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Abstract

We present the classification of one type of graded nilpotent Lie algebras. We start from
the gradation related to the filtration which is produced in a natural way by the descending
central sequence in a Lie algebra. These gradations were studied by Vergne [Bull. Soc.
Math. France 98 (1970) 81–116] and her classification of the graded filiform Lie algebras is
here extended to other algebras with a high nilindex. We also show how symbolic calculus
can be useful in order to obtain results in a similar classification problem.
 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

In the cohomological study of the variety of laws of nilpotent Lie algebras
established by Vergne [4] the classification of the “naturally” graded filiform Lie
algebras plays a fundamental role. The achieved classification allows an easy
expression of a filiform Lie algebra, that is, of an algebra with a maximal nilindex
among those in the same dimension. Vergne proves that, up to isomorphisms,
there is only one graded filiform Lie algebra in odd dimensions and two of
them when the dimension is even. This fact also allows other authors to deal
with different aspects of the theory. For example, using the graded filiform Lie
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algebras, Goze and Khakimdjanov give in [2] the geometric description of the
characteristically nilpotent filiform Lie algebras.

Thus, the knowledge of the graded algebras of a particular Lie algebra class
gives a valuable information about the structure of that class. That knowledge
can later facilitate the study of several problems that can appear within the whole
of the class. The aim of this paper is to expand Vergne’s results, obtaining the
classification of graded Lie algebras for a particular type of non-filiform nilpotent
Lie algebras.

This paper is structured in the following way. In Section 2 a brief description
of Vergne’s results is given. The basic structure of graded quasi-filiform Lie
algebras is explained in Section 3, where some results about their classification
have already been obtained. The final section deals with the classification of quasi-
filiform Lie algebras in any dimension, whose list was introduced in Section 2.
We describe also how symbolic calculus has been used, concretely by way of the
software Mathematica.

2. Graded nilpotent Lie algebras

In this paper Lie algebrasg will be considered over the field of complex
numbersC, and with finite dimensionn. Let g be a complex Lie algebra.
Then,g is naturally filtered by the descending central sequenceC0g = g, Cig =[
g,Ci−1g

]
, i � 1. Indeed, we consider the filtration given by(Si), whereSi = g,

if i � 1; Si = Ci−1g, if 2 � i � k; andSi = {0}, if i > k. Thus, with any nilpotent
Lie algebrag of nilindex k = inf{i ∈ N: Cig = 0}, we can associate naturally a
graded Lie algebra with the same nilindex, noted by grg and defined by

grg =
⊕
i∈Z

gi , with gi = Si

Si+1
.

Because of the nilpotency of the algebra, the gradation is finite, i.e.,

grg = g1 ⊕ g2 ⊕ · · · ⊕ gk

with [gi ,gj ] ⊂ gi+j , for i + j � k, verifying that dimg1 � 2 and dimgi � 1, for
2 � i � k. A Lie algebrag is said to benaturally gradedif gr g is isomorphic tog,
which from now on will be noted by grg = g [4]. Examples of these algebras are
Ln, Qn defined as follows. The undefined brackets, except for those expressing
antisymmetry, are supposed to vanish.

Example 2.1. The algebraLn is defined in the basis(X0,X1, . . . ,Xn−1) by

[X0,Xi ] = Xi+1, 1 � i � n − 2.

The algebraQn is defined in the basis(X0,X1, . . . ,Xn−1), with n = 2q , by{ [X0,Xi ] = Xi+1, 1 � i � n − 2,

[Xi,Xn−1−i ] = (−1)i−1Xn−1, 1 � i � q − 1.
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A Lie algebrag with dimensionn is said to befiliform if its nilindex is
k = n − 1, i.e., dim(Cig) = n − i − 1, for 1� i � n − 1. The above Lie algebras
Ln andQn are filiform. In [4] Vergne proved the following theorem.

Theorem 2.1 [4]. Let g = g1 ⊕ g2 ⊕ · · · ⊕ gn−1 be a naturally graded
filiform Lie algebra with dimensionn. Then, there exists a homogeneous basis
(X0,X1, . . . ,Xn−1) of g, with X0,X1 ∈ g1 and Xi ∈ gi for i � 2 such that
g = Ln, if n is odd, andg = Ln or g = Qn, if n is even.

Thus, any naturally graded filiform Lie algebra with dimensionn is isomorphic
to Ln, if n is odd, and isomorphic toLn or Qn, if n is even. The aim of this paper
is to determine then-dimensional naturally graded Lie algebras with nilindex
k = n − 2. We will obtain in Theorem 4.1 a locally finite family of algebras
(depending on one parameter) defined in a basis(X0,X1, . . . ,Xn−1) as follows.

2.1. Naturally graded quasi-filiform Lie algebras

Split: Ln−1 ⊕ C (n � 4):

[X0,Xi] = Xi+1, 1� i � n − 3;
Qn−1 ⊕ C, (n � 7, n odd):

[X0,Xi] = Xi+1, 1 � i � n − 3,

[Xi,Xn−2−i ] = (−1)i−1Xn−2, 1 � i � n − 3

2
.

Principal: L(n,r)

(
n � 5, r odd, 3 � r � 2

⌊
n−1

2

⌋ − 1
)
:

[X0,Xi] = Xi+1, 1 � i � n − 3,

[Xi,Xr−i ] = (−1)i−1Xn−1, 1 � i � r − 1

2
;

Q(n,r) (n � 7, n odd, r odd, 3 � r � n − 4):

[X0,Xi] = Xi+1, 1 � i � n − 3,

[Xi,Xr−i ] = (−1)i−1Xn−1, 1 � i � r − 1

2
,

[Xi,Xn−2−i ] = (−1)i−1Xn−2, 1 � i � n − 3

2
.

Terminal: T(n,n−3) (n even, n � 6):

[X0,Xi ] = Xi+1, 1 � i � n − 3,

[Xn−1,X1] = n − 4

2
Xn−2,
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[Xi,Xn−3−i] = (−1)i−1(Xn−3 + Xn−1), 1 � i � n − 4

2
,

[Xi,Xn−2−i] = (−1)i−1n − 2− 2i

2
Xn−2, 1 � i � n − 4

2
;

T(n,n−4) (n odd, n � 7):

[X0,Xi] = Xi+1, 1 � i � n − 3,

[Xn−1,Xi ] = n − 5

2
Xn−4+i , 1 � i � 2,

[Xi,Xn−4−i] = (−1)i−1(Xn−4 + Xn−1), 1 � i � n − 5

2
,

[Xi,Xn−3−i] = (−1)i−1n − 3− 2i

2
Xn−3, 1 � i � n − 5

2
,

[Xi,Xn−2−i] = (−1)i(i − 1)
n − 3− i

2
Xn−2, 2 � i � n − 3

2
.

The algebrasE(7,3), E1
(9,5), andE2

(9,5) of Remark 4.1 must also be considered.

3. Graded quasi-filiform Lie algebras

A key concept in this paper will be that of quasi-filiform Lie algebra defined
in the following way.

Definition 3.1. An n-dimensional nilpotent Lie algebrag is said to bequasi-
filiform if its nilindex is k = n − 2, i.e., Cn−3g �= 0 and Cn−2g = 0, where
C0g = g, Cig = [g,Ci−1g].

Moreover, from now on the termgradedwill be used if the Lie algebra is
naturally graded. Thus, for a graded quasi-filiform the gradation will beg =
g1 ⊕ g2 ⊕ · · · ⊕ gn−2, wheregi = Ci−1g/Cig.

3.1. Graded quasi-filiform Lie algebra structure

Let g be ann-dimensional graded quasi-filiform Lie algebra. If we obtain the
decompositiong = g1 ⊕ g2 ⊕ · · · ⊕ gn−2 with [gi ,gj ] ⊂ gi+j , for i + j � n − 2,
then either dimg1 = 3 and dimgi = 1, 2� i � n − 2, or dimg1 = 2 and there
existsr, 2� r � n − 2, such that dimgr = 2, with dimgi = 1 for i �= 1, r.

In order to make the structure that the family of graded quasi-filiform Lie
algebras presents easier, we must find a basis where the expression of the algebras
is suitable. The following proposition gives a step forward in this way.

Proposition 3.1. Let g be a graded quasi-filiform Lie algebra with dimensionn.
Then, there exists a homogeneous basis(X0,X1, . . . ,Xn−1) of the algebra such



J.R. Gómez, A. Jiménez-Merchán / Journal of Algebra 256 (2002) 211–228 215

that X0,X1 ∈ g1, Xi ∈ gi , 2 � i � n − 2; and Xn−1 ∈ gr with 1 � r � n − 2,
verifying

[X0,Xi] = Xi+1, 1 � i � n − 3;
[X0,Xn−2] = 0, [X0,Xn−1] = 0.

A basis(X0,X1, . . . ,Xn−1) verifying the above conditions will be referred to as
an adapted basis of algebrag.

Proof. Suppose firstly that dimg1 = 3. Let Y1, . . . , Yn−2, with Yi ∈ gi , where
1 � i � n − 2. If Y ∈ g1, we can obtain

[Y,Yi ] = fi(Y )Yi+1,

with fi(Y ) ∈ C. Since[g1,gi] = gi+1, the linear functionfi :gi → C is non-null.
Therefore, there is an elementX0 ∈ g1 for whichfi(X0) �= 0, 1� i � n−2. Then,
one can choose vectorsXi = λiYi ∈ gi , λi �= 0, so that the following relations are
obtained

[X0,Xi] = Xi+1, 1 � i � n − 3; [X0,Xn−2] = 0. (1)

On the other hand, expanding the basis ofg1 with a vectorYn−1, we have
[X0, Yn−1] = αX2 and one can takeXn−1 = Yn−1 − αX1, finally proving

[X0,Xn−1] = 0.

Suppose now that dimg1 = 2 and dimgr = 2. Let Y1, . . . , Yn−2 be any nonzero
elements, withYi ∈ gi for 1 � i � n − 2. If [g1, Yr ] = 0, we choose as a no null
vector ofgr an element from the supplementary subspace of〈Yr 〉 in gr . Thus,
since[g1,gr ] = gr+1, from definition for eachY ∈ g1 of the numberfr(Y ) by
the equation[Y,Yr ] = fr(Y )Yr+1, follows that the linear formfr :g1 → C is not
null. Then, a similar argument to the previous case allows us to choose a vector
X0 ∈ g1 and vectorsXi ∈ gi , 1� i � n − 2 proving the relations (1). Expanding
now the basis ofgr with a vectorYn−1, we have[X0, Yn−1] = αXr+1 and taking
Xn−1 = Yn−1 − αXr , it is proved that[X0,Xn−1] = 0. ✷

If we denote by〈X,Y, . . .〉 the subspace ofg generated by the vectorsX,Y, . . . ,

we can express the structure of the decomposition of the algebra in terms of an
adapted basis.

Corollary 3.1. If g is a graded quasi-filiform lie algebra with dimensionn, its
decomposition in an adapted basis(X0,X1, . . . ,Xn−1) is one of the following
types:

t1 = 〈X0,X1,Xn−1〉 ⊕ 〈X2〉 ⊕ · · · ⊕ 〈Xn−2〉,
t2 = 〈X0,X1〉 ⊕ 〈X2,Xn−1〉 ⊕ · · · ⊕ 〈Xn−2〉,
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...

tn−2 = 〈X0,X1〉 ⊕ 〈X2〉 ⊕ · · · ⊕ 〈Xn−2,Xn−1〉.

3.2. Split graded quasi-filiform Lie algebras

We will consider now the case in whichg is an algebra of typeg = t1. This
case, in which dimg1 is maximal, is the only possible to be considered for filiform
Lie algebras. The following proposition shows that the graded quasi-filiform Lie
algebras of such a type are just trivial extensions of the filiform Lie algebras. Their
classification is directly given as a corollary of Theorem 2.1.

Proposition 3.2. Let g be a graded quasi-filiform Lie algebra of typeg = t1 with
dimensionn. Then,g is isomorphic toLn−1 ⊕ C, if n is even, and toLn−1 ⊕ C or
Qn−1 ⊕ C, if n is odd.

Proof. Let (X0,X1, . . . ,Xn−1) be an adapted basis ofg. Then, denoting by�x�
the floor function ofx and since the algebra has typeg = t1, the algebrag belongs
to the family

g =



[X0,Xi] = Xi+1, 1� i � n − 3,

[Xn−1,Xi] = aiXi+1, 1� i � n − 3,

[Xi,Xj ] = aijXi+j , 1� i �
⌊

n−3
2

⌋
, i < j � n − 2− i,

with {ai}, {aij } verifying the algebraic relations obtained from the Jacobi
identities[

Xi, [Xj,Xk]
] + [

Xj , [Xk,Xi ]
] + [

Xk, [Xi,Xj ]
] = 0

which from now on will be denoted asJ (Xi,Xj ,Xk) = 0. In particular, the
relationsJ (X0,Xn−1,Xi) = 0, 1� i � n − 4, prove thatai = a1 for 1 � i �
n − 3. The change of basis defined by the equationsX′

n−1 = Xn−1 − a1X0,
X′

i = Xi (i �= n − 1), allows to supposea1 = 0. Hence, the algebrag can be
expressed as

g =
{ [X0,Xi ] = Xi+1, 1 � i � n − 3,

[Xi,Xj ] = aijXi+j , 1 � i �
⌊

n−3
2

⌋
, i < j � n − 2− i;

and thereforeXn−1 is an element of the center of the algebraZ(g) = {X ∈ g:
[X,g] = 0}. Thus, it has been proved thatg = g′ ⊕ 〈Xn−1〉, where the subalgebra
g′ = ⊕

gi/〈Xn−1〉 is a graded filiform Lie algebra. The only thing left is to use
Theorem 2.1 in order to finish the proof.✷

The previous result indicates that the only graded quasi-filiform Lie algebras
of type g = t1 are direct sums of graded filiform algebras andC. They will
be referred to as split from now on, and their only interest is to emphasize the
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naturally gradation underlying the filiform subalgebra of the extension as we can
see in Section 2.

Remark 3.1. If g is a graded quasi-filiform Lie algebra of typeg = t2,
then dimg2 = 2. On the one hand, from the natural gradation, it follows
[g1,g1] = g2. But, on the other hand, from the Corollary 3.1 and the properties
that the Proposition 3.1 determines for the adapted basis(X0,X1, . . . ,Xn−1), it
is obtained[〈X0,X1〉, 〈X0,X1〉

] = 〈X2〉.
Therefore, there cannot exist any graded quasi-filiform Lie algebra of typeg = t2.

The following proposition allows us to reduce in half the task about the
classification of graded quasi-filiform Lie algebras. Indeed, we prove that there
exists no algebras of typeg = tr whenr is even.

Proposition 3.3. Let g be a non-split graded quasi-filiform Lie algebra of type
g = tr with dimensionn. Thenr is odd andg belongs to the parameterized family



[X0,Xi] = Xi+1, 1 � i � n − 3,

[Xn−1,Xi ] = aXi+r , 1 � i � n − 2− r,

[Xi,Xj ] = aijXi+j , 1 � i �
⌊

n−3
2

⌋
, i < j � n − 2− i,

(j �= r − i),

[Xi,Xr−i ] = ai,r−iXr + (−1)iXn−1, 1 � i �
⌊

r−1
2

⌋
(r � 3),

wherea ∈ C, if 3 � r � n − 3, anda = 0, if r = n − 2.

Proof. Let g be ann-dimensional graded quasi-filiform Lie algebra of type
g = tr . The observation in Remark 3.1 tells us thatr �= 2. Assume that 3� r �
n − 2. According to Corollary 3.1 one can obtain, ifr �= n − 2, that

g =




[X0,Xi ] = Xi+1, 1 � i � n − 3,

[Xn−1,Xi] = aiXi+r , 1 � i � n − 2− r (r � n − 3),

[Xi,Xj ] = aijXi+j , 1 � i �
⌊

n−3
2

⌋
, i < j � n − 2− i,

(j �= r − i),

[Xi,Xr−i] = ai,r−iXr + biXn−1, 1 � i �
⌊

r−1
2

⌋
.

In the extreme positionr = n − 2, it is Xn−1 ∈Z(g) and we have

g =




[X0,Xi ] = Xi+1, 1 � i � n − 3,

[Xi,Xj ] = aijXi+j , 1 � i �
⌊

n−3
2

⌋
, i < j < n − 2− i,

[Xi,Xn−2−i ] = ai,n−2−iXn−2 + biXn−1, 1 � i �
⌊

n−3
2

⌋
.

Since r � 3, we obtain�(r − 1)/2� � 1. Then, condition[g1,gr−1] = gr of
the gradation guarantees thatb1 �= 0, because of[X0,Xr−1] = Xr and gr =
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〈Xr,Xn−1〉. If we take i such that 1� i � �(r − 1)/2� − 1, from the Jacobi
relationsJ (X0,Xi,Xr−1−i ) = 0, we can deduce that

bi = (−1)i−1b1, 1 � i �
⌊

r − 1

2

⌋
.

Then, ifr is even, the Jacobi identityJ (X0,Xr/2−1,Xr/2) = 0, implies that

b1 = 0,

and therefore we haveXn−1 /∈ C1g. Thus dim(C0g/C1g) = dimg1 = 3, and
then dimgr = 1 contradicting the hypothesis thatg is an algebra of typeg = tr ,
with r � 3. Thus r is odd, and when 3� r � n − 3, the Jacobi relations
J (X0,Xn−1,Xi) = 0, with 1� i � n − 3− r, implies

ai = a1, 2 � i � n − 2− r.

Hence, the proof is completed by writinga = a1 and by choosingb1Xn−1 as the
vector ofgr in the adapted basis.✷

The following section deals with the classification of non-split graded quasi-
filiform Lie algebras. By the results obtained in Section 3 we have to consider just
the gradation of typeg = tr , with r odd.

4. Classification of graded quasi-filiform Lie algebras

So far we have not obtained graded quasi-filiform Lie algebras, apart from the
split onesLn−1 ⊕ C andQn−1 ⊕ C. One can check easily that the algebrasL(n,r)

andQ(n,r), introduced asprincipal algebras in Section 2, are naturally graded
quasi-filiform Lie algebras of typeg = tr .

We will later see, in Section 4.2, howL(n,r) andQ(n,r) will play the role
that algebrasLn and Qn had in the filiform case. That is, in the sense of that
an n-dimensional graded quasi-filiform Lie algebra of typeg = tr can only be
isomorphic to one of the principal algebras (having similar condition to the
filiform case depending on the parity ofn), except for certain extreme values
of r in comparison withn. Those cases in whichr is close to the dimension of the
algebra are now studied.

4.1. Algebras of typeg = tr , with r � n − 4

When the dimension of the algebra is odd, the fact that the elementXn−1 of an
adapted basis is central makes this case a little bit special.

Proposition 4.1. If g is an n-dimensional graded quasi-filiform Lie algebra of
typeg = tn−2, n odd, theng = L(n,n−2).
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Proof. If (X0,X1, . . . ,Xn−1) is an adapted basis of algebrag, we can deduce
from Proposition 3.3 thatr = n − 2 is odd andg belongs to the family


[X0,Xi ] = Xi+1, 1 � i � n − 3,

[Xi,Xj ] = aijXi+j , 1 � i � n−3
2 , i < j < n − 2− i;

[Xi,Xn−2−i ] = ai,n−2−iXn−2 + (−1)i−1Xn−1, 1 � i � n−3
2 .

We have

g = 〈X0,X1〉 ⊕ 〈X2〉 ⊕ · · · ⊕ 〈Xn−3〉 ⊕ 〈Xn−2,Xn−1〉
with dim(C1g) = n − 2 andCn−3g = 〈Xn−2,Xn−1〉. Then, denoting each class
by the corresponding element,(X0, . . . ,Xn−3) is an adapted basis of the quotient

g

Cn−3g
= 〈X0,X1〉 ⊕ 〈X2〉 ⊕ · · · ⊕ 〈Xn−3〉.

Sinceg/〈Xn−2,Xn−1〉 is a graded filiform algebra with dimensionn−2, odd, the
Theorem 2.1 stated that

g

Cn−3g
= Ln−2.

Thus, we have

g =
{ [X0,Xi] = Xi+1, 1 � i � n − 3,

[Xi,Xn−2−i ] = ai,n−2−iXn−2 + (−1)i−1Xn−1, 1 � i � n−3
2 .

The Jacobi relationsJ (X0,Xi,Xn−3−i ) = 0, when 1� i � (n − 5)/2, implies
ai+1,n−2−(i+1) = −ai,n−2−i and denotinga1,n−3 = α, and varyingi from 1 to
(n − 5)/2, we have

ai,n−2−i = (−1)i−1α, 1� i � n − 3

2
.

These equations prove that

g =
{ [X0,Xi] = Xi+1, 1 � i � n − 3,

[Xi,Xn−2−i ] = (−1)i−1(αXn−2 + Xn−1), 1 � i � n−3
2 .

Thus, an adequate change of bases provides thatg = L(n,n−2). ✷
Depending on the dimensionn of the algebrag, for each acceptable type of

gradationg = tr , we will obtain that the only possible graded quasi-filiform Lie
algebras areL(n,r) whenn is even, andL(n,r) or Q(n,r) whenn is odd. However,
whenr = n − 3 (n even) or whenr = n − 4 (n odd), we have also to consider
the algebrasT(n,n−3) andT(n,n−4), defined in Section 2. Those naturally graded
quasi-filiform Lie algebras have typesg = tn−3 andg = tn−4, respectively. In each
dimensionn, the appropriateT(n,r) algebra will be called theterminalalgebra.
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We can now prove that the graded quasi-filiform Lie algebras so far considered
are really different.

Proposition 4.2. Then-dimensional graded quasi-filiform Lie algebrasLn−1 ⊕ C,
Qn−1 ⊕ C, L(n,r), Q(n,r), T(n,n−4), T(n,n−3) are pairwise non-isomorphic.

Proof. The Split Lie algebrasLn−1 ⊕ C, Qn−1 ⊕ C are obviously graded quasi-
filiform algebras of typeg = t1. For any other algebra it is deduced from its
definition that(X0,X1, . . . ,Xn−1) is a homogeneous adapted basis of a quasi-
filiform Lie algebra of typeg = tr . It is obvious that the dimensions of the ideals of
the descending central sequence of algebras from different types are different and,
therefore, they are non-isomorphic. Among those which belong to the same type,
whenn is odd,L(n,r) andQ(n,r) are not isomorphic since dim(D2g) is different
for each one of them, beingD2(g) = [C1g,C1g] the second characteristic ideal
of the derived sequence of the algebra. Finally, in the terminal algebrasT(n,r),
the dimension of the centerZ(g) is different from the correspondingL(n,r) and
Q(n,r), which should be considered depending on the parity of the dimensionn of
the algebra. ✷

In dimensionsn = 7 andn = 9 can be proved that, besides algebras of type
g = tn−4 in the previous Proposition 4.2, we have to consider the following
algebras.

Remark 4.1. The algebra with dimension 7

E(7,3) =




[X0,Xi ] = Xi+1, 1 � i � 4,

[X6,Xi ] = X3+i , 1 � i � 2,

[X1,X2] = X3 + X6,

[X1,Xi ] = Xi+1, 3 � i � 4,

and the following algebras with dimension 9 denoted asE i
(9,5) (i = 1,2) and

defined by

E1
(9,5) =




[X0,Xi ] = Xi+1, 1 � i � 6,

[X8,Xi ] = 2X5+i, 1 � i � 2,

[X1,X4] = X5 + X8,

[X1,X5] = 2X6,

[X1,X6] = 3X7,

[X2,X3] = −X5 − X8,

[X2,X4] = −X6,

[X2,X5] = −X7,
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E2
(9,5) =




[X0,Xi] = Xi+1, 1� i � 6,

[X8,Xi] = 2X5+i , 1 � i � 2,

[X1,X4] = X5 + X8,

[X1,X5] = 2X6,

[X1,X6] = X7,

[X2,X3] = −X5 − X8,

[X2,X4] = −X6,

[X2,X5] = X7,

[X3,X4] = −2X7

are graded quasi-filiform Lie algebras.

We are now in a position to obtain the classification of graded quasi-filiform
Lie algebras of typeg = tr in the casesr = n − 3 andr = n − 4, which will be
the only ones in which terminal algebras can appear.

Proposition 4.3. If g is a graded quasi-filiform Lie algebra with dimensionn,
then:

(1) If the algebra is of typeg = tn−3 (n even) andn � 6, theng = L(n,n−3) or
g = T(n,n−3).

(2) If the algebra is of typeg = tn−4 (n odd) and n � 7, then g = L(n,n−4),
g =Q(n,n−4), or g = T(n,n−4). In those cases in which the dimension isn = 7
or n = 9, those algebras in Remark4.1must be added.

Proof. According to Proposition 3.3, if the algebra is of typeg = tn−3, thenn is
even and if it is of typeg = tn−4, n is odd. Thus, two cases in the proof will be
distinguished.

First case: n even. If the dimension of the algebra is 6, andg = t3 is naturally
graded, then it can be check thatg = L(6,3) or g = T(6,3). Suppose that the
dimension of the algebra isn � 8. If (X0,X1, . . . ,Xn−2,Xn−1) is an adapted
basis of the algebrag, the algebra of typeg = tn−3 presents the following
decomposition:

g = 〈X0,X1〉 ⊕ 〈X2〉 ⊕ · · · ⊕ 〈Xn−3,Xn−1〉 ⊕ 〈Xn−2〉.
Starting from the family according to Proposition 3.3, and working as in
Proposition 4.1, we come to the conclusion that algebrag belongs to the family
parameterized by



[X0,Xi ] = Xi+1, 1 � i � n − 3,

[Xn−1,X1] = aXn−2,

[Xi,Xn−3−i ] = (−1)i−1(αXn−3 + Xn−1), 1 � i � n−4
2 ,

[Xi,Xn−2−i ] = ai,n−2−iXn−2, 1 � i � n−4
2 .
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From the Jacobi relationsJ (X0,Xi,Xn−3−i ) = 0, when 1� i � (n − 4)/2, we
obtain

ai,n−2−i = (−1)i−1n − 2− 2i

2
α, 1 � i � n − 4

2
.

Since the dimension ofg is greater than or equal to 8 we have that at least one of
the Jacobi relationsJ (X1,Xi,Xn−3−i ) = 0 with 2� i � (n − 4)/2 is non-trivial.
From such non-trivial Jacobi relations the following equations are obtained:

(−1)i−1(αa1,n−3 − a) = 0,

and substituting the value ofa1,n−3, previously found, we can express that

a = n − 4

2
α2.

The remaining Jacobi identities are trivially verified. Thus, ifα = 0, we have
g = L(n,n−3). If α �= 0, the change of bases determined by the equationsX′

0 = X0,
X′

n−1 = α−2Xn−1, X′
i = α−1Xi (i �= 0, n−1), proves thatg = T(n,n−3). With this,

the proof of casen even is completed.

Second case: n odd. In the dimensionsn = 7 andn = 9, it can be directly
checked that the results stated in item (2) are true. Therefore, suppose that the
dimension of the algebra isn � 9 and let(X0,X1, . . . ,Xn−2,Xn−1) be an adapted
basis of the algebra of typeg = tn−4. Proceeding as in the previous case, we
arrive now to the fact that ifg/〈Xn−2〉 = L(n−1,n−4), then we haveg = L(n,n−4)

or g =Q(n,n−4). If the algebrag/〈Xn−2〉 = T(n−1,n−4), then the algebrag belongs
to the family



[X0,Xi] = Xi+1, 1 � i � n − 3,

[Xn−1,Xi ] = n−5
2 Xn−4+i , 1 � i � 2,

[Xi,Xn−4−i ] = (−1)i−1(Xn−4 + Xn−1), 1 � i � n−5
2 ,

[Xi,Xn−3−i ] = (−1)i−1 n−3−2i
2 Xn−3, 1 � i � n−5

2 ,

[Xi,Xn−2−i ] = ai,n−2−iXn−2, 1 � i � n−3
2 .

Now, since dimg � 11, we have that at least one of the Jacobi relations
J (X2,Xi,Xn−4−i ) = 0, with 3� i � (n − 5)/2, is non-trivial. Then, from such
non-trivial Jacobi relations, the following equations are obtained:

(−1)i−1
(

a2,n−4 − n − 5

2

)
= 0;

so a2,n−4 = (n − 5)/2. The Jacobi identityJ (X0,X1,Xn−4) = 0 provides the
valuea1,n−3 = 0, and fromJ (X0,Xi,Xn−3−i ) = 0, 2� i � (n − 5)/2, we have
ai+1,n−2−(i+1) = (−1)i−1(n − 3 − 2i)/2 − ai,n−2−i . Finally, by consideringi
from 2 to(n − 5)/2 we obtain

ai,n−2−i = (−1)i(i − 1)
n − 3− i

2
, 2 � i � n − 3

2
.
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The remaining Jacobi relations are trivially verified, so we haveg = T(n,n−4).
With this, the proof of casen odd is completed, and we conclude the proof of the
proposition. ✷
4.2. Algebras of typeg = tr with 3 � r � n − 5

Next, we will show that if a graded quasi-filiform Lie algebra is of typeg = tr ,
with 3 � r � n − 5 (that is, in most of the cases if the dimension considered
is high), theng can only be one of the principal algebras. The proof lies in the
parameterization that can be obtained for the family of algebras of typeg = tr ,
and that is formulated in the following lemma.

Lemma 4.1. Letg be ann-dimensional graded quasi-filiform Lie algebra of type
g = tr , with r odd and3 � r � n−5. Then, if(X0, . . . ,Xn−1) is an adapted basis
of g, there existsα ∈ C such that

g =




[X0,Xi ] = Xi+1, 1 � i � n − 3,

[Xi,Xr−i] = (−1)i−1Xn−1, 1 � i � r−1
2 ,

[Xi,Xn−2−i ] = (−1)i−1αXn−2, 1 � i � n−3
2 ,

whereα = 0 if n is even.

Proof. The proof will be done by induction in the dimensionn of algebrag,
distinguishing ifn is even or odd. For the first meaningful casesn = 8 andn = 9,
it can be directly checked that the lemma is verified.

Admitting the induction hypothesis, we will prove that if Lie algebrag with
dimensionn + 1, is a graded quasi-filiform of typeg = tr , with r odd and
3 � r � n − 4, then in the adapted basis(X0,X1, . . . ,Xn−1,Xn) for someα ∈ C,
we have

g =




[X0,Xi ] = Xi+1, 1 � i � n − 2,

[Xi,Xr−i] = (−1)i−1Xn, 1 � i � r−1
2 ,

[Xi,Xn−1−i ] = (−1)i−1αXn−1, 1 � i � n−2
2 ,

with α = 0 if n + 1 is odd.
We have to consider those two cases that can appear, depending on the parity of

the dimension of the algebrag. Whenn+1 is odd, the induction hypothesis could
be directly applied to the algebra obtained from the quotient over the last subspace
in the gradation. Whenn + 1 is even, we have also to distinguish the particular
caser = n − 4, in which the obtained quotient can, at first, be a terminal algebra.

Casen + 1 odd.Let g be the algebra with dimensionn + 1 and of typeg = tr ,
with 3� r � n − 4. We have the decomposition

〈X0,X1〉 ⊕ 〈X2〉 ⊕ · · · ⊕ 〈Xr,Xn〉 ⊕ · · ·
⊕〈Xn−4〉 ⊕ 〈Xn−3〉 ⊕ 〈Xn−2〉 ⊕ 〈Xn−1〉,
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wherer �= n− 4, sincen− 4 is even. Therefore, sinceCn−2g = 〈Xn−1〉, denoting
each class by the corresponding element,(X0, . . . ,Xn−2,Xn) is an adapted basis
of the quotient

g

Cn−2g
= 〈X0,X1〉 ⊕ 〈X2〉 ⊕ · · · ⊕ 〈Xr,Xn〉 ⊕ · · ·

⊕ 〈Xn−4〉 ⊕ 〈Xn−3〉 ⊕ 〈Xn−2〉.
Thus, the quotientg/〈Xn−1〉 is a graded quasi-filiform Lie algebra, with
dimensionn even, to which the induction hypothesis can be applied. Then,

g =




[X0,Xi] = Xi+1, 1 � i � n − 2,

[Xi,Xr−i] = (−1)i−1Xn, 1 � i � r−1
2 ,

[Xi,Xn−1−i] = ai,n−1−iXn−1, 1 � i � n−2
2 .

Next, let a1,n−2 = α. From the Jacobi relationsJ (X0,Xi,Xn−2−i ) = 0, when
1 � i � (n − 4)/2, we have that

ai,n−1−i = (−1)i−1α, 1 � i � n − 2

2
,

and the lemma is proved for 3� r � n − 4, whenn + 1 is odd.

Casen+1 even.We will deal with the case ofr = n−4 aside, since on computing
the quotientg/〈Xn−1〉, we have a graded algebra with dimensionn to which the
induction hypothesis cannot be directly applied.

(1) Let g be a graded quasi-filiform Lie algebra with dimensionn + 1 of type
g = tr , with 3� r � n − 6. We have the following decomposition for algebrag

〈X0,X1〉 ⊕ 〈X2〉 ⊕ · · · ⊕ 〈Xr,Xn〉 ⊕ · · · ⊕ 〈Xn−3〉 ⊕ 〈Xn−2〉 ⊕ 〈Xn−1〉.
Proceeding as above, we have now thatg/〈Xn−1〉 is an algebra, with dimension
n odd, to which the induction hypothesis can be applied. Then, from the Jacobi
relationJ (X0,Xi,Xn−2−i ) = 0, 1� i � (n − 3)/2, follows

g =




[X0,Xi] = Xi+1, 1 � i � n − 2,

[Xi,Xr−i] = (−1)i−1Xn, 1 � i � r−1
2 ,

[Xi,Xn−2−i] = (−1)i−1αXn−2, 1 � i � n−3
2 ,

[Xi,Xn−1−i] = (−1)i−1 n−1−2i
2 αXn−1, 1 � i � n−3

2 .

Hence, the Jacobi identityJ (X1,X(n−3)/2,X(n−1)/2) = 0 impliesα = 0, so the
lemma is proved for 3� r � n − 6, whenn + 1 is even.

(2) Let nowg be an algebra of typeg = tn−4, with the decomposition

〈X0,X1〉 ⊕ · · · ⊕ 〈Xn−4,Xn〉 ⊕ 〈Xn−3〉 ⊕ 〈Xn−2〉 ⊕ 〈Xn−1〉.
Then,g/〈Xn−1〉 is a graded quasi-filiform Lie algebra, with dimensionn odd,
to which Proposition 4.3 states that it isL(n,n−4), Q(n,n−4) or T(n,n−4) (in
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the particular case of dim(g/〈Xn−1〉) = 9 it can be directly checked thatg of
type g = t6, with dimension 10, verifies the induction hypothesis). But, algebra
g/〈Xn−1〉, when n � 11, cannot beT(n,n−4), since getting the corresponding
expression forg, the Jacobi relationsJ (X0,Xi,Xn−2−i ) = 0, 1� i � (n − 5)/2,
J (X0,X(n−3)/2,X(n−1)/2) = 0 andJ (X1,X(n−3)/2,X(n−1)/2) = 0 prove thatg
is not a Lie algebra. Therefore, algebrag/〈Xn−1〉 must be eitherL(n,n−4) or
Q(n,n−4) and then it is obtained that

g =




[X0,Xi ] = Xi+1, 1 � i � n − 2,

[Xi,Xn−4−i ] = (−1)i−1Xn, 1 � i � n−5
2 ,

[Xi,Xn−2−i ] = (−1)i−1αXn−2, 1 � i � n−3
2 ,

[Xi,Xn−1−i ] = ai,n−1−iXn−1, 1 � i �
⌊

n−2
2

⌋ = n−3
2 .

Now, the same Jacobi relations considered above implies thatα = 0 and
ai,n−1−i = 0 for all 1� i � (n−3)/2, so the lemma is proved wheng is an algebra
of typeg = tn−4 and the proof for the dimensionn + 1 even is completed.✷

The immediate consequence from Lemma 4.1 is the classification of the
considered algebras. Whenn is odd, we only need to takeαXn−1 in the adapted
basis.

Proposition 4.4. If g = tr , in the conditions of Lemma4.1, it is verified that
g = L(n,r), if n is even, andg = L(n,r) or g =Q(n,r) if n is odd.

The following theorem summarizes the results obtained in this section and
provides the classification of naturally graded quasi-filiform Lie algebras.

Theorem 4.1. Every naturally graded quasi-filiform Lie algebra with dimension
n is isomorphic to one of the following algebras:

– If n is even toLn−1 ⊕ C, T(n,n−3) or L(n,r), with r odd and3 � r � n − 3.
– If n is odd toLn−1 ⊕ C, Qn−1 ⊕ C, L(n,n−2), T(n,n−4), L(n,r), or Q(n,r), with

r odd and3 � r � n − 4. In the cases ofn = 7 and n = 9, we add those
algebras in Remark4.1.

4.3. Symbolic calculus in Lie algebras

The use of a formal language that allows programming and symbolic
computing as the software Mathematica [5] was very useful in order to obtain
the classification of graded quasi-filiform Lie algebras. Mathematica was used
as an assistant when getting examples (in a reliable way) of specific graded
algebras in dimensions high enough. The observation of these examples turned
out to be extremely valuable for the understanding of the structure, letting us
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prove or dismiss the new conjectures derived from the new results. In order to
obtain graded algebras in a specific dimension, the process to carry out can be
summarized in the following steps:

(1) To generate the set of algebras laws, defined by the structure constants in a
basis that is supposed to be adapted.

(2) To determine the polynomial equations between structure constants obtained
from the Jacobi identities.

(3) To reduce the equations of item 2.

With the reduction obtained in item (3), we proceed until obtaining the
classification. In the three items above we useMathematica. We use its
programming language face to automatize items (1) and (2), and, then, we
switch to the symbolic calculator for simplifying the unhandy output obtained
in the previous step. TheMathematicanotebook interface takes advantage of
the system’s graphical interfaces by manipulating input and output at interactive
documents friendly.

The key rule-function code in the program developed for solving the tasks
described by items (1) and (2) above is now considered. A general bilinear
alternate lawµ can be stated by the rules

mu[0, x_]:= 0;
mu[x_, 0]:= 0;
mu[x_, x_]:= 0;
mu[x_, y_]:= Simplify[-mu[y, x]]/; OrderedQ[{y,x}];
mu[x_+y_, z_]:= Simplify[mu[x, z]+mu[y, z]];
mu[z_, x_+y_]:= Simplify[mu[z, x]+mu[z, y]];
mu[a_ x_, y_]:= a mu[x,y];
mu[x_, a_ y_]:= a mu[x,y];

If gr = 〈Xr,Xn−1〉, bracket products[Xi,Xj ] of a graded quasi-filiform Lie
algebra in an adapted basis can be obtained (grad= r, dim= n) by

mu[x[0], x[dim-2]] = 0;
mu[x[0], x[dim-1]] = 0;
For[i=1, i <= dim-3, i++, mu[x[0], x[i]] = x[i+1]];
For[i=1, i <= dim-2, i++,
If[i <= dim-grad-2,

mu[x[dim-1],x[i]] = a[i] x[i+grad],
mu[x[dim-1],x[i]] = 0

]
];
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For[i=1, i <= dim-3, i++,
For[j=i, j <= dim-2, j++,

If[i+j <= dim-2 && i != j ,
If[i+j != grad,

mu[x[i],x[j]] = a[i,j] x[i+j],
mu[x[i],x[j]] = a[i,j] x[i+j] + b[i] x[dim-1]

],
mu[x[i],x[j]]=0

]
]

];

Also it is needed to determine the polynomial relations between the structure
constants (automatized in the program) given by Jacobi’s identity which are
obtained from “select” nonzero coefficients in expressions

mu[mu[x[i],x[j]],x[k]] + mu[mu[x[j],x[k]],x[i]]
+mu[mu[x[k],x[i]],x[j]].

As results that allowed the simplification of the considered family were
obtained, the algorithms were modified in order to get examples in greater
dimensions in those cases in which relevant information could be applied. For
example, when Proposition 3.3 has been proved (at first, it was only a conjecture)
the code can be updated, replacinga[i] by a, andb[i] by (-1)^i.

This approach can be used for those analogous problems of classification
because it allows a significant progress. Moreover, the symbolic formulation
of a problem and its treatment can point out the interest for studying certain
“similar” objects to those that are being studied and that become apparent during
computations. Thus, for instance, quasi-filiform Lie algebras with dimensionn,
A(n,r) andB(n,r) defined as

A(n,r) (n � 5, 2 � r � n − 3):{ [X0,Xi] = Xi+1, 1 � i � n − 3,

[Xn−1,Xi ] = Xi+r , 1 � i � n − 2− r;
B(n,r) (n � 7, n odd;3� r � n − 4 (r odd), andr = n − 3):




[X0,Xi ] = Xi+1, 1 � i � n − 3,

[Xn−1,Xi] = Xi+r , 1 � i � n − 2− r,

[Xi,Xn−2−i ] = (−1)iXn−2, 1 � i � n−3
2 ,

are the only non-split algebras admitting the decomposition

g = 〈X0,X1〉 ⊕ 〈X2〉 ⊕ · · · ⊕ 〈Xr,Xn−1〉 ⊕ · · · ⊕ 〈Xn−2〉
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when (X0, . . . ,Xn−1) is a homogeneous adapted basis ofg and strict relation
[g1,gr−1] ⊂ gr is considered.

In [3], the algebrasA(n,r) and B(n,r), defined above, are obtained from a
“quasi-natural” filtration(Fi), in terms of the descending central sequence ofg,
of which the natural filtration constitutes a particular case. In fact, the associated
graded Lie algebras grg = ⊕

gi , with gi = Fi/Fi+1, are the algebrasA(n,r),
B(n,r), and the algebras stated in Theorem 4.1. In dimension 8, we can find those
algebras in [1], where they separate the irreducible components on the variety. So,
it could be an interesting problem to study other non-natural graded Lie algebras
in a similar way.

One can wonder then about gradations of that type, considering the problem
from the point of view of obtaining the decomposition of an algebrag into as many
subspacesgi as possible with[gi ,gj ] ⊂ gi+j , without using the natural filtration.
In the study of those gradations, homogeneous adapted bases could be found, and
new graded Lie algebras obtained could provide us relevant information for the
study of nilpotent Lie algebras.
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