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1. Introduction

In recent years, two-dimensional conformal field theory has attracted the
attention of many mathematicians and physicists. Borcherds [Bo] introduced the
notion of a vertex algebra, which encodes the operator product expansion (OPE)
of chiral fields in this theory. The singular parts of the OPE (or, equivalently, the
commutators of fields) are encoded by a Lie conformal superalgebra [K2,K3]. By
means of this formalism, computations of OPE’s are greatly simplified.

In the language of theλ-bracket, a Lie conformal superalgebraR is a C[∂]-
module endowed with aC-linear map

R⊗R→C[λ] ⊗R, a⊗ b �→ [aλb],
satisfying the following axioms [DK,K2](a, b, c ∈ R):

[∂aλb] = −λ[aλb], [aλ∂b] = (∂ + λ)[aλb], (sesquilinearity)

[bλa] = −(−1)p(a)p(b)[a−λ−∂b], (skew-commutativity)[
aλ[bµc]

]= [[aλb]λ+µc
]+ (−1)p(a)p(b)

[
bµ[aλc]

]
. (Jacobi identity)
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Finite (i.e. finitely generated as aC[∂]-module) simple Lie conformal algebras
were classified in [DK] and their representation theory was further developed in
[CK1,BKV].

On the other hand, Lie conformal superalgebras are closely connected to the
notion of a formal distribution Lie superalgebra(g,F), i.e. a Lie superalgebrag
spanned by the coefficients of a familyF of mutually local formal distributions.
Namely, to a Lie conformal superalgebraR one canonically associates the
maximal formal distribution Lie superalgebra LieR = R[t, t−1]/∂̃R[t, t−1] (see
Section 3), which establishes an equivalence between the category of Lie
conformal superalgebras and the category of equivalence classes of formal
distribution Lie superalgebras obtained as quotients of LieR by irregular ideals,
see [K2].

In the present paper, we give the classification of finite simple Lie conformal
superalgebras. The main result is the following theorem (announced in [K2,K6]):

Theorem 1.1. Any finite simple Lie conformal superalgebraR is isomorphic to
one of the Lie conformal superalgebras of the following list(see Section3.2 for
their construction):

(1) WN (N � 0);
(2) SN,a (N � 2, a ∈C);
(3) S̃N (N even, N � 2);
(4) KN (N � 0, N �= 4);
(5) K ′

4;
(6) CK6;
(7) Curs, wheres is a simple finite-dimensional Lie superalgebra.

The general outline of the proof of this theorem is similar to that of [DK] in the
non “super” case. First of all, we extend to Lie superalgebras the classical Cartan–
Guillemin theorem [G1,B,BB] which asserts that any minimal non-abelian closed
ideal in a linearly compact Lie algebraL is of the formC❏t1, . . . , tr❑ ⊗̂ s, wheres
is a simple linearly compact Lie algebra (see Theorem 2.7 and Corollary 2.8).

Secondly, we deduce that the annihilation algebraA(R) is an irreducible
central extension ofC❏t1, . . . , tr❑ ⊗̂ s, wheres is simple linearly compact Lie
superalgebra (Lemma 5.3). Recall thatA(R) is the completion of the image of
R[t] in LieR. It is linearly compact ifR is finite. The operator−∂/∂t onR[t, t−1]
induces a derivationT of A(R), and the semi-direct productCT �A(R) is called
the extended annihilation algebra.

Thirdly, we remark that the growth ofA(R) is smaller or equal than one, so that
we obtain that eitherr = 1 ands is a simple finite-dimensional Lie superalgebra
or r = 0 ands is a simple linearly compact Lie superalgebra of growth 1, and
we may use the classifications of the papers [K4] and [K5], respectively. This
produces a list of all possible annihilation algebras (Proposition 5.5).
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The fourth step is the classification (up to conjugacy) of all even surjective
continuous derivations of these candidates for the annihilation algebras. This
leads to the list of all possibilities for the extended annihilation algebras
(Theorem 5.11).

Finally, we reconstructR from the extended annihilation algebra to obtain the
main result (Theorem 5.12). An immediate corollary of this result is a classifica-
tion of all finite simple formal distribution Lie superalgebras (Corollary 5.13).

Along the way we show in Section 2.2 that the growth of a simple linearly
compact Lie superalgebra is independent of its algebra filtration, and we classify
in Section 4 all central extensions of finite simple Lie conformal superalgebras
(which are important for the construction of simple vertex algebras).

2. Linearly compact Lie superalgebras

2.1. The Cartan–Guillemin theorem

Recall that avector superspaceis aZ/2Z-graded vector space,V = V0̄⊕ V1̄.
We denote byp(a) = α the parity of an homogeneous elementa, a ∈ Vα ,
α ∈ Z/2Z = {0̄, 1̄}. A subspaceU of V is by definitionZ/2Z-graded, i.e.U =
(U ∩ V0)⊕ (U ∩ V1). All vector superspaces, linear maps and tensor products are
over the fieldC of complex numbers. Exterior and symmetric powers of a vector
superspace are to be understood in the super-sense (see [K4]).

A superalgebraA is a vector superspace endowed with an algebra structure
such thatAαAβ ⊂Aα+β , with α,β ∈ Z/2Z.

A Lie superalgebrais a superalgebra satisfying super-anticommutativity and
the super-Jacobi identity (see [K4]).

We endowC with the discrete topology. LetV = V0̄ ⊕ V1̄ be a Hausdorff
topological vector superspace. We will say thatV is a linearly compactvector
superspace if every family of closed affine linear varieties ofV has non-empty
intersection whenever every finite subset of the family has non-empty intersection.
A topological Lie superalgebraL is called linearly compact if the underlying
topological space is linearly compact.

Let V � be the topological dual ofV . Let U be a linearly compact subspace
of V . We denote byU⊥ the set of all continuous linear functionals which
annihilateU . We define a topology onV � by taking the collection of all sets
of the formU⊥ to be a fundamental system of neighborhoods of the origin.

In the following we list some properties of linearly compact vector super-
spaces.

Proposition 2.1 (see [G1]).
(1) If A is a linearly compact subspace in a linearly compact vector super-

spaceV , thenA is closed.
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(2) Direct products and inverse limits of linearly compact vector superspaces are
linearly compact.

(3) A subspace ofV is open if and only if it is closed and has finite codimension.
(4) A discrete topological vector superspace is linearly compact if and only if it

is finite-dimensional.
(5) If V is discrete(respectively linearly compact), thenV � is linearly compact

(respectively discrete).
(6) If V is discrete or linearly compact, the canonical linear mapV → V �� is an

isomorphism.
(7) V is linearly compact if and only if it is isomorphic to a(topological) product

of finite-dimensional discrete spaces.
(8) If V is linearly compact, then it is complete.
(9) The image of a linearly compact space under a continuous linear map is

linearly compact.
(10) (Chevalley’s principle) SupposeF1 ⊃ F2 ⊃ · · · is a sequence of closed

subspaces in a linearly compact vector superspaceV , such that
⋂

i Fi = {0}.
If U is a neighborhood of0 in V , then there exists an integeri0 such that
Fi0 ⊂U .

The basic examples of linearly compact spaces are finite-dimensional vector
superspaces with the discrete topology (see Proposition 2.1(4)) and the space
of formal power seriesV ❏t❑, whereV is a finite-dimensional vector super-
space, with theformal topologydefined by taking as a fundamental system
of neighborhoods of the origin the set{tjV ❏t❑}j∈Z+ (see Proposition 2.1(2)).
A closely related important example is the associative linearly compact super-
algebraC❏t1, . . . , tr❑⊗∧(m), where∧(m) denotes the Grassman algebra onm

anticommuting indeterminatesξ1, . . . , ξm andp(ti )= 0̄, p(ξi)= 1̄, with thefor-
mal topology defined by{(t1, . . . , tr )j }j∈Z+ .

Let V,W be linearly compact vector superspaces. LetV �,W� be their
topological duals. We form the tensor productV � ⊗ W�, endow it with the
discrete topology, and define thecompleted tensor productof V andW to be
the space(V � ⊗W�)�. It is denoted byV ⊗̂W . Note that, if dimV <∞, then
V ⊗̂W = V ⊗W .

A linearly compact Lie superalgebraL is calledsimpleif it contains no non-
trivial closed graded ideals. The same proof as in [G1, Proposition 4.3] shows
that thenL has no non-trivial graded ideals (closed or not). Due to [Sc, Proposi-
tion 2.1] thenL has no non-trivial left or right ideals (graded or not) as well.

Lemma 2.2 (Schur’s Lemma).For a topological Lie superalgebraL we set:

∆L =
{
τ ∈ (EndL)α, α ∈ Z/2Z

∣∣ τ ([x, y])= (−1)p(x)α
[
x, τ (y)

]
for anyx, y ∈L

}
.

If L is simple and linearly compact, then∆L =C.
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Proof. Let τ ∈ ∆L. Note that kerτ is an ideal ofL. SinceL is simple, by the
above discussion eitherτ = 0 or τ is invertible, i.e.∆L is a skew-field. Now one
can argue as in [G1, Proposition 4.4].✷
Lemma 2.3. Let H be a closed subalgebra of the linearly compact Lie
superalgebraL. Let V be a linearly compactH -module. Endow the induced
L-moduleU(L)⊗U(H) V

� with the discrete topology, so that(U(L)⊗U(H) V
�)�

is a linearly compact space. Endow theL-moduleHomU(H)(U(L),V ) with
the finite-open topology. ThenHomU(H)(U(L),V ) is linearly compact and is
homeomorphic to(U(L)⊗U(H) V

�)� as anU(L)-module.

Proof. The proof is the same as in the “even” case, see [B, Proposition 1] and
[BB, Lemma 1.1]. ✷

Let L be a linearly compact Lie superalgebra and letV be a linearly compact
(respectively discrete)L-module. The spaceV is called topologically (respec-
tively algebraically) irreducible if it contains no non-trivial closed submodules
(respectively no non-trivial submodules). The moduleV is calledtopologically
(respectivelyalgebraically) absolutely irreducible if it is topologically (respec-
tively algebraically) irreducible and the commuting ring ofL in HomCont

C
(V ,V )

(respectively HomC(V ,V )) consists only of scalar operators. Remark thatV is
topologically absolutely irreducible iffV � is algebraically absolutely irreducible.

Let I be a closed ideal of the linearly compact Lie superalgebraL. Let V be
a topologicalI -module. Thestabilizerof V is defined as follows:

H = {x ∈ L
∣∣ ∃s ∈HomCont

C
(V ,V ): [x, z]v = [s, z]v for anyz ∈ I, v ∈ V

}
.

ThenH is a closed subalgebra ofL containingI .

Theorem 2.4 (Blattner). Let I be a closed ideal in a linearly compact Lie
superalgebraL. Let V be an algebraically absolutely irreducible discrete
I -module, and letH be its stabilizer. LetW be an algebraically absolutely
irreducible discreteH -module such that, as anI -module, it is a direct sum of
copies ofV . ThenU(L) ⊗U(H) W is an algebraically absolutely irreducible
L-module.

Proof. As in the “even” case, see [BB, Theorem 3(b)].✷
Proposition 2.5. In the notation of Theorem2.4, let V be a topologically
absolutely irreducibleI -module. LetW be a topologically irreducible lin-
early compactH -module. Suppose that, as anI -module, it is topologically
module-isomorphic to a direct product of copies ofV . Then theL-module
HomU(H)(U(L),W) is topologically absolutely irreducible.
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Proof. As in the “even” case, see [B, Theorem 1.2].✷
Proposition 2.6. Let L be a linearly compact Lie superalgebra. SupposeL

admits a non-abelian minimal closed idealI . ThenI possesses a maximal proper
ideal J , which is closed,Ī := I/J is a simple non-abelian linearly compact
Lie superalgebra andN := NL(J ) is open. Letϕ be the canonical map ofI
onto Ī . ThenĪ is a N -module andϕ is a N -homomorphism. Furthermore, we
have aL-module homomorphism

Θ : I →HomU(N)

(
U(L), Ī

)
,

whereΘ(x)(a)= (−1)p(a)p(x)ϕ((ada)(x)) (x ∈ I, a ∈U(L)).

Proof. As in the “even” case, see [B, Lemma 2.2].✷
Theorem 2.7 (Cartan–Guillemin).Let I be a non-abelian minimal closed ideal
in a linearly compact Lie superalgebraL. ThenI is homeomorphic viaΘ to
HomU(N)(U(L), Ī ) both as a Lie superalgebra and as aL-module.

Proof. We can apply the Schur Lemma 2.2 toĪ and Propositions 2.5 and 2.6 in
order to use the same argument as in [B, Theorem 2.4].✷
Corollary 2.8. Let dim(L/N)0̄ = r anddim(L/N)1̄ = m. Then, in the notation
of Theorem2.7,

I
∼−→ (

C❏t1, . . . , tr❑⊗∧(m)
) ⊗̂ Ī

as topological Lie superalgebras.

Proof. By [B, Corollary to Proposition 7], HomU(N)(U(L), Ī ) is isomorphic
to HomC(S(L/N), Ī ) as a topological Lie superalgebra. SinceN is open,
dim(L/N) <∞. The fact that a linearly compact space can be identified with
its double dual implies that HomC(S(L/N), Ī ) is isomorphic to(C❏t1, . . . , tr❑⊗
∧(m)) ⊗̂ Ī . ✷
2.2. Growth

A filtration of a vector superspaceV is a decreasing filtration by subspaces of
finite codimension (j0 ∈ Z):

V = Vj0 ⊃ Vj0+1⊃ Vj0+2⊃ · · ·
such that

⋂
j Vj = {0}. Thegrowthof this filtration is defined as follows:

gw(V )= lim sup
j→∞

logdim(V /Vj)

logj
.
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Given a subspaceU of V , one has an induced filtration onU and onV/U .
Clearly, gw(U) � gw(V ) and gw(V /U) � gw(V ). Also, if the filtration {Vj }
of V is shifted (i.e. we takeV(j) = Vj+a) or rescaled (i.e. we takeV(j) = Vnj

for a fixed positive integern) then gw(V ) remains unchanged. The first claim is
obvious, while the second one follows from the observation that on the one hand,
the rescaling of the filtration may obviously only increase the growth, but, on the
other hand, it may only decrease the growth:

gw(V ) � lim sup
j→∞

logdim(V /Vnj )

lognj
= lim sup

j→∞
logdim(V /Vnj )

logj
.

An algebra filtrationof a linearly compact Lie superalgebraL is a filtration of
L by open subspacesLi such that[Li,Lj ] ⊆ Li+j . A similar definition applies
to associative algebras.

Recall that afundamental subalgebraof a linearly compact Lie superalgebra
L is a proper open subalgebra that contains no non-zero ideals ofL. Given a
fundamental subalgebraL0 of L one constructs thecanonical(algebra) filtration
of L associated toL0,

L= L−1⊃ L0⊃ L1⊃ · · · ,
by letting inductively forj � 1 (cf. [GS]):

Lj =
{
a ∈ Lj−1

∣∣ [a,L] ⊂ Lj−1
}
.

One knows [G1] that any linearly compact Lie superalgebraL contains a proper
open subalgebraL0, which is of course fundamental ifL is simple.

One defines gw(L,L0) to be the growth of the canonical filtration ofL
associated toL0.

Proposition 2.9 [BDK]. The numbergw(L,L0) is independent of the choice of
the fundamental subalgebraL0 of L.

Proof. If we choose thej th memberLj (j � 1) of the canonical filtration
associated toL0 as another fundamental subalgebra, sayL̃0, then, by definition,
the associated canonical filtration is̃Lk = Lk+j . Hence this change of the
fundamental subalgebra does not affect the growth.

Now, if M0 is another fundamental subalgebra ofL and {Mj } is the associ-
ated canonical filtration, then, by Chevalley’s principle,Lk ⊂M0 for sufficiently
largek, henceLk+j ⊂Mj for all j . Therefore, gr(L,L0) � gr(L,M0). Exchang-
ing the roles ofL0 andM0 we obtain the opposite inequality.✷

We denote by gw(L) and call thegrowthof L the number gw(L,L0) defined
above. IfL is simple, one can prove the following stronger result.

Theorem 2.10. Let L be a simple linearly compact Lie superalgebra. Then any
algebra filtration ofL by open subspaces has growth equal togw(L).
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Proof. If L contains an open subalgebraM1 such that allMj = M
j

1 are open
subspaces ofL (then this is automatically an algebra filtration), let us denote
by gw′(L,M1) the growth of this filtration. Since the growth is invariant under
rescaling, we see (using Chevalley’s principle as in the proof of Proposition 2.9)
that gw′(L,M1)= gw′(L) is independent of the choice ofM1. Furthermore, we
clearly have:

gw(L) � gw(any algebra filtration) � gw′(L), (2.1)

if we chooseM1 to be a fundamental subalgebra ofL.
Furthermore, it follows from the classification of simple linearly compact Lie

superalgebras [K5] thatL has a Weisfeiler filtration

L= LW−d ⊃ LW−d+1⊃ · · · ⊃ LW−1⊃ LW
0 ⊃ LW

1 ⊃ · · · ,
for which the associated graded Lie superalgebra Gr(L) =⊕j�−d gj has the
property that the spaceg1+ g2 generates

⊕
j�1 gj (in fact, in all cases except for

L=Der(C❏t❑), one hasgj = g
j
1, j > 0), hence

LW
2k ⊂

(
LW

1

)k ⊂ LW
k for all k. (2.2)

On the other hand, for the canonical filtration{Lj } associated toLW
0 one has

Lj ⊂ LW
jd for all j. (2.3)

It follows from (2.2) and (2.3) that gw(L) � gw′(L). Therefore, by (2.1), the
growth of any algebra filtration ofL is equal to gw(L). ✷

The following theorem follows from the classification of simple linearly
compact Lie superalgebras [K5].

Theorem 2.11. Any simple linearly compact Lie superalgebra of growth at
most1 is either finite-dimensional or is isomorphic to one of the following Lie
superalgebras(see Section3.2 for their description): W(1,N), N � 0; S(1,N)′,
N � 2; K(1,N), N � 0; E(1,6).

2.3. On derivations of linearly compact Lie superalgebras

In this section we prove three propositions which will be essential in the sequel.
We shall denote by Der(L) the Lie superalgebra of all continuous derivations of a
topological superalgebraL.

Proposition 2.12. Let A be a commutative, associative, unital linearly compact
superalgebra and letL be a simple linearly compact Lie superalgebra. Then

Der(A ⊗̂L)=Der(A)⊗ 1+A ⊗̂Der(L).
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Proof. Using Schur Lemma (see Proposition 2.2), one can apply the same
argument as in [BDK, Proposition 6.12].✷
Proposition 2.13. LetL be a linearly compact Lie superalgebra and let

L= L−d ⊃ L−d+1⊃ · · · ⊃ L0⊃ L1⊃ · · ·

be an algebra filtration ofL of depthd > 0. LetD be an even element ofL such
that

[D,Lk] = Lk−d for all k � d. (2.4)

LetV be a finite-dimensional Lie algebra acting by derivations onL such that

V (Lk)⊆ Lk for all k � 0, (2.5)

and letL̃ = V � L. Then any even element of the formD + v + g0 ∈ L̃, where
v ∈ V andg0 ∈ L0, can be conjugated via a continuous inner automorphism ofL

to D + v.

Proof. Let m be the maximal integer such thatg0 ∈ Lm\Lm+1. Then there exists
lm+d ∈ Lm+d such that[D, lm+d ] = g0. The automorphism exp(ad(lm+d )) is
well-defined and converges uniformly oñL, and we have:

exp
(
ad(lm+d )

)
(D + v + g0) = D + v + (g0+ [lm+d ,D]

)
+ ([lm+d , g0] − v(lm+d )

)+ · · ·
= D + v + terms inLm+d .

By repeating this argument, we obtainD + v in the limit. ✷
Proposition 2.14. Any non-solvable finite-dimensional Lie superalgebrag has no
even surjective derivations.

Proof. Let D be an even surjective derivation ofg. It clearly transformsg0̄
surjectively into itself. Moreover,D leaves the radicalr of g0̄ invariant, hence
it induces a derivation ofg0̄/r which is not inner because it is surjective.
On the other hand,g0̄/r is a semisimple Lie algebra, so that every derivation
is inner. Consequently,g0̄ = r is solvable, but this in turn implies (see [K4,
Proposition 1.3.3]) thatg is solvable. ✷
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3. Formal distribution Lie superalgebras and Lie conformal superalgebras

3.1. Basic definitions

Let V be a vector superspace. AV -valued formal distribution in one
indeterminatez is a formal power series

a(z)=
∑
n∈Z

anz
−n−1, an ∈ V.

The vector superspace of all formal distributions in one indeterminate will be
denoted byV ❏z, z−1❑. It has a natural structure of aC[∂z]-module. We define

Resz a(z)= a0.

Similarly, one can define a formal distribution in two indeterminates:

a(z,w)=
∑

m,n∈Z

am,nz
−m−1w−n−1.

It is calledlocal if

(z−w)Na(z,w)= 0 for N � 0.

Let g be a Lie superalgebra, and leta(z), b(z) be two g-valued formal
distributions. They are called local if[a(z), b(w)] is local, i.e.

(z−w)N
[
a(z), b(w)

]= 0 for N � 0.

Let g be a Lie superalgebra, and letF be a family of g-valued mutually
local formal distributions. The pair(g,F) is called aformal distribution Lie
superalgebraif g is spanned by the coefficients of all formal distributions fromF .

Proposition 3.1 [K2]. Twog-valued formal distributionsa(z), b(z) are local iff[
a(z), b(w)

]= ∑
j∈Z+

cj (w)∂j
wδ(z−w)/j !, (3.1)

where the sum is finite. Hereδ(z − w) =∑n∈Z
znw−n−1 is the formal delta-

function, and the OPE coefficientscj (w) ∈ g❏w,w−1❑ can be computed as
follows:

cj (w)=Resz(z−w)j
[
a(z), b(w)

]
. (3.2)

The algebraic analogue of the Fourier transform, see [K2], provides an
effective way to study the OPE.

Theformal Fourier transformof a formal distribution in two indeterminates is
defined as follows:

Fλ
z,w

(
a(z,w)

)=Resz eλ(z−w)a(z,w) ∈C
�
w,w−1�❏λ❑.
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One has:

Fλ
z,w

(
∂j
wδ(z−w)

)= λj ,

therefore the formal Fourier transform is the generating series of the OPE
coefficients of[a(z), b(w)]. Theλ-bracketof a(w) andb(w) is defined as[

a(w)λb(w)
]= Fλ

z,w

([
a(z), b(w)

])
.

The coefficient ofλn/n! in theλ-bracket is ag-valued formal distribution, called
thenth product ofa(w) andb(w) (it is computed by formula (3.2)).

The properties of theλ-bracket lead to the following basic definition (see [DK,
K2]).

A Lie conformal superalgebraR is a leftZ/2Z-gradedC[∂]-module endowed
with aC-linear map, called theλ-bracket,

R⊗R→C[λ] ⊗R, a⊗ b �→ [aλb],
satisfying the following axioms(a, b, c ∈ R):

[∂aλb] = −λ[aλb], [aλ∂b] = (∂ + λ)[aλb], (sesquilinearity)

[bλa] = −(−1)p(a)p(b)[a−λ−∂b], (skew-commutativity)[
aλ[bµc]

]= [[aλb]λ+µc
]+ (−1)p(a)p(b)

[
bµ[aλc]

]
. (Jacobi identity)

We write

[aλb] =
∑
n∈Z+

λn

n! (a(n)b). (3.3)

The coefficienta(n)b is called thenth productof a andb. A subalgebraS of R
is aC[∂]-submodule ofR such thatS(n)S ⊆ S for anyn ∈ Z+. An ideal I of R
is aC[∂]-submodule ofR such thatR(n)I ⊆ I for anyn ∈ Z+. A Lie conformal
superalgebraR is simpleif it has no non-trivial ideals and theλ-bracket is not
identically zero. A Lie conformal superalgebraR is finite if it is finitely generated
as aC[∂]-module. We denote byR′ the derived subalgebra ofR, i.e. theC-span
of all nth products.

One knows that any torsion element ofR (viewed as aC[∂]-module) has zero
λ-bracket withR [DK], hence a finite simple Lie conformal superalgebra is free
as aC[∂]-module.

One can associate to a formal distribution Lie superalgebra(g,F) a Lie
conformal superalgebra as follows. LetF be the minimalC[∂z]-submodule of
g❏z, z−1❑ that containsF and is closed under allnth products,n ∈ Z+. Then the
λ-bracket defines a Lie conformal superalgebra structure onF .

Vice versa, given a Lie conformal superalgebraR, we can construct a formal
distribution Lie superalgebra LieR using the following definition.

The affinization of a Lie conformal superalgebraR is the Lie conformal
superalgebra

R̃ =R⊗C
[
t, t−1],
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with p(t) = 0̄, the∂-action defined bỹ∂ = ∂ ⊗ 1+ 1⊗ ∂t and thenth products
defined by

(a⊗ f )(n)(b⊗ g)=
∑
j�0

(a(n+j)b)⊗
(
(∂

j
t f )g

)
/j !,

wherea, b ∈R, f,g ∈C[t, t−1] andn ∈ Z+.
We let LieR = R̃/∂̃R̃ and denote byan the image ofa ⊗ tn in LieR. Then

LieR is a Lie superalgebra with respect to the 0th product induced fromR̃.
Explicitly, the bracket is

[am,bn] =
∑
j�0

(
m

j

)
(a(j)b)m+n−j , a, b ∈ R, m,n ∈ Z. (3.4)

Also,

(∂a)m =−mam−1, a ∈R, m ∈ Z. (3.5)

The Lie superalgebra LieR admits an even derivationT defined asT an =
−nan−1.

Let

F(R)=
{
a(z)=

∑
n∈Z

anz
−n−1

∣∣∣ a ∈R

}
.

Then (3.4) is equivalent to (3.1), wherecj (w) = (a(j)b)(w), hence all formal
distributions inF(R) are pairwise local. The pair(LieR,F(R)) is called the
maximal formal distribution Lie superalgebraassociated to the Lie conformal
superalgebraR.

Let (g,F) be a formal distribution Lie superalgebra. An ideal ing is called
irregular if it does not contain all the coefficients of a non-zero element ofF .
Then any formal distribution Lie superalgebra(g,F) such thatF  R is
a quotient of LieR by an irregular ideal [K2].

An ideal I in (g,F) is called regular if it is of the form I = {an | a ∈ J ,
n ∈ Z+}, whereJ is an ideal of the Lie conformal superalgebraF ; I is clearly
T -stable.

Let (LieR,F(R)) be the maximal formal distribution Lie superalgebra
associated to the Lie conformal superalgebraR. We let

(LieR)− = 〈an | a ∈R, n ∈ Z+〉, (LieR)+ = 〈an | a ∈ R, n < 0〉.
Formula (3.4) implies that these are bothT -invariant subalgebras of LieR.

Let R be a finite Lie conformal superalgebra, and let{aj }j∈J be a finite set of

generators ofR as aC[∂]-module. LetLm be theC-span of{aj
i | i � m, j ∈ J }.

It is easy to see using (3.4) that the subspacesLm form a quasi-filtrationof
(LieR)− (see [DK]),

(LieR)− = L0⊃ L1⊃ L2⊃ · · · , (3.6)
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by subspaces of finite codimension, i.e.
⋂

i Li = {0} and there exists an integer
d ∈ Z+ such that

[Li ,Lj ] ⊆ Li+j−d , i, j ∈ Z+. (3.7)

It also follows from the construction that

dimLi/Li+1 � |J |, i ∈ Z+. (3.8)

Furthermore,

[T ,Li] = Li−1. (3.9)

Due to Chevalley’s principle, the completionA(R) of (LieR)− with respect
to the topology induced by this filtration is independent of the choice of the
C[∂]-generators ofR. The Lie superalgebraA(R) is a linearly compact Lie
superalgebra, called theannihilation algebraof R. Note that formula (3.7)
(respectively (3.9)) implies that the bracket (respectivelyT ) is continuous
on A(R). The mapT is surjective on(LieR)− by its very definition, hence it
extends to an even continuous surjective derivation ofA(R) (becauseA(R) is a
Hausdorff topological space). The (linearly compact) Lie superalgebra

A(R)e =CT �A(R)

is called theextended annihilation algebraof R.

Proposition 3.2. Let (g,F) be a formal distribution Lie superalgebra. Suppose
thatF =C[∂]F and that all the coefficients of the formal distributions inF form
a C-basis ofg. Then(g,F) is the maximal formal distribution Lie superalgebra
associated to the Lie conformal superalgebraF .

Proof. Let F = {ai(z) | i ∈ F}. Then LieF is spanned by the set{ai
n | i ∈ F ,

n ∈ Z}. We have a canonical surjective map LieF → g, and since the images of
theai

n’s are linearly independent ing, the kernel of this map is zero.✷
3.2. Some examples

Example 3.3. Let g be a finite-dimensional Lie superalgebra. Theloop algebra
associated tog is the Lie superalgebra

g̃= g
[
t, t−1], p

(
atk
)= p(a) for a ∈ g, k ∈ Z,

with bracket[
a ⊗ tn, b⊗ tm

]= [a, b] ⊗ tn+m (a, b ∈ g, m,n ∈ Z).

We introduce the familyFg of formal distributions (known as currents)

a(z)=
∑
n∈Z

(a ⊗ tn)z−n−1, a ∈ g.
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It is easily verified that[
a(z), b(w)

]= [a, b](w)δ(z−w),

hence(g̃,Fg) is a formal distribution Lie superalgebra. The associated Lie
conformal superalgebra isC[∂] ⊗ g, with λ-bracket (we identify 1⊗ g with g)

[aλb] = [a, b], a, b ∈ g;
it is called thecurrent conformal algebraassociated tog, and it is denoted by
Curg. The Lie conformal superalgebra Curg is simple iff g is a simple Lie
superalgebra. Indeed, an idealI of g generates the idealC[∂] ⊗ I of Curg.
Conversely, letJ = C[∂] ⊗ V be an ideal of Curg. Take a non-zeroa =∑

i ∂
iai ∈ J , whereai ∈ g. Then for anyb ∈ g we have:

[aλb] =
∑
i

(−λ)i

i! (a(i)b),

hencea(i)b ∈ V for all i � 0, andV is an ideal ing. Due to Proposition 3.2,
(g̃,Fg) is the maximal formal distribution Lie superalgebra(LieCurg,F(Curg))
associated to Curg; also, it is clear thatT =−∂/∂t . Hence the annihilation alge-
bra and the extended annihilation algebra are respectivelyg❏t❑ andC

∂
∂t

� g❏t❑.

Example 3.4. Let us denote by∧(1,N) (respectively∧�1,N�) the tensor
product ofC❏x❑ (respectivelyC[x, x−1]) and the exterior algebra∧(N) in the
indeterminatesξ1, . . . , ξN . They are associative, commutative superalgebras if
we setp(x) = 0̄, p(ξi) = 1̄, i = 1, . . . ,N , and∧(1,N) is a linearly compact
algebra in the formal topology. LetW(1,N) (respectivelyW�1,N�) be the Lie
superalgebra of all continuous derivations of∧(1,N) (respectively all derivations
of ∧�1,N�). ThenW(1,N) is a simple linearly compact Lie superalgebra [K5].
Occasionally we will be dealing also with the Lie superalgebraW(1,N) of all
derivations of∧(1,N)= C[∂]⊗∧(N) and its subalgebras, but the main role will
be played by their completions in the formal topology. Every element ofW(1,N)

(respectivelyW�1,N�) can be written in the form

D =
N∑
i=0

Pi∂i, (3.10)

wherePi ∈ ∧(1,N) (respectively∧�1,N�); ∂0 := ∂/∂x is an even derivation and
∂i := ∂/∂ξi , i = 1, . . . ,N, are odd derivations.

For each elementA ∈ ∧(N), and for anyj = 0,1, . . . ,N we define aW�1,N�-
valued formal distribution

Aj(z)=
∑
n∈Z

(xnA)∂j z−n−1.

The commutation relations are (A,B ∈ ∧(N) andi, j = 1, . . . ,N ):
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[
Ai(z),Bj (w)

] = (
(A∂iB)j (w)+ (−1)p(A)

(
(∂jA)B

)i
(w)

)
δ(z−w);[

Ai(z),B0(w)
] = (A∂iB)0(w)δ(z−w)

− (−1)p(B)(AB)i(w)∂wδ(z−w);[
A0(z),B0(w)

] = −∂w(AB)0(w)δ(z−w)− 2(AB)0(w)∂wδ(z−w).

Hence the familyFW = {Aj(z)}A∈∧(N), j=0,...,N consists of mutually local formal
distributions and(W�1,N�,FW ) is a formal distribution Lie superalgebra.

The associated Lie conformal superalgebra is

WN =C[∂] ⊗ (W(N)⊕∧(N)
)
,

whereW(N) denotes the Lie superalgebra of all derivations of∧(N). The λ-
bracket(a, b ∈W(N), f,g ∈ ∧(N)) is as follows:

[aλb] = [a, b], [aλf ] = a(f )− λ(−1)p(a)p(f)f a,

[fλg] = −∂(fg)− 2λfg. (3.11)

The Lie conformal superalgebraWN is simple forN � 0. Indeed, it is easy to see
thatW0 andW1 are simple. LetI be an ideal ofWN . Taking[1λI ] we conclude
from (3.11) thatI equals to the sum of its intersections with CurW(N) and
C[∂]⊗∧(N). If N � 2, then CurW(N) is simple, hence eitherI ⊂C[∂]⊗∧(N)

or I ⊂ CurW(N). Formula (3.11) implies that the first case is impossible and
that in the second caseI =WN . Furthermore,WN is a freeC[∂]-module of rank
(N + 1)2N .

We shall need the following representation ofWN on C[∂] ⊗ ∧(N) (see
[CK1]):

aλg = a(g), fλg =−(∂ + λ)fg, a ∈W(N), f,g ∈ ∧(N). (3.12)

By Proposition 3.2,

A(WN)=W(1,N) and A(WN)e =C ad(∂0) �A(WN).

Example 3.5. Recall that thedivergenceof a differential operator (3.10) is defined
by the formula

divD = ∂0P0+
N∑
i=1

(−1)p(Pi)∂iPi;

its main property is

div[D1,D2] =D1(divD2)− (−1)p(D1)p(D2)D2(divD1).

It follows that

S�1,N�= {D ∈W�1,N� ∣∣ divD = 0
}

S(1,N)= {D ∈W(1,N)
∣∣ divD = 0

}
(3.13)
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are subalgebras of the Lie superalgebrasW�1,N� andW(1,N), respectively. We
have

S�1,N�= S�1,N�′ ⊕Cξ1 . . . ξN ∂0,

S(1,N)= S(1,N)′ ⊕Cξ1 . . . ξN∂0,

whereS�1,N�′ andS(1,N)′ denote the respective derived subalgebras. The Lie
superalgebraS(1,N)′ is a simple linearly compact Lie superalgebra forN � 2
[K5].

Let {Ai | i = 1, . . . , (N − 1)2N + 1} be a basis ofS(N), the 0-divergence
subalgebra ofW(N), and let{Bj | j = 1, . . . ,2N − 1} be a set of homogeneous,
linearly independent monomials in∧(N), whose degree is strictly less thanN . It
is easy to see that the following familyFS of mutually local formal distributions
is linearly independent overC[∂z] and that all their coefficients form aC-basis of
S�1,N�′:

Ai(z)=
∑
n∈Z

(xnAi)z
−n−1,

Bj (z)= (degBj −N)B0
j (z)+ ∂z

N∑
i=1

(Bj ξi)
i (z). (3.14)

Hence(S�1,N�′,FS) is a formal distribution Lie superalgebra, and the corre-
sponding Lie conformal superalgebraFS has rankN2N overC[∂z].

Let us describe this Lie conformal superalgebra more explicitly. For an element
D =∑N

i=1Pi(∂, ξ)∂i + f (∂, ξ) ∈ WN , we define the corresponding notion of
divergence:

divD =
N∑
i=1

(−1)p(Pi)∂iPi − ∂f ∈C[∂] ⊗ ∧(N).

The following identity holds inC[∂] ⊗∧(N), whereD1,D2 ∈WN (cf. (3.12)):

div[D1λD2] = (D1)λ(divD2)− (−1)p(D1)p(D2)(D2)−λ−∂ (divD1). (3.15)

Therefore,

SN = {D ∈WN | divD = 0}
is a subalgebra ofWN . The Lie conformal superalgebraSN is simple forN � 2;
one can check this by using the same argument as forWN . Also, it is a freeC[∂]-
module of rankN2N . Furthermore,(S�1,N�′,FS), whereFS is defined by (3.14),
is the maximal formal distribution Lie superalgebra associated toSN . This follows
from Proposition 3.2. The above discussion implies that

A(SN )= S(1,N)′ and A(SN)e =C ad(∂0) � S(1,N)′.
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Example 3.6. For anya ∈C, we set

S�1,N,a�= {D ∈W�1,N� ∣∣ diveaxD = 0
}
.

This is a subalgebra ofW�1,N�, which is spanned by the coefficients of the
following family FS,a of mutually local formal distributions (cf. (3.14)):

Ai(z), Bj,a(z)= (l −N)B0
j (z)+ (∂z − a)

N∑
i=1

(Bj ξi)
i(z). (3.16)

The associated Lie conformal superalgebra is constructed explicitly as follows.
LetD =∑N

i=1Pi(∂, ξ)∂i+f (∂, ξ) be an element ofWN . We define the deformed
divergence to be

diva D = divD + af.

It still satisfies formula (3.15), hence

SN,a = {D ∈WN | diva D = 0}
is a subalgebra ofWN , which is simple forN � 2 and has rankN2N .

As for the annihilation algebra, fora �= 0 the automorphism of∧(1,N)

sendingx to (eax − 1)/a and leaving theξi ’s invariant induces an automorphism
in the space of the differential forms, which transforms the standard volume form
dx ∧ v into eax dx ∧ v. Hence

A(SN,a) S(1,N)′.

Moreover, using Lemmas 5.8 and 5.9, one can see that the induced automor-
phism in Der(S(1,N)′)/ad(S(1,N)′) sends ad(∂0) to ad(∂0−a

∑N
i=1 ξi∂i). Con-

sequently,

A(SN,a)
e =C ad

(
∂0− a

N∑
i=1

ξi∂i

)
� S(1,N)′.

Example 3.7. Let N ∈ Z+ be an even integer. We set

S̃�1,N�= {D ∈W�1,N� ∣∣ div
(
(1+ ξ1 . . . ξN )D

)= 0
}
.

This is a subalgebra ofW�1,N�, which is spanned by the coefficients of the
following family FS̃ of mutually local formal distributions (cf. (3.14)):

Ãi(z)= (1− ξ1 . . . ξN )Ai(z), Bj (z). (3.17)

The associated Lie conformal superalgebraS̃N is constructed explicitly as
follows:

S̃N =
{
D ∈WN

∣∣ div
(
(1+ ξ1 . . . ξN )D

)= 0
} (= (1− ξ1 . . . ξN )SN

)
.

The Lie conformal superalgebrãSN is simple forN � 2 and has rankN2N .
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As for the annihilation algebra, we remark that the automorphism of∧(1,N)

sending x to (1 + ξ1 . . . ξN )x and leaving theξi ’s unchanged induces an
automorphism in the space of differential forms which transforms the standard
volume form dx ∧ v into (1+ ξ1 . . . ξN )dx ∧ v. Hence,

A
(
S̃N

)= S(1,N)′.

Moreover, ad(∂0) is sent to ad(∂0− ξ1 . . . ξN∂0), so that

A
(
S̃N

)e =C ad(∂0− ξ1 . . . ξN∂0) � S(1,N)′.

Example 3.8. Given the differential form

ω= dx −
N∑
i=1

ξi dξi,

we define the following subalgebras ofW�1,N� andW(1,N), respectively:

K�1,N�= {D ∈W�1,N� ∣∣Dω = Pω ∃P ∈ ∧�1,N�},
K(1,N)= {D ∈W(1,N)

∣∣Dω = Pω ∃P ∈ ∧(1,N)
}
,

see [K5]. They consist of linear operators of the form

Df = f ∂0+ 1

2
(−1)p(f )

N∑
i=1

(ξi∂0+ ∂i)(f )(ξi∂0+ ∂i)

for f ∈ ∧�1,N� and∧(1,N), respectively.
The Lie superalgebraK(1,N) is linearly compact and simple for allN ∈ Z+

[K5]. The space∧�1,N� (respectively∧(1,N)) can be identified with the Lie
superalgebraK�1,N� (respectivelyK(1,N)) via the mapf → Df , in which
case the bracket becomes, forf,g ∈ ∧�1,N� (respectively∧(1,N)):

[f,g] =
(
f − 1

2

N∑
i=1

ξi∂if

)
∂0g − ∂0f

(
g− 1

2

N∑
i=1

ξi∂ig

)

+ (−1)p(f ) 1

2

N∑
i=1

∂if ∂ig.

ForA ∈ ∧(N), we define the∧�1,N�-valued formal distribution

A(z)=
∑
n∈Z

(xnA)z−n−1.

If A= ξi1 . . . ξir , B = ξj1 . . . ξjs , we have
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[
A(z),B(w)

] = ((
r

2
− 1

)
∂wAB(w)+ (−1)r

1

2

N∑
i=1

(∂iA∂iB)(w)

)
δ(z−w)

+
(
r + s

2
− 2

)
AB(w)∂wδ(z−w),

hence the formal distributions inFK = {A(z)}A∈∧(N) are mutually local and
(K�1,N�,FK) is a formal distribution Lie superalgebra. The associated Lie
conformal superalgebra is

KN =C[∂] ⊗ ∧(N)

with λ-bracket

[AλB] =
((

r

2
− 1

)
∂(AB)+ (−1)r

1

2

N∑
i=1

∂iA∂iB

)
+ λ

(
r + s

2
− 2

)
AB.

Using the same argument as forWN , one can see that the Lie conformal
superalgebraKN is simple for allN ∈ Z+, N �= 4, and is a freeC[∂]-module
of rank 2N . By Proposition 3.2, we have

A(KN)=K(1,N) and A(KN)e =C ad(∂0) � K(1,N).

Example 3.9. The Lie superalgebraK�1,4� is not simple:

K�1,4�=K�1,4�′ ⊕ (Cx−1ξ1 . . . ξ4
)
,

butK�1,4�′ = [K�1,4�,K�1,4�] is simple. Also,K�1,4�′ is a formal distribution
Lie superalgebra, spanned by the coefficients of the family of mutually local
formal distributions

FK ′ =
{
A(z), whereA is a monomial in∧(4), A �= ξ1 . . . ξ4; ∂zξ1 . . . ξ4(z)

}
.

Its associated Lie conformal superalgebra isK ′
4, the derived subalgebra of

K4 = K ′
4 ⊕ Cξ1 . . . ξ4. By formula (3.4),(∂ξ1 . . . ξ4)0 is a central element of

the formal distribution Lie superalgebra(LieK ′
4,F(K ′

4)). Recall that we have
a surjective homomorphism LieK ′

4 → K�1,4�′. It follows from Proposition 3.2
that LieK ′

4 is a central extension ofK�1,4�′ by a 1-dimensional center. We denote
it by CK�1,4�′. The corresponding cocycle is given by [KL, formula(4.22)] for
d = 0. It follows that the annihilation algebra ofK ′

4 is a central extensionCK(1,4)
of K(1,4) obtained by restricting the above central extension ofK�1,4�′ to
the subalgebraK(1,4) and then going to the completionK(1,4). The non-zero
entries of the corresponding cocycle are given by:

ψ(1, ξ1 . . . ξ4)= 1, ψ(ξi , ∂iξ1 . . . ξ4)= 1

2
, i = 1,2,3,4. (3.18)

Also,A(K ′
4)

e =C ad(∂0) � CK(1,4), where∂0 acts trivially on the center.
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Example 3.10. The formal distribution Lie superalgebra(K�1,6�,FK) has a
simple subalgebra, denoted by(CK�1,6�,FCK). The associated Lie conformal
superalgebra isCK6. It is a simple rank 32 subalgebra ofK6, whose even part is
W0 � Curso6 and whose odd part is spanned by six primary fields of conformal
weight 3/2 and ten primary fields of conformal weight 1/2. For the explicit form
of the commutation relations, as well as for more detailed information onCK6,
see [CK2].

The annihilation algebra ofCK6 is the exceptional simple linearly compact
Lie superalgebraE(1,6) (see [CK2,K5]), which is a subalgebra ofK(1,6). The
extended annihilation algebra isA(CK6)

e =C ad(∂0) � E(1,6).

Remark 3.11. The Virasoro conformal algebra is the only non-abelian rank 1
Lie conformal algebra. One hasW0 = C[∂]L, where[LλL] = (∂ + 2λ)L. An
even elementL of a Lie conformal superalgebra satisfying thisλ-bracket is called
a Virasoro element.

Remark 3.12. The following are the most important Lie conformal superalgebras.
W0  K0 is the Virasoro conformal algebra,K1 is the Neveu–Schwarz Lie
conformal superalgebra,K2  W1 is the N = 2 Lie conformal superalgebra,
K3 is theN = 3 Lie conformal superalgebra,S2,0 is theN = 4 Lie conformal
superalgebra, andK ′

4 is the big N = 4 Lie conformal superalgebra. The
corresponding formal distribution Lie superalgebras (or, rather, their central
extensions) are well known and play an important role in physics.

4. Central extensions

4.1. Central extensions of Lie superalgebras

We shall be dealing with the cohomologyH 2(g) of a Lie superalgebrag with
coefficients in the trivialg-moduleC, which parameterizes the central extensions
of g. The following lemma is well known (cf. [K1, Exercise 7.6]).

Lemma 4.1. Let g be a finite-dimensional Lie superalgebra, which has an
invariant, supersymmetric non-degenerate bilinear form(even or odd). Then
the 2-cocycles ong with coefficients inC are in 1–1 correspondence with the
derivations ofg that are skew-symmetric with respect to the form, the cocycle
being trivial iff the corresponding derivation is inner. This correspondence is
given byαD(x, y)= (Dx,y), D ∈Der(g), x, y ∈ g.

Proof. If α is a 2-cocycle ong, it can be written in the formαD(x, y)= (Dx,y),
whereD is an endomorphism of the spaceg. One can easily check that the skew-
symmetry ofα is equivalent to the skew-symmetry ofD, that the cocycle equation
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is equivalent toD being a derivation and thatα is a trivial cocycle iffD is an inner
derivation. ✷

In the remaining part of this subsection, we compute the central extensions of
all simple finite-dimensional Lie superalgebrass and theirC❏t❑-current algebras
s❏t❑.

The main result in [K4] is the following theorem.

Theorem 4.2. A simple finite-dimensional Lie superalgebra is isomorphic either
to one of the simple Lie algebras or to one of the Lie superalgebrasA(m,n)

(0 � m < n), A(n,n) (n > 0), B(m,n) (m � 0, n > 0), C(n) (n � 3), D(m,n)

(m � 2, n > 0), D(2,1, α), F(4), G(3), P(n) (n � 2), Q(n) (n � 2), W(n)

(n � 3), S(n) (n � 4), S̃(n) (n � 4, n even), or H(n) (n � 5).

Proposition 4.3. A simple finite-dimensional Lie superalgebras has an even
(respectively odd) supersymmetric, invariant bilinear form iffs is isomorphic to
A(m,n), B(m,n), C(n), D(m,n), D(2,1, α), G(3), F(4), H(n) with n even
(respectivelys  H(n) with n odd or Q(n)). Such a form is unique up to
a constant factor.

Proof. The Lie superalgebrasA(m,n), B(m,n), C(n), D(m,n), D(2,1, α),
G(3), andF(4) are contragredient with a symmetrizable Cartan matrix, hence
they have an even invariant form [K4].

The obvious pairing between the even and the odd part ofQ(n) is an odd
invariant form.

Define on∧(n) the Poisson bracket

{f,g} =
n∑

i=1

∂f

∂ξi

∂g

∂ξi
.

This Lie superalgebra has a bilinear form(f, g) = ∫
fg dξ1 . . .dξn (where∫

denotes the Berezin integral, cf. [Be]), which is invariant on the derived
subalgebra∧(n)′ i.e. the span of all monomials except the top one. The kernel of
the restriction of the form to∧(n)′ is C. SinceH(n) ∧(n)′/C, the proposition
is proved in this case as well.

In order to show that in the remaining cases there is no invariant form ons, we
take a maximal reductive Lie subalgebrar of s and show that ther-moduless and
s� are not isomorphic. ✷
Proposition 4.4. A complete list of non-trivialH 2(s) for all simple finite-
dimensional Lie superalgebrass is as follows:

H 2(A(1,1)
)=H 2

even

(
A(1,1)

)= C
3;
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H 2(A(n,n)
)=H 2

even

(
A(n,n)

)=C, n > 1;
H 2(P(3)

)=H 2
even

(
P(3)

)=C;
H 2(Q(n)

)=H 2
even

(
Q(n)

)=C, n � 2;
H 2(H(n)

)=H 2
even

(
H(n)

)=C, n � 5.

Proof. In the cases whens carries an invariant, supersymmetric, non-degenerate
bilinear form, we apply Lemma 4.1 and the known description of derivations (see
[K4, Proposition 5.1.2]). Notice that in all cases exceptH(n) all derivations are
skew-symmetric, whereas forH(n), n � 5, only one of the two outer derivations,
namelyD = ∑

i (∂iξ1 . . . ξn)∂i , has this property. In the remaining cases, i.e.
s = P(n), S(n), S̃(n), andW(n), we apply Lemma 2.1 of [KL] to compute
H 2(s). ✷
Remark 4.5. The central extensions corresponding to the non-trivial cocycles
listed above are as follows:

(1) A(n,n): the canonical homomorphismsl(n+ 1, n+ 1)→A(n,n);
(2) Q(n): the canonical homomorphism̃Q(n)→Q(n);
(3) if s=⊕j�−1 sj (respectivelys=⊕j�1 sj ) is a consistentZ-gradation ofs

such that thes0-modules−1 carries a non-zero symmetric invariant bilinear
form (. , .), then we have the following 2-cocycle ons: α(x, y) = (x, y), if
x, y ∈ s−1 (respectivelyx, y ∈ s+1), andα(x, y)= 0 if x ∈ si , y ∈ sj , andi
or j is not−1 (respectivelyi or j is not+1); the central extensions ofH(n),
P(3), and the remaining two central extensions ofA(1,1) are obtained in this
way.

Proposition 4.6. Let s be a simple finite-dimensional Lie superalgebra. Then
any irreducible central extension ofs❏t❑ is isomorphic toŝ❏t❑, where ŝ is an
irreducible central extension ofs.

Proof. Note that all Kähler differentials ofC❏t❑ are exact. Hence one can use the
same argument as in [Sa].✷
4.2. Central extensions of Lie conformal superalgebras

Basic and reduced cohomology of Lie conformal algebras are defined in
[BKV]. They are denoted respectively bỹH� andH�. The same definitions (with
appropriate signs) apply to the case of Lie conformal superalgebras.

A central extension of a Lie conformal superalgebraR by a Lie conformal
superalgebraK is a C[∂]-split (i.e. S = K ⊕ R as C[∂]-modules) short exact
sequence of Lie conformal superalgebras

0→K→ S→R→ 0,
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in whichK is central inS and the action of∂ is trivial onK. Equivalence classes
of 1-dimensional central extensions are parameterized by elements of the second
reduced cohomology groupH 2(R) (cf. [BKV]).

Lemma 4.7. Let R be a Lie conformal superalgebra. Suppose inR there is an
elementL such thatL(0)a = ∂a for anya ∈ R. Then

Hn(R)=Hn
(
A(R)

)⊕Hn+1(A(R)
)
, n � 0.

Proof. This follows from [BDK, Proposition 15.6]. ✷
Lemma 4.8. Let R be a Lie conformal superalgebra such thatR = R′. Then
H 1(R)= 0.

Proof. We denote bỹdn thenth differential of the basic complex and by dn the
corresponding differential of the reduced complex.C is a trivial C[∂]-module,
henced̃0= d0= 0, andH 1(R)= kerd1.

We remark thatγ ∈ ∂C̃1(R) if, and only if, for anya ∈ R, γλ(a) has no
constant term as polynomial inλ. Indeed, ifγ = ∂ω, γλ(a)= (∂ω)λ(a)= λωλ(a).
Also, if γλ(a) = λPa(λ) for any a ∈ R, we can defineω ∈ C̃1(R) such that
ωλ(a)= Pa(λ) and clearlyγ = ∂ω.

Recall that

d1 :
C̃1(R)

∂C̃1(R)
→ C̃2(R)

∂C̃2(R)
.

Suppose[γ ] = γ + ∂C̃1(R) ∈ kerd1. Then d1([γ ]) = 0, i.e. d̃1γ ∈ ∂C̃2(R). It
follows that, for anya1, a2 ∈R,(

d̃1γ
)
λ1,λ2

(a1, a2)= (∂β)λ1,λ2(a1, a2)= (λ1+ λ2)βλ1,λ2(a1, a2).

On the other hand,(d̃1γ )λ1,λ2(a1, a2) = −γλ1+λ2([a1λ1a2]). Therefore, the
polynomial γλ(a) has no constant term for anya ∈ R′. But R = R′, so this
actually holds for anya ∈R. It follows thatγ ∈ ∂C̃1(R), i.e. [γ ] = 0. ✷
Lemma 4.9. Let R be a Lie conformal superalgebra, such thatR = R′. Suppose
R has an elementL such thatL(0)a = ∂a for anya ∈ R. ThenH 2(A(R)) = 0.
In particular, this holds for the annihilation algebras of the simple Lie conformal
superalgebrasWN (N � 0), SN,a (N � 2), S̃N (N even,N � 2), KN (N � 0,
N �= 4), K ′

4, CK6.

Proof. This follows from Lemmas 4.7 and 4.8, since 0=H 1(R)=H 1(A(R))⊕
H 2(A(R)). ✷
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Lemma 4.10. Let R be a finite Lie conformal superalgebra, which is free as
a C[∂]-module. Lets be a reductive Lie algebra, and lets→ R be an injective
homomorphism with respect to the0th product onR. Assume thatR =⊕i∈I gi

is a decomposition ofR into a direct sum of finite-dimensional, irreducible
s-modules with respect to the0th product. Then every reduced2-cocycleψ on
R is equivalent to a cocycleαλ such that

(1) αλ(gi ,gj )= 0 if gi , gj are not contragredients-modules;
(2) αλ(x, y)= Pij 〈x, y〉 for all x ∈ gi , y ∈ gj , and somePij ∈C[λ] if gi , gj are

contragredients-modules(〈 , 〉 denotes the pairing between them).

Proof. The Lie algebras acts completely reducibly on the space of reduced
2-cocycles, hence there exists ans-invariant subspaceV complementary to the
space of trivial 2-cocycles. SinceR acts trivially onH 2(R), we conclude thats
acts trivially onV . ✷

In the remaining part of this section, we compute the central extensions of all
simple Lie conformal superalgebras listed in Section 3.2. The proofs are all based
on Lemma 4.10. We give all the details of the computations only in the most
involved case (cf. Proposition 4.16) and omit them in all other cases. We give
only the non-zero entries of the non-trivial cocycles.

Proposition 4.11. Lets be a simple finite-dimensional Lie superalgebra. Then all
central extensions ofCurs are given by the following2-cocycles

αλ(a, b)= α0(a, b)+ (a, b)λ, a, b ∈ s,

whereα0(a, b) is a 2-cocycle ons and (. , .) is a supersymmetric, invariant
bilinear form ons (cf. Propositions4.3and4.4). Two such cocycles are equivalent
iff the 2-cocyclesα0 are equivalent.

Proof. See [K2, Section 2.7]. ✷
In what follows we shall often denote an element 1⊗(

∑N
i=1fi∂i+f ) ∈WN =

C[∂] ⊗ (W(N)⊕∧(N)) by
∑

i (fi)
i + f .

Proposition 4.12. The Lie conformal superalgebrasW0, W1, and W2 have
a unique, up to isomorphism, central extension. The corresponding2-cocycles
are as follows:

W0: α3(1,1)= 1

2
;

W1: α1
(
(ξ1)

1, (ξ1)
1)= 1

3
, α2

(
(ξ1)

1,1
)= 1

3
,

α2
(
(1)1, ξ1

)=−1

3
;
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W2: α1
(
(ξ1)

2, (ξ2)
1)= 1

6
, α1

(
(ξ1)

1, (ξ2)
2)=−1

6
,

α1
(
(ξ1ξ2)

2, (1)1)=−1

6
, α1

(
(ξ1ξ2)

1, (1)2)= 1

6
.

Proposition 4.13. The Lie conformal superalgebraWN has no non-trivial central
extensions ifN � 3.

Using [AF] and Lemma 4.7 one actually computes the whole basic and reduced
cohomology ofWN .

Proposition 4.14. The Lie conformal superalgebraS2,a has a unique, up to
isomorphism, non-trivial central extension. The corresponding2-cocycle is as
follows:

α3(La,La)= 1

2
, whereLa =−1+ 1

2
(∂ − a)

(
(ξ1)

1+ (ξ2)
2),

α2
(
(1)1, ξ1− (∂ − a)(ξ1ξ2)

2)=−1

3
,

α1
(
(1)1, ξ1− (∂ − a)(ξ1ξ2)

2)= a

6
,

α0
(
(1)1, ξ1− (∂ − a)(ξ1ξ2)

2)=−a2

24
,

α2
(
(1)2, ξ2+ (∂ − a)(ξ1ξ2)

1)=−1

3
,

α1
(
(1)2, ξ2+ (∂ − a)(ξ1ξ2)

1)= a

6
,

α0
(
(1)2, ξ2+ (∂ − a)(ξ1ξ2)

1)=−a2

24
,

α1
(
(ξ1)

2, (ξ2)
1)= 1

6
,

α1
(
(ξ1)

1− (ξ2)
2, (ξ1)

1− (ξ2)
2)= 1

3
.

Proposition 4.15. The Lie conformal superalgebrãS2 has a unique, up to
isomorphism, non-trivial central extension. The corresponding2-cocycle is as
follows:

α3(L̃, L̃)= 1

2
, whereL̃=−(1− ξ1ξ2)+ 1

2
∂
(
(ξ1)

1+ (ξ2)
2),

α1
(
(1− ξ1ξ2)

1, (1− ξ1ξ2)
2)=−1

3
,

α2
(
(1− ξ1ξ2)

2, ξ2+ ∂(ξ1ξ2)
1)=−1

3
,
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α2
(
(1− ξ1ξ2)

1, ξ1− ∂(ξ1ξ2)
2)=−1

3
, α1

(
(ξ1)

2, (ξ2)
1)= 1

6
,

α1
(
(ξ1)

1− (ξ2)
2, (ξ1)

1− (ξ2)
2)= 1

3
.

Proposition 4.16. The Lie conformal superalgebrasSN,a (a ∈ C) and S̃N

(N even) have no non-trivial central extensions ifN > 2.

Proof. We remark thatSN  SN,a  S̃N  W(N) asslN -modules. By Lemma
4.10, we need to compute the cocycles corresponding to theslN -invariants of
W(N)⊗W(N), which occur in the following cases(1 � k � N − 1):

R(π1+ πN−1)⊗R(π1+ πN−1), R(0)⊗R(0),

R(πN−1)⊗R(π1), R(πk)⊗R(πN−k).

Let

La =−1+ 1

N
(∂ − a)H and L̃=−(1− ξ1 . . . ξN )+ 1

N
∂H

be Virasoro elements forSN,a and S̃N , respectively, whereH = ∑N
i=1 ξi∂i

denotes the Euler operator. Let∂N (respectively(1 − ξ1 . . . ξN )∂N ) be the
highest weight vector ofR(πN−1) ⊆ W(N)−1 in SN,a (respectivelyS̃N ). Let
va
k (respectivelyṽk ) be the highest weight vector ofR(πk) ⊆ W(N)k in SN,a

(respectivelỹSN ), 1� k � N − 1. Then

va
k = (k −N)ξ1 . . . ξk + (∂ − a)ξ1 . . . ξkH,

ṽk = (k −N)ξ1 . . . ξk + ∂ξ1 . . . ξkH.

Let wa
k (respectivelyw̃k) be the lowest weight vector ofR(πN−k) = R(πk)

�,
which we view as lowest weight moduleR(−πk)

low ⊆ W(N)N−k in SN,a

(respectivelỹSN ), 1� k � N − 1. Then

wa
k =−kξk+1 . . . ξN + (∂ − a)ξk+1 . . . ξNH,

w̃k =−kξk+1 . . . ξN + ∂ξk+1 . . . ξNH.

The action ofLa andL̃ is given by the following formulas(1 � k � N − 1):

[Laλ∂N ] = 1

N

(
N∂ + (N + 1)λ+ a

)
∂N ,[

L̃λ

(
(1− ξ1 . . . ξN )∂N

)]= 1

N

(
N∂ + (N + 1)λ

)
(1− ξ1 . . . ξN )∂N − v0

N−1,[
Laλv

a
k

]= 1

N

(
N∂ + (2N − k)λ− ak

)
va
k ,[

L̃λṽk
]= 1

N

(
N∂ + (2N − k)λ

)
ṽk,
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[
Laλw

a
k

]= 1

N

(
N∂ + (N + k)λ− a(N − k)

)
wa

k ,[
L̃λw̃k

]= 1

N

(
N∂ + (N + k)λ

)
w̃k.

We remark thatR(π1 + πN−1) ⊆ CurS(N) for SN,a andR(π1 + πN−1) ⊆
CurS̃(N) for S̃N . By Proposition 4.11, the corresponding cocycle is trivial.

In all other cases, by Lemma 4.10 we need to show that the cocycle pairing
the highest weight vector and the lowest weight vector is trivial. The cocycle
equation for the triples(va

k , ξk∂k − ξk+1∂k+1,w
a
k ), (La, v

a
k ,w

a
k ), and(ṽk, ξk∂k −

ξk+1∂k+1, w̃k), (L̃, ṽk, w̃k) shows thatαλ(v
a
k ,w

a
k )= αλ(ṽk, w̃k)= 0.

Finally, the cocycle equation for the triple(La, ∂N,wa
1) shows thatαλ(La,La)

and αλ(∂N ,wa
1) are trivial. Similarly, one can see that the cocycle equation

for the triple (L̃, (1 − ξ1 . . . ξN )∂N, w̃1) implies that αλ(L̃, L̃) and αλ((1 −
ξ1 . . . ξN )∂N , w̃1) are also trivial. Therefore,H 2(SN,a)=H 2(S̃N )= 0. ✷
Proposition 4.17. The Lie conformal superalgebrasK0, K1, K2, andK3 have
a unique, up to isomorphism, central extension. The corresponding2-cocycles
are as follows:

α3(1,1)= 1

2
, α2(ξi, ξi )= 1

6
(i = 1,2), α1(ξ1ξ2, ξ1ξ2)=− 1

12
,

α1(ξiξj , ξiξj )=− 1

12
(i �= j),

α0(ξiξj ξk, ξiξj ξk)=− 1

12
(i �= j �= k).

Proposition 4.18. The Lie conformal superalgebraK ′
4 has two, up to isomor-

phism, linearly independent central extensions. The corresponding2-cocyclesα
andβ are as follows:

α3(1,1)= 1

2
, α2(ξi, ξi )= 1

6
,

α1(ξiξj , ξiξj )=− 1

12
(i �= j),

α0(ξiξj ξk, ξiξj ξk)=− 1

12
(i �= j �= k),

α1(∂ξ1ξ2ξ3ξ4, ∂ξ1ξ2ξ3ξ4)=− 1

12
;

β2(1, ∂ξ1ξ2ξ3ξ4)= 2, β1
(
ξi , ∂i (ξ1ξ2ξ3ξ4)

)= 1,

β1
(
ξiξj , ∂i∂j (ξ1ξ2ξ3ξ4)

)=−1.

Proposition 4.19. The Lie conformal superalgebrasKN (N � 5) and CK6 have
no non-trivial central extensions.
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5. Finite simple Lie conformal superalgebras

5.1. The annihilation algebra

In this section we study the annihilation algebraA(R) of a finite simple
Lie conformal superalgebraR. We shall use the following two propositions,
whose proof is the same as in the non-super case, see [DK, Lemma 4.3 and
Proposition 5.1].

Proposition 5.1. Let R be a finite Lie conformal superalgebra. Then any non-
centralT -invariant idealJ of A(R) contains a non-zero regular ideal.

Proposition 5.2. Let R1 and R2 be two finite Lie conformal superalgebras,
which are free asC[∂]-modules. Letϕ :CT1 � A(R1) → CT2 � A(R2) be
a homomorphism of the corresponding extended annihilation algebras such that
ϕ(T1) = T2 and ϕ(A(R1)) = A(R2). Then there exists a unique Lie conformal
superalgebra homomorphism̃ϕ :R1 → R2 that inducesϕ, i.e. ϕ(ai) = (ϕ̃(a))i
for all a ∈ R, i ∈ Z+.

Lemma 5.3. Let R be a finite simple Lie conformal superalgebra. ThenA(R) is
isomorphic(as a topological Lie superalgebra) to an irreducible central extension
of the Lie superalgebraC❏t1, . . . , tr❑ ⊗̂ s, wherer = 0 or 1 and s is a simple
linearly compact Lie superalgebra.

Proof. Recall thatA(R) is a linearly compact Lie superalgebra and that it is
a closed ideal of codimension 1 in the extended annihilation algebraA(R)e =
CT � A(R). By Proposition 5.1, due to the simplicity ofR, A(R) contains no
non-centralT -invariant ideals different fromA(R). LetZ be the center ofA(R).
Since the derived algebra ofA(R) is a non-centralT -invariant ideal ofA(R)

(otherwiseR would be nilpotent), we conclude thatA(R) = [A(R),A(R)] and
therefore

0→Z→A(R)→A(R)/Z→ 0

is an irreducible central extension. Also, the center ofA(R)/Z is zero, since
otherwise its pre-image inA(R) would be a proper non-centralT -invariant
nilpotent ideal.

It follows thatA(R)/Z contains no non-trivialT -invariant ideals and therefore
A(R)/Z is a minimal ideal inA(R)e/Z. Thus we may apply Corollary 2.8 to the
Cartan–Guillemin theorem to obtain the isomorphism of linearly compact Lie
superalgebrasA(R)/Z  (C❏t1, . . . , tr❑⊗∧(m)) ⊗̂ s, wherer,m ∈ Z+ ands is
a simple linearly compact Lie superalgebra.

Next, we show thatm = 0. Let ∧1(m) be the ideal of∧(m) generated by
ξ1, . . . , ξm. We will show thatI := (C❏t1, . . . , tr❑⊗∧1(m)) ⊗̂ s is aT -invariant
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ideal of A(R)/Z, which, of course, will imply thatm = 0. Indeed, due to
Proposition 2.12, any continuous derivationT of (C❏t1, . . . , tr❑⊗∧(m)) ⊗̂ s has
the form

T =D0⊗ 1+
∑
i

fi ⊗Di, (5.1)

whereD0 (respectivelyDi ) is a continuous derivation ofC❏t1, . . . , tr❑ ⊗ ∧(m)

(respectivelys) andfi ∈ C❏t1, . . . , tr❑ ⊗ ∧(m). SinceT is even,D0 is an even
derivation, henceT maps the idealI into itself.

It remains to show thatr � 1. If D0 leaves the ideal(t1, . . . , tr ) of C❏t1, . . . , tr❑
invariant, then(t1, . . . , tr ) ⊗̂ s is a non-trivial T -invariant ideal ofA(R)/Z,
which is impossible. Therefore there exists a continuous automorphism of
Der(C❏t1, . . . , tr❑) which transformsD0 to ∂/∂t1 (see, e.g., Proposition 2.13).
But in this case

T = ∂

∂t1
⊗ 1+

∑
i

fi ⊗Di,

hence the ideal(t2, . . . , tr ) ⊗̂ s of A(R)/Z is T -invariant. This implies that
r � 1. ✷
Corollary 5.4. LetR be a finite simple Lie conformal superalgebra and letL be
an even element such thatL(0)a = ∂a for anya ∈ R. ThenA(R) is the universal
central extension of its quotient by the center. In particular, this holds ifR is one of
the Lie conformal superalgebrasWN (N � 0), SN,a (N � 2, a ∈C), S̃N (N � 2,
N even), KN (N � 0, N �= 4), K ′

4 or CK6.

Proof. As we have just remarked,A(R) = [A(R),A(R)], and by Lemma 4.9,
H 2(A(R))= 0. ✷

By taking the completion of (3.6)–(3.9) we obtain:

A(R)= L0⊇ L1⊇ L2⊇ · · · , (5.2)

[Li ,Lj ] ⊂ Li+j−d for somed ∈ Z+, (5.3)

dimLi/Li+1 � rankR, (5.4)

(recall thatR is a freeC[∂]-module), and[
T ,Li

]= Li−1 (i � 0). (5.5)

Proposition 5.5. The annihilation algebraA(R) of a finite simple Lie conformal
superalgebraR is isomorphic as a topological Lie superalgebra to one of the
following linearly compact Lie superalgebras:
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(1) W(1,N), N � 0; S(1,N)′, N � 2; K(1,N), N � 0, N �= 4; CK(1,4);
E(1,6);

(2) s❏t❑, wheres is a simple finite-dimensional Lie superalgebra.

Proof. By Lemma 5.3,A(R) is an irreducible central extension of the Lie
superalgebraC❏t1, . . . , tr❑⊗̂s, wherer = 0 or 1 ands is a simple linearly compact
Lie superalgebra. It follows from (5.2) and (5.4) thatEj := Lj+d (j ∈ −d +Z+)
is an algebra filtration ofA(R) such that

dimEj /Ej+1 � rankR, j ∈ Z+, (5.6)

hence the growth of this filtration is at most 1. This filtration induces an algebra
filtration on 1⊗s, whose growth is therefore at most 1. We conclude (see Theorem
2.10) that gw(s) � 1 and therefore, by Theorem 2.11, either dims <∞ or s is one
of the Lie superalgebrasW(1,N) (N � 0), S(1,N)′ (N � 2), K(1,N) (N � 0),
E(1,6).

If r = 0, then dims = ∞, since dimA(R) = ∞. In this case, due to
Corollary 5.4,A(R) is the universal central extension ofs. Consequently, by the
results of Section 3.2,A(R) is one of the Lie superalgebrasW(1,N), S(1,N)′,
K(1,N), CK(1,4), E(1,6).

If r = 1 and dims <∞, then, by Lemma 5.3,A(R) is an irreducible central
extension ofs❏t❑. This gives us an embedding Der(A(R)) ⊂ Der(s❏t❑). By
Proposition 4.6, the universal central extension ofs❏t❑ is ŝ❏t❑, where ŝ is the
universal central extension ofs. Hence we have a surjective homomorphism
ϕ1 : ŝ❏t❑→ A(R) such that kerϕ1 is a central ideal. Also, since any derivation
of a Lie superalgebra lifts uniquely to the universal central extension, we obtain
an embedding (see Proposition 2.12)

Der
(
A(R)

)⊂Der
(
ŝ❏t❑)=Der

(
C❏t❑)⊗ 1+C❏t❑⊗Der(ŝ).

Thus, the derivationT of A(R) induces a derivation of̂s❏t❑, which we denote
by T̂ . We have:

T̂ = P(t)
∂

∂t
+ T1, whereP(t) ∈C❏t❑, T1 ∈C❏t❑⊗Der(ŝ).

Define a filtration onL=CT̂ � ŝ❏t❑ by letting

degt =−deg
∂

∂t
= 1, degŝ= 0: L⊃ L0⊃ L1⊃ · · · .

Then T̂ (L0) �⊂ L0, otherwiseT̂ , being surjective onA(R), is surjective onL0,
hence onL0/L1 ⊃ ŝ, which is impossible by Proposition 2.14 sinceŝ is not
solvable. Hence we may assume thatT̂ = ∂/∂t + T0, whereT0 ∈ L0. Applying
Proposition 2.13 toL, V = 0, D = ∂/∂t , andg0= T0, we may find a continuous
automorphismψ of ŝ❏t❑ that transformŝT to ∂/∂t . But

C
∂

∂t
� ŝ❏t❑
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is the extended annihilation algebra of the Lie conformal superalgebra Curŝ and
the homomorphismϕ1 ◦ ψ extends to a surjective homomorphism of extended
annihilation algebras

ϕ :
∂

∂t
� ŝ❏t❑→ T �A(R)

satisfying the conditions of Proposition 5.2. Henceϕ is induced by a surjective
homomorphism̃ϕ : Curŝ→ R. ButR is simple, hencẽϕ induces an isomorphism
Curs→ R.

It remains to consider the caseA(R)/Z  C❏t❑ ⊗̂ s, where dims=∞ andZ

is a central ideal. Recall that we may assume, from the proof of Lemma 5.3 that

T = ∂

∂t
⊗ 1+

∑
i

fi ⊗Di, Di ∈Der(s), fi ∈C❏t❑. (5.7)

Note thatLi = L(i+1)d (i � 0) is an algebra filtration of the extended annihilation
algebraA(R)e (= L−1). Denote again by{Li}i�−1 the induced filtration on
A(R)e/Z  CT �(C❏t❑⊗̂s). Let 1⊗s0= L0∩(1⊗s) and consider the canonical
filtration of s associated with the subalgebras0:

s= s−1⊃ s0⊃ s1⊃ · · · .
Consider the following filtration ofCT � (C❏t❑ ⊗̂ s)=: L̃−1:

L̃m =
∑

i�0, j�−1
i+j=m

tiC❏t❑ ⊗̂ sj (m � 0).

Since {sj }j�−1 is the canonical filtration ofs associated tos0 andT has the
form (5.7), it is easy to see that{L̃m}m�−1 is the canonical filtration ofA(R)e/Z

associated tõL0. By Chevalley’s principle,̃L0 ⊃ LN for someN > 0, and since
{L̃m} is a canonical filtration, we conclude that̃Lj ⊃ LN+j for all j � 0. It
follows that

gw
({

L̃j

})
� gw

({Lj }
)
� 1

(the last inequality follows from (5.4)). But gw({L̃j }) = gw({tjC❏t❑}) +
gw(s)= 2. Thus, the remaining case is impossible.✷
5.2. Derivations of the annihilation algebra

Proposition 5.6. Let L be a linearly compact Lie superalgebra, and lets be
a reductive finite-dimensional Lie subalgebra ofL such thatL =∏i Vi , where
theVi ’s are finite-dimensional irreducibles-modules. Then there exists a closed
s-submoduleV of Der(L), complementary to the space of inner derivations
ad(L); one has[v,ad(a)] = 0 for all v ∈ V anda ∈ s.
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Proof. We have: Der(L) ⊂ Hom(
⊕

i Vi,
∏

j Vj ) = ∏
i,j Hom(Vi,Vj ), hence

Der(L) is an s-invariant closed (hence linearly compact) subspace of a direct
product of finite-dimensional irreducibles-modules. The subspace ad(L) of
Der(L) is s-invariant and closed too (by Proposition 2.1(1)). Hence there exists
a closeds-invariant complementary subspaceV . But [ad(s),D] ⊂ ad(L) for any
D ∈Der(L), hence[ad(s),D] = 0 if D ∈ V . ✷

We will be working with the followingstandard Z-gradation of the Lie
superalgebras that occur in Proposition 5.5(1):

W(1,N)=
∏

j�−1

W(1,N)j ,

S(1,N)′ =
∏

j�−1

S(1,N)′j , S(1,2)′ =
∏

j�−2

S(1,2)0
j ,

K(1,N)=
∏

j�−2

K(1,N)j , CK(1,4)=
∏

j�−2

CK(1,4)j ,

E(1,6)=
∏

j�−2

E(1,6)j ; (5.8)

here the gradations of depth 1 (respectively 2) are defined by letting

degx =−deg∂0= 1 (respectively 2), degξi =−deg∂i = 1,

and in theCK(1,4) case we let deg(center)= 0.

Lemma 5.7 [K5]. All continuous derivations ofW(1,N), K(1,N), CK(1,4), and
E(1,6) are inner.

Proof. Let s be the even part ofW(1,N)0, K(1,N)0, E(1,6)0. We haves =
C ⊕ glN , csoN , cso6, respectively, and the representation ofs on W(1,N)−1,
K(1,N)−1, E(1,6)−1 is the direct sum of the standardglN - andgl1-modules,
the standardcsoN - and cso6-module, respectively. By Proposition 5.6, in all
cases, Der(L) = ad(L) ⊕ V as s-module, and anyD ∈ V is an s-module
homomorphism.

We remark thatx∂0 +∑i ξi∂i ∈ s for W(1,N) and 2x∂0 +∑i ξi∂i ∈ s for
K(1,N), CK(1,4), andE(1,6). It follows that anyD ∈ V preserves the standard
gradation ofL.

By Schur Lemma,D = diag(λ,µ, . . . ,µ) on W(1,N)−1. It follows that
the grading preserving derivationD′ = D − ad(λx∂0 + µ

∑
i ξi∂i) is zero on

W(1,N)−1 and it is ans-module homomorphism.
Let y ∈W(1,N)k andg−1 ∈W(1,N)−1. By induction onk � −1, we have

0=D′([y,g−1])= [D′y,g−1]. Hence by transitivity we conclude thatD′y = 0,
i.e.D′ = 0 onW(1,N)k . Consequently,D′ = 0 onW(1,N) andD = ad(λx∂0+
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µ
∑

i ξi∂i ). On the other hand,D ∈ V , henceλ = µ = 0. ThereforeD = 0 and
every derivation ofW(1,N) is inner.

A similar method can be used in the remaining cases. Notice that we may
exclude the caseK(1,2), which is isomorphic toW(1,1), so thatK(1,N)−1

(respectivelyE(1,6)−1) is irreducible as asoN -module (respectivelyso6-
module), hence any derivationD ∈ V acts on this subspace as a scalar matrix.
Now we proceed as above using also that in both cases the−2nd component
is the bracket of the−1st component with itself. The result forCK(1,4) easily
follows once one has established it forK(1,4). ✷

In the next two lemmas we will use the following outer derivations ofS(1,N)′
(⊂W(1,N)): E = ad(ξ1 . . . ξN∂0), H = ad(

∑N
i=1 ξi∂i ).

Lemma 5.8 [K5]. Der(S(1,N)′)= ad(S(1,N)′)⊕CE ⊕CH for N > 2.

Proof. The Lie algebraglN is the even part ofS(1,N)′0. By Lemma 5.6,
we have Der(S(1,N)′) = ad(S(1,N)′) ⊕ V as glN -modules and anyD ∈ V

is a glN -module homomorphism. Let us denote by(R(π),m) the irreducible
slN -moduleR(π) whose eigenvalue with respect to the operatorN ad(x∂0)+H

is m. The irreducibleglN -modules which appear more than once in the standard
gradation (5.8) are:(R(πN−1),−1), which occurs inS(1,N)′−1, andS(1,N)′N−2
and(R(πN−1),N − 1) which occurs inS(1,N)′0 andS(1,N)′N−1.

Let v1 = ∂N (respectivelyv2 = ξ1 . . . ξN−1∂0) be the highest weight vector
of the module(R(πN−1),−1) in S(1,N)′−1 (respectively inS(1,N)′N−2). Then
[ξ1 . . . ξN∂0, ∂N ] = ξ1 . . . ξN−1∂0. Now,D is aglN -module homomorphism, hence
D(v1) = αv1 + βv2 andD − βE mapsS(1,N)′−1 into itself. Also,S(1,N)′−1
is sum of two non-isomorphic, irreducibleslN -modules, so by Schur Lemma we
have thatD−βE = diag(λ,µ, . . . ,µ). Consequently,D′ =D−βE−ad(λx∂0+
µ
∑

i ξi∂i ) acts as 0 onS(1,N)′−1. Supposey ∈ S(1,N)′k andg−1 ∈ S(1,N)′−1.
By induction onk � 1, we have 0= D′([y,g−1]) = [D′y,g−1]. Note that the
homogeneous components ofD′y have degree greater or equal than 0. By
transitivity, we conclude thatD′y = 0, henceD′ = 0 onS(1,N)′, and therefore
D can be expressed as a linear combination ofE, ad(x∂0)+H and some inner
derivation. Since ad(Nx∂0)+H is an inner derivation, the lemma is proved.✷
Lemma 5.9 [K5]. Der(S(1,2)′) = ad(S(1,2)′) ⊕ sl2, where the standard basis
of sl2 consists ofE, H as above andF , defined as follows:

F
(
P(x)ξ2∂0− ∂0P(x)ξ1ξ2∂1

)=−P(x)∂1,

F
(
P(x)ξ1∂0+ ∂0P(x)ξ1ξ2∂2

)= P(x)∂2,

F
(
P(x)S(2)

)= 0, and F
(
P(x)∂0− 1/2∂0P(x)(ξ1∂1+ ξ2∂2)

)= 0.
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Proof. With respect to the action ofH , S(1,2)′ decomposes into eigenspaces
relative to the eigenvalues{−1,0,1}. The even part ofS(1,2)′ is contained in
the zero eigenspace. Also,E (respectivelyF ) transforms the−1 (respectively
+1) eigenspace into the+1 (respectively−1) eigenspace and kills the other
eigenspaces. We will use the standard depth 2 gradation ofS(1,2)′, see (5.8).
The even part ofS(1,2)0

0 is gl2. Lemma 5.6 implies that Der(S(1,2)′) =
ad(S(1,2)′)⊕V asgl2-modules and anyD ∈ V is agl2-module homomorphism.
The modules occurring more than once are(R(π1),−1) (in S(1,2)0

−1 and
S(1,2)0

0) and(R(π1),1) (in S(1,2)0
0 andS(1,2)0

1).
Let v1 = ∂2 (respectively v2 = ξ1∂0) be the highest weight vector of

(R(π1),−1) in S(1,2)0
−1 (respectivelyS(1,2)0

0). ThenE(v1) = v2. The deriva-
tion D is a gl2-module homomorphism, soD(v1) = αv1 + βv2, andD − βE

mapsS(1,2)0
−1 into itself. By Schur Lemma,D−βE = diag(λ,µ,µ). It follows

that the derivationD′ =D − βE − ad(λx∂0+µ
∑

i ξi∂i) acts as 0 onS(1,2)0
−1.

Let y ∈ S(1,2)0
0. We have:

S(1,2)0
0=

(
R(π1),−1

)⊕ ((R(2π1),0
)⊕ (R(0),0

))⊕ (R(π1),1
)
,

so that y = y−1 + y0 + y1. For any g−1 ∈ S(1,2)0
−1, 0 = D′([y,g−1]) =

[D′y1, g−1], hence[D′y,g−1]+[D′y0, g−1]+[D′y1, g−1] = 0. Now,(R(2π1),0)
and (R(0),0) occur only in S(1,2)0

0, henceD′y0 ∈ S(1,2)0
0. The module

(R(π1),1) occurs inS(1,2)0
0 andS(1,2)0

1, soD′y1 ∈ S(1,2)0
0⊕ S(1,2)0

1. Also,
D′y−1 ∈ S(1,2)0

−1⊕ S(1,2)0
0. We may assume thaty−1 = ξ1∂0. ThenD′y−1 =

α∂2 + βξ1∂0. F kills ((R(2π1),0)⊕ (R(0),0))⊕ (R(π1),1) andF(ξ1∂0)= ∂2.
It follows that(D′ − αF)(ξ1∂0)= βξ1∂0 ∈ S(1,2)0

0. Also,D′′ =D′ − αF is still
identically zero onS(1,2)0

−1. Hence we have 0= D′′([y,g−1]) = [D′′y,g−1],
andD′′y has homogeneous components of degree greater or equal to zero. Tran-
sitivity implies thatD′′ = 0 onS(1,2)0

0. Induction onk � 1 shows thatD′′ = 0
onS(1,2)0

k. Therefore,D can be written as a linear combination ofE, H , F and
some inner derivation. ✷
5.3. The classification theorem

Lemma 5.10. Let L=∏j�−d gj be one of the linearly compact Lie superalge-
bras that occur in Proposition5.5(1)with the standard gradation(5.8) and let
L0=∏j�0 gj . LetT be an even surjective derivation ofL. ThenT (L0) �⊂ L0.

Proof. In the contrary case, we also haveT (L1) ⊂ L1 and thereforeT induces
a surjective derivation ofg0  L0/L1. But for W(1,N), S(1,N)′, K(1,N),
and E(1,6) we haveg0  gl(1,N), sl(1,N), csoN , cso6, respectively. Hence
by Proposition 2.14 we reach a contradiction, unlessL = W(1,0), W(1,1)  
K(1,2), orK(1,1). The second case is also excluded sincegl(1,1) has only inner
derivations (this is immediate by Proposition 5.6) and the third case is reduced to
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the first one since the even part ofK(1,1) is W(1,0). But if T =∑j�0 ajx
j ∂0 ∈

W(1,0), it is easy to see that one of the elements∂0 or x∂0 does not lie in the
image of ad(T ). ✷
Theorem 5.11. Let R be a finite simple Lie conformal superalgebra. The
following list gives all the linearly compact Lie superalgebras that can occur
as extended annihilation algebrasA(R)e :

(1) C ad(∂0) � W(1,N), N � 0;
(2) (C ad(∂0− a

∑N
i=1 ξi∂i)) � S(1,N)′, N � 2;

(3) (C ad(∂0− ξ1 . . . ξN∂0) � S(1,N)′, N even,N � 2;
(4) C ad(∂0) � K(1,N), N � 0, N �= 4;
(5) C ad(∂0) � CK(1,4);
(6) C ad(∂0) � E(1,6);
(7) C

∂
∂t

� s❏t❑, wheres is a finite-dimensional simple Lie superalgebra.

Proof. Recall thatA(R)e = CT � L, whereL = A(R) is one of the linearly
compact Lie superalgebras listed in Proposition 5.5 andT is an even surjective
derivation ofL.

If L is one of the Lie superalgebras listed in Proposition 5.5(1), consider the
filtration {Li} of L corresponding to the standard gradation

∏
j�−d gj of L

(cf. (5.8)). One checks directly that in all cases one has:

[∂0,gj ] = gj−d for all j � d. (5.9)

Furthermore, due to Lemmas 5.7–5.9 and 5.10 we have

T = cad(∂0)+ v + ad(g0), (5.10)

wherec ∈ C is non-zero,g0 ∈ L0, andv ∈ V , whereV is one of the following
subspaces of Der(L):

V = 0 if L=W(1,N), K(1,N), CK(1,4), or E(1,6);
V =CH if L= S(1,N)′, N odd (cf. Lemma 5.8);
V =CE ⊕CH if L= S(1,N)′, N even, N > 2 (cf. Lemma 5.8);
V =CE ⊕CH ⊕CF if L= S(1,2)′ (cf. Lemma 5.9).

We may apply now Proposition 2.13 toD = c∂0 (cf. (5.10)) and the aboveV
since (2.4) holds due to (5.9) and (2.5) also obviously holds. Hence by an inner
automorphism ofL we can bringT to the form:

T = cad(∂0)+ v, wherec ∈C\{0}, v ∈ V.

By rescaling we can makec = 1 and, using an inner automorphism of the Lie
algebraV , T can be brought further, in allS(1,N)′ cases, to the form ad(∂0)−E

(if N is even) or ad(∂0)− aH , a ∈C.
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The case ofL = s❏t❑ has been treated in a similar fashion in the proof of
Proposition 5.5. ✷
Theorem 5.12. Any finite simple Lie conformal superalgebra is isomorphic to one
of the Lie conformal superalgebras of the following list:

(1) WN , N � 0;
(2) SN,a , N � 2, a ∈C;
(3) S̃N , N even,N � 2;
(4) KN , N � 0, N �= 4;
(5) K ′

4;
(6) CK6;
(7) Curs, wheres is a simple finite-dimensional Lie superalgebra.

Proof. It follows from Theorem 5.11 and Proposition 5.2.✷
A formal distribution Lie superalgebra(g,F) is calledsimple if it contains

no non-trivial regular ideals; it is calledfinite if the C[∂z]-moduleF is finitely
generated. Two formal distribution Lie superalgebras(g,F) and (g1,F1) are
calledisomorphicif there exists an isomorphismϕ :g→ g1 such thatϕ(F)=F1.

The correspondence between Lie conformal superalgebras and formal distrib-
ution Lie superalgebras implies the following corollary of Theorem 5.12.

Corollary 5.13 [K7]. A complete list of finite simple formal distribution Lie
superalgebras consists of quotients of loop algebras(s[t, t−1]/(P ),Fs), where
P is a non-invertible polynomial ofC[t, t−1] ands is a simple finite-dimensional
Lie superalgebra, and the following examples:(

W�1,N�,FW

)
(N � 0),(

S�1,N,a�′,FS,a

)
(N � 2, a ∈C),(

S̃�1,N�,FS̃

)
(N � 2, N even),(

K�1,N�,FK

)
(N � 0, N �= 4),(

CK�1,4�′,FK

)
,

(
K�1,4�′,FK ′

)
,

(
CK�1,6�,FCK

)
.
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