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Abstract 
Distributed generation resources (DGs) and their utilization in large-scale power systems are attracting 
more and more utilities as they are becoming more qualitatively reliable and economically viable. 
However, uncertainties in power generation from DGs and fluctuations in load demand must be 
considered when determining the optimal operation plan for a microgrid. In this context, a novel 
dynamic data-driven application systems (DDDAS) approach is proposed for determining the real-
time operation plan of an electric microgrid while considering its conflicting objectives. In particular, 
the proposed approach is equipped with three modules: 1) a database including the real-time microgrid 
topology data (i.e., power demand, market price for electricity, etc.) and the data for environmental 
factors (i.e., solar radiation, wind speed, temperature, etc.); 2) a simulation, in which operation of the 
microgrid is simulated with embedded rule-based scale identification procedures; and 3) a multi-
objective optimization module which finds the near-optimal operation plan in terms of minimum 
operating cost and minimum emission using a particle-filtering based algorithm. The complexity of the 
optimization depends on the scale of the problem identified from the simulation module. The results 
obtained from the optimization module are sent back to the microgrid system to enhance its operation. 
The experiments conducted in this study demonstrate the power of the proposed approach in real-time 
assessment and control of operation in microgrids. 
 
Keywords: Microgrid operation, Dynamic data driven, Scale identification, Multi-objective optimization 

1 Introduction 
Distributed generation (DG), also known as on-site generation, refers to the production of electricity at 
or near the place of consumption using smaller-scale power generation resources and technologies. 
Based on this definition, a microgrid (MG) can be considered as a DG-based grid, which can operate 
in either islanded or utility grid connected modes. In the islanded mode, it is only the DGs that work to 
generate the power and satisfy the demand of the entire microgrid, whereas in the connected mode, the 
microgrid may utilize the electricity that is bought from the main grid as well as the one generated via 
its own DGs. Microgrids coordinate distributed generation resources in a more decentralized yet 
consistent way reducing the control burden on the grid and permit them to provide their full benefits 
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(Sfikas et al., 2014). However, increasing penetration level of the distributed generation in a microgrid 
may increase security risks and cause faults in the energy system. Extreme conditions as well as issues 
with voltage violations, power losses, power quality, and reliability (Ackermann and Knyazkin, 2002) 
may occur unpredictably. Moreover, one of the main challenges of operating a microgrid is associated 
with the fluctuations of load demand and the power generated from the DGs, which may significantly 
rely on the weather conditions. These issues make the management of the microgrid in terms of the 
operation and planning difficult. From this point of view, a microgrid that can mitigate these 
fluctuations and operate in the most cost-effective manner is a necessary. To this end, in this study, a 
novel dynamic data-driven application systems (DDDAS) approach is proposed for determining the 
real-time operation plan for an electric microgrid. The proposed DDDAS approach entails the ability 
to dynamically incorporate data into an executing application simulation, and in reverse, the ability of 
applications to dynamically steer the measurement process, motivated by the DDDAS paradigm that 
was first presented by Darema (2000). Since its introduction, the DDDAS paradigm has been 
successfully applied to a variety of areas, such as supply chain system (Celik et al., 2010), waste 
management (Parashar et al., 2006), medical service (Gaynor et al., 2005), amongst many others. 
Electric power distribution networks, more specifically the microgrids, are one of the challenging 
application areas to make use of the decidedly effective measurement and control processes available 
by utilizing DDDAS modeling techniques (Thanos et al., 2014).  

To this end, our proposed approach is equipped with a database, an agent-based simulation model 
embedding a rule-based scale identification procedure, and a multi-objective optimization module. In 
the database, data related to the MG topology (i.e., real-time load demand, electricity price from the 
utility market, etc.), as well as those obtained from the environmental sensors (i.e., solar radiation, 
wind speed, etc.) are stored. Upon the initialization of the simulation, the necessary first set of data is 
retrieved from the database, and more data is retrieved as the simulation progresses. In the simulation, 
the operation of the considered microgrid is simulated under various system uncertainties on an hourly 
basis. Meanwhile, a rule-based scale identification procedure is carried out, through which the 
complexity of the optimization problem is determined. Once the size of the problem is determined, the 
optimization module is executed to obtain the optimal operation plan for the microgrid in terms of the 
minimum operating cost and emissions. In order to solve the optimization problem, a novel particle 
filtering-based multi-objective optimization algorithm for operation planning of MG is proposed. The 
results of the optimization module are finally sent back to the MG system for execution. The 
performance of the proposed approach is demonstrated via a synthetic microgrid. The approach has 
been constructed in a generic manner so that it can be employed by any MG system that has similar 
types of DGs by importing the necessary data capturing its characteristics (i.e. number of DGs 
installed), topology, and environmental conditions into the database. 

2 Proposed Approach 
In this study, our goal is to determine the optimal hourly-based operation plan for a microgrid, 

whose load demand is satisfied with minimum operating cost and emissions. The components of our 
proposed approach are presented in detail in this section (see Figure 1 for overview).  

2.1 Database  
For easy adaptation of the proposed approach to varying types of microgrids with different 

characteristics, the heterogeneous data associated with the considered MG’s topology, operations, and 
environment are stored in a database. The environmental data (i.e., wind speed, solar irradiance, 
temperature, etc.) is stored to estimate of the amount of electricity that can be generated from the 
renewable generation sources including the wind turbines and the solar panels. In the literature, several 
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studies (i.e., Atwa et al., 2010; Arefifar et al., 2012) have used data that is generated using Weilbull 
probability density function (pdf) for wind speed and Beta pdf for solar data. In this study, rather than 
these synthetic functions, we incorporate a real-world sensory data for the wind speed, ambient 
temperature, and solar irradiance recorded at the Live Oak Station in Florida in 2010. These data are 
obtained from the Florida Automated Weather Network (FAWN) subsidiary of University of Florida 
(FAWN, 2013). The database also contains the microgrid topology data (i.e., load demand, market 
energy price, etc.) and the operational data for the distributed generators that characterize the load 
demand and operating cost of various DGs.  

 
Figure 1: Proposed Dynamic Data-Driven Application Systems Approach Applied to a Considered Microgrid 

2.2 Simulation Module and Rule-based Scale Identification Scheme 

2.2.1. Agent-based Simulation Model for the Considered Microgrid 
An agent-based simulation model provides an accurate representation of the considered microgrid 

while simultaneously capturing the behavior of operating components as well as their interactions with 
each other. In this study, the operating components including demand, solar panels, wind turbines, 
biomass generators, and combined cycle generators are designed as the agents. 

 Demand Agent. Each building in the considered MG is defined as a demand agent. The data 
for the demand agent is obtained from the study conducted by Thanos et al. in 2014. Particularly, the 
data contains peak demand and hourly power factors of each building in the considered MG. Then, (1) 
is used to calculate the hourly demand  in the microgrid, where  and  represents the peak 
demand of building  and power factor at time , respectively, and  is the number of buildings in the 
microgrid. The demand fluctuation for each building is modeled using the triangular distribution. 
 

           (1) 
 

 Wind Turbines Agent. Wind turbines (WT) generate electricity using the wind power without 
producing any greenhouse gas emissions. The power generated by the WT is computed as shown in 
(2), where  represents the total output power generated from the wind turbine,  is the real-time 
wind speed obtained from the wind sensors,  and  denotes the cut-in and cut-out wind speeds, 
respectively, and  is the rated wind speed. According to Sfikas et al. (2014) and Atwa et al. (2010), 
the wind turbine attributes shown in Table 1 are used in this study.  
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Attributes of wind turbine Unit Value Attributes of wind turbine Unit Value 
Turbine capacity kW 3000 Cut-out speed (m/s) 25 

Cut-in-speed (m/s) 4 Rated speed (m/s) 16 
Table 1: Attributes of wind turbines 
 

 Solar Panels Agent. Solar panels convert the solar irradiance into electricity. The power 
generated from the solar panels depends on the characteristics of the solar cell itself and on the 
weather conditions. Equations (3)-(6) are incorporated in the simulation to compute the power 
generated by the solar panels, where  is the total output power generated from solar panels,  is 
the fill factor related to the voltage at maximum power point , the current at maximum power 
point , the open circuit voltage , and the short circuit current .  denotes the voltage, which 
is a function of the open circuit voltage, the voltage temperature coefficient  and cell temperature 
calculated by the term . Here,  is the ambient temperature,  is the nominal 
operating temperature of the PV cell and  is the solar irradiance.  shows the current, which is a 
function of the solar irradiance, the current temperature coefficient , and the cell temperature. 
Attributes of the solar panels used in this study are given in Table 2. 

              (3) 
            (4) 

            (5) 

                  (6) 
 

Attributes of PV cell Unit Value Attributes of PV cell Unit Value 
Open circuit voltage V 21.98 Voltage temperature coefficient mV/  14.4 
Short circuit current A 5.32 Current temperature coefficient mA/  1.22 

Maximum power voltage V 17.32 Nominal cell operating temperature  43 
Maximum power current A 4.76    

Table 2: Attributes of solar panels 

 Biomass Generators Agent. Unlike the solar and wind, biomass is classified as base load 
controllable energy generation sources as it is not affected by environmental conditions. In this study, 
we use lower bound and upper bound in biomass modelling, as shown in (7), where  represents 
the amount of electricity produced from biomass generators. While lower bound (LB) satisfies to 
produce electricity smoothly, upper bound ensures that the energy generation does not excess the 
capacity of generator. In this study, the lower bound is assumed to be 20 percent of the biomass 
generator’s capacity, and the upper bound is chosen as the 90 percent of the capacity. 
 

                (7) 
 

 Combined Cycle (CC) Generators Agent. Power generated from combined cycle generators is 
controllable on an hourly basis, as it presents desirable operational characteristics (i.e., wide range of 
operation hours, ease of operation setting up and shutting down, etc.). Moreover, they are not affected 
by external environmental conditions. To this end, in this study, the agent of combined cycle 
generators is modeled as a stand-by system that activates automatically when all other DGs fail to 
satisfy the total load demands. In this work, natural gas, fuel oil and propane are considered as fuels 
that are used in the combined cycle generators. 
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2.2.2. Scale Identification Scheme 
In order to save computational resources and improve the efficiency in the decision making 

procedure, thereby to realize the real-time assessment and control of operation in a microgrid, a scale 
identification scheme is designed and incorporated in the simulation module for determining model 
fidelity within the optimization model, which then impacts the size of the considered optimization 
problem. Specifically, given the real-time MG load demand and DG generation capacities, the scales 
are determined based on rules shown in the following figure, where  represents the power demand 
in the microgrid at time . Notations of the other parameters have been described in Section 2.2.1.  

 
Figure 2: Scale Identification Scheme 

 

For the small scale optimization problem (Scale 1), since the power generated from the solar 
panels, wind turbines, and biomass generators (with minimum generation capacity) can satisfy the 
demand in the entire microgrid, the combined cycle generators are not included in the optimization 
model. Moreover, there is no need to buy electricity from the main grid and the MG may sell the 
excess power to the market. For the medium scale optimization problem (Scale 2), two decision 
variables, which are the amount of electricity bought from the main grid and the amount of electricity 
generated from the biomass generators are added in the optimization model developed for Scale 1, so 
are the corresponding constraints. Scale 3 is the most complex one, under which the demand in the 
microgrid cannot be satisfied by the “green” distributed generation resources and the biomass 
generators. Therefore, the combined cycle generators, which are more expensive and less 
environmental friendly, have to be considered. As a result, decision variables that represent the 
amount of electricity generated from combined cycle generators at time  and corresponding 
constraints are added into the optimization model developed for Scale 2.  

2.3 Particle Filtering-based Optimization  
In this study, the optimization is executed based on the identified scales to determine the operation 

plan for the microgrid in terms of the minimum cost and emissions in any particular hour. These 
multi-scale problems are solved via a proposed particle filtering-based optimization algorithm. 

2.3.1. Formulation of the Optimization Problem 
Identification of the appropriate scales forms the basis for the optimization problems. Optimization 

is not required for Scale 1 since the demand can be 100% satisfied by the electricity generated from 
“green” DGs. Optimization is straightforward for the Scale 2 problem as well, in which only the 
minimization of the cost objective is considered. The formula to calculate the operating cost of the 
microgrid under Scale 1 is shown in (8), and the objective function and constraints for the 
optimization problem under Scale 2 are presented in (9)–(11). Here,  and  are the variable 
operating and maintenance (O&M) cost and the fuel cost of the biomass generators. Decision variables 
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 and  are the amount of electricity generated from biomass generators and amount of 
electricity bought from the main grid at hour , respectively, and  and  are the market prices for 
selling and buying electricity.  

                        (8) 

            (9) 
        (10) 

         (11) 
The optimization problem that needs to be solved under Scale 3 is more complex. Since the 

combined cycles are incorporated into the model, the problem becomes a bi-objective optimization 
problem. The two objectives, minimization of operating cost and emissions, and the corresponding 
constraints are provided in (12)–(16), where , , and  are decision variables representing 
the amount of electricity generated by combined cycles with different types of fuels (i.e., natural gas, 
fuel oil, and propane), respectively; , , and  denote the carbon dioxide emission parameters of 
these generators; and , , and  are the corresponding capacities of these generators. In 
addition,  is the variable O&M cost of the combined cycle generators, and ,  and  are the fuel 
cost of natural gas, fuel oil and propane, respectively. 

    (12) 
                                 (13) 

         (14) 
           (15) 

;      ;                   (16) 

2.3.2. Implementation of the Optimization Algorithm 
In this work, a particle filtering-based optimization algorithm is proposed to solve the 

aforementioned optimization problems. Particle filtering (PF) is a class of importance sampling and 
resampling methods applied for simulating the posterior probability distributions in Bayesian 
estimation problems (Shi and Celik, 2012). It is introduced by Gordon et al. (1993), and has gained 
popularity in recent years due to its advancements (i.e., flexibility, ease of implementation, capability 
of dealing with massive dataset, etc.) on a wide range of challenging applications.  

The analogy of the proposed PF-based optimization algorithm to those of population-based 
optimization methods can be summarized as the following. First, the particles drawn from the 
distribution functions behave as if they are the candidate solutions generated from the solution space. 
Second, the importance weights assigned to these particles are then considered as the evaluation of the 
performances of the generated solutions. Last but not least, the sampling and resampling procedures in 
the PF algorithm are similar to the searching and updating procedures in the population-based 
optimization methods. To this end, we represent the optimization problem using a state-space model, 
in which the optimal solution is treated as a posterior state that is yet to be “estimated”, and the 
optimal objective values observed are specified as an -dimension measurements. The state-space 
model can be formulated mathematically as shown in (17)-(19), where  represents the state vector 
(decision variables),  is the minimum values of each objective for a minimization problem,  is the 
vector of processing noises,  is objective vector,  is our target Pareto optimal solution, and  
represents the iteration number.  

(17) 
(18)
(19) 

The algorithm is mainly structured with an adaptive weighted allocation (AWA) procedure and a 
performance-based sampling and resampling procedure (PSR). The AWA procedure is developed for 
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distributing the weights of multiple objectives gradually and periodically. In the PSR procedure, the 
optima is achieved an alternative is selected amongst all the possible solutions.  The probability that 
the selected alternative is truly the “best”, is controlled in each iteration. For ease of presentation, let 
us take a bi-objective minimization problem as an example here to explain the implementation of these 
two procedures. At the initialization step,  particles are randomly drawn within the solution space 
and equal importance weights  ( are assigned to them. As the iteration 
progresses, particles are drawn from the transition prior (i.e., (17)), and the objective weights are 
generated via the AWA procedure, as provided in (20)-(21), where  provides the absolute value,   
is equal to  and  is . These are parameters that are enforced to avoid extreme situations in 
which the importance factors of the objectives  and  are equal to 1 or 0. The frequency of 
variation is controlled by the user-defined parameter , using which the AWA is able to approach the 
Pareto front dynamically as the number of iterations increases.  

               (20) 
           (21) 

Given these particles, the corresponding objective values are calculated according to the objective 
functions, and two-dimensional measurements (i.e., ) are constructed via taking the 
minimum of each objective, as  and . Then, 
particles’ importance weights with respect to each objective are calculated as 

 and  ( ). The likelihoods   and  
are presented in (22)-(23). Therefore, the importance weights of particles can be obtained via 

. These particles are then ranked in an ascending order in terms of their importance 
weights. In the next iteration, the particles with small weights are discarded, and new particles are 
generated by adding a process noise to those particles with large importance weights (i.e., the 
transition prior). After several iterations, a mutation step will be triggered to break the local optima, in 
which an entire new set of particles will be randomly drawn. As the iterations progress, a set of 
promising solutions will be finally obtained. Figure 3 provides a visualized diagram of the PSR 
procedure. 

         (22) 
        (23) 

 
Figure 3: Performance-based Sampling and Resampling Procedure  

3 Experiments and Results 
In order to demonstrate the capabilities of the proposed approach, experiments are designed and 

carried out over a synthetic microgrid that is composed of 346 buildings (demand agents), 5 solar 
panels, 3 wind turbines, 2 biomass generators, and 3 combined cycle generators. Table 3 presents the 
operating costs for each type of DG resources. The variable O&M cost data are obtained from the 
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report of NREL in 2010 (Tidball et al., 2010). The fuel cost and carbon dioxide emission data is 
reported by Energy Information Administration (2013) and Green Econometrics (2007). The carbon 
dioxide emission of the fuel oil is provided by the Renewable Energy System (Quaschning, 2003). 
Moreover, we assume that the biomass resources are managed sustainably, therefore carbon dioxide 
emission of biomass generators is neutral (Environmental Protection Agency , 2014).  
 

Explanation Unit Biomass Wind Solar Natural gas  Fuel Oil  Propane  
Variable O&M $/MWh 6.71 - - 2.00 

Fuel Cost $/MWh 27.5 - - 48 53 74 
CO2 emission kg/KWh - - - 0.1976 0.2802 0.2151 

Table 3: Cost and carbon dioxide emission data 
 

While the operation plan of the microgrid can be obtained for any time spanning the 365 days in a 
year, our analysis in this section focuses on two selected days, which are July 29th and December 26th 
in 2010. As weather conditions in winter differ greatly from those in summer and may significantly 
impact the power generated from the DGs, these two days are selected to present the differences on the 
obtained hourly-based operation plans and the scale identification in different seasons. In Figure 4, the 
daily operation plans that are obtained for the microgrid in the selected two days are presented. It is 
noticed that the biomass generators carried most of the burden to satisfy the power demand in the 
microgrid. Moreover, great differences have been observed on the number of occurrences of different 
scales identified in these two experimental days. During summer, due to the higher generation 
capabilities of the solar panels, load demand in the MG can be satisfied by the “green” distributed 
generators and the biomass generators most of time (23 out of 24 hours). However, during winter,  
operating the environment-friendly DGs alone cannot provide enough power for the microgrid. 
Differences on the operation plans for the MG in these two days reflect on the total cost and emissions 
as well. Specifically, in December 26th, the obtained best compromise solution is $22,241.5 in terms of 
cost and 1,313.6 Kg in terms of emissions, while in July 29th, they are $14,044.8 and 88.1 Kg, 
respectively, indicating that it is much economical and more environmental friendly to operate the 
microgrid in the summer.  

    
Figure 4: Daily Operation Plans for the Microgrid 

In this study, additional experiments are carried out for demonstrating the performance of the 
proposed particle filtering-based multi-objective optimization algorithm with various number of 
iterations (i.e., ). The Pareto-front obtained for these cases and the best cost and 
emissions obtained with different number of iterations are provided in Table 4, where the solutions are 
obtained from the operation plan for the microgrid at 11AM on December 26th. The resultant figures 
depicted that the proposed optimization algorithms have the capability to capture a great diversity of 
good solutions. It should also be noticed here that the algorithm’s performance on producing a 
promising solution set is slightly impacted by the changing number of iterations. Therefore, it 
premises the potential to generate good results with reduced computational burden. 
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Non-Dominated Solution Set Iteration Best Cost Best Emissions 

 

 $1818.72 55.95 Kg 

 $1816.45 15.96 Kg 

 $1815.35 81.76 Kg 

 $1787.34 24.20 Kg 

Table 4: Comparison of Pareto-fronts and Extreme Solutions Obtained with Different Number of Iterations 

4 Conclusion 
In this work, a DDDAS approach is proposed for the operation planning problem within a 

microgrid. The proposed approach involves a database that stores the system-related operational, 
topological, and environmental data; an agent-based simulation simulating the operation of the 
microgrid considering the uncertainties of the power generated from the DGs and fluctuation of the 
demand; and an optimization module that solves the multi-objective optimization problem according 
to the scale identified by the simulation. The performance of the proposed approach is demonstrated 
via a synthetic microgrid with solar cells, wind turbines, biomass generators, and combined cycles. 
Results have shown that the proposed approach has the capability to provide real-time operation plan 
for the microgrid at any particular hour and have also indicated that the proposed particle filtering-
based optimization algorithm can provide promising solutions without destroying the diversity of the 
solutions and occupying significant computational efforts. The proposed approach is developed in a 
generic manner. Therefore, it can be implemented for any microgrid that has similar types of 
distributed generators when sufficient changes are made to the database.  

In the future, the storage devices and maintenance times of biomass generators in the microgrid 
will be taken into consideration when determining the operation plan. Moreover, since the 
performance of the particle filtering-based optimization algorithm may depend on several factors, such 
as the processing noises that control the efficiency of the sampling and resampling procedure; and the 
frequency of variation for importance factors of objectives (i.e., the parameter  incorporated in (20)) 
that may affect the convergence of the algorithm together with the number of iterations, the optimal 
combination of these parameters will be investigated.  
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