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Reliable quantification of white matter hyperintensities of presumed vascular origin (WMHs) is increasingly
needed, given the presence of these MRI findings in patients with several neurological and vascular disorders,
as well as in elderly healthy subjects.
We present BIANCA (Brain Intensity AbNormality Classification Algorithm), a fully automated, supervised
method for WMH detection, based on the k-nearest neighbour (k-NN) algorithm. Relative to previous k-NN
based segmentation methods, BIANCA offers different options for weighting the spatial information, local spatial
intensity averaging, and different options for the choice of the number and location of the training points. BIANCA
is multimodal and highly flexible so that the user can adapt the tool to their protocol and specific needs.
We optimised and validated BIANCA on two datasets with different MRI protocols and patient populations
(a “predominantly neurodegenerative” and a “predominantly vascular” cohort).
BIANCAwas first optimised on a subset of images for each dataset in terms of overlap and volumetric agreement
with amanually segmentedWMHmask. The correlation between the volumes extractedwith BIANCA (using the
optimised set of options), the volumes extracted from themanual masks and visual ratings showed that BIANCA
is a valid alternative tomanual segmentation. The optimised set of optionswas then applied to thewhole cohorts
and the resultingWMH volume estimates showed good correlations with visual ratings andwith age. Finally, we
performed a reproducibility test, to evaluate the robustness of BIANCA, and compared BIANCA performance
against existing methods.
Ourfindings suggest that BIANCA,whichwill be freely available as part of the FSL package, is a reliablemethod for
automated WMH segmentation in large cross-sectional cohort studies.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Introduction

White matter hyperintensities of presumed vascular origin (WMHs),
also known as leukoariosis, white matter lesions, or white matter disease
(Wardlaw et al., 2013), are common findings inMRI scans and appear hy-
perintense on T2-weighted, fluid attenuated inversion recovery (FLAIR),
and proton density-weighted images. WMHs are common in patients
with cardiovascular risk factors and symptomatic cerebrovascular disease
(Li et al., 2013; Simoni et al., 2012), and are associatedwith increased risk
of functional decline, dementia, and death (de Groot et al., 2000; Debette
rtment of Clinical Neuroscience,
9DU, UK.
iffanti).

. This is an open access article under
andMarkus, 2010; Inzitari et al., 2009; Jeerakathil et al., 2004; Longstreth
et al., 1996; Pantoni et al., 2005; Prins and Scheltens, 2015; van Dijk et al.,
2002). However, they are also increasingly found in healthy elderly on
MRI scans performed in routine clinical practice, as brain MRI is the rec-
ommended investigation for most neurological conditions affecting
older adults. Therefore there is a need to improve the quantification of
WMH in order to facilitate studies to better clarify their diagnostic and
prognostic value in both healthy anddiseased populations. The character-
ization of WMH in terms of volume, location and number of lesions
(assessed either with visual rating scales or quantitative measurements)
has also been recently included in the standards for reporting vascular
changes on neuroimaging, which have been formulated for research
studies, but are also applicable in clinical settings (Wardlaw et al., 2013).

The most common visual rating scales used to assess WMH are the
Fazekas scale (Fazekas et al., 1987), the Scheltens scale (Scheltens
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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et al., 1993), and the age-related white matter changes (ARWMC) scale
(Wahlund et al., 2001). They are frequently used in clinical settings, but
are also still used in research studies (Kreisel et al., 2013; Simoni et al.,
2012). However visual rating is time consuming, suffers from intra-
and inter-operator variability, potentially leading to inconsistencies
among studies, is potentially subject to observer bias, and only provides
discrete measurements of WMH (Mantyla et al., 1997). In addition,
methods based on visual ratings do not provide precise information
about the spatial localization of WMH. Being able to provide the
exact localization of WMH at the voxel level is important, as it can
be used to obtain a better association between WMH and specific
symptoms, or to better define patterns related to normal versus
pathological ageing (Benson et al., 2002; Biesbroek et al., 2013;
Duering et al., 2014; Rostrup et al., 2012; Smith et al., 2000).
Voxel-wise WMH maps can also be used as a nuisance variable in
analyses of other imaging modalities, to disentangle the contribu-
tion of WMH from other MRI abnormalities.

Therefore, a method that is objective, automated, and that provides
quantitative measures and the exact localization of WMH at the voxel
level is highly desirable.

The assessment of WMH with quantitative volumetric mea-
surements is much more used in research settings. Several
methods have been developed, mostly in-house. However, despite
the number of proposed methods, none of the algorithms is cur-
rently widely used and only very few of them are publicly avail-
able (Damangir et al., 2012; Lao et al., 2008; Schmidt et al.,
2012). Several automated and voxel-wise methods have been de-
veloped for the detection of multiple sclerosis (MS) lesions
(Mortazavi et al., 2012). However, boundaries of MS lesions are
often sharper than those of WMH and WMH patterns are very het-
erogeneous, ranging from punctuate lesions in the deep white
matter to large confluent periventricular lesions. For WMH, sever-
al segmentation algorithms exist (Admiraal-Behloul et al., 2005;
Anbeek et al., 2004; de Boer et al., 2009; DeCarli et al., 1995;
Dyrby et al., 2008; Ramirez et al., 2011), and a recent review by
Caligiuri and colleagues (Caligiuri et al., 2015) compared different
existing algorithms. Besides the inherent difficulty of the problem,
most of the algorithms have been validated on small samples
leading to over fitting, are not freely available or easily accessible,
or, being developed to be protocol and/or study specific, may not
be able to work outside a very limited protocol. The need for an
automated tool that is multimodal, flexible, freely available and
well supported is made even more important by the growing
number of large cross-sectional cohort studies: the OXVASC study
(Rothwell et al., 2004) with a target of 1500 subjects in its phase 3
(OxVASC-Cog 3 – 2012–2017), the Whitehall study (Filippini et al.,
2014) with 800 subjects, and the UK Biobank study (http://imaging.
ukbiobank.ac.uk), with 100,000 subjects, are just a few examples.
Given the importance of investigating WMH in ageing and diseased
populations to identify biomarkers and understand ageing/disease pro-
cesses, these cohort studies would definitively benefit from a flexible,
automated method, as it would not be feasible performing WMH seg-
mentation manually.

Here we present BIANCA (Brain Intensity AbNormality Classifica-
tion Algorithm), a fully automated, supervised method for WMH
detection, that uses the k-nearest neighbour (k-NN) algorithm (see
Algorithm overview for details). Anbeek and colleagues (Anbeek
et al., 2004) previously presented a method for automatic segmenta-
tion ofWMHs based on the k-NN classification technique using infor-
mation from different MRI modalities (T1-weighted, inversion
recovery, proton density-weighted, T2-weighted and fluid attenua-
tion inversion recovery - FLAIR). They also included spatial informa-
tion and quantitatively validated the algorithm, on a voxel basis,
using 20 subjects with arterial vascular disease. Steenwijk and col-
leagues (Steenwijk et al., 2013) further investigated different ap-
proaches for intensity features normalization and introduced the
use of tissue priors. They tested the algorithm on 20 patients with
MS, 16 healthy controls, and performed a validation on an indepen-
dent set of 20 subjects with hypertension.

BIANCA relies on a similar approach to the ones used in the above
mentioned studies, using the k-NN algorithm, with flexible features
(MRI modalities and spatial features) but introducing different options
like the possibility of weighting the spatial coordinates, using local
spatial intensity averaging (the “patch” option – see BIANCA options
for details) and changing the number and location of the training points.

In this paper we optimised BIANCA on two datasets that were
different in terms of patient populations and MRI protocol (see Test
datasets for details). These two large datasets are representative of
groups of patients where the clinical importance of WMH is being in-
creasingly recognized: a “predominantly neurodegenerative” cohort in-
cluding people with, or at risk of, Alzheimer's disease (AD) and a
“predominantly vascular” cohort including people with, or at risk of,
vascular cognitive impairment.

Given the absence of a gold standard for assessingWMH segmenta-
tion, we evaluated BIANCA performance with multiple methods both in
the optimization and validation phase. In the optimization phase, the
performance of BIANCA was evaluated on a subsample of subjects for
each dataset both in terms of overlap and volumetric agreement with
manual segmentations. The volumes extracted with BIANCA using the
optimised set of optionswere then correlatedwith the volumes extract-
ed from the manual masks and with visual ratings. In the validation
phase, the measurements of WMH volume derived from BIANCA were
evaluated by correlation with visual ratings and age. Finally, we
performed a reproducibility test, to evaluate the robustness of BIANCA
and compared BIANCA performance against existing methods. The
tool will be freely available and included in the next release of FSL
(FMRIB software library).

Materials and methods

Test datasets

This section describes the datasets used to optimise and validate
BIANCA for the detection of white matter hyperintensities of presumed
vascular origin (Wardlaw et al., 2013). The datasets are different in
terms of populations, were acquired on different scanners and using
different imaging protocols (see details below).

Exclusion criteria applied to both cohorts for the purposes of the
present study were: presence of intracranial haemorrhage; intracra-
nial space occupying lesion; WMH mimics (multiple sclerosis and
irradiation induced gliosis); brain defect due to previous neurosur-
gery or developmental anomalies; large chronic, subacute or acute
infarcts (i.e., N2 cm on either T1-, T2-weighted or DWI sequences);
significant movement artefacts.

For both datasets WMHs were graded on FLAIR images by a trained
operator (L.L.) who provided visual ratings according to the following
scales: 1) a modified version of the Fazekas scale (Fazekas et al.,
1987), considering periventricular and deep white matter lesions
altogether (range total score 0–6); 2) the ARWMC (Age-Related White
Matter Changes, (Wahlund et al., 2001)) scale, rating 5 different regions
(frontal, parieto-occipital, temporal, basal ganglia, infratentorial) in
both hemispheres according to a 0–3 score (range total score 0–30).

Dataset 1 (neurodegenerative cohort)
MRI data from85older adults (25with probable Alzheimer'sDisease

- AD, 24 with amnestic mild cognitive impairment - MCI, 11 with
subjective cognitive impairment and 25 cognitively healthy control
subjects - HC) recruited from the Oxford Project to Investigate Memory
and Ageing (OPTIMA) and from the Memory Assessment Clinic at the
John Radcliffe Hospital in Oxford (Zamboni et al., 2013) were included
in the “neurodegenerative cohort” (age range 57–91 years, mean age
75 ± 7 years, F:M= 39:46).

http://imaging.ukbiobank.ac.uk
http://imaging.ukbiobank.ac.uk
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MRI images were acquired at the University of Oxford OCMR
centre on a 3 T Siemens Trio scanner using a T2-weighted, fluid-
attenuated inversion recovery (FLAIR) research sequence (TR/
TE = 9000/89 ms, flip angle 150o, FOV 220 mm, voxel size
1.1 × 0.9 × 3 mm). The visual ratings according to the Fazekas
score had a range of 0 to 6 (mean ± sd = 2.6 ± 1.4) and with the
ARWMC score from 0 to 24 (mean ± sd = 6.1 ± 5.3).

High-resolution T1-weighted images (3D MP-RAGE) were also
acquired (TR/TE = 2040/4.7 ms, flip angle 8o, FOV 192 mm, voxel size
1 mm isotropic).

Dataset 2 (vascular cohort)
MRI data from 474 consecutive eligible participants in the Oxford

Vascular Study (OXVASC, (Rothwell et al., 2004)) who had recently ex-
perienced a minor non-disabling stroke or transient ischemic attack
(TIA) were included in the “vascular cohort” (age range 20–102 years,
mean age 67.4 ± 14.3 years, F:M = 240:234).

Scanning was performed at the Oxford Acute Vascular Imaging
Centre (AVIC) on a 3 T Siemens Verio scanner using a T2-weighted,
FLAIR clinical sequence (TR/TE = 9000/94.0 ms, flip angle 150o, FOV
200 mm, matrix size 464 × 28 × 512, voxel size 0.8 × 5 × 0.8 mm).
The WMH visual ratings according to the Fazekas scale varied from 0
to 6 (mean ± sd = 1.9 ± 1.8) and with the ARWMC scale from 0 to
24 (mean ± sd = 3.9 ± 4.8).

Twenty participants (age range 40–91 years, mean age 68 ±
13 years, F:M = 9:11) were re-scanned after 2 weeks to 28 months
on the same scanner, using the same protocol. The severity of WMH
assessed with visual ratings (categorical ARWMC: 0 = No, 1–5 =
mild, 6 = 10 mod, N10 severe) was not different from the first scan,
so we used those data to test the reproducibility of BIANCA (see
Reproducibility test for details).

Brain Intensity AbNormality Classification Algorithm (BIANCA)

Algorithm overview
The k-NN algorithm is a method for classifying objects based on the

closest training examples in the feature space. An object is classified by a
majority vote of its neighbours in the feature space, with the object
being assigned to the class most common among its k nearest neigh-
bours. The proportion of the votes for the winning class is returned, so
that k-NN's output is probabilistic.

When applying k-NN to the problem of WMH segmentation, each
axis of the feature space represents one of the voxel's features. In
BIANCA, the feature space includes both intensity and spatial features
(details of the different features tested are described in BIANCA
options). The algorithm requires a training set with pre-classified voxels
(i.e. manually segmented images) that is used to create a set of feature
vectors for WMH and non-WMH classes, where each voxel selected
from the training set generates one feature vector. In this study, we test-
ed the importance of the selection process in the training dataset by
comparing results generated using different numbers of training points
for the two classes and different locations for the selection of non-WMH
voxels, as well as the inclusion of subjects with different WMH load in
the training dataset (see BIANCA options). The selected training voxels
are then used to generate feature vectors, and the classification of a
voxel belonging to a new subject's image is performed by forming a fea-
ture vector, adding it to the feature space, and then looking at the k
training feature vectors that are closest to it. Steenwijk and colleagues
(Steenwijk et al., 2013) used k=40 and, after testing other values, con-
firmed that k in that range is suitable for this type of segmentation prob-
lems.We therefore decided to set k to 40 in the current study, whichwe
have found gives good performance. The output of the classification step
is the probability of a voxel of beingWMH, calculated as the proportion
of k neighbours belonging to the WMH class. Finally, in the post-
processing step (see Post-processing options), if the proportion of k
neighbours belonging to the WMH class exceeds a certain threshold,
and if the voxel is located in the white matter, the voxel is classified as
WMH.

Generation of a training dataset
WMHs of 21 subjects of Dataset 1 and 109 subjects of Dataset 2were

manually segmented on FLAIR images, producing binarymaskswith the
value of 0 (non-WMH class) or 1 (WMH class). The manual segmenta-
tion was achieved through a consensus among three trained operators
(G.Z., A.K., G.B.), who also had access to T1w images for subjects in
Dataset 1.

Examples of manual masks for the two datasets are shown in Sup-
plementary Fig. S1. These manually segmented masks were used both
to train BIANCA and to judge its performance by comparing BIANCA
output and the manual masks in leave-one-out tests (see BIANCA
optimisation for details). To avoid biased results, and to be able to also
test the accuracy of BIANCA in segmenting theWMH for the subjects in-
cluded in the training dataset, BIANCA automatically applies the leave-
one-out cross-validation method: a reduced training set is used for the
segmentation of a subject from the training dataset, where the reduced
training set excludes this subject and is built from the voxels of the re-
maining training subjects.

BIANCA options
This section describes the different options that are currently

available in BIANCA and have been tested in this work. Fig. 1 shows a
schematic representation of the options and the set of values/parame-
ters tested (for a full description of the tests, see BIANCA optimisation).
•Multiple MRI modalities. BIANCA can include any set of MRI modalities
from either 2D or 3D acquisitions, fromwhich the intensity features are
extracted. BIANCA works with images in the subject's space, but they
need to be registered to a consistent reference MRI modality. BIANCA
is flexible also in terms of reference modality, and the choice could de-
pend, for example, on the image quality and the aim of the study: T1 im-
ages are usually the ones with the highest resolution, while FLAIR
images are the ones with highest contrast for WMH and usually used
to create the manual masks, but have lower resolution. In this study
we decided to use T1 images as reference for the main analyses on
Dataset 1, to avoid down-sampling it when registering it to the FLAIR
image, however, we tested a subset of options also in FLAIR space (see
supplementarymaterial for details). Registrations between the twomo-
dalities were performed using FLIRT (Jenkinson et al., 2002; Jenkinson
and Smith, 2001) with trilinear interpolation (the manual masks was
thresholded at 0.25 after registration to T1 to compensate for interpola-
tion). Intensity normalization using variance scaling (Anbeek et al.,
2004; Steenwijk et al., 2013) is automatically applied by BIANCA to all
images.
• Spatial weighting (sw). BIANCA can also utilise spatial coordinates,
formed by using a linear registration (with FLIRT) to find each voxel's
corresponding MNI coordinate (x,y,z). Anbeek and colleagues (Anbeek
et al., 2004) already demonstrated that information about the coordi-
nates of a voxel increases the accuracy of the segmentation, as in
some regions of the brainWMH are more likely to occur than in others.
The spatial weighting option takes this further and applies a linear scale
factor, after the normalization of the feature vector, to the coordinate
data within the feature vector. This scaling provides a way of emphasiz-
ing (or de-emphasizing) the role that the coordinates play, with a
higher value for spatial weighting leading to the neighbouring feature
vectors being more likely to come from similar spatial locations, effec-
tively making the k-NN method use more local training data. This ap-
proach works because with a high spatial weighting, even a relatively
small difference between two voxels in the MNI space will make them
very far away from each other in the feature space, and therefore, only
nearest neighbourswith very similar spatial coordinateswill be selected
for the classification. If sw= 1 (the default) the data is simply variance
normalised, whereas if sw = 0 the spatial coordinates will be ignored,
and if sw becomes very large then the nearest neighbour selection



Fig. 1. BIANCA options. List and brief description of the different options available with BIANCA tool and schematic representation of the different values tested in this study during the
phase of algorithm optimisation. See main text for further details.
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would effectively ignore the intensity features and the output
would become a prior lesion probability map, based purely on le-
sion locations in the training dataset. For this option to be used, a
transformation matrix from the subject space to standard MNI
space is required.
• Patch.Additional intensity features, containing the local average inten-
sity for each modality, can also be included using the “patch” option.
One or more patch sizes can be chosen, by setting the size (D – in
voxels) of the square/cubic kernel used for local averaging. The
inclusion of intensity information about a small neighbourhood of
each voxel has been proposed before (Dyrby et al., 2008; Lao et al.,
2008), in order to make the segmentation more robust to misregistra-
tion. The patches used for local averaging with BIANCA can be 2D or
3D. In this study we tested a 3D patch on Dataset 1 and 2D patch on
Dataset 2, due to the highly anisotropic voxels. When calculating the
local average for a voxel on the border of the brain mask, the local aver-
aging is performed by averaging only the voxels within the kernel that
are inside the brain mask.
• Subjects included in the training set (WMH load). We tested whether
BIANCA's performance would change when changing the subjects
used in the training dataset according to the amount of WMHs, as
judged by the visual ratings provided. We compared three options:
using all the subjects for which we had manual segmentation available
(“anyWMH load” option), using only thosewith the highestWMH load
(“high WMH load” option) or using those with the lowest WMH load
(“lowWMH load” option). In all cases, when running the segmentation
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on an image included in the training dataset, BIANCA automatically ex-
cludes that subject from the training dataset (leave-one-out method).•
Location of non-WMH training points. By default BIANCA will use, as
non-WMHpoints, training points inside the brain that are not classified
as WMH in the manual masks supplied (this is the “any” option in this
study). There are also options to restrict the selection so that points
close to the edge of theWMH-labelled voxels are preferentially selected
as non-WMHpoints (“surround” option), or conversely, excluded these
nearby voxels from the training set (“no border” option). The rationale
behind these options is to test if, and how, information around the
WMHs' edges is important for the segmentation.
• Number of training points. BIANCA has three options for selecting the
number of training points for WMH and non-WMH voxels within the
manual WMHmasks supplied:
- Fixed+ Equal (FE) number: by setting a fixed value N (in this study
set to 2000 voxels for each subject included in the training dataset),
BIANCA will use up to N points per subject classified as WMH (lim-
ited by the number of points present in the manual masks) and the
same number of non-WMH points.

- All WMH + Equal (AE) number: BIANCA will use, for each subject
included in the training dataset, all the points classified as WMH in
the manual masks and an equal number of points classified as non-
WMH.

- Fixed + Unbalanced (FU) number: it is possible to specify different
numbers of training points for WMH and non-WMH. In this study
we initially used 2000 points per subject for WMH (capped by the
number of points available in the manual masks) and 10,000 per
subject for non-WMH. In a second phase of BIANCA optimisation
(see BIANCA optimization and supplementary material) we also
tested the use of more training points either maintaining the
same ratio (1:5) or increasing the number of non-WMH points
(up to 1:29 ratio).

Post-processing options
We also tested two options for post-processing steps to perform on

the output from BIANCA: threshold selection and masking.
As already demonstrated by Anbeek and colleagues (Anbeek et al.,

2004), the choice of the threshold for the probability map output from
the k-NN algorithm (calculated as the proportion of WMH and
non-WMH in the feature space) has a large influence on the results: a
higher threshold reduces false positives, but increases false negatives.
Therefore, we tested several thresholds to define a voxel as WMH or
not, in order to choose the option giving the best balance between
false positives and false negatives (see Overlap with the manual mask
and Results section for details).When changing the number of points in-
cluded in the training dataset, a new threshold optimisation for eachop-
tion was performed, given that changing the number of training points
changes the probability.

Moreover, being interested in the identification of hyperintensities
only in thewhitematter, we tested the efficacy of applying an exclusion
mask to BIANCA's output, to remove false positives in the grey matter
(cortical and subcortical). The mask was created automatically from
segmented T1-weighted images (for Dataset 1) or FLAIR (Dataset
2) using FSL-FAST. While other approaches for this type of post-
processing rely on the segmentation ofwhitematter (WM), greymatter
(GM) and cerebrospinal fluid (CSF) (Damangir et al., 2012; Dyrby et al.,
2008; Samaille et al., 2012), our approach is exclusively CSF-based. The
rationale behind this is that the segmentation ofWMandGM is affected
by WMH, which are often misclassified as grey matter. Moreover, the
GM/WM contrast is very low on FLAIR images and we wanted this
approach to work also in absence of a T1 weighted image (as in Dataset
2). Therefore, we used FSL-FAST to obtain a two-class segmentation
(CSF and WMH + GM), extracted the cortical CSF from the CSF map
(as we want to retain periventricular WMH) and dilated it to include
the cortical GM. A mask, including subcortical structures (thalamus and
basal ganglia) and the entorhinal cortex identified on the Harvard-
Oxford atlas, was registered to the single-subjects' images and added to
the exclusion mask.
BIANCA optimization

We tested the different options and evaluated BIANCA's perfor-
mance on a subsample of subjects for each dataset (21 for Dataset 1
and 109 for Dataset 2), for which a manually segmented WMH mask
was available.

The algorithm optimization was performed in two phases. During
the first phase we tested one or two options at a time, starting from a
default sets of options (FLAIR + T1 registered in T1 space, sw = 1, no
patch, any WMH load training subjects, any location for non-WMH
training points, FE number of training points, threshold = 0.95, exclu-
sion mask applied). The other options were kept constant in order to
isolate the effect of each single option on the performance. In particular,
on Dataset 1, we ran the following tests:

A) Multiple MRI modalities and exclusion mask (using images
registered in T1 space, sw= 1, no patch, anyWMH load train-
ing subjects, any location for non-WMH training points, FE
number of training points, threshold = 0.95); Values tested:
FLAIR only, FLAIR + T1, FLAIR only + exclusion mask applied,
FLAIR + T1 + exclusion mask applied.

B) Threshold optimisation (using FLAIR + T1, sw = 1, no patch,
any WMH load training subjects, any location for non-WMH
training points, FE number of training points, exclusion mask
applied); Values tested: 0.8, 0.85, 0.9, 0.95, 0.99.

C) Spatial weighting (using FLAIR + T1, no patch, anyWMH load
training subjects, any location for non-WMH training points,
FE number of training points, threshold = 0.95, exclusion
mask applied); Values tested: sw = 1, sw = 5, sw = 10.

D) Patch (using FLAIR + T1, sw= 1, any WMH load training sub-
jects, any location for non-WMH training points, FE number of
training points, threshold = 0.95, exclusion mask applied);
Values tested: none, D = 3, D = 6, D = 9.

E) Subjects included in the training set (using FLAIR + T1, sw =
1, no patch, any location for non-WMH training points, FE
number of training points, threshold = 0.95, exclusion mask
applied). Values tested: 21 subjects with no restriction on
WMH load, 11 (any WMH load) subjects with high WMH
load or 10 subjects with low WMH load.

F) Location of non-WMH training points (using FLAIR + T1,
sw= 1, no patch, anyWMH load training subjects, FE number
of training points, threshold 0.95, exclusion mask applied);
Values tested: any, no border, surround.

G) Number (and location) of training points (using FLAIR + T1,
sw = 1, no patch, any WMH load training subjects, threshold
optimised for each option, exclusion mask applied); Values
tested (also based on results from point F): FE + any,
FE + no border, AE + any, AE + no border, FU + any,
FU + no border.

H) Combination of best options (A–G).

This process led to 19 different configurations tested on Dataset 1,
plus 6 threshold optimisations. In the second phase, we started from
the combination of the best values for each option found in the first
phase and repeated the process, to test if this was in fact an optimal
solution. We also tested a subset of options in FLAIR space, to assess
the influence of the reference space on the performance. Details of the
second phase optimisation and the choice of the reference space are
described in the supplementary material. A similar optimisation
approach was adopted for Dataset 2, although we tested a subset of
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options on the basis of the results obtained in the first dataset and given
the availability of FLAIR images only.

Overlap with the manual mask
To evaluate the degree of overlap between the BIANCA output and

the manual mask, the following measures were calculated for each
option and each subject:

• Dice Similarity Index (SI): calculated as 2 ∗ (true positive WMH
voxels) / (true WMH voxels + positive voxels).

• Voxel-level false positive ratio (FPR)1: number of voxels incorrectly
labelled as WMH (false positive, FP) divided by the total number of
positive WMH voxels (i.e. voxels labelled as WMH by BIANCA).

• Voxel-level false negative ratio (FNR): number of voxels incorrectly
labelled as non-WMH(false negative, FN) divided by the total number
of true WMH voxels (i.e. voxels labelled as WMH in the manual
mask).

• Cluster-level FPR: number of clusters incorrectly labelled as WMH (FP
clusters) divided by the total number of positive WMH clusters (i.e.
clusters labelled as WMH by BIANCA).

• Cluster-level FNR: number of clusters incorrectly labelled as non-WMH
(FN clusters) divided by the total number of true WMH clusters (i.e.
clusters labelled as WMH in the manual mask).

• Detection error rate (DER) (Steenwijk et al., 2013; Wack et al., 2012):
the detection error is the sum of voxels (WMH volume) belonging
to FP or FN clusters. The DER is obtained by dividing the detection
error by the mean total area, calculated as the average total WMH
volume by the manual mask and BIANCA output.

• Outline error rate (OER) (Steenwijk et al., 2013; Wack et al., 2012):
the outline error is the sum of voxels belonging to true positive
clusters (WMH clusters detected by both manual and automated
segmentation), excluding the overlapping voxels. The OER is ob-
tained by dividing the outline error by the mean total area, calcu-
lated as the average total WMH volume by the manual mask and
BIANCA output.

All themeasures of overlapwere calculated in the reference space
(i.e. T1w for Dataset 1 and FLAIR for Dataset 2). The SI was consid-
ered the overlap measure with the highest importance for the final
decision, being a summary measure of overlap. Between FNR and
FPR measures, we gave higher importance to having a low cluster-
level FNR, as we are more interested in achieving high sensitivity to
lesion detection.

Volumetric agreement
The volumetric correspondence between BIANCA output and

manual segmentation was measured using the intra class correlation
coefficient (ICC; two-way mixed model with absolute agreement
definition) for the total WMH volume. This was considered the
volumetric measure with the highest importance for the final
decision.

On the best set of options, we also calculated the correlation be-
tween theWMH volumes extracted with BIANCA and from the manual
masks, and between theWMH volumes extractedwith BIANCA and the
visual ratings. The rationale behind this was that if BIANCA is a valid al-
ternative tomanual segmentation, the correlation between the volumes
extracted with BIANCA and the visual ratings should be as good as the
correlation between the volumes extracted from the manual masks
1 Different definitions of FPR exist in literature. This definition is also referred as false
discovery rate (FDR), equivalent to 1-PPV (PPV = positive predictive value). (Benjamini
and Hochberg, 1995. Controlling the False Discovery Rate - a Practical and Powerful Ap-
proach to Multiple Testing. Journal of the Royal Statistical Society Series B-
Methodological 57, 289–300.)
(the gold standard for WMH segmentation algorithms) and the visual
ratings. To be able to correlate WMH volumes with non-volume mea-
sures (visual ratings and later age), we adjusted the WMH volume for
the total intracranial volume. This was calculated as volume of the
brain-extracted images (using FSL BET) from T1 images for Dataset 1
and FLAIR images for Dataset 2. Volumes expressed as a percentage of
the total intracranial volume (WMHr) were correlated with the visual
ratings, using Spearman's correlation.
BIANCA validation

Once optimised, BIANCA was used to segment WMH on the full
sample of Dataset 1 (85 subjects) and Dataset 2 (474 subjects). To
clinically validate our tool we verified that the volumes correlated
with the visual ratings (as for the algorithm optimization), but
also correlated with age, which is considered a good external stan-
dard (Tiehuis et al., 2008; van den Heuvel et al., 2006). In fact, age
has been related to the presence of WMHs in the literature (Gupta
et al., 2015; Simoni et al., 2012), therefore a better performance of
a method for assessing WMHs (either visual ratings or volumetric
measurement) would presumably translate well into a closer asso-
ciation with age. Volumes extracted with BIANCA (using the
optimised configuration found in the previous step), expressed as
a percentage of the total intracranial volume (WMHr), were log
transformed due to their skewed distribution (Jeerakathil et al.,
2004), and correlated with Fazekas score, ARWMC score and age
using Spearman's correlation.
Reproducibility test

We tested the reproducibility of BIANCA output on a subsample of
20 subjects from Dataset 2 that have been scanned twice (mean age
68 ± 13 years, F:M = 9:11; see Test datasets for other details). The re-
producibility was assessed comparing theWMH volume using a scatter
plot, calculating the correlation and the ICC between theWMHvolumes
obtainedwith the twomeasurements, using a Bland-Altman plot (Bland
andAltman, 1986, 2003) and calculating the percentage error in the vol-
ume estimation as the absolute difference between the two scans divid-
ed by their mean.
Comparison with existing approaches

Finally, we compared the performance of BIANCA with respect
to other existing approaches. Because most of the algorithms are
not publicly available or easily accessible, we first performed an in-
direct comparison, in which we compared the performance of
BIANCA in terms of SI (both total and divided with respect to
WMH load) and ICC with respect to the studies reviewed by
Caligiuri et al., (Caligiuri et al., 2015) dealing with WMH, or using
a similar approach (kNN), but in different applications (mainly
MS lesions).

We then performed a direct comparison on Dataset 1 between
BIANCA and three freely available algorithms: CASCADE (Damangir
et al., 2012)(ki.se/en/nvs/cascade), and the toolbox “LST: Lesion Seg-
mentation Tool” (http://www.applied-statistics.de/lst.html) (Schmidt
et al., 2012), using its two available variants: LGA (lesion growth
algorithm) and LPA (lesion prediction algorithm). The details of the
algorithms and their application to our data are described in the supple-
mentarymaterial. After finding the optimal threshold for CASCADE, and
the optimal initial threshold (kappa) value for LGA, we compared the
performance of the three algorithms (in terms of overlap and volumet-
ric agreement with themanual masks) against the optimal results from
BIANCA.

http://www.applied-statistics.de/lst.html


Fig. 2. BIANCA optimisation phase I. The plots show the values of themainmetrics used to evaluate BIANCAperformance using different values (x axis) for the different options (panels A-H. Please refer to themain text and supplementary table S1 for details
about the options). The similarity index (SI) is shown in red,withmean value (squaremarker) and standard deviation (error bars) across subjects. The intra class correlation coefficient (ICC) between the totalWMHvolume fromBIANCAoutput andmanual
segmentation is shown in blue. The black stars indicate the value(s) chosen for a specific option. Panel I shows BIANCA performance (SI) for each subject against theWMH load (WMH volume inmL extracted from themanual masks. Legend: FE= Fixed
Equal, AE=All Equal, FU= Fixed Unbalanced number of training points; NB=no border. Panel H legend: a= highWMH load training subjects, FU training points, no patch, any location for non-WMH training points, threshold= 0.9, mask applied; b=
high WMH load training subjects, FU training points, no patch, NB location for non-WMH training points, threshold = 0.9, mask applied; c = high WMH load training subjects, FU training points, patch D= 3, any location for non-WMH training points,
threshold = 0.9, mask applied; d = high WMH load training subjects, FU training points, patch D = 3, NB location for non-WMH training points, threshold = 0.9, mask applied. [1] and [2] = best options chosen. 197

L.G
riffantietal./N

euroIm
age

141
(2016)

191–205



Fig. 3. BIANCA optimisation. Examples of BIANCA output from some of the options tested (especially those not already evaluated in literature) on one subject from Dataset 1 (male,
76 years): A) and B) Multimodal MRI and masking; D) “patch” option; E) training subjects; F) localisation of training points; G) number of training points; H) combination of best
options, shown next to the manual mask. The white arrows point at segmentation errors. Please refer to main text for details about the options.
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Results

BIANCA optimization

Fig. 2 shows the SI (red) and ICC (blue) for the different tests
relative to Dataset 1 (21 manually segmented subjects) highlighting
the value chosen for each option (black star). The values of all the
measures of overlap and volumetric agreement are reported in
Supplementary Table S1. Fig. 3 shows examples of output from
some of the options tested, especially those not already evaluated
in literature.
In particular, we observed that:

A) The use of an exclusion mask always improved the perfor-
mance (higher SI and ICC). On unmasked images, use of in-
tensity information from T1 images increased the accuracy
of the segmentation. On masked images the SI from FLAIR
only or FLAIR + T1 were very similar, but the ICC was higher
using both modalities (Fig. 2.A).

B) The best thresholds were 0.95 and 0.99. They had similar SI
and ICC, but the former had lower FNR cluster, so it was
selected as best threshold (Fig. 2.B).
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C) The spatial weighting giving the best results was sw = 1
(Fig. 2.C).

D) Similar results were obtained when not using any additional
local average intensity features (no patch) or including the
average intensity using a 3D patch of D = 3 (Fig. 2.D).

E) The highest SI was obtained when using the 11 subjects with
high WMH load. Similar SI and higher ICC were obtained
using all 21 subjects (any WMH load) (Fig. 2.E). As the num-
ber of subjects used for the 3 options was not the same (21
for any WMH load, 10 low WMH load and 11 for high WMH
load), we ran an additional test using 10 subjects with any
WMH load, to have a comparable number of training sub-
jects with the other two options. The performance using 10
subjects with anyWMH load was similar to using 21 subjects
and lower than using 11 subjects with high WMH load (re-
sults not shown).

F) Preferentially using non-WMH points at the edge of the
WMH masks (surround option) gave the worst results. Sim-
ilar results were obtained using non-WMH points from any-
where outside the mask (any option) or excluding the points
close to the edge of the WMH masks (no border option)
(Fig. 2.F).

G) During threshold optimisation for each option, best results
were obtained with threshold 0.95 and 0.99 for the FE and
AE options and with threshold 0.85 and 0.9 when using the
FU option (see Supplementary Table S1, and Supplementary
Fig. S2). When comparing the options (Fig. 2.G), we used the
higher threshold for all of them. Among the optimised op-
tions, the use of a different number of training points for
WMH (2000) and non-WMH (10,000) gave the best results
(even when comparing them using the lower optimal
threshold in the threshold optimisation phase).

H) Combining the results obtained with the previous tests
(Fig. 2.H), the best results in terms of highest SI and lowest
cluster-level false positive ratio were obtained using:
FLAIR + T1 images, threshold = 0.9, exclusion mask, sw =
1, no patch (BIANCA[1]) or 3D patch D = 3 (BIANCA[2]),
highWMH load training subjects, no border option, different
number of training points for WMH (2000) and non-WMH
(10,000). Results of all the metrics for the optimised settings
are reported in Table 1.

Fig. 2.I plots BIANCA performance (SI using the best options) versus
WMH load (mL) (calculated from the manual mask in the reference
space) and shows that the performance is higher for subjects with
higher WMH load.

The second optimisation phase, performed on BIANCA[1], confirmed
that the chosen values for each option were still an optimal solution
(giving comparable or higher performance to the tested alternatives)
when varying them, and the use of FLAIR as reference space gave similar
Table 1
Results of BIANCA optimisation. Measures of overlap and volumetric agreement with the man
correlations between BIANCA volumes, manual volumes and visual ratings.

BIANCA option Overlap with manual mask Volu

SI FPR FNR FPR
clusters

FNR
clusters

DER OER

BIANCA [1] dataset 1 0.75 0.22 0.26 0.77 0.02 0.03 0.47
BIANCA [2] dataset 1 0.76 0.22 0.25 0.67 0.03 0.03 0.46
BIANCA dataset 2 0.52 0.46 0.45 0.76 0.30 0.19 0.76

⁎ Spearman's correlation (all correlations were significant at p b 0.01).
results. Details of these analyses and results are reported in the sup-
plementary material, Supplementary Fig. S3, and Supplementary
Table S2.

The reported processing time forWMH segmentation on a 2.93 GHz
Intel Xeon CPU for one subject in Dataset 1 was approximately 2 min
with option BIANCA[1] and 3 min with BIANCA[2]. For the post-
processing step of generation of the exclusion mask, the reported
processing time was approximately 10 min.

A similar approachwas used to evaluate the performance of BIANCA
onDataset 2 (on 109manually segmented subjects), and the relative re-
sults are reported in Supplementary Fig. S4 and Supplementary
Table S3. In this case a subset of options was tested, on the basis of the
results obtained in the first dataset (spatial weighting = 1, 20 subjects
with high WMH load included, patch D = 3 and no patch only), and
also because for Dataset 2 only FLAIR images were available (no multi-
modal option). The analyses led to the choice of similar settings: thresh-
old = 0.9, exclusion mask, sw = 1, no patch, high WMH load training
subjects, no border option, unbalanced number of training points for
WMH and non-WMH classes (FU option). Results for the optimised set-
tings are reported in Table 1.

In this dataset we had excluded subjects with chronic, sub-acute
or acute infarcts larger than 2 cm or other major brain alterations.
However, to further ensure that the lower performance of BIANCA
on Dataset 2 was due to the image quality rather than the presence
of vascular damage, we evaluated BIANCA performance on a subsam-
ple of 82 subjects (out of 109) that did not have any lacunar small in-
farcts visible as restricted diffusion on DWI images (exclusion of DWI
positive scans). The results with the optimal option were very simi-
lar to the ones obtained on the original sample: SI = 0.50, ICC =
0.921.

The reported processing time forWMH segmentation on a 2.93 GHz
Intel Xeon CPU for one subject in Dataset 2 with the optimised setting
was b2min (approximately 110 s). For the post-processing step of gen-
eration of the exclusion mask, the reported processing time was ap-
proximately 10 min.

The correlations between BIANCA volumes, manual volumes and vi-
sual ratings are reported in Table 1. In Dataset 1, either of the two best
options for BIANCA gave correlations of the WMHr with the visual rat-
ings that were higher than those between the WMHr derived from
themanualmasks and the visual ratings, although theywere not signif-
icantly different when testing the equality of the two correlation coeffi-
cients, with the two correlations sharing one variable in common (Lee
and Preacher, 2013; Steiger, 1980): Spearman's rho21 BIANCA[1]
WMHr – Fazekas = 0.944**, BIANCA[2] WMHr – Fazekas = 0.935**,
manual WMHr – Fazekas = 0.933**; Spearman's rho21 BIANCA[1]
WMHr – ARWMC = 0.947**, BIANCA[2] WMHr – ARWMC = 0.953**,
manual WMHr – ARWMC = 0.943** (**p b 0.01). Similarly to Dataset
1, also for Dataset 2 the correlations of the WMHr (using the best op-
tions for BIANCA) with the visual ratings were higher, although not sig-
nificantly different than the correlation between WMHr derived from
the manual masks and the visual ratings: Spearman's rho109 BIANCA
ual masks for the optimised settings on the two datasets are reported, together with the

metric correspondence

ICC BIANCA WMH vs manual
WMH⁎

WMHr vs ARWMC
total⁎

WMHr vs Fazekas
total⁎

0.990 0.961 0.947 0.944
0.990 0.953 0.953 0.935
0.919 0.861 0.785 0.782



Fig. 4. BIANCA validation. Scatter plot of theWMH distribution according to ARWMC score (A and B) and age (C and D). WMH volumes were extracted with BIANCA using the optimised
configuration(s) for each dataset, expressed as a percentage of intracranial volume, log transformed and plotted against ARWMC or age. A linear fitting is also shown. See main text for
correlation values.
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WMHr – Fazekas = 0.782**, manual WMHr – Fazekas = 0.742**;
Spearman's rho109 BIANCA WMHr – ARWMC = 0.785**, manual
WMHr – ARWMC = 0.746**, **p b 0.01.
BIANCA validation

In bothwhole datasets (85 subjects for Dataset 1 and 474 for Dataset
2) the WMHr remained highly significantly correlated with the visual
ratings (Dataset 1: Spearman's rho85 BIANCA[1] WMHr – Fazekas =
0.766**, BIANCA[2] WMHr – Fazekas = 0.772**, BIANCA[1] WMHr –
ARWMC = 0.795**, BIANCA[2] WMHr – ARWMC = 0.817**; Dataset
2: Spearman's rho474 BIANCA WMHr – Fazekas = 0.838**, BIANCA
WMHr –ARWMC=0.840**, **p b 0.01). The distribution of log(WMHr)
with respect to the ARWMC score is shown in Fig. 4 (panels A and B).

In both datasets theWMHr calculatedwith BIANCA showed a signif-
icant correlation with age (Dataset 1: Spearman's rho85 BIANCA[1]
WMHr – age = 0.367**, BIANCA[2] WMHr – age = 0.371**; Dataset 2:
Spearman's rho474 BIANCA WMHr – age = 0.659**, **p b 0.01), and
the distribution of log(WMHr) with respect to age (see Fig. 4, panels C
and D) shows a linear trend.
When comparing the results obtained with BIANCA with visual rat-
ings, in Dataset 1 the correlation of the WMHr with age was higher, al-
though not significantly different, than the correlation between the
visual ratings and age (Spearman's rho85 BIANCA[1] WMHr – age =
0.367**, BIANCA[2] WMHr – age = 0.371**, Fazekas - age = 0.352**,
ARWMC - age = 0.326**, **p b 0.01). In Dataset 2, the correlation of
the WMHr with age was significantly higher (Lee and Preacher, 2013;
Steiger, 1980), than the correlation between the visual ratings and
age: Spearman's rho474 BIANCA WMHr – age = 0.659**, Fazekas -
age = 0.574**, **p b 0.01 (test of the equality of correlation coefficients
with one variable in common: z-value 4.259, p b 0.01), ARWMC - age=
0.589**, **p b 0.01 (test of the equality of correlation coefficients with
one variable in common: z-value 3.549, p b 0.01).

Reproducibility test

The results of the reproducibility test on the 20 subjects fromDataset
2 are shown in Fig. 5. The two measurements of WMH volumes were
significantly correlated (Spearman's rho= 0.961, p b 0.001), their volu-
metric agreement was ICC = 0.996, and the average percentage error
between the WMH volumes was 10.53 ± 12.22%.



Fig. 5. Reproducibility test. Scatter plot (A) and Bland-Altman plot (B) of the WMH volumes calculated on the images obtained from 20 subject (Dataset 2) with the same scanner and
protocol at different times (within-scanner reproducibility).
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Comparison with existing approaches

The results of the comparisons are reported in Table 2. From the in-
direct comparison it can be observed that the average SI and ICC values
obtained by BIANCA are in line with the values reported in previous
studies, with a higher performance when subjects have higher WMH
load.

The direct comparison between BIANCA, LGA (Schmidt et al., 2012),
LPA and CASCADE (Damangir et al., 2012) on Dataset 1 showed that
BIANCA performance was higher than CASCADE and LGA and compara-
ble to LPA both in terms of overlap (BIANCA SI = 0.75, LGA SI = 0.69;
LPA SI = 0.76, CASCADE SI = 0.26) and of volumetric agreement
(BIANCA ICC = 0.990, LGA ICC = 0.852; LPA ICC = 0.933, CASCADE
ICC= 0.447) with themanual masks. Details are shown in Supplemen-
tary Figs. S5, S6 and Supplementary Table S4.
Discussion and conclusion

We present BIANCA, a new automated algorithm for the segmenta-
tion of white matter hyperintensities of presumed vascular origin that
we optimised and validated on two different datasets representative
of clinical populations in whom the clinical importance of WMH is rec-
ognized: a “predominantly neurodegenerative” cohort including people
with, or at risk of, AD and a “predominantly vascular” cohort including
people with, or at risk of, vascular cognitive impairment.

The two datasets had different MRI protocols and included both
research sequences as well as diagnostic standard MRI sequences
commonly used in routine clinical practice.

The performance was evaluated by means of comparison with man-
ually segmentedWMHmasks in terms of overlap and volumetric agree-
ment. The optimal configuration used intensity features from FLAIR and
T1-weighted images with no local averaging (or only a small amount)
and normalised MNI spatial coordinates. The best options for the train-
ing dataset were the use of voxels from subjects with highWMH load, a
different number of training points for WMH and non-WMH classes,
and avoiding using the voxels near the lesions' edges as non-WMH
training points (the “no border” option). The results were further
improved in the post-processing step by using a threshold of 0.9
and applying an exclusion mask for grey matter and subcortical
structures.

As shown in previous studies (Anbeek et al., 2004; Steenwijk et al.,
2013) the use of more than one MRI modality increased the accuracy
of the classification. However, BIANCA is very flexible, as it can use as
many modalities as available, or useful, for a specific dataset, showing
good performance both with FLAIR only and with FLAIR plus T1. Other
images, not tested in this study, can also be included (e.g. like proton
density, diffusion, or tissue priors). All the modalities need to be regis-
tered to a consistent reference MRI modality, but BIANCA is flexible in
terms of which modality to use as reference, unlike other available
tools, which have a predefined reference space (FLAIR for CASCADE,
T1w for LGA). In this study we decided to use T1 images as reference
for the main analyses on Dataset 1, to avoid down-sampling it when
registered to FLAIR space. However, we repeated the analyses with a
sub-set of options also on data registered in FLAIR space (which has
the greatest intensity contrast for WMH) and obtained very similar re-
sults (see Supplementary material), suggesting that the choice of the
reference modality does not have a big impact on the results and the
user can choose the reference modality depending on the aim of the
study and on the resolution of the data.

As demonstrated in previous studies (Anbeek et al., 2004), informa-
tion about the coordinates of a voxel was useful, as in some regions of
the brain WMH are more likely to occur than in others. From our tests,
there was no need of more focal weighting for spatial coordinates
(optimal sw = 1). A higher sw would probably be more beneficial in
populations with a more specific spatial location of the lesions.

BIANCA also offers the possibility to include additional intensity fea-
tures, calculating a local average within a kernel (patch) of size D. The
inclusion of intensity information about a small neighbourhood of
each voxel has been proposed before (Dyrby et al., 2008; Lao et al.,
2008), but not tested in a kNN-based algorithm. With BIANCA, the
patch can be applied in 3D or 2D, with the latter option being useful in
case of highly anisotropic voxels, like in our second dataset. We obtain-
ed the best results with no patch or local averaging within a small ker-
nel, however, we did not test the use of multiple patch sizes, an option
that is also available with BIANCA.

Regarding the selection of subjects to be included in the training
dataset, we reached a good performance by using only 10 subjects for



Table 2
Comparison with existing approaches.

Method/Paper Type of
methoda

Image modality Population/Study ICC SI (total and for different WMH loadb)

TOTAL b5
mL

5–10
mL

10–15
mL

N15
mL

Indirect comparison
BIANCA S multimodal Neurodegenerative (option 1) 0.99 0.75 0.69 0.66 0.68 0.80
BIANCA S multimodal Neurodegenerative (option 2) 0.99 0.76 0.70 0.68 0.70 0.80
BIANCA S multimodal Vascular 0.93 0.52 0.41 0.53 0.63 0.68
(Steenwijk et al., 2013) S 3DT1 and 3DFLAIR MS 0.92 0.75 0.65 0.72 0.73 0.81
(Steenwijk et al., 2013) S 3DT1 and 3DFLAIR Hypertension 0.96 0.84 0.78 0.92 0.79 0.91
(Anbeek et al., 2004) S T1, IR, PD, T2, FLAIR arterial vascular disease / 0.80 0.50 0.75 0.85
(Dyrby et al., 2008) S T1, T2, FLAIR elderly subjects (LADIS) / 0.56 0.45 0.62 0.65
(Ji et al., 2013) S FLAIR WM disease / 0.87
(Yoo et al., 2014) S FLAIR Longitudinal study ageing and dementia 0.98 0.76 0.59 0.73 0.85
(Simões et al., 2013) S FLAIR HC, MCI / 0.68 0.51 0.70
(Herskovits et al., 2008) S T1, T2, spin-density, FLAIR Diabetes (ACCORD-MIND study) / 0.60
(Beare et al., 2009) S T1, T2, FLAIR HC 0.9 0.58 0.47 0.55 0.56
(Schmidt et al., 2012) U 3D GRE, T1 and FLAIR MS / 0.75 0.67 0.76 0.82 0.85
(Khayati et al., 2008) U FLAIR MS / 0.75 0.73 0.75 0.81
(Sajja et al., 2006) U PD and T2-FLAIR MS / 0.78 0.67 0.84
(Admiraal-Behloul et al., 2005) U PD, T2 and FLAIR PROSPER - risk for/pre-exhisting vasc

disease
0.98 0.75 0.70 0.75 0.82

(Jeon et al., 2011) U SVD / 0.90
(Shi et al., 2013) U T, FLAIR and DWI Acute Infarction 0.99 0.84
(Khademi et al., 2012) U FLAIR subject with lesions / 0.83
(Gibson et al., 2010) U FLAIR WM disease / 0.81 0.75 0.83
(Yang et al., 2010) U Mild/moderate dementia / 0.81
(Wang et al., 2012) U T1, T2 and FLAIR Aging cohort (lesions and infarcts) / 0.77 0.70 0.80 0.83
(de Boer et al., 2009) U T1, PD, and FLAIR Rotterdam study - healthy controls / 0.72
(Samaille et al., 2012) U T1 and FLAIR MCI, CADASIL 0.96 0.72
(Seghier et al., 2008) U T1 HC, stroke / 0.64
(Ong et al., 2012) U T1 and FLAIR HC / 0.47 0.36 0.56 0.71
(Kawata et al., 2010) SA T1 and FLAIR SVD / 0.77

Direct comparison
BIANCA [1] (T1w space, threshold = 0.9) S multimodal (tested onT1 and FLAIR) Neurodegenerative dataset 1) 0.990 0.75 0.69 0.66 0.68 0.80
BIANCA [1] (FLAIR space, threshold = 0.95) S multimodal (tested onT1 and FLAIR) Neurodegenerative dataset 1) 0.989 0.79 0.75 0.71 0.73 0.82
LGA (kappa 0.2) U T1 and FLAIR Neurodegenerative dataset 1) 0.852 0.69 0.67 0.69 0.60 0.72
LPA U FLAIR Neurodegenerative dataset 1) 0.933 0.76 0.71 0.73 0.53 0.82
CASCADE (threshold 0.8) U T1, PD, and FLAIR (tested on T1

and FLAIR)
Neurodegenerative dataset 1) 0.447 0.26 0.07 0.16 0.20 0.33

a Legend: S = Supervised; U = Unsupervised; SA = Semi-Automated;
b Approximate definitions ofWMH load intervals. For specific interval definitions, please refer to the single studies. For the direct comparisonWMH load intervals are relative to the volume of

the manual mask in the reference space (T1w).
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Dataset 1 and 20 subjects for Dataset 2, less than or in linewith previous
studies (Anbeek et al., 2004; Steenwijk et al., 2013). In particular, the
best results were obtained when using images from subjects with
high WMH load, probably because the features, especially intensities,
of the WMH were less ambiguous and the number of WMH voxels
was more plentiful. This result is an advantage during the training
phase as subjects with high WMH load are also easier to manually seg-
ment. Furthermore, a better performance was obtained using only 11
training subjects with high WMH load (in Dataset 1) versus using 21
subjects with varying WMH loads (and also using the same number of
subjects with varying WMH loads, results not shown).

Regarding the number of voxels included in the training dataset, in
the algorithm proposed by Anbeek and colleagues (Anbeek et al.,
2004) a fixed number (20%) of the training voxels was randomly select-
ed for inclusion in the learning set.With BIANCA a substantial improve-
ment in the segmentation's accuracy was achieved by introducing the
possibility to change the number of training voxels and use an unbal-
anced number of samples from the two classes (FU option). This is prob-
ably due to the fact that non-WMH voxels are more heterogeneous, as
they can belong to any tissue type. Therefore, using more non-WMH
compared to WMH voxels gives a better representation of the
characteristics of the non-WMH class. In this study we did not change
the number of training points for the FE and FU options (2000 voxels
for the WMH class for each subject included in the training dataset,
and 2000 or 10,000 for the non-WMH class for the FE and FU options re-
spectively), focusing on testing the impact of the novel option of using
an unbalanced number of points for the two classes. Given the increased
performanceusing this option,we also tested the effect of increasing the
total number of points either maintaining the same ratio between the
two classes (1:5) or increasing only the number of training points for
the non-WMH class (up to 1:29 ratio) (see Supplementary material
for details). In both cases, after threshold optimisation, the results
showed similar performance to the optimal settings found with lower
number of training points. Although further tests using different combi-
nations of number of points and ratio between the two classes could be
performed as part of the optimisation phases, these results suggest that
the BIANCA segmentation is already accurate when using a modest
number of training points and does not benefit much from increasing
this number.

Another important improvement in the algorithm was the possibil-
ity to choose the location of non-WMH training voxels. In fact, using the
non-WMH voxels near to the lesion's edge was observed to cause a
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decrease in the performance (“surround” option), while excluding them
was found to be beneficial (“noborder” option). This is not surprising, as
manual segmentation is variable within and between operators
(Mantyla et al., 1997), especially at the edge of WMHs, as they typically
don't have sharp boundaries. In our study, this could also be due to the
fact that FLAIR images were registered to T1, possibly introducing inter-
polation errors at the lesion's edge. However, the surround option gave
the worst performance also on Dataset 2 (on FLAIR images only) and
when repeating the analyses on Dataset 1 in FLAIR space (see supple-
mentary material for details), suggesting that avoiding using voxels at
the lesions' edges as training voxels is generally beneficial.

In the post-processing step, a threshold of 0.9 was found to be opti-
mal for both datasets tested in this study. This is quite different from
other studies (Anbeek et al., 2004; Steenwijk et al., 2013), but it needs
to be kept inmind that the threshold depends on the number of nearest
neighbours used in the algorithm (k) and on the number of training
points used. Also, an advantage of the k-NN approach (Anbeek et al.,
2004) is that obtaining a WMH probability map rather than a binary
map allows the threshold to be changed depending on the purpose of
the segmentation. In this study, wewanted to minimize false negatives,
but the user can decide on their own threshold based on the acceptable
ratio between false positives and false negatives for a specific study.

Finally, the use of a mask (automatically generated) excluding grey
matter, cerebellum and subcortical structures was found to be an effec-
tivemethod for removing false positives, as typically FLAIR images pres-
ent hyperintensities in cortical areas and flow artefacts in and around
the 4th ventricle. The novel CSF-based masking used here crucially en-
abled us to work with the highly anisotropic voxels of the Dataset 2,
which is not unusual in clinical imaging in our experience, and in ab-
sence of a T1 weighted image.

The fact thatwe obtainedmore than one optimal settings of options/
parameters (both in the first and second optimisation phase) is due to
the great variation in image acquisitions and the complexity of lesion
segmentation and its intended use. We believe that the parameters
should be adapted to each dataset, either using a quantitative method
like the two-phase optimisation procedure above or by careful qualita-
tive assessment. Due to the large range of types of image acquisitions
that are employed in clinical practice and research studies it is highly
unlikely that a single set of parameters will give a good performance
over all datasets and therefore we explicitly aim to optimise these for
each dataset.

For any one particular dataset, although the primarymetrics used to
evaluate BIANCAperformance (SI and ICC) showed good agreement (i.e.
usually the best optionwas the onewith higher SI and ICC), this was not
always the case, asmore than one set of options can give the best perfor-
mance according to differentmetrics. Moreover, the results are always a
balance between FPR and FNR. In this study we gave higher importance
to having a lowcluster-level FNR, aswe aremore interested in achieving
high sensitivity to lesion detection, but the user can decide which
metric(s) to prioritise to select the best set of options for a specific study.

With the optimised settings described before, BIANCA showed an
average SI of 0.76, which is regarded as very good (Anbeek et al.,
2004; Bartko, 1991; Caligiuri et al., 2015) and is in line with previous
studies using kNN (Anbeek et al., 2004; Steenwijk et al., 2013) and
other methods (see Table 2). Also, as shown in Fig. 2.I., and Fig. S4.I,
the higher performance (SI) achieved in subjects with higher WMH
load is in line with the literature (see Table 2 and (Dyrby et al., 2008;
Wack et al., 2012)). The comparison of differentmethods is not straight-
forward, because it depends on the pulse-sequence, the reference seg-
mentation, the pathology, the heterogeneity of the sample and the
lesion burden (Steenwijk et al., 2013). For this reason we also directly
tested three freely available tools (CASCADE, (Damangir et al., 2012),
LGA (Schmidt et al., 2012) and LPA) on our data. The results showed
that BIANCA outperformed CASCADE and LGA both in terms of overlap
and volumetric agreement with themanual masks, while showed com-
parable performance with respect to LPA (see Table 2, Supplementary
Table S4, Figs. S5 and S6). CASCADE gave the worst performance on
our dataset, but the substantial amount of the false positive WMH
were localised in the cortex and in the subcortical structures, which in
our approach are masked out with the automatic exclusion mask. In
fact, when applying our exclusion mask to the output from CASCADE,
we observed an increase in the performance (SI from 0.26 to 0.33 and
ICC from 0.447 to 0.633, see Supplementary Table S4). Although a com-
prehensive comparison with other methods would require a separate
study, these results suggest that BIANCA is a promising and competitive
tool for WMH segmentation.

In the second dataset, the average SI was around 0.52, probably
mainly due to the use of non-isotropic FLAIR images, but also to the het-
erogeneity in the sample in terms of pathology and WMH load (101
subjects from a population-based study, with age range 20–102 years,
ARWMC score range 0–24). Although further evaluations are undoubt-
edly needed, the additional results on the subset of subjects that did not
have any lacunar small infarcts visible as restricted diffusion onDWI im-
ages (DWI positive), suggest that the performance of BIANCA is more
related to the quality of the data than to clinical features of the cohort.

The correlations of the WMHr with the visual ratings were slightly
higher, than the correlation between WMHr derived from the manual
masks and the visual ratings, making BIANCA an acceptable substitute
for the manual segmentation of WMHs.

The second aim of our study was to validate BIANCA on two clinical
cohorts of patients. In both datasets the WMHr were highly correlated
with the visual ratings. Moreover, the correlations of the WMHr with
age were comparable or significantly higher than those between the vi-
sual ratings and age, showing that BIANCA is also a good substitute for
qualitative evaluation of WMHs, which are still frequently used but
are time consuming and operator-dependent.

We tested the reproducibility of BIANCA within-scanner, to further
evaluate the robustness of our method. We obtained good agreement
between the volumes extracted from the two scans (Spearman's
rho = 0.961, ICC = 0.996), suggesting that BIANCA can be a promising
tool for further applications on more datasets.

The primary focus of the present study was to optimise BIANCA for
use in cross-sectional studies. In fact, there is an increasing number of
important large cross-sectional homogeneous studies that urgently
need an automated tool like BIANCA. For example, studies like the
OXVASC study, Dataset 2 in this study (Rothwell et al., 2004), theWhite-
hall study (Filippini et al., 2014), and the UK Biobank study (http://
imaging.ukbiobank.ac.uk), which focus on ageing and diseased popula-
tions for potential biomarkers and understanding of ageing/disease pro-
cesses, would clearly benefit from an automated method for the
identification and quantification ofWMH.With the size of such datasets
becoming larger and larger (up to 100,000 subjects for UKBiobank), it is
increasingly infeasible to perform segmentation manually and this
makes the development and availability of automated tools urgently
needed. BIANCA is currently not optimised for application on longitudi-
nal data. An algorithm optimised for working on longitudinal data
would require a different approach, which will be the objective for fu-
ture studies.

A limitation of our method is that BIANCA is not completely auto-
matic, as it requires a training dataset of manually segmented images
when applied to data fromother scanners or other acquisition protocols.
The manual-labelling step is time consuming and requires expertise in
WMH identification, but is necessary as the characteristics of FLAIR
and T1 images varies among scanners and pulse-sequences. However,
we demonstrated that we were able to reach good performance with
only 10–20 subjects. This could still represent a disadvantage for small
studies, but a relatively negligible effort in large cross-sectional studies
with hundreds of subjects, as the ones mentioned above. We showed
that higher accuracy is achieved when using subjects with high WMH
load as training subjects, which are also the easiest to manually seg-
ment, as the hyperintensities are more visible. It will be important to
test in future whether BIANCA can be trained on one dataset and used

http://imaging.ukbiobank.ac.uk
http://imaging.ukbiobank.ac.uk
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in another dataset acquired with the same protocol, further reducing
manual intervention. This would also make BIANCA applicable to
multi-centric studies.

Another limitation is the necessity to use an exclusion mask of grey
matter, cerebellumand subcortical structures to decrease the amount of
false positives, as typically FLAIR images present hyperintensities in cor-
tical areas and flow artefacts around the 4th ventricle. Therefore
BIANCA is currently not able to detect cortical and cerebellar abnormal-
ities. In this study we excluded subjects with large vascular lesions or
with neoplastic, developmental or inflammatory abnormalities, in
order to specifically focus onwhitematter hyperintensities of presumed
vascular origin (see Test datasets). Future studies will focus on the seg-
mentation of other types of lesions, for example multiple sclerosis
lesions.

As a limitation of this specific study, we did not optimise the value of
k, but selected a value of 40 based on the literature (Steenwijk et al.,
2013). However, Steenwijk and colleagues (Steenwijk et al., 2013) test-
ed other k values (20, 80, 160) and showed that k in the current range is
suitable for this type of segmentation problem, without the need to in-
crease k and, consequently, the processing time. Moreover, we did not
test all the possible configurations of the options available in BIANCA,
given the very large number of possibilities. Instead, we aimed to
show the effect of varying the values of the single options on the perfor-
mance and to suggest a two-phase approach that can be used to opti-
mise BIANCA for any dataset, as the flexibility of the algorithm allows
the user to test any possible combination.

To conclude, in this workwe optimised and validated BIANCA, an al-
gorithm for WMHs segmentation that is:

- Fully automated, only requiring time and expertise to manually seg-
ment a small number of images, with well identifiable WMHs;

- Multimodal or capable of working with a single modality (from ei-
ther 2D or 3D acquisitions);

- Flexible: allows the user to changemany options, not only related to
the MRI modalities;

- Generalizable to data acquired at different times fromdifferent scan-
ners, as we tested it on two very different datasets in terms of scan-
ner, sequences, and subjects' pathology;

- Robust: it shows good reproducibility within-scanner;
- Computationally lean (b3 min CPU time for WMH segmentation);
- Competitive with respect to existing methods: it showed similar or
higher performance compared to other approaches already pro-
posed in the literature.

- Freely available soon to be released (beta version) as part of FSL
(FMRIB software FSL)

Our results show that the measure of WMH load (WMH volume)
extractedwith BIANCA is a reliable substitute formanualmeasurements
of WMH on the tested datasets. This suggests that BIANCA can be a
promising tool for large cross-sectional cohort studies, and routine MR
diagnostic scans, as it showed good correlation with visual ratings and
a correlation with age that was comparable to or higher than visual rat-
ings. Moreover, the availability of localization-specific measurement of
WMH (WMH maps) provides the possibility to perform more detailed
evaluations of WMH or to use theWMHmaps as a voxel-wise nuisance
variable, to disentangle the contribution of WMH from other MRI
abnormalities.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2016.07.018.
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