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Abstract

We derive some Moore-like bounds for multipartite digraphs, which extend those of bipartite digraphs,
under the assumption that every vertex of a given partite set is adjacent to the same number δ of vertices
in each of the other independent sets. We determine when a multipartite Moore digraph is weakly distance-
regular. Within this framework, some necessary conditions for the existence of a r-partite Moore digraph
with interpartite outdegree δ > 1 and diameter k = 2m are obtained. In the case δ = 1, which corresponds
to almost Moore digraphs, a necessary condition in terms of the permutation cycle structure is derived.
Additionally, we present some constructions of dense multipartite digraphs of diameter two that are vertex-
transitive.
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1. Introduction

A fundamental area in the study of graphs is concerned with the question of how ‘large’
a directed graph (digraph) can be in terms of the number of arcs and/or vertices, given some
constraints. Dense digraphs are interesting because of their possible application to model good
interconnection networks, and also by themselves because high density usually implies a large
amount of structure. One of the prominent problems in this area is the well known degree/diameter
problem which is to determine, for each d and k, the largest order nd,k of a digraph of maximum
outdegree d and diameter at most k. While this problem is in general wide open and considered
to be very difficult, one possible way forward is to consider this problem for restricted classes
of digraphs. For example, the first and second author and their collaborators [14,13] previously
restricted their attention to bipartite digraphs. In this paper, we will consider the degree/diameter
problem for multipartite digraphs.

For general digraphs, the optimum situation would be to have digraphs with order attaining
the so-called Moore bound

M(d, k) :=1 + d + · · · + dk = dk+1 − 1

d − 1
(d > 1) (1)

but unfortunately such digraphs are very scarce. In fact they only exist for the trivial values d = 1
(the directed cycle C∗

k+1) or k = 1 (the complete symmetric digraph K∗
d+1); see [22,6].

1.1. Terminology and notation

Let G = (V , E) denote a digraph with vertex set V , arc set E, and distance function dist(·, ·).
If U ⊂ V , the distance from v ∈ V to the set U is defined as expected, that is, dist(v, U) :=
minu∈U dist(v, u). Let G have diameter k. Then, for a given integer l, 0 � l � k, and a vertex
u, we denote by �+

l (u) and N+
l (u) the sets of vertices at distance l and � l, respectively, from

u. Similarly, �−
l (u) and N−

l (u) stand for the sets of vertices at distance l and � l, respectively,
to u. In particular, �+(u) :=�+

1 (u) and �−(u) :=�−
1 (u) are the sets of outneighbours and in-

neighbours of u, and their cardinalities are the outdegree δ+(u) and indegree δ−(u) of vertex u,
respectively.

A digraph G = (V , E) is r-partite (or, generically, multipartite) if, for some integer r > 1, its
vertex set admits a partition into r parts, V = V1 ∪ V2 ∪ · · · ∪ Vr , such that every arc (u, v) ∈ E

is of the form u ∈ Vi and v ∈ Vj with 1 � i, j � r and j /= i. In other words, there are no
arcs between vertices within the same (independent or partite) set Vi , 1 � i � r . For symmetry
reasons, we restrict our study to some particular classes of multipartite digraphs, which we
call equipartite, equiregular and equioutregular. An r-partite digraph on n vertices is said to be
(r-)equipartite if its independent sets have all equal cardinality (n/r). A multipartite digraph is
called (δ-)equiregular if it is d-regular, with degree d = (r − 1)δ for some δ � 1, and each
vertex u ∈ Vi has exactly δ inneighbours and outneighbours in each of the parts Vj , j /= i.
Moreover, if this regularity condition holds only for the outdegrees, we say that G is (δ-)equiout-
regular.

Note that, since any r-partite digraph G of order n is also trivially r ′-partite for any r ′ � r ,
where r ′ � n, we can consider only the values 2 � r � χ , where χ is the chromatic number of
the underlying graph U(G). But, if U(G) /∈ {Kn, C2p+1} has maximum degree � then χ � �
(Brooks’ theorem, see [7]). Thus, if our digraphs are d-regular, it suffices to consider the cases
r � 2d.
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1.2. Local multiplicities and walks

Let G be an (undirected) graph with adjacency matrix A and eigenvalues λ0 > λ1 > · · · > λd .
For each eigenvalue λi , 0 � i � d , let Ei denote the so-called (principal) idempotent of A; that
is, the matrix which represents the orthogonal projection onto the eigenspace Ei associated to λi .
Accordingly, such matrices satisfy EiEj = δij Ei , and p(A) =∑d

i=0 p(λi)Ei , for any polynomial

p ∈ R[x]. In particular, taking p = xl , the lth power of A can be expressed as a linear combination

of the idempotents Ei : A
l =∑d

i=0 λl
iEi , and hence the number of l-walks between two vertices

u and v of G is given by

(A
l
)uv =

d∑
i=0

λl
i(Ei )uv. (2)

The numbers (Ei )uv are called in [12] the crossed (uv-)local multiplicities of λi , and are denoted
by muv(λi). In the case u = v it turns out that muu(λi), called simply the (u-)local multiplicities,
play a role, in a local context, similar to the role of the standard multiplicities m(λi) of the
eigenvalues. In fact, if G is a distance-regular graph on n vertices with distance polynomials pk ,
0 � k � d, then the uv-local multiplicities can be computed using the formulas

muv(λi) = m(λi)

n

pk(λi)

pk(λ0)
, (3)

provided that dist(u, v) = k; see [11]. In particular, for k = 0 the above gives muu(λi) = m(λi)/n

for any eigenvalue λi and vertex u. Then, by (2), the graph has the property that the number of
closed l-walks rooted at a given vertex u does not depend on the chosen vertex. Graphs satisfying
such a property have been called walk regular [19] or spectrally regular [12].

2. Some Moore-like bounds

The main result of this section is to derive some Moore-like bounds for multipartite digraphs,
and compare them with each other. Note first that, if G is an equipartite digraph with maximum
outdegree d and r independent sets, a straightforward upper bound on its number of vertices is
given by the following result.

Proposition 2.1. Let G be an r-equipartite digraph with maximum outdegree d and diameter k.
Then

n � Mr(d, k) := r

⌊
M(d, k)

r

⌋
, (4)

where M(d, k) is the (ordinary) Moore bound (1), and �·� denotes integer part.

Thus, depending on the divisibility of M(d, k) by r , the difference between Mr(d, k) and
M(d, k) can be (obviously) as much as r − 1.

In spite of its simplicity, the above bound has the advantatge of applying to any combination
of values of d, k and r . However, to proceed further with our study, we next consider the more
restrictive case r � d + 1, and assume that our digraphs are equioutregular. Then, in this case,
each vertex of a given partite set is adjacent to vertices of all the other partite sets. In order to
avoid trivial cases, henceforth we will not consider the case of degree d = 1 (directed cycles).
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Proposition 2.2. Let G be a δ-equioutregular r-partite digraph with outdegree d = δ(r − 1) > 1
and diameter k. Then its number of vertices n satisfies the following Moore-like bounds:

(a) For odd diameter, k = 2m + 1,

n � Mr(d, k) :=M(d, k) + (r − 1)M(−δ, k) = dk+1 − 1

d − 1
− (r − 1)

δk+1 − 1

δ + 1
. (5)

(b) For even diameter, k = 2m,

n � Mr(d, k) :=M(d, k) − M(−δ, k) = dk+1 − 1

d − 1
− δk+1 + 1

δ + 1
. (6)

Proof. The complete graph Kr , with vertices 1, 2, . . . , r and adjacency matrix B = J − I, is triv-
ially distance-regular with distance polynomials p0 = 1 and p1 = x. Then any vertex i ∈ V (Kr)

has local eigenvalues λ0 = r − 1 and λ1 = −1; that is, those of Kr . From (3), the local multiplic-
ities of the eigenvalues are mi(λ0) = 1/r and mi(λ1) = (r − 1)/r . Hence, the number of closed
(i, i)-walks of length l � 0 is

(B
l
)ii = 1

r
tr B

l = 1

r
[(r − 1)l + (r − 1)(−1)l].

Thus, for any given vertex u ∈ Vi , 1 � i � r , the number of vertices of the same partite set Vi

which are at distance � k from u; that is, |N+
k (u) ∩ Vi |, is upper bounded by

σk(i, i) :=
k∑

l=0

δl(B
l
)ii = 1

r

{
k∑

l=0

δl[(r − 1)l + (r − 1)(−1)l]
}

= 1

r

{
k∑

l=0

dl + (r − 1)

k∑
l=0

(−δ)l

}
. (7)

Moreover, if i, j are adjacent vertices of Kr , the (crossed) ij -local multiplicities of the eigenvalues
λ0 = r − 1 and λ1 = −1 are given by mij (λ0) = 1/r and mij (λ1) = −1/r (to see this, use again
(3) with k = dist(i, j) = 1). Hence, the number of (i, j)-walks of length l � 0 is now

(B
l
)ij = 1

r
[(r − 1)l − (−1)l],

and the number of vertices of the partite set Vj which are at distance � k from u ∈ Vi ; that is,
|N+

k (u) ∩ Vj |, is bounded above by

σk(i, j) :=
k∑

l=0

δl(B
l
)ij = 1

r

{
k∑

l=0

δl[(r − 1)l − (−1)l]
}

= 1

r

{
k∑

l=0

dl −
k∑

l=0

(−δ)l

}
. (8)

Let us now consider the behaviour of the second terms in (7) and (8) depending upon the parity
of k:

k∑
l=0

(−δ)l = (−δ)k+1 − 1

−δ − 1
=




−δk+1 − 1

δ + 1
if k = 2m + 1,

δk+1 + 1

δ + 1
if k = 2m.
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Assume now that k = 2m + 1 for some integer m � 0. Then, from the above, we see that σk(i, i) �
σk(i, j) and hence the order of G must satisfy n � rσk(i, i) which yields (a). Similarly, if k = 2m

for some integer m � 1, we have σk(i, j) � σk(i, i) and (b) comes from n � rσk(i, j). �

Note that the same bounds are obtained when, instead of assuming the regularity condition
δ = d/(r − 1), we only suppose that, for every 1 � i, j � r , each vertex u ∈ Vi has at most δ

outneighbours in Vj (in other words, every vertex has maximum ‘interpartite’ outdegree δ).
Note also that the above upper bounds correspond to (hypothetical) equipartite digraphs. Thus,

assuming that r � d + 1 and for degrees of the form d = (r − 1)δ, it makes sense to compare
Mr(d, k) with Mr(d, k). As shown in the following result, for such values, we can always use
the second bound.

Lemma 2.3. For any given positive integers r, d and k, with 1 < r � d + 1 and d = (r − 1)δ,

we always have Mr(d, k) � Mr(d, k), and equality occurs if and only if one of the following
holds:

(i) r = d + 1 (δ = 1);
(ii) k = 1 and d = 2(r − 1) (δ = 2);

(iii) k = 2m and r > M(−δ, k).

Proof. In the extreme case r = d + 1 (δ = 1), we have that

Md+1(d, k) = Md+1(d, k) =
{
M(d, k) if k = 2m + 1,

M(d, k) − 1 if k = 2m,

so proving (i).
To study the general case r < d + 1 (δ > 1), note first that, since Mr(d, k) � M(d, k) − (r −

1), we always have

Mr(d, k) − Mr(d, k) �




(r − 1)

(
δk+1 − 1

δ + 1
− 1

)
if k = 2m + 1,

δk+1 + 1

δ + 1
− (r − 1) if k = 2m.

Then, for diameter k = 2m + 1, it follows that Mr(d, k) � Mr(d, k) with equality if and only
if δk+1 − 1 = δ + 1; that is, δ(δk − 1) = 2, with the unique solution k = 1 and δ = 2 (d =
2(r − 1)). This proves (ii). The trivial exception corresponds to the complete symmetric digraph
K∗2

r with two parallel arcs between each (ordered) pair of vertices. For diameter k = 2m, the
above also gives that Mr(d, k) < Mr(d, k), provided that r � M(−δ, k) = (δk+1 + 1)/(δ + 1).
Otherwise, if the number of independent vertex sets r is big enough, r > M(−δ, 2m), we
have that Mr(d, 2m) = Mr(d, 2m). This follows from the fact that, since Mr(d, 2m) is a mul-
tiple of r , we get M(d, 2m) ≡ M(−δ, 2m) (mod r) which, together with r > M(−δ, 2m),
implies that �M(d, 2m)/r� = Mr(d, 2m)/r . (For example, if k = δ = 2 then Mr(2r − 2, 2) =
Mr(2r − 2, 2) for any r � 4.) This proves (iii) and completes the proof of the lemma. �

Note that when r = d + 1, case (i), the obtained bound coincides with the standard Moore
bound (1) if the diameter is odd, whereas for even diameter we obtain the bound for the so-
called almost Moore digraphs [3,20,17]. This is because the value r = d + 1 gives (almost) no
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restriction in the deduction of the upper bound for the number of vertices. Two other particular
cases of Proposition 2.2 which are worth mentioning are the following:

(iv) In the bipartite case, r = 2, we get δ = d and the bounds of the above proposition become

M2(d, k) = dk+1 − 1

d − 1
− dk+1 − 1

d + 1
= 2

dk+1 − 1

d2 − 1
(9)

when the diameter is odd, and

M2(d, k) := dk+1 − 1

d − 1
− dk+1 + 1

d + 1
= 2

dk+1 − d

d2 − 1
(10)

for even diameter. This case was studied by the first author and Yebra in [14], where they
proved that the above Moore-like bounds can be (and in fact are) attained only when 2 �
k � 4.

(v) When k = 2 we get

Mr(d, 2) =
(

1 − 1

(r − 1)2

)
d2 + r

r − 1
d = rδ[(r − 2)δ + 1]. (11)

In particular, when r attains its maximum value r = d + 1, case (i), we get Md+1(d, 2) =
d(d + 1), which, as we will see later, is attained by the Kautz digraphs.

3. Multipartite Moore digraphs: Weakly distance-regularity

Let G be an r-partite δ-equioutregular digraph with outdegree d = δ(r − 1) and diameter k.
When its order n attains the Moore-like bound Mr(d, k), given by Proposition 2.2, G is referred
to as an r-partite Moore digraph (or, generically, multipartite Moore digraph). From the proof of
Proposition 2.2, the following ‘characterization’ is derived.

Lemma 3.1. Let G be an r-partite δ-equioutregular digraph with diameter k. When k is odd
[respectively, k is even], G is a multipartite Moore digraph if and only if for any two vertices
u and v, belonging to the same partite set [respectively, different partite set], there is a unique
walk from u to v of length � k.

Thus, in a multipartite Moore digraph with diameter k = 2m + 1 [respectively, k = 2m], there
is an invariance of the number of walks between vertices at the same distance, whenever the
extra condition of belonging to the same partite set [respectively, different partite set] is added.
Such an invariance, which is fulfilled by other Moore-type digraphs (see [9]), leads to the def-
inition of weakly distance-regularity, a concept introduced by Comellas et al. [8]. Formally,
a digraph G of diameter k is weakly distance-regular if, for each non-negative integer l � k,
the number a

(l)
uv of walks of length l from vertex u to vertex v depends only on their distance

dist(u, v) = i
(
a

(l)
i :=a

(l)
uv

)
. This is equivalent to saying that the distance matrix Ai is a polyno-

mial of degree i in the adjacency matrix A; that is, Ai = pi(A), for each i = 0, 1, . . . , k, where
pi ∈ Q[x] (see [8]). Such polynomials {pi}ki=0 are referred to as the distance polynomials of G.
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Here we will determine when an r-partite Moore digraph is weakly distance-regular. We will
restrict our attention to the case r > 2, since Moore bipartite digraphs (r = 2) are already known
to be weakly distance-regular (see [9]).

Proposition 3.2. Let G be an r-partite Moore digraph, r > 2, with interpartite outdegree δ and
diameter k. Then G is weakly distance-regular if and only if one of the following conditions holds:

(i) k = 2m + 1 and δ = 1 (G is a Moore digraph);
(ii) k = 2m and each vertex of G is contained in exactly ε := (δk+1 + 1)/(δ + 1) cycles of

length k. In such a case, the distance polynomials of G are pi = xi, i = 0, 1, . . . , k − 1,

and pk = xk − ε.

Proof. Let G = (V1 ∪ V2 ∪ · · · ∪ Vr, E) be an r-partite Moore digraph with diameter k and let
u ∈ Vi be a vertex of G. We can partition the vertex set V (G) according to the distance from u; that
is, V (G) =⋃k

l=0 �+
l (u). Since r > 2, �+

l (u) contains at least one vertex of each (independent)
set Vj , for each 1 � j � r and 2 � l � k. So, if we assume that G is weakly distance-regular then,
applying Lemma 3.1, we deduce that there is a unique walk of length � k from u to any vertex
v at distance dist(u, v) � 2. Moreover, there is also a unique walk of length � k − 1 from u to
any vertex v ∈ �+

0 (v) ∪ �+
1 (v). Thus, for k = 2m + 1 [respectively, k = 2m] it only remains to

determine the number a
(k)
uv = a

(k)
1 [respectively, a(k)

uu = a
(k)
0 ] of u → v walks [respectively, u → u

(closed) walks] of length k, where dist(u, v) = 1 [respectively, u = v]. Now, let us distinguish
two cases according to the parity of the diameter k.

For k = 2m, since each vertex v /= u is reached from u in exactly one way in a number of steps
� k, the number of arcs incident from vertices of �+

k−1(u) to u coincides with the ‘defect’ of G;

that is, a
(k)
0 = M(δ(r − 1), k) − Mr(δ(r − 1), k) = (δk+1 + 1)/(δ + 1) (the ‘defect’ measures

how far is the order of the digraph from the Moore bound). Note that a
(k)
0 represents the number

of cycles of length k through any given vertex, since there are no cycles of length < k.
Analogously, for k = 2m + 1 we have

a
(k)
1 δ(r − 1) = M(δ(r − 1), k) − Mr(δ(r − 1), k) = (r − 1)

δk+1 − 1

δ + 1
, (12)

since each vertex of �+
1 (u) (|�+

1 (u)| = δ(r − 1)) must be incident from a
(k)
1 vertices of �+

k−1(u)

and the total number of these arcs must be equal to the ‘defect’ of G. From (12), we derive that δ

must divide (δk+1 − 1)/(δ + 1) = δk − δk−1 + · · · + δ − 1, which is impossible unless δ = 1.
Conversely, if G is a multipartite Moore digraph satisfying condition (ii) then its adjacency

matrix A fulfills the equation

A
k + A

k−1 + · · · + A + (1 − ε)I = J,

where J denotes the all-1 matrix, k = 2m and ε = (δk+1 + 1)/(δ + 1). This is equivalent to saying
that the distance-i matrix Ai of G is

Ai =
{

A
i
, if 0 � i � k − 1,

A
k − εI, if i = k,

for each i = 0, 1, . . . , k. Hence, G is weakly distance-regular and its distance polynomials are
pi = xi , i = 0, 1, . . . , k − 1, and pk = xk − ε. Finally, if G is a multipartite Moore digraph
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with odd diameter and interpartite outdegree δ = 1 then its distance-matrices are Ai = A
i
, i =

0, 1, . . . , k, which means that G is weakly distance-regular. �

4. Some existence conditions

4.1. Weakly distance-regular case

The assumption of being a weakly distance-regular digraph allows us to compute its spectrum
from a ‘small’ matrix, such as the intersection matrix (see [8]). Then, since the eigenvalue mul-
tiplicities must be integers, we can derive some necessary conditions about the existence of such
a digraph.

First, let us recall the main results on the spectrum of a weakly distance-regular digraph
(see [8]). Given a weakly distance-regular digraph G of degree d and diameter k, its distance
polynomials {pi}ki=0 satisfy the recurrence relation

pix =
i+1∑
j=0

p
j

i1pj (0 � i � k − 1),

where the numbers p
j

i1 = |�+
i (u) ∩ �−

1 (v)|, with dist(u, v) = j , are known as the intersection

numbers of G. Since G is regular, p
j

k1 = d −∑k−1
i=0 p

j

i1 for each j = 0, 1, . . . , k. The (k + 1) ×
(k + 1) matrix B whose entries are the intersection numbers p

j

i1, (B)ij = p
j

i1, is referred to as
the intersection or recurrence matrix of G. We shall say that a vector u is standard if its first
component is (u)0 = 1.

Proposition 4.1 [8]. Let G be a weakly distance-regular digraph of degree d, diameter k, order
n, and distance polynomials {pi}ki=0. Let A and B be, respectively, its adjacency and intersection
matrices. Then the following statements hold:

(i) The minimum polynomials of A and B coincide with the characteristic polynomial of B
which is

det(xI − B) = 1

αk
k

(x − d)

k∑
i=0

pi,

where αk
k is the leading coefficient of pk .

(ii) If λi is an eigenvalue of B then vi = (p0(λi), p1(λi), . . . , pk(λi))
� is a (right) standard

eigenvector of B. Moreover, if λi has a left standard eigenvector ui
� then the multiplicity of

λi, as an eigenvalue of G, is

m(λi) = n

ui
�vi

. (13)

Next we apply these results to obtain necessary conditions for the existence of a multipartite
Moore digraph G of diameter k = 2m and interpartite outdegree δ > 1 (assuming that G is
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weakly distance-regular). We will treat separately the case δ = 1 which corresponds to almost
Moore digraphs.

Proposition 4.2. Let G be an r-partite Moore digraph with interpartite outdegree δ > 1 and
diameter k = 2m. If G is weakly distance-regular then r > (δk + δ)(δ + 1) and the number∑k−1

i=0 (−1)i+1(i + 1)δi divides

r


k−2∑

i=0

δi
i∑

j=0

(
i + 2
j + 2

)
(−1)i−j rj



(

1 + rδ

k−1∑
i=0

(−1)i+1δi

)
.

Proof. Let us assume that G is weakly distance-regular. From Proposition 3.2, the distance poly-
nomials of G are pi = xi , i = 0, 1, . . . , k − 1 and pk = xk − ε, where ε = (δk+1 + 1)/(δ + 1).
Taking into account that G has degree d = δ(r − 1), its intersection matrix B = (p

j

i1) is

B =




0 1
0 0 1

· · ·
· · · 1

ε 0 0 · 0 1
d − ε d − 1 d − 1 · d − 1 d − 1




.

Then, from Proposition 4.1, the minimum polynomial of the adjacency matrix A of G coincides
with the characteristic polynomial of B, which is

det(xI − B) = (x − d)

k∑
i=0

pi = (x − d)(xk + xk−1 + · · · + x + 1 − ε)

= (x − d)(x + δ)

k−1∑
i=0


k−1−i∑

j=0

(−1)j δj


 xi,

since ε =∑k
i=0(−1)iδi .

The multiplicity m(−δ) of −δ can be computed as

m(−δ) = n

u−δ
� v−δ

,

where n is the order of G and v−δ = (1, −δ, δ2, . . . ,−δk−1, δk − ε)�, u−δ
� = (1, x1, . . . , xD)

represent the left and right standard eigenvectors of B corresponding to −δ, respectively. The
condition u−δ

� B = −δu−δ
� can be expressed as the linear system

εxk−1 + (d − ε)xk = −δ,

xk−1 + (d + δ − 1)xk = 0

}
(14)

together with the recurrence relation

xi = −1

δ
(xi−1 + (d − 1)xk), i = 1, 2, . . . , k − 1, and x0 :=1. (15)
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Solving (14), we get

xk = 1

r(ε − 1) + 1
.

Then, applying (15), we have

(−δ)ixi = 1 + (d − 1)xk

i−1∑
j=0

(−δ)j , i = 1, 2, . . . , k − 1.

Therefore,

u−δ
� vδ = 1 +

k−1∑
i=1


1 + (d − 1)xk

i−1∑
j=0

(−δ)j


− xk

k−1∑
j=0

(−δ)j

= k + xk

[
(d − 1)

k−1∑
i=1

1 − (−δ)i

δ + 1
− 1 − δk

δ + 1

]

= k + xk

δk+1 + dδk + (kd − k − 1)δ + kd − k − d

(δ + 1)2

= k + xk

k∑
i=1

δk−i (−1)i[(i − 1)d − i]

= k + xk

[
k−1∑
i=1

(−1)i−1irδk−i − k

]
.

Taking into account that xk = 1
r(ε−1)+1 and ε =∑k

i=0(−δ)i , we get

u−δ
� v−δ = δr

∑k
i=1(−1)i iδi−1

δr
∑k

i=1(−1)iδi−1 + 1
.

Let us denote

a(δ) :=
k∑

i=1

(−1)i iδi−1 and b(δ) :=
k∑

i=1

(−1)iδi−1.

Then

m(−δ) =
n
δr

[δrb(δ) + 1]
a(δ)

,

where n =∑k
i=1(δ

i(r − 1)i − (−δ)i). It can be checked that

n

rδ
=

k−1∑
i=0

δi
i∑

j=0

(
i + 1
j + 1

)
(−1)i−j rj .

We can express

n

rδ
= −a(δ) + δrc(δ, r), where c(δ, r) :=

k−2∑
i=0

δi
i∑

j=0

(
i + 2
j + 2

)
(−1)i−j rj .
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Thus

m(−δ) =
(

−1 + δrc(δ, r)

a(δ)

)
(δrb(δ) + 1).

Since m(−δ) is an integer and gcd(δ, a(δ)) = 1, we conclude that

a(δ)|rc(δ, r)[δrb(δ) + 1].
Finally, since d = δ(r − 1) � ε and ε = δk+1+1

δ+1 , we get

r � δk + δ

δ + 1
+ 1

δ
>

δk + δ

δ + 1
. �

We remark that the diameter 2 weakly distance-regular digraphs are the same as the ‘directed
strongly regular graphs’ introduced by Duval [10]. Duval defined a (n, d, µ, λ, t)-graph to be a
directed graph with order n whose adjacency matrix A satisfies

A
2 + (µ − λ)A − (t − µ)I = µJ and AJ = JA = dJ.

Within this framework, we are interested in finding r-partite Moore digraphs with interpartite
outdegree δ such that the digraphs are (n, d, 1, 0, t)-graphs, where n = rδ[(r − 2)δ + 1], d =
δ(r − 1) and t = δ2 − δ + 1. We also point out that (n, d, 1, 0, t)-graphs are the same as the
mixed Moore graphs (with undirected degree t), introduced by Bosák [5].

Corollary 4.3. Let G be an r-partite Moore digraph with interpartite outdegree δ > 1 and diam-
eter k = 2. If G is weakly distance-regular then r > δ and

(2δ − 1)|r[rδ(δ − 1) + 1]. (16)

In particular, if 2δ − 1 is a prime number then r ≡ 0, 4 (mod 2δ − 1).

Proof. Applying Proposition 4.2, we have r > δ2+δ
δ+1 = δ and

r[rδ(δ − 1) + 1] ≡ 0 (mod 2δ − 1).

Thus, if 2δ − 1 is a prime number then r ≡ 0 (mod 2δ − 1) or rδ(δ − 1) ≡ 2(δ − 1) (mod 2δ − 1).
Since gcd(δ − 1, 2δ − 1) = 1, the latter congruence is equivalent to saying that rδ ≡ 2 (mod 2δ −
1), which has as the solution r ≡ 4 (mod 2δ − 1). �

The list of pairs (δ, r) satisfying the divisibility condition (16) and associated with a multipartite
Moore digraph of diameter 2 and order rδ[(r − 2)δ + 1] � 100 are shown in Table 1.

Table 1
Feasible parameters of a multipartite Moore digraph with diameter 2 and order � 100 in the weakly distance-regular case

δ r d = δ(r − 1) t = δ2 − δ + 1 n = rδ((r − 2)δ + 1) Example

2 3 4 3 18 Bosák graph (unique solution; see [21])
2 4 6 3 40 Unknown
3 4 9 7 84 Unknown
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Fig. 1. The Bosák graph (see [5]).

As can be seen in Fig. 1, Bosák graph is 3-partite 2-equioutregular. Since each of its vertices
is contained in a 3-cycle and has undirected degree 3, Bosák graph cannot be equiregular.

4.2. Case δ = 1 (r = d + 1)

Let us now consider case (i) where r = d + 1. We see, by (i) and the results in [22], that,
when the diameter is odd, (d + 1)-partite Moore digraphs exist only in the trivial case k = 1 (the
complete symmetric digraph, here denoted by K1

r ). Moreover, for even diameter, the obtained
bound is the same as for almost Moore (standard) digraphs, namely M(d, k) − 1.

We recall that every almost Moore digraph G of diameter k has the characteristic prop-
erty that for each vertex v ∈ V (G) there exists exactly one vertex, denoted by r(v) and called
the repeat of v, such that there are exactly two v → r(v) walks of length at most k (one
of them must be of length k). If r(v) = v, which means that v is contained in exactly one
k-cycle, v is called a selfrepeat of G. Moreover, if w /= r(v) then there is a unique v → w

walk of length � k. From the (di)regularity of an almost Moore digraph, proved by Miller et
al. [20], it follows that the map r , which assigns to each vertex v ∈ V (G) the vertex r(v),
is an automorphism of G (see [4]). Seeing it as a permutation, r has a cycle structure which
corresponds to its unique decomposition into disjoint cycles. Such cycles are called permutation
cycles of G. The number of permutation cycles of G of each length i � n = M(d, k) − 1 is
denoted by mi and the vector (m1, . . . , mn), which represents a partition of the n vertices of G

into mi i-sets of vertices, for i = 1, . . . , n, is referred to as the permutation cycle structure of
G.
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The following lemma provides a necessary condition for the existence of a multipartite Moore
digraph, with interpartite outdegree δ = 1 and diameter k = 2m, in terms of its permutation cycle
structure.

Lemma 4.4. Let G be an almost Moore digraph of degree d > 1 and diameter k = 2m. If G is
(d + 1)-partite and (1-)equioutregular then all permutation cycles of G have the same length
l. Moreover, all vertices of a permutation cycle of G belong to the same independent set. In

particular, l divides d2m+1−d

d2−1
.

Proof. Let V = V1 ∪ V2 ∪ · · · ∪ Vd+1 be a partition of the set of vertices of G such that
any vertex of Vi is adjacent to exactly one vertex of each set Vj , j /= i, for i = 1, 2, . . . , d + 1.
First, we note that each vertex v and its repeat r(v) belong to the same independent vertex
set, since from the deduction of the bound (6) we know that there is a unique walk of
length � k between any two vertices of distinct independent sets. Therefore, all vertices of a
permutation cycle of G belong to the same partite set. Let (v, r(v), . . . , rl−1(v)) be a per-
mutation cycle of minimum length (l) and let �+

1 (v) = {w1, w2, . . . , wd}. Since r is an auto-
morphism of G, it follows that �+

1 (v) = {rl(w1), r
l(w2), . . . , r

l(wd)}. Then, taking into
account that G is (1-)equioutregular, we have that rl(wi) = wi , whence we deduce that
the order of wi is equal to the minimum l, for each i = 1, . . . , d. Hence, all vertices of �+

1 (v)

have the same order, which implies that all permutation cycles of G have the same length l.
Clearly, l divides the number of vertices of each set Vi , which is (M(d, 2m) − 1)/(d + 1) =∑m

i=1 d2i−1. �

From the previous lemma and taking into account the nonexistence of almost Moore di-
graphs of diameter k > 2 with all selfrepeats (see [3]), we conclude that a Moore (d + 1)-partite
(1-)equioutregular digraph G with diameter k = 2m > 2 does not contain any k-cycle. Therefore,
using properties of graphical cycles of an almost Moore digraph (see [17]), we can deduce that
there is a partition of the set of arcs of G into (k + 1)-cycles, which implies that (k + 1) divides
d(M(d, 2m) − 1).

Proposition 4.5. Almost Moore digraphs of degree d > 1 and diameter k > 1 with all permuta-
tion cycles of order two do not exist.

Proof. Let us assume that there is an almost Moore digraph G with degree d > 1, diameter k > 1
and permutation cycle structure m2 = n/2, where n = d + d2 + · · · + dk . Let A be the adjacency
matrix of G.

From [17, Proposition 1], we obtain the factorization in Q[x] of the characteristic polynomial
of G, which is

φ(G, x) = (x − d)xa1
∏
l|k
l /=1

[�l (x)]al (xk + · · · + x + 2)
n
2k ,

where �l (x) denotes the lth cyclotomic polynomial and the (unknown) multiplicities al are non-
negative integers.

Furthermore, since G does not contain any closed walk of length < k, we have tr A = tr A
k−1 =

0. Such conditions can be expressed in terms of the eigenvalues of A as follows:
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tr A = d +
∑
l|k
l /=1

al

∑
gcd(i,l)=1

1�i�l

ξ i
l + n

2k

k∑
i=1

λi,

tr A
k−1 = dk−1 +

∑
l|k
l /=1

al

∑
gcd(i,l)=1

1�i�l

ξ
i(k−1)
l + n

2k

k∑
i=1

λk−1
i ,

where ξl is an lth primitive root of unity and λ1, λ2, . . . , λk are the distinct zeros of xk + · · · +
x + 2.

Note that, for each l|k, we have∑
gcd(i,l)=1

1�i�l

ξ i
l =
∑

gcd(i,l)=1
1�i�l

(ξ k−1
l )i ,

since gcd(k − 1, l) = gcd(k − 1, k) = 1 and, consequently, ξk−1
l is also an lth primitive root of

unity.
In order to compute Sh =∑k

i=1 λh
i (h = 1, k − 1), we will use Newton’s formulas, which

express such sums in terms of the elementary symmetric functions

�h =
∑

1�j1<j2<···<jh�k

λj1λj2 · · · λjh
,

as

Sh = Sh−1�1 − Sh−2�2 + · · · + (−1)h−2S1�h−1 + (−1)h−1h�h. (17)

Taking into account that λ1, λ2, . . . , λk are the roots of the polynomial xk + xk−1 + · · · + x +
2, we have

�h =
{
(−1)h, if 1 � h � k − 1,

(−1)k2, if h = k.
(18)

Using an inductive argument we can prove that Sh = −1 for h = 1, . . . , k − 1. First, S1 = �1 =
−1. Now, let us assume that Si = −1 for each i � h − 1. From (17) and (18), we have

Sh = −(Sh−1 + Sh−2 + · · · + S1) − h = −1.

Therefore, the condition tr A = tr A
k−1

implies that

d = dk−1,

which is impossible unless k = 2. From the classification of almost Moore digraphs of diameter
two, given in [18], we conclude that there does not exist an almost Moore digraph with all
permutation cycles of order two. �

In the case of diameter two, from the work of various authors (see e.g., [16,2,17]), it is known
that there is a unique almost Moore digraph, namely the Kautz digraph of diameter two, K(d, 2),
apart from the particular case of degree d = 2 for which there are two more digraphs. The Kautz
digraph K(d, 2) coincides with the line digraph LK1

d+1 of the complete symmetric digraph
K1

d+1 (see [15]). We recall that, given a digraph G, its line digraph LG has as a set of vertices
V (LG) = E(G) and its adjacencies are defined as follows:

(u1v1, u2v2) ∈ E(LG) ⇐⇒ v1 = u2, ∀u1v1, u2v2 ∈ E(G).
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Remark 4.6. If G = (V1 ∪ V2 ∪ · · · ∪ Vr, E) is an r-partite and δ-equioutregular digraph then
its line digraph LG is also r-partite and δ-equioutregular, since we can consider the ‘inherited’
vertex partition V (LG) =⋃r

i=1{(u, v) ∈ E, v ∈ Vi} that preserves the equioutregularity. More-
over, if δ = 1 and r = d + 1 > 2 then LG cannot be equiregular, since the above vertex partition
of LG, which is the unique one (modulo rearragements of its partite sets) that provides the
equioutregularity, it does not fulfill the equiinregularity condition.

Indeed, the line digraph LK1
d+1 has d(d + 1) vertices and is (d + 1)-partite (1-)equioutregular

[(1-)equiinregular] with independent vertex sets Vi = {ji : j /= i} [Vi = {ij : j /= i}], 1 � i �
d + 1. Nevertheless, K(d, 2) is not equiregular. We remark that the other two almost Moore
digraphs of diameter k = 2 and degree d = 2, given in [2], are (d + 1)-partite but not even
equioutregular.

In general, the following result can be of some help in proving existence results of a multipartite
(di)regular digraph G by using information on its spectrum.

Lemma 4.7. Let G be an r-partite δ-equiregular Moore digraph. Then G has the eigenvalues
d = δ(r − 1) and −δ with multiplicities 1 and r − 1, respectively. Moreover, any λ-eigenvector
with λ /= d,−δ is orthogonal to the eigenspaces corresponding to d and −δ.

Proof. Let G have adjacency matrix A with blocks Aij representing the adjacencies from Vi

to Vj , 1 � i, j � r . Since G is connected and δ-equiregular, it has d = (r − 1)δ as a simple
eigenvalue with eigenvector j. Moreover, since G admits the regular (or equitable) partition
V1 ∪ V2 ∪ · · · ∪ Vr , with quotient matrix δA(Kr), G has also the eigenvalue −δ with multiplicity
r − 1 and eigenvectors

y = (y1|y2|y3| · · · |yr ) = (j|ωi j|ω2i j| . . . |ω(r−1)i j
)�

(1 � i � r),

where ω is a primitive rth root of 1, say ω :=ej 2�
r . [We recall that Kr has eigenvalues r − 1

and −1 (with multiplicity r − 1), with corresponding orthogonal eigenvectors j ∈ Rr and �i =
(1, ωi, ω2i , . . . , ω(r−1)i )�, 1 � i � r − 1.]

Now, from the above, it suffices to prove that, if x = (x1|x2| · · · |xr ) is a λ-eigenvector (with
λ /= d, −δ) then 〈xi , j〉 = 0, for any 1 � i � r . With this aim, note first that, since Gij (the
subdigraph with vertex set Vi ∪ Vj and arcs from Vi to Vj ) is δ-inregular, we have

〈Aij xj , j〉 = 〈xj , A
�
ij j〉 = δ〈xj , j〉 (j /= i). (19)

From Ax = λx, we get the r equations

r∑
j=1

Aij xj = λxi (1 � i � r),

whence, multiplying both terms by j ∈ Rr and using (19),

r∑
j=1,j /=i

δ〈xj , j〉 = λ〈xi , j〉 (1 � i � r).

The above r equations constitute an homogeneous linear system with unknowns 〈xi , j〉 and
coefficient matrix δA(Kr) − λI. Consequently, if λ is not a zero of det(δA(Kr) − λI),
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that is λ /= (r − 1)δ,−δ, such a system has only the trivial solution 〈xi , j〉 = 0, 1 � i � r , as
claimed. �

Note that, if we require G to be only (δ-)equioutregular then −δ is also an eigenvalue of G

with algebraic multiplicity at least r − 1. However, the orthogonality property of the eigenspaces
requires the equiregularity condition.

5. Some constructions

Of course, the line digraph operation [1,16] behaves well, giving an r-partite digraph when
applied to an r-partite digraph. So the most difficult task is to construct the small (not the trivial
smallest) dense multipartite digraphs.

For r = 2, see [14,13].
For k = 2 we can use the following simple construction which provides not too bad results.

Let Kδ
r denote the complete symmetric digraph with δ parallel arcs between any two vertices.

Then its line digraph LKδ
r is also r-partite, it has diameter two, and its order is n = r(r − 1)δ.

Comparing this number with bound (11) in case (v), we see that this construction gives better
results when δ is small. More precisely, note that, for large values of r , bound (11) is of the order
of δ times the above value of n.

A better construction for k = 2 is obtained by joining appropriately t � 3 copies of the Kautz
digraph K(r − 1, 2). The proposed digraph Gt,r has vertex set

V = {α|ij : α ∈ Zt ; i, j ∈ Zr , i /= j}
and adjacencies

α|ij → α|jk (k /= j) and α|ij → β|kj (β /= α,k /= i,j).

Thus, Gt,r is a d-outregular digraph with degree d = (r − 1) + (t − 1)(r − 2) = rt − 2t + 1,
and it has n = tr(r − 1) vertices. Moreover, we have the following result.

Proposition 5.1. Given integers t, r � 3, Gt,r is a vertex-transitive, r-partite digraph with
diameter k = 2.

Proof. The facts that Gt,r is vertex symmetric and r-partite follow directly from its definition.
Thus, its partite sets are Vi = {α|ij : α ∈ Zt , j ∈ Zr\{i}}, 0 � i � r − 1. Moreover, because of
symmetry, we only need to show the paths (of length � 2) from vertex 0|01 to the vertices in
another copy, say, those of type 1|ij . These paths are the following:

0|01 → 1|i1 (i /= 0,1);
0|01 → 1|i1 (i /= 0,1) → 1|1j (j /= 1);
0|01 → 0|1j (j /= 1) → 1|ij (j /= 1,i /= 1,j);
0|01 → 2|21 → 1|01. �

Let us now consider two particular cases of the above construction.
(a) When t = r we get a (r − 1)2-regular digraph on n = r2(r − 1) = (

√
d + 1)2

√
d vertices,

which is of the order of d
3
2 . Note that the corresponding Moore bound (6) would be

Mr(d, 2) = d2 + √
d.
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(b) When r = 3, we get the digraph Gt,3 ≡ G(6t, t + 1, 2), with n = 6t vertices and degree
d = t + 1, whereas in this case the Moore bound (6) gives

M3(t + 1, 2) = 3

2
t (t + 1). (20)

In particular, if t = 3 the digraph G(18, 4, 2) is isomorphic to the Bosák graph, shown in Fig. 1
(see [5]), and its order attains the above bound. Note that its line digraph LG(18, 4, 2) is a 3-partite
4-regular digraph with 72 vertices and diameter k = 3, only 3 vertices less than the corresponding
Moore bound.

Note that, in general, the obtained digraphs are not equiregular, not even equioutregular.
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