspadé is a decreasing filtration by subspaces of
finite codimension [p € Z):
V=ViDVijet1DVjg42D---
such thaﬂj V; = {0}. Thegrowthof this filtration is defined as follows:

gw(V) =Iim supiIOg d|m(Y/ vi) .
j—o00 |Og]
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Given a subspac& of V, one has an induced filtration ai and onV/U.
Clearly, gwU) < gw(V) and gwV/U) < gw(V). Also, if the filtration {V;}

of V is shifted (i.e. we takéd/(;) = V;,) or rescaled (i.e. we tak¥(;) = V,;

for a fixed positive integet) then gw(V) remains unchanged. The first claim is
obvious, while the second one follows from the observation that on the one hand,
the rescaling of the filtration may obviously only increase the growth, but, on the
other hand, it may only decrease the growth:

gw(V) > lim sup—Iog d|m(V/ Yaj) _ lim sup—Iog dm(V/ Vi) .
j—oo logn; j—o0 logj

An algebra filtrationof a linearly compact Lie superalgehtas a filtration of
L by open subspacds; such thafL;, L;] < L;+;. A similar definition applies
to associative algebras.

Recall that gundamental subalgebraf a linearly compact Lie superalgebra
L is a proper open subalgebra that contains no non-zero idedls Given a
fundamental subalgebiay of L one constructs theanonical(algebra) filtration
of L associated td.o,

L=L 1DLoDL1D---,
by letting inductively forj > 1 (cf. [GS]):
Li={aeLj1|la,L1CLj-1}.

One knows [G1] that any linearly compact Lie superalggbieontains a proper
open subalgebrag, which is of course fundamentalif is simple.

One defines gL, Lg) to be the growth of the canonical filtration df
associated td.g.

Proposition 2.9 [BDK]. The numbegw(L, Lo) is independent of the choice of
the fundamental subalgebia of L.

Proof. If we choose thejth memberL; (j > 1) of the canonical filtration
associated td.g as another fundamental subalgebra, 5aythen, by definition,
the associated canonical filtration i%;; = Li4;. Hence this change of the
fundamental subalgebra does not affect the growth.

Now, if Mg is another fundamental subalgebralofind {M} is the associ-
ated canonical filtration, then, by Chevalley’s principle,C My for sufficiently
largek, henceL,,; C M; forall j. Therefore, oiL, Lo) > gr(L, Mp). Exchang-
ing the roles ofLo and My we obtain the opposite inequality

We denote by gWl) and call thegrowthof L the number gWL, Lo) defined
above. IfL is simple, one can prove the following stronger result.

Theorem 2.10. Let L be a simple linearly compact Lie superalgebra. Then any
algebra filtration of L by open subspaces has growth equaiL).
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Proof. If L contains an open subalgehv& such that allM; = M{ are open
subspaces ol (then this is automatically an algebra filtration), let us denote
by gw (L, M1) the growth of this filtration. Since the growth is invariant under
rescaling, we see (using Chevalley’s principle as in the proof of Proposition 2.9)
that gw(L, M1) = gw/ (L) is independent of the choice #f1. Furthermore, we
clearly have:

gw(L) < gw(any algebra filtration< gw/ (L), (2.1)

if we chooseM1 to be a fundamental subalgebralof
Furthermore, it follows from the classification of simple linearly compact Lie
superalgebras [K5] thdt has a Weisfeliler filtration

LZL\inDL\iv‘H,lD"'DLW]_DL\(I)VDL\]{VD“',

for which the associated graded Lie superalgebra 5= @j%d g; has the
property that the spagg + g2 generate®j>1gj (in fact, in all cases except for

L =Der(C[t]), one hagy; = g{, j > 0), hence
LY c (@M cLy foralk. (2.2)
On the other hand, for the canonical filtratiph; } associated toL‘é" one has
Ljc LYy, forallj. (2.3)
It follows from (2.2) and (2.3) that g@L.) > gw/(L). Therefore, by (2.1), the
growth of any algebra filtration af is equal to gwL). O

The following theorem follows from the classification of simple linearly
compact Lie superalgebras [K5].

Theorem 2.11. Any simple linearly compact Lie superalgebra of growth at
mostl is either finite-dimensional or is isomorphic to one of the following Lie
superalgebragsee SectioB.2 for their descriptiod: W (1, N), N > 0; S(1, N)/,
N>2;K(1,N),N>0;E(6).

2.3. On derivations of linearly compact Lie superalgebras

In this section we prove three propositions which will be essential in the sequel.
We shall denote by Dé¢L.) the Lie superalgebra of all continuous derivations of a
topological superalgebra.

Proposition 2.12. Let A be a commutative, associative, unital linearly compact
superalgebra and let. be a simple linearly compact Lie superalgebra. Then

Der(A® L) =Der(A) ® 1+ A Q Der(L).
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Proof. Using Schur Lemma (see Proposition 2.2), one can apply the same
argument as in [BDK, Proposition 6.12]0

Proposition 2.13. Let L be a linearly compact Lie superalgebra and let
L=L_4DOL _441D---DLopDL1D---

be an algebra filtration of. of depthd > 0. Let D be an even element éfsuch
that

[D,Ly]=Ly_yg forallk>d. (2.4)
Let V be a finite-dimensional Lie algebra acting by derivationslosuch that

V(L) C L, forallk>0, (2.5)
and letL = V x L. Then any even element of the fof- v + go € L, where

v € V andgg € Lo, can be conjugated via a continuous inner automorphisi of
to D +v.

Proof. Letm be the maximal integer such thate L,,\L,,+1. Then there exists
lm+d € Liy+q such that[D, [, 4] = g0.~The automorphism expd(/,;,+4)) is
well-defined and converges uniformly @n and we have:

exp(adlm-+a))(D + v + go)

D+ v+ (go+[ma. DI)
+ ([lm+d7 gO] - U(l,n+d)) + .-

= D+ v+termsinL,, 4.

By repeating this argument, we obtdin+ v in the limit. O

Proposition 2.14. Any non-solvable finite-dimensional Lie superalgefplas no
even surjective derivations.

Proof. Let D be an even surjective derivation ef It clearly transformsgg
surjectively into itself. MoreoverD leaves the radical of g invariant, hence

it induces a derivation ofig/t which is not inner because it is surjective.
On the other handgg/t is a semisimple Lie algebra, so that every derivation
is inner. Consequentlyyg = v is solvable, but this in turn implies (see [K4,
Proposition 1.3.3]) thag is solvable. O
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3. Formal distribution Lie superalgebrasand Lie conformal superalgebras
3.1. Basic definitions

Let V be a vector superspace. X-valued formal distribution in one
indeterminate is a formal power series

a(z) = Zanzinia ap V.

nez

The vector superspace of all formal distributions in one indeterminate will be
denoted by [z, z*l]}. It has a natural structure of@&9,]-module. We define

Res a(z) = ao.
Similarly, one can define a formal distribution in two indeterminates:

a(z,w) = Z ampz "L
m,ne”z

Itis calledlocal if
(z—w)Na(z,w)=0 forN > 0.

Let g be a Lie superalgebra, and le(z), b(z) be two g-valued formal
distributions. They are called local[iéi(z), b(w)] is local, i.e.

(z—w)"[a(z),b(w)]=0 forN > 0.

Let g be a Lie superalgebra, and 1€t be a family of g-valued mutually
local formal distributions. The pai¢g, F) is called aformal distribution Lie
superalgebraf g is spanned by the coefficients of all formal distributions frdm

Proposition 3.1 [K2]. Two g-valued formal distributiong(z), b(z) are local iff

[a@). bw)] = "/ (w)d]8(z — w)/j!, (3.1)

JELy

where the sum is finite. Hed(z — w) = Y, ., z"w "1 is the formal delta-
function, and the OPE coefficients (w) € g[[w,w’l]] can be computed as
follows

¢/ (w) =Res (z — w)/[a(2), b(w)]. (3.2)

The algebraic analogue of the Fourier transform, see [K2], provides an
effective way to study the OPE.

Theformal Fourier transfornof a formal distribution in two indeterminates is
defined as follows:

F},(aGz, w)) =Res € a(z,w) € Clw, w ] [4].

Z,w
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One has:
Fl (008 —w) =27,

therefore the formal Fourier transform is the generating series of the OPE
coefficients ofla(z), b(w)]. Thei-bracketof a(w) andb(w) is defined as

[a)sb(w)] = Ff,, ([a(), bw)]).
The coefficient of\” /n! in the A-bracket is gg-valued formal distribution, called
thenth product ofa (w) andb(w) (it is computed by formula (3.2)).
The properties of th&-bracket lead to the following basic definition (see [DK,
K2]).
A Lie conformal superalgebr® is a leftZ/2Z-gradedC[d]-module endowed
with aC-linear map, called th&-bracket

R®R—CIA]®R, a®br [ayb],
satisfying the following axiomsa, b, ¢ € R):

[0ayb] = —Ala,b], [a;0b] = (8 4+ M)[ayb], (sesquilinearity)
[bra] = —(=1)P@PO[a_; _4b), (skew-commutativity)
[ar[bucl] = [[a3blisnc] + (=D)P@QPOb [a;c]]. (Jacobi identity)
We write
)\‘l’l
labl = D —(amb). (3.3)
VlEZ+ :

The coefficienta(,)b is called thenth productof « andb. A subalgebraS of R
is aC[d]-submodule ofkR such thatS,,S € S for anyn € Z,. Anideal I of R
is aC[d]-submodule oR such thatR(,)I < I for anyn € Z.. A Lie conformal
superalgebra is simpleif it has no non-trivial ideals and the-bracket is not
identically zero. A Lie conformal superalgebRais finite if it is finitely generated
as aC[d]-module. We denote bR’ the derived subalgebra &, i.e. theC-span
of all nth products.

One knows that any torsion element®f(viewed as aC[d]-module) has zero
A-bracket withR [DK], hence a finite simple Lie conformal superalgebra is free
as aC[d]-module.

One can associate to a formal distribution Lie superalg&brét) a Lie
conformal superalgebra as follows. L&t be the minimalC[,]-submodule of
a[z, z~1] that containsF and is closed under afith productsy € Z, . Then the
A-bracket defines a Lie conformal superalgebra structut.on

Vice versa, given a Lie conformal superalgel®awe can construct a formal
distribution Lie superalgebra Li using the following definition.

The affinizationof a Lie conformal superalgebr& is the Lie conformal
superalgebra

R=R®C[t,1™ 1],
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with p(r) = 0, thed-action defined by) = 9 ® 1+ 1 ® 9, and thenth products
defined by

@® Hamb @) =Y ([@mijb)® (3 )g)/i.
j=0
wherea,be R, f,g e Clt,r ] andn € Z..
We let LieR = R/E)R and denote by, the image ofa ® ¢ in Lie R. Then

LieR is a Lie superalgebra with respect to the Oth product induced fRom
Explicitly, the bracket is

m
[am,bn]=Z< ,)(a(j)b)wn,-, a,beR, mnel. (3.9
i>o0 ™/
Also,
0a), =—may,_1, a€R, melZ. (3.5)
The Lie superalgebra Li@ admits an even derivatiof defined asTa, =
—nan—1.
Let
F(R) = {a(z) = Zanz_”_l ’ ace R}.
nez

Then (3.4) is equivalent to (3.1), wheeé(w) = (a(jb)(w), hence all formal
distributions inF(R) are pairwise local. The paiiLie R, 7(R)) is called the
maximal formal distribution Lie superalgebm@ssociated to the Lie conformal
superalgebra®.

Let (g, F) be a formal distribution Lie superalgebra. An idealgins called
irregular if it does not contain all the coefficients of a non-zero elemenfof
Then any formal distribution Lie superalgebta, F) such thatF ~ R is
a quotient of LieR by an irregular ideal [K2].

An ideal I in (g, F) is calledregular if it is of the form I ={a, |a € J,

n € 7.}, whereJ is an ideal of the Lie conformal superalgela I is clearly
T-stable.

Let (LieR,F(R)) be the maximal formal distribution Lie superalgebra

associated to the Lie conformal superalgeRraVe let

(LieR)_={an|a€R, neZy), (LieR)y ={ayla€eR, n<0).
Formula (3.4) implies that these are b@tkinvariant subalgebras of Li.

Let R be afinite Lie conformal superalgebra, and{te’t}jej be a finite set of

generators oR as aC[d]-module. LetZ,, be theC-span of{ai’ li>m,jel}.
It is easy to see using (3.4) that the subspagggorm a quasi-filtration of
(Lie R)_ (see [DK]),

(LieR)-=LoDL1DLyD -, (3.6)
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by subspaces of finite codimension, [, £; = {0} and there exists an integer
d € Z4 such that

(Li, LAC Livj—q, 1,]ELy. (3.7)
It also follows from the construction that

dms;/Liva<|J|, i€Zy. (3.8)
Furthermore,

[T, Li]l= Li-1. (3.9)

Due to Chevalley’s principle, the completiod(R) of (Lie R)_ with respect

to the topology induced by this filtration is independent of the choice of the
Cl[o]-generators ofR. The Lie superalgebrad(R) is a linearly compact Lie
superalgebra, called thannihilation algebraof R. Note that formula (3.7)
(respectively (3.9)) implies that the bracket (respectivély is continuous

on A(R). The mapT is surjective on(Lie R)_ by its very definition, hence it
extends to an even continuous surjective derivatiodl@R) (becaused(R) is a
Hausdorff topological space). The (linearly compact) Lie superalgebra

A(R)* =CT x A(R)
is called theextended annihilation algebraf R.
Proposition 3.2. Let (g, F) be a formal distribution Lie superalgebra. Suppose
that 7 = C[0]F and that all the coefficients of the formal distributionsArform

a C-basis ofg. Then(g, F) is the maximal formal distribution Lie superalgebra
associated to the Lie conformal superalgetira

Proof. Let 7 = {a’(z) | i € F}. Then LieF is spanned by the s¢t, | i € F,
n € Z}. We have a canonical surjective map Ifie~> g, and since the images of
thea,’s are linearly independent i, the kernel of this map is zero.o

3.2. Some examples
Example 3.3. Let g be a finite-dimensional Lie superalgebra. Toep algebra
associated tg is the Lie superalgebra
g=gft.17, plat*)=pla) foraeg, keZ,
with bracket
[a®t",b®tm]=[a,b]®t"+m (a,beg, m,neZ).

We introduce the familyF; of formal distributions (known as currents)

a(z) = Z(a @Mz "l aeg.

nez
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It is easily verified that
[a(z), b(w)] =[a, b)(w)s(z — w),

hence (g, Fy) is a formal distribution Lie superalgebra. The associated Lie
conformal superalgebra@[d] ® g, with A-bracket (we identify 1® g with g)

[axbl=la,bl, a,beg;

it is called thecurrent conformal algebrassociated tg, and it is denoted by
Curg. The Lie conformal superalgebra Guis simple iff g is a simple Lie
superalgebra. Indeed, an idealof g generates the idedl[d] ® I of Curg.
Conversely, let/ = C[d] ® V be an ideal of Cug. Take a non-zera: =
> ;d'a; € J, whereq; € g. Then for anyb € g we have:

—)\)i
[axb]ZZ( L @iy,

i!

1

hencea;)b € V for all i > 0, andV is an ideal ing. Due to Proposition 3.2,
(g, ]—Tg) is the maximal formal distribution Lie superalgelgtae Curg, F(Curg))
associated to Cyy; also, it is clear thal’ = —d/9d¢. Hence the annihilation alge-
bra and the extended annihilation algebra are respecijelyandC-2 x g[t].

Example 3.4. Let us denote byA(1, N) (respectively(l, N)) the tensor
product of C[x] (respectivelyC[x, x~1]) and the exterior algebra(N) in the
indeterminates, ..., &v. They are associative, commutative superalgebras if
we setp(x) =0, p(&)=1,i=1,...,N, andA(1, N) is a linearly compact
algebra in the formal topology. Lé¥ (1, N) (respectivelyW (1, N)) be the Lie
superalgebra of all continuous derivations\d@fl, N) (respectively all derivations
of A(L, N)). ThenW (1, N) is a simple linearly compact Lie superalgebra [K5].
Occasionally we will be dealing also with the Lie superalgeWrél, N) of all
derivations ofA (1, N) = C[3] ® A(N) and its subalgebras, but the main role will
be played by their completions in the formal topology. Every elemeiit ¢, N)
(respectivelyW (1, N)) can be written in the form

N
D= P, (3.10)
i=0

whereP; € A(1, N) (respectivelyr (1, N))); do := 9/dx is an even derivation and
9;:=09/0d&,i=1,..., N, are odd derivations.

For each elememt € A(N),andforanyj =0, 1, ..., N we define @ (1, N)-
valued formal distribution

A=) ("A); 2"t
nez

The commutation relations ard (B € A(N) andi, j =1,..., N):
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[AT(2), B ()] = ((A3B) (w) + (=P ((3;A) B)' (w))3(z — w);
[A'(2). B(w)] = (A8 B)°(w)8(z — w)

— (=1PB(AB) (w) 3w (z — w);
[A%(2), BO(w)] = —8u,(AB)°(w)8(z — w) — 2(AB)°(w) 38 (z — w).

,,,,,

distributions and W (1, N)), Fw) is a formal distribution Lie superalgebra.
The associated Lie conformal superalgebra is
Wy =C[0] ® (W(N) & A(N)),
where W(N) denotes the Lie superalgebra of all derivationsngiV). The A-
bracket(a, b € W(N), f, g € A(N)) is as follows:
labl=la.bl,  [afl=a(f) = A(=DPOPD fa,
[fi.8]1=—0(fg) —2\[g. (3.11)

The Lie conformal superalgeb#éy is simple forv > 0. Indeed, it is easy to see
that Wo and W1 are simple. Letl be an ideal oWy . Taking[1, /] we conclude
from (3.11) that/ equals to the sum of its intersections with @¢N) and
C[a]1® A(N). If N > 2,then CuW (N) is simple, hence eithdrc C[d] ® A(N)
or I ¢ CurW(N). Formula (3.11) implies that the first case is impossible and
that in the second cade= Wy . FurthermoreWy is a freeC[d]-module of rank
(N + 12V,

We shall need the following representation Wiy on C[d] ® A(N) (see
[CK1)):

wg=a(g), hHg=—0@+nr)fg, aecW(N), f.geAN). (3.12)
By Proposition 3.2,

AWy) =W (@A, N) and AWx)¢ =Caddg) x A(Wy).

Example 3.5. Recall that thelivergencef a differential operator (3.10) is defined
by the formula

divD = dgPo + XN:(—l)Wf)a,» P;;
i=1
its main property is
div[ D1, D2] = D1(div Do) — (—1)?PVPP2 p,(div Dy).
It follows that
S(1, N)={D e W(1,N) | divD =0}
S(1,N)={D e W(,N) |divD =0} (3.13)
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are subalgebras of the Lie superalged#gd, N) andW (1, N), respectively. We
have

S(L, N) = S(1, N)' & Cé&1...&EN 0o,
S(1,N)=S(1,N) @ Cé&;...Ex00,

whereS(1, N)’ andS(1, N)’ denote the respective derived subalgebras. The Lie
superalgebra (1, N) is a simple linearly compact Lie superalgebra for> 2
[K5].

Let {A; |i=1,...,(N — 1)2Y + 1} be a basis ofS(N), the 0-divergence
subalgebra o (N), and let{B; | j =1, ..., 2N — 1} be a set of homogeneous,
linearly independent monomials i(N), whose degree is strictly less thah It
is easy to see that the following famif§is of mutually local formal distributions
is linearly independent ovét[d,] and that all their coefficients form@-basis of
S(1, N):

AiR) =) (x"Apz ",

nez

N
Bj(z) = (degB; — N)BY(z) + 0. » (Bj&)' (2). (3.14)
i=1
Hence(S(1, N)/, Fs) is a formal distribution Lie superalgebra, and the corre-
sponding Lie conformal superalgelsg has rankV 2V overC[a,].
Let us describe this Lie conformal superalgebra more explicitly. For an element
D= Zf"zl P;(0,8)0; + f(9,&) € Wy, we define the corresponding notion of
divergence:

N
divD =) (=)?"9; P, — 9f € C[9] ® A(N).
i=1

The following identity holds inC[3] ® A(N), whereD1, D2 € Wy (cf. (3.12)):
div[ D1, D] = (D1)i(div Dp) — (=1)?PVPP2(Dy)_;_y(div D). (3.15)
Therefore,
Sy ={D e Wy |divD =0}

is a subalgebra oy . The Lie conformal superalgebsg, is simple forN > 2;
one can check this by using the same argument a#farAlso, it is a freeC[d]-
module of rankv2¥ . Furthermore(S(1, N)’, Fs), whereFs is defined by (3.14),
is the maximal formal distribution Lie superalgebra associateg tarhis follows
from Proposition 3.2. The above discussion implies that

ASy)=S@A, N)Y and A(Sy)¢=Caddy) x S(1, N).
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Example 3.6. For anya € C, we set
S(1,N,a)={D e W(L N) | dive’*D = 0}.

This is a subalgebra d¥ (1, N)), which is spanned by the coefficients of the
following family Fs , of mutually local formal distributions (cf. (3.14)):

N
Ai(2), Bja()=01—N)BY)2)+ (0. —a) Y (Bj&) (2). (3.16)
i=1
The associated Lie conformal superalgebra is constructed explicitly as follows.

LetD = Zf"zl P;(3,&)9; + f(9, &) be an element dVy . We define the deformed
divergence to be

div, D =divD + af.
It still satisfies formula (3.15), hence
Sn.a ={D € Wy |div, D =0}

is a subalgebra oy, which is simple forN > 2 and has rank/2"V .

As for the annihilation algebra, fo# # 0 the automorphism o (1, N)
sendingr to (¢** — 1)/a and leaving thé;’s invariant induces an automorphism
in the space of the differential forms, which transforms the standard volume form
dx A v into € dx A v. Hence

A(Sn.q) = S(1, NY.

Moreover, using Lemmas 5.8 and 5.9, one can see that the induced automor-
phismin DetS(1, N)")/ad(S(1, N)") sends ahp) to addp — a vazl £ 0;). Con-
sequently,

N
A(SN.a) = Cad<8o —ay & a,~> x S(LN).
i=1
Example 3.7.Let N € Z, be an even integer. We set
S(L,N)={D e W(L N) | div(1+&...£y)D) =0}.

This is a subalgebra o (1, N), which is spanned by the coefficients of the
following family Fz of mutually local formal distributions (cf. (3.14)):

Ai(m)=Q—&1...E0)Ai(2),  Bj(2). (3.17)

The associated Lie conformal superalgeﬁr,a is constructed explicitly as
follows:

Sy={DeWy |div((1+&...6N)D) =0} (=1 —&1...E8)SN).

The Lie conformal superalgebEaJ is simple forN > 2 and has rank/2" .
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As for the annihilation algebra, we remark that the automorphism(af N)
sendingx to (1 + &1...Ey)x and leaving theg;'s unchanged induces an
automorphism in the space of differential forms which transforms the standard
volume form d Av into (1+ &1...&y) dx A v. Hence,

A(Sy) =S(L, NY.
Moreover, addp) is sentto athg — £1...&En00p), SO that

A(Sy)*=Caddo — &1...&nd0) x S(L, N

Example 3.8. Given the differential form

N
wo=dv—) &dg,

i=1
we define the following subalgebrasf(1, N) andW (1, N), respectively:

K(1, N)={D e W(L N) | Do=Pw 3P e A(L N)},
KL N)={DeW(LN)|Dw=Pw3IPecr(l N)},

see [K5]. They consist of linear operators of the form

1 N
D' = fdo+ 5(—1>”<f> ;@iaw 3)(f)(Edo+ 3;)

for f € A(1, N) andA(1, N), respectively.

The Lie superalgebr& (1, N) is linearly compact and simple for aN € Z
[K5]. The spaceA(l, N) (respectivelyA(1, N)) can be identified with the Lie
superalgebra (1, N)) (respectivelyK (1, N)) via the mapf — D/, in which
case the bracket becomes, §oig € A(1, N) (respectivelyr(1, N)):

1 N 1 N
[f.8] = (f -5 Z&&f)%g - 30f<g -3 Zsiaig>
i=1 i=1

N
1
+ (YIS D o forg.
i=1
For A € A(N), we define thex (1, N)-valued formal distribution

A(Z) — Z(-an)Z_n_l-

nez

If A=&,...& ,B=&j...£;, we have
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N
[Az), Bw)] = ((% - 1)8wAB(w) + (_1)% Z(aiAaiB)(w))S(z — w)

i=1

+ <”2” - 2>AB(w)8w6(z —w),

hence the formal distributions itfx = {A(z)}aenv) are mutually local and
(K (1, N), Fx) is a formal distribution Lie superalgebra. The associated Lie
conformal superalgebra is

Ky =C[9]® A(N)

with A-bracket

r A1 N r+s
[A;,B] = ((5 - 1)8(AB)+(—1) 523#&&-3) +A< 5 —Z)AB.

i=1
Using the same argument as féfy, one can see that the Lie conformal
superalgebr& y is simple for allN € Z,, N # 4, and is a freeC[d]-module
of rank 2V. By Proposition 3.2, we have

AKN) =K@, N) and A(Ky)¢=Caddg) x K (1, N).

Example 3.9. The Lie superalgebr& (1, 4) is not simple:
K(L4=K(L4 & (Cx 61...8),

butk (1, 4) =[K (1,4), K (1, 4)]is simple. AlsoK (1, 4)" is a formal distribution
Lie superalgebra, spanned by the coefficients of the family of mutually local
formal distributions

Fgr = {A(z), whereA is a monomial il (4), A #£&1...&y 8z51...§4(z)}.

Its associated Lie conformal superalgebrakig the derived subalgebra of
K4 = K, ® C&1...84. By formula (3.4),(3&1...£4)0 is a central element of
the formal distribution Lie superalgebraie K, 7(K})). Recall that we have
a surjective homomorphism Lk, — K (1, 4)". It follows from Proposition 3.2
that Liek, is a central extension & (1, 4)’ by a 1-dimensional center. We denote
it by CK(1, 4)’. The corresponding cocycle is given by [KL, formyta22)] for
d = 0. Itfollows that the annihilation algebra &f) is a central extensio@K (1, 4)
of K(1,4) obtained by restricting the above central extensionkdt., 4)’ to
the subalgebr& (1, 4) and then going to the completidn(1, 4). The non-zero
entries of the corresponding cocycle are given by:

1

Also, A(K})¢ = Cad(dp) x CK(1, 4), wheredg acts trivially on the center.



42 D. Fattori, V.G. Kac / Journal of Algebra 258 (2002) 23-59

Example 3.10. The formal distribution Lie superalgebs& (1, 6), Fx) has a
simple subalgebra, denoted ©gK(1, 6), Fck). The associated Lie conformal
superalgebra i€Kg. It is a simple rank 32 subalgebra &%, whose even part is
Wo x Cursog and whose odd part is spanned by six primary fields of conformal
weight 3/2 and ten primary fields of conformal weight2. For the explicit form
of the commutation relations, as well as for more detailed informatio€ &g,
see [CK2].

The annihilation algebra dEKg is the exceptional simple linearly compact
Lie superalgebra (1, 6) (see [CK2,K5]), which is a subalgebra &f(1, 6). The
extended annihilation algebra$(CKg)¢ = Cad(dg) x E(1, 6).

Remark 3.11. The Virasoro conformal algebra is the only non-abelian rank 1
Lie conformal algebra. One ha&y = C[d]L, where[L; L] = (3 + 2A)L. An
even element of a Lie conformal superalgebra satisfying thitwracket is called

a Virasoro element.

Remark 3.12. The following are the most important Lie conformal superalgebras.
Wo >~ Ko is the Virasoro conformal algebr&’; is the Neveu-Schwarz Lie
conformal superalgebra&> >~ W; is the N = 2 Lie conformal superalgebra,
K3 is the N = 3 Lie conformal superalgebrd; g is the N = 4 Lie conformal
superalgebra, and, is the big N = 4 Lie conformal superalgebra. The
corresponding formal distribution Lie superalgebras (or, rather, their central
extensions) are well known and play an important role in physics.

4. Central extensions
4.1. Central extensions of Lie superalgebras

We shall be dealing with the cohomolod#?(g) of a Lie superalgebra with
coefficients in the triviaj-moduleC, which parameterizes the central extensions
of g. The following lemma is well known (cf. [K1, Exercise 7.6]).

Lemma 4.1. Let g be a finite-dimensional Lie superalgebra, which has an
invariant, supersymmetric non-degenerate bilinear foemen or odd. Then

the 2-cocycles ong with coefficients inC are in 1-1 correspondence with the
derivations ofg that are skew-symmetric with respect to the form, the cocycle
being trivial iff the corresponding derivation is inner. This correspondence is
given byap (x, y) = (Dx, y), D € Der(g), x, y € g.

Proof. If « is a 2-cocycle o, it can be written in the formp (x, y) = (Dx, y),
whereD is an endomorphism of the spageOne can easily check that the skew-
symmetry ofx is equivalent to the skew-symmetry bf, that the cocycle equation
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is equivalent taD being a derivation and thatis a trivial cocycle iffD is an inner
derivation. O

In the remaining part of this subsection, we compute the central extensions of
all simple finite-dimensional Lie superalgebeaand theirC[¢]-current algebras
s[t].

The main result in [K4] is the following theorem.

Theorem 4.2. A simple finite-dimensional Lie superalgebra is isomorphic either
to one of the simple Lie algebras or to one of the Lie superalgelir@s, n)
(0O<m<n), An,n) (n>0), Bm,n) (m >0, n >0), Cn) (n>3), D(m,n)
(m>2,n>0), D21 a), F(4, GQR), P(n) (n >2), Q) (n > 2), W(n)
n>3),Sm) (n>4),Sm) (n>4,neven or Hn) (n =5).

Proposition 4.3. A simple finite-dimensional Lie superalgebsahas an even
(respectively oddsupersymmetric, invariant bilinear form fis isomorphic to
A(m,n), B(m,n), C(n), D(m,n), D(2,1,a), G(3), F(4), H(n) with n even
(respectivelys ~ H(n) with n odd or Q(n)). Such a form is unique up to
a constant factor.

Proof. The Lie superalgebrad (m,n), B(m,n), C(n), D(m,n), D(2,1, a),
G(3), and F(4) are contragredient with a symmetrizable Cartan matrix, hence
they have an even invariant form [K4].

The obvious pairing between the even and the odd pa@®@f) is an odd
invariant form.

Define onA(n) the Poisson bracket

n

af g
{(r.gy=) ——
Ea& 08;

This Lie superalgebra has a bilinear foraf, g) = [ fgdéi...ds, (where
[ denotes the Berezin integral, cf. [Be]), which is invariant on the derived
subalgebran(n)’ i.e. the span of all monomials except the top one. The kernel of
the restriction of the form te\(n)’ is C. SinceH (n) ~ A(n)’/C, the proposition
is proved in this case as well.

In order to show that in the remaining cases there is no invariant forsnwe
take a maximal reductive Lie subalgebraf s and show that the-moduless and
s* are not isomorphic. O

Proposition 4.4. A complete list of non-trivialH2(s) for all simple finite-
dimensional Lie superalgebrads as follows

H*(A(L D) = H3e{A(1,1)) =C3;
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HZ(A(n n)) eVen(A(n n)) n>1;
H*(P(3)) = Heel P(3) =

H*(Q(n) = Hye Q) =C, n>2;
H?(H(n)) = H3e{H () = n>5.

Proof. In the cases whescarries an invariant, supersymmetric, non-degenerate
bilinear form, we apply Lemma 4.1 and the known description of derivations (see
[K4, Proposition 5.1.2]). Notice that in all cases excéfiz) all derivations are
skew-symmetric, whereas féf (n), n > 5, only one of the two outer derivations,
namelyD =}, (9i&1...£,)9;, has this property. In the remaining cases, i.e.

s = P(n), S(n), S(n) and W(n), we apply Lemma 2.1 of [KL] to compute
H? (). O

Remark 4.5. The central extensions corresponding to the non-trivial cocycles
listed above are as follows:

(1) A(n,n): the canonical homomorphissi(n + 1,n + 1) - A(n, n);

(2) Q(n): the canonical homomorphis@(n) — 0(n);

() ifs=P;~_15; (respectivelys = P, 5;) is a consistent-gradation of
such that thep-modules_1 carries a non-zero symmetric invariant bilinear
form (., .), then we have the following 2-cocycle ena(x, y) = (x, y), if
x,y €s_1 (respectivelyr, y € s11), anda(x, y) =0if x €s;, y € 57, andi
or j is not—1 (respectively or j is not+1); the central extensions &f (n),

P (3), and the remaining two central extensionsi@f, 1) are obtained in this
way.

Proposition 4.6. Let s be a simple finite-dimensional Lie superalgebra. Then
any irreducible central extension affz] is isomorphic tos[:], wheres is an
irreducible central extension af

Proof. Note that all K&hler differentials dE[¢] are exact. Hence one can use the
same argument as in [Sa]O

4.2. Central extensions of Lie conformal superalgebras

Basic and reduced cohomology of Lie conformal algebras are defined in
[BKV]. They are denoted respectively Iﬁ* andH*. The same definitions (with
appropriate signs) apply to the case of Lie conformal superalgebras.

A central extension of a Lie conformal superalgel®dy a Lie conformal
superalgebr& is a C[d]-split (i.e. § = K & R as C[d]-modules) short exact
sequence of Lie conformal superalgebras

0—-K—-S—R—0,
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in which K is central inS and the action o is trivial on K. Equivalence classes
of 1-dimensional central extensions are parameterized by elements of the second
reduced cohomology groui2(R) (cf. [BKV]).

Lemma 4.7. Let R be a Lie conformal superalgebra. SupposeRirthere is an
elementL such thatl gya = da for anya € R. Then

H"(R)= H"(A(R)) ® H""}(A(R)), n>0.
Proof. This follows from [BDK, Proposition 15.6]. O

Lemma 4.8. Let R be a Lie conformal superalgebra such th&t= R’. Then
HY(R)=0.

Proof. We denote byd" the nth differential of the basic complex and by the
corresponding differential of the reduced compléxis a trivial C[d]-module,
henced® = d° =0, andH(R) = kerd.

We remark thaty € dCL(R) if, and only if, for anya € R, y,(a) has no
constant term as polynomialin Indeed, ify = dw, y.(a) = (Qw), (a) = Aw; (a).
Also, if yy(a) = AP,(A) for anya € R, we can definew € 51(R) such that
wy (a) = P,()) and clearlyy = dw.

Recall that

1 C'R)  CAR)
"9CL(R)  9C2(R)’

Supposdy] =y + dCHR) € kerdt. Then d([y]) =0, i.e.dly € IC2(R). It
follows that, for anyus, az € R,

(aly)kl,kz(al, az) = (0B)iy,xz(a1, a2) = (A1 + A2) Bay,a, (a1, az).

On the other hand(aly)h,kz(al,az) = —Vi+ap([ay,a2]). Therefore, the
polynomial y,(a) has no constant term for any e R’. But R = R/, so this
actually holds for any: € R. It follows thaty € 9C1(R),i.e.[y]=0. O

Lemma 4.9. Let R be a Lie conformal superalgebra, such tiat= R’. Suppose

R has an elemenk such thatL ga = da for anya € R. ThenH?(A(R)) = 0.

In particular, this holds for the annihilation algebras of the simple Lie conformal
superalgebrasVy (N > 0), Sy.a (N > 2), Sy (N even,N >2), Ky (N >0,

N #4), K}, CKa.

Proof. This follows from Lemmas 4.7 and 4.8, sinceQH1(R) = H1(A(R)) ®
H?(A(R)). O
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Lemma 4.10. Let R be a finite Lie conformal superalgebra, which is free as
a C[d]-module. Lets be a reductive Lie algebra, and Iet— R be an injective
homomorphism with respect to tBéh product onR. Assume thak = P, ; gi

is a decomposition oR into a direct sum of finite-dimensional, irreducible
s-modules with respect to tHéth product. Then every reducédcocycley on

R is equivalent to a cocycle, such that

(1) aa(gi,g;) =0if g;, g; are not contragredierd-modules
(2) ap(x,y)=P;j(x,y) forall x e g;, y € gj, and someP;; € C[A] if g;, g; are
contragredients-moduleg(, ) denotes the pairing between them

Proof. The Lie algebras acts completely reducibly on the space of reduced
2-cocycles, hence there exists ainvariant subspac& complementary to the
space of trivial 2-cocycles. Sinde acts trivially on H2(R), we conclude thag
acts trivially onV. O

In the remaining part of this section, we compute the central extensions of all
simple Lie conformal superalgebras listed in Section 3.2. The proofs are all based
on Lemma 4.10. We give all the details of the computations only in the most
involved case (cf. Proposition 4.16) and omit them in all other cases. We give
only the non-zero entries of the non-trivial cocycles.

Proposition 4.11. Lets be a simple finite-dimensional Lie superalgebra. Then all
central extensions dEurs are given by the following-cocycles

ay(a,b) =aola,b)+ (a,b)r, a,bes,

where ag(a, b) is a 2-cocycle ons and (., .) is a supersymmetric, invariant
bilinear form ons (cf. Propositiongt.3and4.4). Two such cocycles are equivalent
iff the 2-cocyclesyg are equivalent.

Proof. See [K2, Section 2.7]. O

In what follows we shall often d_enote anelemes azfvzl fidi+f)eWy=
Cla1® (W(N)® A(N)) by Y, (fi) + f.

Proposition 4.12. The Lie conformal superalgebra®y, Wi, and W> have
a unique, up to isomorphism, central extension. The correspori@glicarycles
are as follows

1
Wo: a3(1,1) = 5;

Wl =

1
Wa: al((sl>1,(sl>1)=§, a2 (Dt 1) =

az((DY &) = -3
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1 1
Wa  a1((60)?, (§2)1)=6, a1t (§2)2)=—é,

1

a1(EE)t, (1?) ==

a1((E162)?, (DY) 5

= _6’

Proposition 4.13. The Lie conformal superalgebii@y has no non-trivial central
extensions itV > 3.

Using [AF] and Lemma 4.7 one actually computes the whole basic and reduced
cohomology ofWy.

Proposition 4.14. The Lie conformal superalgebrs,, has a unique, up to
isomorphism, non-trivial central extension. The correspondifgpcycle is as
follows

1 1
@3(La, La) =7, whereL, =—1+ (3 - a)((Ent + (£2)?),

a2((DY, 61— (8 — a)(£162)?)

5
(D 61— (0 - a)(E162)%) = 5.
ao((D, &1 — (3 — ) (B162)%) = —2—:
0212 &2+ (0 —a)@g)') = -3,
(D 62+ (0 — ) (E162)") = 5.

2

ao((1)% &2+ (3 — a) (Er1é2)Y) = —%,

1
a1((E0)?, (€)Y = 5
a1 (Dt — (622, (Dt - (82?) =

Wl

Proposition 4.15. The Lie conformal superalgebr&‘z has a unique, up to
isomorphism, non-trivial central extension. The correspondirgpcycle is as
follows

~ ~ 1 ~ 1
as(L. L) =3, wherel = —(1— &) + 58((51)1 +(52)?),

o1((1— &6t (1 - £162)%) = -3

a2((1— £162)%, &2 + 3 (E162) ") = -3
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| =

1
a2((1— &80t £1 — B(£262)%) = — 2, amgﬁ@ggza

(A)ll—‘w

a1(EDt - (€)% )t — 62)?) = =.

Proposition 4.16. The Lie conformal superalgebraSy, (¢ € C) and §N
(N even have no non-trivial central extensionshf > 2.

Proof. We remark thatSy ~ Sy ., =~ §N ~ W(N) assly-modules. By Lemma
4.10, we need to compute the cocycles corresponding talfénvariants of
W(N) ® W(N), which occur in the following casgd <k < N — 1):
R(m+nn-1) ® R(m1 +7n-1), R(O) ® R(0),
R(mn-1) ® R(m1), R(mi) ® R(Tn—k).
Let

1 ~ 1
Lo=-1+-@-a)H and L=—(1-¢&...&v)+0H

be Virasoro elements fofy, and Sy, respectively, whereH = Y &3,
denotes the Euler operator. Léfy (respectively(l — &1...6y)dn) be the
highest weight vector oR(zy_1) € W(N)—_1 in Sy, (respectivelySy). Let
v; (respectivelyv;) be the highest weight vector @t(mx) € W(N)i in Sy 4
(respectivelySy), 1<k <N — 1. Then

vi=(k—N)é1...&+ 0@ —a)r...§&H,

Up=(k—N)&1...& +0&1...&H.

Let wy (respectivelyi;) be the lowest weight vector ok (7y—«) = R(m)*,
which we view as lowest weight modul®(—m)'®" € W(N)y—¢ in Sy
(respectivelySy), 1< k<N —1.Then

wy =—k&q1...En + (0 —a)&kq1.. . EnH,
W = —k&ky1...6N + 0641 . . ENH.
The action ofL, andZ is given by the following formulagl <k < N — 1):

[La;0n]= %(NE) + (N + DA +a)oy,

- 1
[L((1—&1...600N)] = N(Na +(N+DA)A—&1. . 68N — VY1,
[Lasvf] = %(NB + 2N — k)X — ak)vg,

~ 1
[Ly0k] = N(NE) + (2N — k)A) 0,
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a l a
[Laywi] = N(Na + (N + ki —a(N —k)wy,

~ 1
[Lyiwr ] = N(NE) + (N + k)A) wx.

We remark thatR(1 + ny—1) € CurS(N) for Sy, and R(mw1 + my—1) €
CurS(N) for Sy. By Proposition 4.11, the corresponding cocycle is trivial.

In all other cases, by Lemma 4.10 we need to show that the cocycle pairing
the highest weight vector and the lowest weight vector is trivial. The cocycle
equation for the~triple$v,‘:, &1k — Ex10k+1, wy), (La, v, wy), and(vg, &g —
Ek410k+1, W), (L, Uk, wx) shows thaty, (vy, wy) = o, (U, wx) =0

Finally, the cocycle equation for the triplé., dn, w{) shows thaty, (L,, La)
and o, (dy, wy) are trivial. Similarly, one can see that the cocycle equation
for the triple (L, (1 — &1...&Ex)0y, 1) |mpI|es thataA(L L) and «, ((1 —
&1...Ey)0y, w1) are also trivial. Therefored (SN,a)_HZ(SN)_O O

Proposition 4.17. The Lie conformal superalgebrdéy, K1, K2, and K3 have

a unique, up to isomorphism, central extension. The corresporigicarycles
are as follows

1 1
a3(l. 1) =3, a2 f)=¢ (=1 2), a1(§182, §182) = —

1
a1(&:&;,8&)) = 1 @ #7J),
1
ao(&i& &, &g = 17 @ #j#k).

Proposition 4.18. The Lie conformal superalgebr&, has two, up to isomor-
phism, linearly independent central extensions. The corresporfdoagyclesy
andp are as follows

1 1
ag(la l): év 052(51'75[):6,

1
a1(5&;,8&)) = 17 (i #J),

ao(§i&j8k, §ij6k) = — (i #J#h),

1
12
o1(051528384, 081626364) = —
B2(1, 061808384) = 2, Bi(&i, 0i (E1628384)) =
B1(&i&), ;0 (E162E384)) = —

Proposition 4.19. The Lie conformal superalgebrdsy (N > 5) and CKs have
no non-trivial central extensions.
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5. Finitesimple Lie conformal superalgebras
5.1. The annihilation algebra

In this section we study the annihilation algeb#gR) of a finite simple
Lie conformal superalgebr&. We shall use the following two propositions,
whose proof is the same as in the non-super case, see [DK, Lemma 4.3 and
Proposition 5.1].

Proposition 5.1. Let R be a finite Lie conformal superalgebra. Then any non-
central T -invariant ideal J of A(R) contains a hon-zero regular ideal.

Proposition 5.2. Let R1 and R2 be two finite Lie conformal superalgebras,
which are free asC[d]-modules. Letp:CTy x A(R1) — CT> x A(R2) be

a homomorphism of the corresponding extended annihilation algebras such that
¢(T1) = T» and p(A(R1)) = A(R2). Then there exists a unique Lie conformal
superalgebra homomorphis@: R1 — R that inducesyp, i.e. ¢(a;) = (¢(a));
forallae R,i €Z.

Lemma 5.3. Let R be a finite simple Lie conformal superalgebra. Thé&(R) is
isomorphigas a topological Lie superalgebyto an irreducible central extension
of the Lie superalgebr&|r, ....1,] ® s, wherer =0 or 1 and s is a simple
linearly compact Lie superalgebra.

Proof. Recall thatA(R) is a linearly compact Lie superalgebra and that it is
a closed ideal of codimension 1 in the extended annihilation algdbry¢ =
CT x A(R). By Proposition 5.1, due to the simplicity &, A(R) contains no
non-centrall -invariant ideals different fromd(R). Let Z be the center ofA(R).
Since the derived algebra of(R) is a non-centrall -invariant ideal of A(R)
(otherwiseR would be nilpotent), we conclude that(R) = [A(R), A(R)] and
therefore

0—->Z— AR)— AR)/Z—0

is an irreducible central extension. Also, the centet4giR)/Z is zero, since
otherwise its pre-image itd(R) would be a proper non-centrdl-invariant
nilpotent ideal.

It follows that A(R)/Z contains no non-trivial’ -invariant ideals and therefore
A(R)/Z is a minimal ideal inA(R)¢/Z. Thus we may apply Corollary 2.8 to the
Cartan—Guillemin theorem to obtain the isomorphism of linearly compact Lie
superalgebrasi(R)/Z ~ (C[t1, ..., 1] ® A(m)) ® s, wherer,m € Z, ands is
a simple linearly compact Lie superalgebra.

Next, we show thatn = 0. Let A1(m) be the ideal ofA(m) generated by
£1,...,&n. We will show thatl := (C[[r1, ..., 1] ® A1(m)) ® s is a T-invariant
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ideal of A(R)/Z, which, of course, will imply thatn = 0. Indeed, due to
Proposition 2.12, any continuous derivatiBrof (C[zy, ..., 7] ® A(m)) ® s has
the form

T=Do®1+» fi®Di, (5.1)

1

where Dg (respectivelyD;) is a continuous derivation df[z1, ..., ] ® A(m)
(respectivelys) and f; € C[r1, ..., #] ® A(m). SinceT is even,Dg is an even
derivation, henc& maps the ideal into itself.

It remains to show that< 1. If Dg leaves the idedls, ..., ) of C[t1, ..., 4]
invariant, then(zy,...,1) ® s is a non-trivial T-invariant ideal of A(R)/Z,
which is impossible. Therefore there exists a continuous automorphism of
Der(CJt1, ..., t]) which transformsDg to 3/971 (see, e.g., Proposition 2.13).
But in this case

d
T=—®1 . ® D,
o © +§i fi ® Di

hence the idealrs, ...,7,) ® s of A(R)/Z is T-invariant. This implies that
r<l. O

Corollary 5.4. Let R be a finite simple Lie conformal superalgebra andilebe
an even element such thafg)a = da for anya € R. ThenA(R) is the universal
central extension of its quotient by the center. In particular, this hol@#ssfone of
the Lie conformal superalgebra®y (N > 0), Sy4 (N > 2, a € C), §N (N > 2,

N even), Ky (N >0, N #4), K, or CKe.

Proof. As we have just remarkedd(R) = [A(R), A(R)], and by Lemma 4.9,
H%(A(R)=0. O

By taking the completion of (3.6)—(3.9) we obtain:

AR)=Lo2L12 LD, (5.2)
[£i,£;1C Liyj—q forsomed e Zy, (5.3)
dimL;/L; 1 <rankR, (5.4)

(recall thatr is a freeC[d]-module), and
[T.Li]=Li-1 (i>0). (5.5)
Proposition 5.5. The annihilation algebrad(R) of a finite simple Lie conformal

superalgebrar is isomorphic as a topological Lie superalgebra to one of the
following linearly compact Lie superalgebras
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(1) W@, N), N >0; 5N, N >2; K(LN), N >0, N #4; CK(L,4)
E(1,6);
(2) s[r], wheres is a simple finite-dimensional Lie superalgebra.

Proof. By Lemma 5.3, A(R) is an irreducible central extension of the Lie
superalgebr&]ry, ..., .| ®s, wherer =0 or 1 ands is asimple linearly compact

Lie superalgebra. It follows from (5.2) and (5.4) that= L4 (j € —d + Z4)
is an algebra filtration ofA(R) such that

dim¢;/¢;y1 <rankR, jeZy, (5.6)

hence the growth of this filtration is at most 1. This filtration induces an algebra
filtration on 1® s, whose growth is therefore at most 1. We conclude (see Theorem
2.10) that gws) < 1 and therefore, by Theorem 2.11, either dim oo ors is one

of the Lie superalgebra& (1, N) (N >0), S(1, N) (N >2), K(1, N) (N >0),
E(1,6).

If »r =0, then dims = oo, since dim4(R) = co. In this case, due to
Corollary 5.4,4(R) is the universal central extensiongofConsequently, by the
results of Section 3.24(R) is one of the Lie superalgebrag(1, N), S(1, N)',
K(1,N), CK(1,4), E(1,6).

If r =1 and dims < oo, then, by Lemma 5.34(R) is an irreducible central
extension ofsf¢r]. This gives us an embedding D& R)) C Der(st]). By
Proposition 4.6, the universal central extensiorspf] is 5[¢], wheres is the
universal central extension af Hence we have a surjective homomorphism
v1:5[t] = A(R) such that kep; is a central ideal. Also, since any derivation
of a Lie superalgebra lifts uniquely to the universal central extension, we obtain
an embedding (see Proposition 2.12)

Der(A(R)) c Der(5[s]) = Der(C[s]) ® 1+ C[r] ® Der(s).

ThL/J\S, the derivatiorT” of A(R) induces a derivation of[¢], which we denote
by T'. We have:

~ 9
T = P(I)E +T1, whereP(t) € C[t], T1 € C[t] ® Der(s).
Define a filtration onl. = CT  §[¢] by letting
d .

degt:—degazl, degs =0: LD>DLoDL1D:---.
ThenT(Lo) ¢ Lo, otherwiseT, being surjective ond(R), is surjective onLg,
hence onLg/L1 D §, which is impossible by Proposition 2.14 singas not
solvable. Hence we may assume tlfat 9/9t + Tp, whereTp € Lo. Applying
Proposition 2.13td., V =0, D = d/dt, andgo = To, we may find a continuous
automorphismy of §[¢] that transformd’ to 9/9¢. But

c%xgm
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is the extended annihilation algebra of the Lie conformal superalgebraatat
the homomorphisnp; o ¢ extends to a surjective homomorphism of extended
annihilation algebras

W%xﬁﬂeT%M&
satisfying the conditions of Proposition 5.2. Heneés induced by a surjective
homomorphisng : Curs — R. But R is simple, hence induces an isomorphism
Curs — R.
It remains to consider the cas&R)/Z ~ C[t] ® s, where dins = oo andZ
is a central ideal. Recall that we may assume, from the proof of Lemma 5.3 that

3
= ®1+Zﬁ ® D;, D;eDexs), fi €C[t]. (5.7)

Note thatL; = Z(i+1)d (i = 0) is an algebra filtration of the extended annihilation
algebra A(R)¢ (= L_1). Denote again by{L;};>_1 the induced filtration on
A(R)¢/Z ~CT % (C[] ®s). Let 1®sg = LoN(1®s) and consider the canonical
filtration of s associated with the subalgelga

§=6_1D80D6861D """

Consider the following filtration o€ T x (C[t] ®s) = L

Lp= Y ({C[t]®s; (m=0).
i>0, j>-1
i+j=m

Since{s;};>_1 is the canonical filtration of associated t@o and7 has the
form (5.7), it is easy to see thaLm}m> 1 is the canonical filtration afA(R)¢/Z
associated td.o. By Chevalley’s principleLo D Ly for someN > 0, and since
{L,} is a canonical filtration, we conclude that > Ly.; for all j > 0. It
follows that

ow({L;}) <gw({L;}) <1

(the last inequality follows from (5.4)). But g\{\Zj}) = gw({t/C[]}) +
gw(s) = 2. Thus, the remaining case is impossiblel

5.2. Derivations of the annihilation algebra

Proposition 5.6. Let L be a linearly compact Lie superalgebra, and tebe

a reductive finite-dimensional Lie subalgebralofsuch thatL =[], V;, where
the V;’s are finite-dimensional irreducible-modules. Then there exists a closed
s-submoduleV of Der(L), complementary to the space of inner derivations
ad(L); one haqv, adla)]=0forall ve V anda € s.
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Proof. We have: DefL) ¢ Hom(@p; \/i,]_[j Vi) = Hi,j Hom(V;, V;), hence
Der(L) is ans-invariant closed (hence linearly compact) subspace of a direct
product of finite-dimensional irreducible-modules. The subspace (&g of
Der(L) is s-invariant and closed too (by Proposition 2.1(1)). Hence there exists
a closeds-invariant complementary subspate But [ad(s), D] C ad(L) for any

D e Der(L), hencdads), D]=0if DeV. O

We will be working with the followingstandard Z-gradation of the Lie
superalgebras that occur in Proposition 5.5(1):

WL N =[] wa N,

iz-1
SaNy= ] sany,  Sa2'= ][] sa29
iz-1 iz=2
KL N =[] K@.N);. CK(1.4)= [] cK@.4);.
=2 =2
ELe =[] EQL®); (5.8)
iz=2

here the gradations of depth 1 (respectively 2) are defined by letting
degr = —degdg=1 (respectively 2, degt; = —dego; = 1,
and in theCK (1, 4) case we let degentey = 0.

Lemma5.7 [K5]. All continuous derivations d¥ (1, N), K (1, N), CK(1, 4), and
E(1, 6) are inner.

Proof. Let s be the even part oW (1, N)o, K (1, N)o, E(1, 6)o. We haves =

C @ gly, csoy, csoe, respectively, and the representationsobn W (1, N)_1,
K(1,N)_1, E(1,6)_1 is the direct sum of the standagd, - and gl;-modules,
the standardsoy- and csog-module, respectively. By Proposition 5.6, in all
cases, DallL) = adL) & V as s-module, and anyD € V is an s-module
homomorphism.

We remark thatcdg + » ; §9; € s for W (1, N) and 29 + > ;&0 s for
K (1, N), CK(1,4), andE (1, 6). It follows that anyD € V preserves the standard
gradation ofL.

By Schur Lemma,D = diaglx, i, ..., u) on W(1, N)_1. It follows that
the grading preserving derivatioR’ = D — ad(Axdo + ) _; £9;) is zero on
W(1, N)_1 and it is ans-module homomorphism.

Lety e W(1, N); andg_1 € W(1, N)_1. By induction onk > —1, we have
0= D'([y,g-1]) =[D’y, g—1]. Hence by transitivity we conclude thaX'y = 0,
i.e. D' =00nW(l, N);. ConsequentlyD’ =0 onW (1, N) and D = ad(Axdp +
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wY_; &9;). On the other handp € V, hencer = u = 0. ThereforeD = 0 and
every derivation oW (1, N) is inner.

A similar method can be used in the remaining cases. Notice that we may
exclude the cas& (1, 2), which is isomorphic toWw (1, 1), so thatK (1, N)_1
(respectively E(1,6)_1) is irreducible as asoy-module (respectivelysog-
module), hence any derivatiah € V acts on this subspace as a scalar matrix.
Now we proceed as above using also that in both cases-#ra component
is the bracket of the-1st component with itself. The result f@K (1, 4) easily
follows once one has established it #(1, 4). O

In the next two lemmas we will use the following outer derivationS ¢, N)’
(C WL N)): E=adé...£xdo), H=ad Y[, &d).

Lemma 5.8 [K5]. Der(S(1, N)') =ad(S(1, N)') @ CE @ CH for N > 2.

Proof. The Lie algebragly is the even part ofS(1, N);. By Lemma 5.6,

we have DefS(1, N)') = adS(1, N)) @ V as gly-modules and anyD € V

is a gly-module homomorphism. Let us denote bR(rr), m) the irreducible
sly-moduleR (;r) whose eigenvalue with respect to the operat@d(xdp) + H

is m. The irreduciblegly -modules which appear more than once in the standard
gradation (5.8) areiR(7y—-1), —1), which occurs inS(1, N)"_;, andS(1, N)y _,
and(R(wy-1), N — 1) which occurs inS(1, N)y andS(1, )y _;.

Let v1 = dy (respectivelyv, = &1...&Eny-100) be the highest weight vector
of the module(R(wry—1), —1) in S(1, N)"; (respectively inS(1, N),_,). Then
[E1...EnD0, ON] =&1...En—100. Now, D is agl, -module homomorphism, hence
D(v1) = avy + vz and D — BE mapsS(1, N)'_, into itself. Also, S(1, N)" ;
is sum of two non-isomorphic, irreducibd&y -modules, so by Schur Lemma we
have thatD — BE = diag(’, u, ..., n). Consequently)’ = D — BE —ad(Axdp+
wy ;i &d;) acts as 0 or§(1, N)' ;. Supposey € S(1, N), andg_1 € S(1, N)" ;.

By induction onk > 1, we have 0= D'([y, g_1]) =[D’y, g_1]. Note that the
homogeneous components 6fy have degree greater or equal than 0. By
transitivity, we conclude thab’y = 0, henceD’ =0 on S(1, N), and therefore

D can be expressed as a linear combinatiolt pdxdg) + H and some inner
derivation. Since advxdp) + H is an inner derivation, the lemma is proveda

Lemma 5.9 [K5]. Der(S(1,2)) = ad(S(1, 2)") & slp, where the standard basis
of slo consists off, H as above and-, defined as follows

F(P(x)&200 — o P (x)£1£201) = — P(x)d1,

F(P(x)&100 + 0P (x)§16202) = P (x)02,

F(P(x)S(2)=0, and F(P(x)dp— 1/200P (x)(£101 + £202)) = 0.
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Proof. With respect to the action aff, S(1,2)’ decomposes into eigenspaces
relative to the eigenvalugs-1,0, 1}. The even part of(1, 2)’ is contained in
the zero eigenspace. Als@&, (respectivelyF) transforms the-1 (respectively
+1) eigenspace into the-1 (respectively—1) eigenspace and kills the other
eigenspaces. We will use the standard depth 2 gradatidi{loR)’, see (5.8).
The even part ofS(1,2) is gl,. Lemma 5.6 implies that Des(1,2)) =
adS(1,2)) @ V asgl,-modules and anp € V is agl,-module homomorphism.
The modules occurring more than once a®(wz1), —1) (in S(1, 2)9l and
S(1,2)9) and(R (1), 1) (in S(1, 2)3 ands(1, 2)9).

Let v; = 02 (respectively v, = £199) be the highest weight vector of
(R(71), —1) in §(1,2)°, (respectivelyS(L, 2)8). ThenE (v1) = vo. The deriva-
tion D is a gl,-module homomorphism, s (v1) = avy + Bvz, and D — BE
mapsS(1, 2)91 into itself. By Schur Lemmal — BE = diag(x, i, ©). It follows
that the derivatiorD’ = D — BE — ad(Axdo + p Y_; £9;) acts as 0 01§ (1, 2)° ;.

Lety e S(1, 2)3. We have:

51,29 = (R(r). —1) & ((R(271),0) & (R(0), 0)) & (R(7r1), 1),

so thaty = y_1 + yo + y1. For any g1 € 5(1,2°%,, 0= D'([y,g-1]) =
[D'y1,g-1],hencd D'y, g_1]1+[D'yo, g-1]+[D'y1, g-1] = 0. Now, (R (271), 0)
and (R(0),0) occur only in S(1,2)3, hence D'yg € S(1,2)3. The module
(R(m1), 1) occurs inS(1,2)8 andS(1, 2)?, soD'y1 € S(1,2)3 @ S(1, 2)2. Also,
D'y_1€5(1,2°%, @ 5(1,2)8. We may assume that 1 = &1do. ThenD'y_1 =
adz + BE1d0. F Kills ((R(271),0) @ (R(0),0)) @ (R(rr1), 1) and F(§1p) = d2.
It follows that (D’ — a F)(£130) = B&1do € S(1,2)8. Also, D" = D’ — «F is still
identically zero onS(1,2)°,. Hence we have & D"([y, g-1]) = [D"y, g-1l,
and D"y has homogeneous components of degree greater or equal to zero. Tran-
sitivity implies thatD” =0 on S(1, 2)8. Induction onk > 1 shows thatD” =0
onS(1, 2),?. Therefore,D can be written as a linear combination®of H, F and
some inner derivation. O

5.3. The classification theorem

Lemma5.10. Let L = Hj>fd g, be one of the linearly compact Lie superalge-
bras that occur in Propositios.5(1) with the standard gradatiol5.8) and let
Lo= ]_[j>0 g;. LetT be an even surjective derivation bf ThenT (Lo) ¢ Lo.

Proof. In the contrary case, we also haV€¢L1) C L1 and therefore induces

a surjective derivation ofig ~ Lo/L1. But for W(1, N), S(1, N)’, K(1, N),

and E(1,6) we havegg ~ gl(1, N), si(1, N), csoy, csoe, respectively. Hence

by Proposition 2.14 we reach a contradiction, unléss W(1,0), W(1,1) ~
K(1,2),0rK(1,1). The second case is also excluded sigi¢&, 1) has only inner
derivations (this is immediate by Proposition 5.6) and the third case is reduced to
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the first one since the even partk{1, 1) is W(1, 0). Butif T = Zj>0ajxj80 c
W(1,0), it is easy to see that one of the elemedgr xdg does not lie in the
image of ad7). O

Theorem 5.11. Let R be a finite simple Lie conformal superalgebra. The
following list gives all the linearly compact Lie superalgebras that can occur
as extended annihilation algebra& R)¢:

(1) Cad@do) x W(1, N), N >0;

(2) (Caddo—ay L &) x S(LNY, N >2;

(3) (Cad(dp — £1...£x30) x S(1, N)', N even,N > 2;

(4) Cadd) x K(1,N), N >0, N #4;

(5) Caddo) x CK(1, 4);

(6) Caddg) x E(1,6);

(7 (C% x s[¢], wheres is a finite-dimensional simple Lie superalgebra.

Proof. Recall thatA(R)¢ = CT x L, whereL = A(R) is one of the linearly
compact Lie superalgebras listed in Proposition 5.5 And an even surjective
derivation ofL.

If L is one of the Lie superalgebras listed in Proposition 5.5(1), consider the
filtration {L;} of L corresponding to the standard gradatﬂrb_d g; of L
(cf. (5.8)). One checks directly that in all cases one has:

[00,9j1=gj-q¢ forallj>d. (5.9)
Furthermore, due to Lemmas 5.7-5.9 and 5.10 we have

T = cad(dp) + v + ad(go). (5.10)
wherec € C is non-zerogo € Lo, andv € V, whereV is one of the following
subspaces of DéL.):

V=0 ifL=W(@,N), K(1, N), CK(1,4), or E(1,6);

V=CH ifL=51,N), Nodd (cf.Lemma5.8)

V=CE®CH ifL=S(1,N), Neven N>2 (cf.Lemma5.8)

V=CE®CH®CF ifL=S5(,2" (cf.Lemmab5.9)

We may apply now Proposition 2.13 1@ = cdg (cf. (5.10)) and the abov&
since (2.4) holds due to (5.9) and (2.5) also obviously holds. Hence by an inner
automorphism of. we can brindr" to the form:

T =caddg) +v, wherece C\{0}, veV.

By rescaling we can make= 1 and, using an inner automorphism of the Lie
algebraVv, T can be brought further, in afi(1, N)’ cases, to the form d@éy) — E
(if N iseven)oraty) —aH,a cC.
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The case ofL = s[¢] has been treated in a similar fashion in the proof of
Proposition 5.5. O

Theorem 5.12. Any finite simple Lie conformal superalgebra is isomorphic to one
of the Lie conformal superalgebras of the following:list

(1) Wy, N > 0;

(2) Sn.as N2>22,a€C;

(3) Sy, N evenN > 2;

(4) Kn,N>20,N #4;

(5) Ky

(6) CKe;

(7) Curs, wheres is a simple finite-dimensional Lie superalgebra.

Proof. It follows from Theorem 5.11 and Proposition 5.2

A formal distribution Lie superalgebrg, F) is calledsimpleif it contains
no non-trivial regular ideals; it is callefihite if the C[d.]-moduleF is finitely
generated. Two formal distribution Lie superalgeb(as?) and (g1, F1) are
calledisomorphidf there exists an isomorphisp. g — g1 such thatp(F) = Fy.

The correspondence between Lie conformal superalgebras and formal distrib-
ution Lie superalgebras implies the following corollary of Theorem 5.12.

Corallary 5.13 [K7]. A complete list of finite simple formal distribution Lie
superalgebras consists of quotients of loop algelisds r~1]/(P), Fs), where
P is a non-invertible polynomial of[z, ~1] ands is a simple finite-dimensional
Lie superalgebra, and the following examples

(W

(1, N), Fw) (N >0),
S(L, N,a)',Fsa) (N22 acC),
§(]1N }'S) (N =2, N even,

(S
(
(K(
(

K(L,N),Fx) (N>0, N#4),
CK(L.4)'. Fx). (K(1,4), Fx), (CK(1,6), Fek).
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