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Abstract

We present the classification of one type of graded nilpotent Lie algebras. We start from
the gradation related to the filtration which is produced in a natural way by the descending
central sequence in a Lie algebra. These gradations were studied by Vergne [Bull. Soc.
Math. France 98 (1970) 81-116] and her classification of the graded filiform Lie algebras is
here extended to other algebras with a high nilindex. We also show how symbolic calculus
can be useful in order to obtain results in a similar classification problem.

0 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

In the cohomological study of the variety of laws of nilpotent Lie algebras
established by Vergne [4] the classification of the “naturally” graded filiform Lie
algebras plays a fundamental role. The achieved classification allows an easy
expression of a filiform Lie algebra, that is, of an algebra with a maximal nilindex
among those in the same dimension. Vergne proves that, up to isomorphisms,
there is only one graded filiform Lie algebra in odd dimensions and two of
them when the dimension is even. This fact also allows other authors to deal
with different aspects of the theory. For example, using the graded filiform Lie
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algebras, Goze and Khakimdjanov give in [2] the geometric description of the
characteristically nilpotent filiform Lie algebras.

Thus, the knowledge of the graded algebras of a particular Lie algebra class
gives a valuable information about the structure of that class. That knowledge
can later facilitate the study of several problems that can appear within the whole
of the class. The aim of this paper is to expand Vergne’s results, obtaining the
classification of graded Lie algebras for a particular type of non-filiform nilpotent
Lie algebras.

This paper is structured in the following way. In Section 2 a brief description
of Vergne’s results is given. The basic structure of graded quasi-filiform Lie
algebras is explained in Section 3, where some results about their classification
have already been obtained. The final section deals with the classification of quasi-
filiform Lie algebras in any dimension, whose list was introduced in Section 2.
We describe also how symbolic calculus has been used, concretely by way of the
software Mathematica.

2. Graded nilpotent Lie algebras

In this paper Lie algebrag will be considered over the field of complex
numbersC, and with finite dimensiom. Let g be a complex Lie algebra.
Then,g is naturally filtered by the descending central sequetfye= g, Cig =
[9.C1~1g], i > 1. Indeed, we consider the filtration given bg;), whereS; =g,
ifi <1;8; =Ci1g,if 2 <i <k;andS; = {0}, if i > k. Thus, with any nilpotent
Lie algebrag of nilindex k = inf{i € N: C’g = 0}, we can associate naturally a
graded Lie algebra with the same nilindex, noted by gnd defined by

. Si
grg= gi, Wwithg, = .

Because of the nilpotency of the algebra, the gradation is finite, i.e.,

grg=91992P--- D gk

with [g;, g;1 C giyj, fori + j <k, verifying that dimg; > 2 and ding; > 1, for

2 <i < k.AlLiealgebrag is said to benaturally gradedf gr g is isomorphic tq,

which from now on will be noted by gr= g [4]. Examples of these algebras are
L,, O, defined as follows. The undefined brackets, except for those expressing
antisymmetry, are supposed to vanish.

Example2.1. The algebrd., is defined in the basi&Xo, X1, ..., X,—1) by
[Xo, Xil=Xi4y1, 1<i<n-2
The algebraQ,, is defined in the basigXg, X1, ..., X,—-1), wWithn = 2¢, by

[Xo. Xil=Xit1, 1<i<n—-2,
[Xi, Xn—1-i1=(=1"1X,_1, 1<i<qg-1
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A Lie algebrag with dimensionn is said to befiliform if its nilindex is
k=n-1,ie.,dimC'g)=n—i—1,for1<i <n— 1. The above Lie algebras
L, andQ, are filiform. In [4] Vergne proved the following theorem.

Theorem 21 [4]. Letg=g1 ® g2® --- ® gy—1 be a naturally graded
filiform Lie algebra with dimension. Then, there exists a homogeneous basis
(Xo, X1,..., Xp—1) of g, with Xo, X1 € g1 and X; € g; for i > 2 such that
g=L,,ifnisodd,andg=L, org= Q,, if n is even.

Thus, any naturally graded filiform Lie algebra with dimensida isomorphic
to L,, if n is odd, and isomorphic th,, or Q,, if n is even. The aim of this paper
is to determine the:-dimensional naturally graded Lie algebras with nilindex
k =n — 2. We will obtain in Theorem 4.1 a locally finite family of algebras
(depending on one parameter) defined in a b@sis X1, ..., X,—1) as follows.

2.1. Naturally graded quasi-filiform Lie algebras
Split: L,_1®C n=>4):

[Xo, Xil=Xi+1, 1<i<n-3;
0,-1®C, (n>=7, nodd:

[X0. Xi] = Xi 1. 1<i<n-3,
) -3
[Xi Xp 2i]= (DX, 5, 1<i< ”T
Principal: L., (n>5, rodd 3<r<2|%5t| - 1):
[Xo. Xi] = Xi 1. 1<i<n-—3,
. -1
[Xi X, )= (- 1X, 1. 1<i<- =

Qur (m>7,nodd rodd 3<r<n—4):

[Xo, Xi] = Xit1, 1<i<n-3,
. -1
X0 Xl = (D X, 1< <
. . _n—3
[Xi, Xp—o—il= (=D X, 2, 1<i< >
Terminal: 7(, ,-3 (nevenn > 6):
[Xo0, Xil= Xit1, 1<i<n-3,
n—4
[Xn-1, X1] = Xn-2,

2
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: n—4
(X, Xp-3-i1 = (=1 "1 (X,—3 + Xu-1), 1<i<——,

ian—2-2i . n—4
(X, Xn2i] = (-1 T ———Xu 2, 1<i<——

,T(n,n—4) (noddn>7):
n—5

[Xn—lv Xi] = TXn—4+i7 1 < i < 23

. n—5
(X, Xn—a-il = (=1 "1 (Xy_a + Xuo1), 1<i<——,

- n—3-2i -5
(X, Xp_3_i] = (—D“”’iz’xn,g, 1<i< —.

, —3—i -3
[X;, Xp 2 i]=(—1)(i — 1>%Xn,2, 2<i< .

The algebrag (7 3), 5(19’5), and£(29,5) of Remark 4.1 must also be considered.

3. Graded quasi-filiform Lie algebras

A key concept in this paper will be that of quasi-filiform Lie algebra defined
in the following way.

Definition 3.1. An n-dimensional nilpotent Lie algebrg is said to beguasi-
filiform if its nilindex is k = n — 2, i.e.,, C""3g # 0 and C"~?g = 0, where
C% =g, C'g=[g,C"'gl.

Moreover, from now on the terrgradedwill be used if the Lie algebra is
naturally graded. Thus, for a graded quasi-filiform the gradation wilgbe
g1® g2® - D gn2, Whereg; = C'~1g/C'g.

3.1. Graded quasi-filiform Lie algebra structure

Let g be ann-dimensional graded quasi-filiform Lie algebra. If we obtain the
decompositiog =g1 @ go® --- B gn—2 With [g;, g;1 C gi4j, fori +j <n -2,
then either dingy = 3 and dimg; =1, 2<i <n — 2, or dimg; = 2 and there
existsr, 2<r <n — 2, such that ding, = 2, with dimg; =1 fori #1, r.

In order to make the structure that the family of graded quasi-filiform Lie
algebras presents easier, we must find a basis where the expression of the algebras
is suitable. The following proposition gives a step forward in this way.

Proposition 3.1. Letg be a graded quasi-filiform Lie algebra with dimension
Then, there exists a homogeneous baXig X1, ..., X,,—1) of the algebra such
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that Xo, X1 €91, Xi €gi,2<i<n—2;and X, 1 €g, With1<r <n — 2,
verifying

(X0, Xil=Xiy1, 1<i<n-3
[XOa Xn—Z] = Oa [X07 Xn—l] =0.

A basis(Xo, X1, ..., X,—1) verifying the above conditions will be referred to as
an adapted basis of algebga

Proof. Suppose firstly that diny = 3. Let Yy, ..., Y,—2, with ¥; € g;, where
1<i<n—2.1fY g1, we can obtain

LY, Yil= fi(¥)Yia,

with f;(Y) € C. Sincelg1, gi]1 = gi+1, the linear functiony; : g; — C is non-null.
Therefore, there is an elemexig € g1 for which f; (Xo) #0,1<i <n—2. Then,
one can choose vectoks = A;Y; € g;, A; # 0, so that the following relations are
obtained

[Xo, Xil=Xi41, 1<i<n—3;[Xo0, X,2]=0. 1)

On the other hand, expanding the basisgefwith a vectorY,_1, we have
[Xo, Y,—1] = X2 and one can tak&,_1 = Y,_1 — a X1, finally proving

[Xo0, Xy—1]=0.

Suppose now that digy = 2 and ding, = 2. LetYy,..., Y,—> be any nonzero
elements, witht; € g; for L <i <n — 2. If [g1, ¥,] =0, we choose as a no null
vector ofg, an element from the supplementary subspacé&rpf in g,. Thus,
sincelg1, g-] = gr+1, from definition for eacht’ € g1 of the numberf, (Y) by

the equationfY, Y,] = f-(Y)Y,41, follows that the linear forny, : g1 — C is not

null. Then, a similar argument to the previous case allows us to choose a vector
Xo € g1 and vectorsX; € g;, 1 <i <n — 2 proving the relations (1). Expanding
now the basis o, with a vectorY,,_1, we have Xy, Y,—1] = @ X,+1 and taking
Xn—1=Y,—1—aX,,itis proved tha{Xo, X,,—1]=0. O

If we denote by X, Y, ...) the subspace gfgenerated by the vectoks Y, . . .,
we can express the structure of the decomposition of the algebra in terms of an
adapted basis.

Corollary 3.1. If g is a graded quasi-filiform lie algebra with dimensianits
decomposition in an adapted bagiX¥o, X1, ..., X,—1) is one of the following

types

t1= (X0, X1, X;—1) ® (X2) ® --- ® (X, —2),
to=(X0, X1) @ (X2, X 1) ® - ®(Xy—2),
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th—2=(Xo, X1) ® (X2) ® - - - ® (Xpn—2, Xy—1).
3.2. Split graded quasi-filiform Lie algebras

We will consider now the case in whighis an algebra of typg = t;. This
case, in which ding; is maximal, is the only possible to be considered for filiform
Lie algebras. The following proposition shows that the graded quasi-filiform Lie
algebras of such a type are just trivial extensions of the filiform Lie algebras. Their
classification is directly given as a corollary of Theorem 2.1.

Proposition 3.2. Let g be a graded quasi-filiform Lie algebra of type= t1; with
dimensiom. Then,g is isomorphictaL, 1 ®C, if n is even, and td.,_1 ® C or
0,19 C,if nis odd.

Proof. Let (X, X1, ..., X,—1) be an adapted basis gf Then, denoting byx |
the floor function ofx and since the algebra has type- t1, the algebrg belongs
to the family

[Xo0, Xil= Xiy1, 1<i<n—-3,
g: [Xn*].’ Xl]:ale+l5 lgl <n_37
[Xi, Xj1=a;jXivj, 1<i<[%53] i<j<n—-2-i
with {a;}, {a;;} verifying the algebraic relations obtained from the Jacobi
identities

[Xi. [Xj, XeI] + [ X, [Xe Xil] + [ X, [Xi, X;1] =0

which from now on will be denoted a$(X;, X;, Xx) = 0. In particular, the
relationsJ (Xo, X,,—1, X;) =0, 1<i <n — 4, prove thaty; = a1 for 1 <i <
n — 3. The change of basis defined by the equati&fs, = X,_1 — a1Xo,
X! =X; (i #n — 1), allows to suppose; = 0. Hence, the algebrg can be
expressed as

[Xo0, Xi] = Xit1, 1<i<n-3,
B { (Xi. Xjl=aijXivj, 1<i<|53|.i<j<n—2-i
and thereforeX,_; is an element of the center of the algelfég) = {X € g:
[X, gl =0}. Thus, it has been proved thait= g’ @ (X,,—1), where the subalgebra

g =Pugi/{X,—1) is a graded filiform Lie algebra. The only thing left is to use
Theorem 2.1 in order to finish the proofx

The previous result indicates that the only graded quasi-filiform Lie algebras
of type g = t; are direct sums of graded filiform algebras a@id They will
be referred to as split from now on, and their only interest is to emphasize the
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naturally gradation underlying the filiform subalgebra of the extension as we can
see in Section 2.

Remark 3.1. If g is a graded quasi-filiform Lie algebra of type= t5,
then dimgz = 2. On the one hand, from the natural gradation, it follows
[g1, g1] = g2. But, on the other hand, from the Corollary 3.1 and the properties
that the Proposition 3.1 determines for the adapted a&jsX1, ..., X,-1), it

is obtained

[(X0, X1), (X0, X1)] = (X2).
Therefore, there cannot exist any graded quasi-filiform Lie algebra ofgtype.
The following proposition allows us to reduce in half the task about the

classification of graded quasi-filiform Lie algebras. Indeed, we prove that there
exists no algebras of type= t, whenr is even.

Proposition 3.3. Let g be a non-split graded quasi-filiform Lie algebra of type
g = t, with dimensiom:. Thenr is odd andg belongs to the parameterized family

[Xo0, Xil= Xiy1, 1<i<n—3,

[Xn-1, Xi]l=aX;y,, 1<i<n—-2—-r,

[Xi, Xj1=ai; Xi+j, 1<i<|%52] i<j<n—2-i,
(_]#r_l),

[Xi, Xr—il =air—iX, + (D' X1, 1<i<|[F] - 23),
wherea € C,if3<r<n—3,anda=0,ifr=n— 2.
Proof. Let g be ann-dimensional graded quasi-filiform Lie algebra of type

g =t,. The observation in Remark 3.1 tells us that 2. Assume that X r <
n — 2. According to Corollary 3.1 one can obtainrift n — 2, that

[Xo0, Xil= Xit1, 1<i<n-3,
[Xn-1, Xil = ai Xitr, 1<i<n—-2—-r(r<n-3),
g=1{ [Xi, X;1=aij Xiy;, lgigL%J,i<]‘<n—2—i,
(J#r—i),

[Xi, Xr—il=a;,—i X, +Db;Xy—1, 1<i< Lr;zlj
In the extreme position=n — 2, itis X,—1 € Z(g) and we have
[Xo, Xi] = Xiy1, 1<i<n-3,
g=1 X0, Xj1=a;jXisj, 1<i<|%3] i<j<n-2-i
[Xi, Xn—2-i1 = ain-2-i Xn2+biXp—1,  1<i<[252].

Sincer > 3, we obtain|(r — 1)/2] > 1. Then, condition[g1, g,—1] = g, of
the gradation guarantees thiat = 0, because ofXg, X,-1] = X, and g, =
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(X,, X,—1). If we takei such that 1< i < [(r — 1)/2] — 1, from the Jacobi
relationsJ (Xo, X;, X,_1_;) = 0, we can deduce that

A _1
bi= (1Y, 1<i< V . J

Then, ifr is even, the Jacobi identity(Xo, X, /21, X,/2) = 0, implies that
b1 =0,

and therefore we havé,_1 ¢ Clg. Thus din{C%/C'g) = dimg; = 3, and
then dimg, = 1 contradicting the hypothesis thgis an algebra of typg = t,,
with » > 3. Thusr is odd, and when X r < n — 3, the Jacobi relations
J(Xo, Xp—1, X;) =0, with 1<i <n—3—r, implies

a;=ay, 2<i<n—2-r.

Hence, the proof is completed by writimg= a1 and by choosing1 X, 1 as the
vector ofg, in the adapted basis.O

The following section deals with the classification of non-split graded quasi-
filiform Lie algebras. By the results obtained in Section 3 we have to consider just
the gradation of typg = t,., with r odd.

4. Classification of graded quasi-filiform Lie algebras

So far we have not obtained graded quasi-filiform Lie algebras, apart from the
split onesL,,—1 @ C andQ,,—1 @ C. One can check easily that the algebfgs,
and Q, -, introduced agrincipal algebras in Section 2, are naturally graded
guasi-filiform Lie algebras of typg = t,.

We will later see, in Section 4.2, hod, ,, and Q, ) will play the role
that algebrad.,, and Q,, had in the filiform case. That is, in the sense of that
an n-dimensional graded quasi-filiform Lie algebra of type- t., can only be
isomorphic to one of the principal algebras (having similar condition to the
filiform case depending on the parity @}, except for certain extreme values
of r in comparison with:. Those cases in whichis close to the dimension of the
algebra are now studied.

4.1. Algebras of typg =t,, withr >n — 4

When the dimension of the algebra is odd, the fact that the elekgentof an
adapted basis is central makes this case a little bit special.

Proposition 4.1. If g is ann-dimensional graded quasi-filiform Lie algebra of
typeg = t,_o, n odd, theng = L, ,—2).
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Proof. If (Xo, X1,...,X,—1) is an adapted basis of algebgawe can deduce
from Proposition 3.3 that =n — 2 is odd andj belongs to the family

[Xo, Xil=Xiy1, 1<i<n—-3,
(Xi, Xjl=aijXiyj, 1<i<"53, i<j<n—2—i;
[Xi, Xn—2-il = ain—2-iXn—2+ (-D71X,_1, 1<i< "—53
We have
g=(X0,X1)®(X2) D @ (X;-3) ® (Xpn—2, Xp—1)

with dim(C'g) = n — 2 andC"3g = (X,_2, X,_1). Then, denoting each class

by the corresponding elemeiiXo, ..., X,—3) is an adapted basis of the quotient
g

Cn—3g

Sinceg/(X,—2, Xn,—1) is a graded filiform algebra with dimensien- 2, odd, the
Theorem 2.1 stated that

= (X0, X1) ®(X2) ®--- ® (X;,_3).

g
cngg L2
Thus, we have
{[Xo,Xi]ZXiH, 1<i<n—-3,
8 X0 X2l = dinzi X2+ (-1 Xpg, 1<i <552

The Jacobi relationd (Xo, X;, X,—3-;) =0, when 1< i < (n — 5)/2, implies
Ai+1.n—2—(i+1) = —ain—2—; and denoting:y ,—3 = «, and varyingi from 1 to
(n —5)/2, we have

, -3
Gin-z-i = (Dl 1<i <
These equations prove that
{[XO,Xi]ZXiJrl, 1<i<n-3,
8T X Xoo il = (D M@Xn 2+ Xoo), 1<i <152

Thus, an adequate change of bases providegthaf(, ,—2). O

Depending on the dimensionof the algebrgg, for each acceptable type of
gradationg = t,., we will obtain that the only possible graded quasi-filiform Lie
algebras ar&, ,) whenn is even, andC(, , or Q, ) whenrn is odd. However,
whenr =n — 3 (n even) or wherr =n — 4 (n odd), we have also to consider
the algebrag(, ,—3 and7, ,—4), defined in Section 2. Those naturally graded
guasi-filiform Lie algebras have typgs= t,_3 andg = t,,_4, respectively. In each
dimensiorn, the appropriat€y, ., algebra will be called theerminalalgebra.
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We can now prove that the graded quasi-filiform Lie algebras so far considered
are really different.

Proposition 4.2. Then-dimensional graded quasi-filiform Lie algebras_1 ¢ C,
01-19C, Ly Qunrys Zinn—ay, T(n,n—3) are pairwise non-isomorphic.

Proof. The Split Lie algebrag.,—1 & C, Q,,—1 @ C are obviously graded quasi-
filiform algebras of typeg = t1. For any other algebra it is deduced from its
definition that(Xo, X1, ..., X,—1) is a homogeneous adapted basis of a quasi-
filiform Lie algebra of typgy = ¢,. Itis obvious that the dimensions of the ideals of
the descending central sequence of algebras from different types are different and,
therefore, they are non-isomorphic. Among those which belong to the same type,
whenn is odd, L,y and Q) are not isomorphic since dith2g) is different

for each one of them, being?(g) = [C1g, Clg] the second characteristic ideal

of the derived sequence of the algebra. Finally, in the terminal algefyas,

the dimension of the centeg(g) is different from the corresponding, ) and
Q.ry, Which should be considered depending on the parity of the dimensibn

the algebra. O

In dimensions: = 7 andn = 9 can be proved that, besides algebras of type
g = t,—4 Iin the previous Proposition 4.2, we have to consider the following
algebras.

Remark 4.1. The algebra with dimension 7

[Xo, Xi]= Xit1, 1<i <4,
e _ | X6 Xi]=Xayi, 1<i<2,
7371 [X1, X2] = X3+ X6,

[X1, Xil=Xiy1, 3<i <4,

and the following algebras with dimension 9 denotedé‘?g%) (i=1,2) and
defined by

[Xo, Xil=Xir1, 1<i<6,
[Xs, Xi]=2X54;, 1<i<2
[X1, Xa] = X5+ X5,

gL _ [X1, X5] =2Xe,

©9 [X1, X6] = 3X7,

[X2, X3] = —X5 — X3,
[X2, X4] = — X,
[X2, X5] = —X7,




J.R. Gémez, A. Jiménez-Merchan / Journal of Algebra 256 (2002) 211-228 221

[Xo, Xi] = Xiy1, 1<i
[Xs, Xi] =2X5y;, 1<i
[X1, X4] = X5+ Xs,

[X1, X5]=2Xs,

£ = | [X1. X6l = X7,

[X2, X3] = —X5 — Xg,
[X2, X4] = — X,

[X2, X5] = X7,

[X3, X4] = —-2X7

are graded quasi-filiform Lie algebras.

We are now in a position to obtain the classification of graded quasi-filiform
Lie algebras of typg = t, in the cases = n — 3 andr = n — 4, which will be
the only ones in which terminal algebras can appear.

Proposition 4.3. If g is a graded quasi-filiform Lie algebra with dimensian
then

(1) If the algebra is of typgy = t,_3 (n ever) andn > 6, theng = L, ,—3) Or
9= ,T(n,n73)-

(2) If the algebra is of typgy = t,—4 (n odd) andn > 7, theng = L 1—a),
9= Qu.n—4), Or g =T, »,—4. In those cases in which the dimension is: 7
or n =9, those algebras in Remark1 must be added.

Proof. According to Proposition 3.3, if the algebra is of type- t,,_3, thenn is
even and if it is of typgy = t,,_4, n is odd. Thus, two cases in the proof will be
distinguished.

First case n even. If the dimension of the algebra is 6, gng t3 is naturally
graded, then it can be check thgit= L 3) or g = 7(,3. Suppose that the
dimension of the algebra is > 8. If (Xo, X1,..., X,—2, X,,—1) is an adapted
basis of the algebrg, the algebra of typgy = t,_3 presents the following
decomposition:

g= (X0, X1) ®(X2)®--- & (X3, Xp—1) ® (X;—2).

Starting from the family according to Proposition 3.3, and working as in
Proposition 4.1, we come to the conclusion that algegdoalongs to the family
parameterized by

[Xo0, Xi]= Xiy1, 1<i<n—-3,
[Xn-1, X1]=aX,-2,

[Xi, Xn—3-i]1= (D" HaXp3+ X,-1), 1<i<

[Xi, Xn—2-il=ain—2-i Xn—2, 1<i <57
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From the Jacobi relation$(Xo, X;, X,—3-;) =0, when 1< i < (n — 4)/2, we
obtain
i —2—2i . n—4
ajn—2-i = (=1 > o, 1<ig >
Since the dimension gf is greater than or equal to 8 we have that at least one of
the Jacobi relations (X1, X;, X,—3—;) = 0 with 2<i < (n — 4)/2 is non-trivial.
From such non-trivial Jacobi relations the following equations are obtained:

(=) Naar,-3—a)=0,

and substituting the value af ,_3, previously found, we can express that

—4
" 2 Olz.
The remaining Jacobi identities are trivially verified. Thusgi& 0, we have
9= Lun-3. If a #0, the change of bases determined by the equakigns Xo,
X' =a"?X, 1, X, =a"1X; (i #0,n—1), proves tha = 7, ,_3). With this,
the proof of case even is completed.

a =

Second casen odd. In the dimensions = 7 andn = 9, it can be directly
checked that the results stated in item (2) are true. Therefore, suppose that the
dimension of the algebrais> 9 and let(Xg, X1, ..., X,—2, X,—1) be an adapted
basis of the algebra of typg = t,_4. Proceeding as in the previous case, we
arrive now to the fact that i/ (X,—2) = L—1.n—4), then we havgy = L, ,—a)
org = Qu.n—4). If the algebray/(X,,_2) = 7(,—1,,—4), then the algebrgbelongs
to the family

[Xo, Xi] = Xiy1, 1<i<n—-3,
[Xn—1, Xi1="5>Xn—ari. 1<i<2,
[Xi, Xn—a-il = (D" (Xp_a+ Xu-1), 1<i<2,
[Xi, Xn—3-i]= (D152 x, 5 1<i<’2,
[Xi, Xn—2-i] = ain-2-iXn-2, 1<i<"—§3

Now, since ding > 11, we have that at least one of the Jacobi relations
J (X2, Xi, Xn—4—i) =0, with 3<i < (n —5)/2, is non-trivial. Then, from such
non-trivial Jacobi relations, the following equations are obtained:

A 5
(—1)'_1<a2,n—4 - 3 ) =0;

S0 ap,—4 = (n — 5)/2. The Jacobi identity/ (Xo, X1, X,,—4) = 0 provides the
valueas ,—3 =0, and fromJ (Xo, X;, Xn—3-i) =0, 2<i < (n — 5)/2, we have
divin—2-G+1) = (=17 — 3 - 2i)/2 — a; ,_o—;. Finally, by considering
from 2 to (n — 5)/2 we obtain

. —3— -3
imoi= (=1 (i — 1)”72’, 2<i<t”®
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The remaining Jacobi relations are trivially verified, so we hgve 7, ,_4).
With this, the proof of case odd is completed, and we conclude the proof of the
proposition. O

4.2. Algebras of typg=t, with3<r<n -5

Next, we will show that if a graded quasi-filiform Lie algebra is of type t,,
with 3 < r < n —5 (that is, in most of the cases if the dimension considered
is high), theng can only be one of the principal algebras. The proof lies in the
parameterization that can be obtained for the family of algebras ofgypeé,,
and that is formulated in the following lemma.

Lemma4.l. Letg be ann-dimensional graded quasi-filiform Lie algebra of type
g=+t,, withr oddand3 <r <n—>5.Then, if(Xo, ..., X,—1) is an adapted basis
of g, there existsx € C such that

[Xo. Xi]1= Xi1, 1<i<n-3,
g=1 [Xi. X, 1= (-D71X, 1, 1<i< 5,
[Xi, Xn—2-i]= (D' taX, 2, 1<i<5,

wherea =0 if n is even.

Proof. The proof will be done by induction in the dimensianof algebrag,
distinguishing ifr is even or odd. For the first meaningful cases 8 andn =9
it can be directly checked that the lemma is verified.

Admitting the induction hypothesis, we will prove that if Lie algelgravith
dimensionn + 1, is a graded quasi-filiform of typg = t,, with » odd and
3<r <n—4,theninthe adapted bagi¥o, X1, ..., X,-1, X,) for somex € C,
we have

[Xo0, Xil= Xit1, 1<i<n—-2,
g={ [Xi. X, 1= (-D""1X,, 1<i<5h,
[Xi, Xy 1] = (1) taX, 1, 1<i<52,

witha =0if n + 1 is odd.

We have to consider those two cases that can appear, depending on the parity of
the dimension of the algebgaWhenn + 1 is odd, the induction hypothesis could
be directly applied to the algebra obtained from the quotient over the last subspace
in the gradation. When + 1 is even, we have also to distinguish the particular
caser =n — 4, in which the obtained quotient can, at first, be a terminal algebra.

Casen + 1 odd.Let g be the algebra with dimension+ 1 and of typeg = ¢,
with 3 < r <n — 4. We have the decomposition

(X0, X1) D (X2)®--- B (X, Xp)D---
D(Xn—4) ® (Xn-3) ® (Xpn-2) ® (Xu-1),
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wherer # n — 4, sincen — 4 is even. Therefore, sine® —2g = (X,,_1), denoting
each class by the corresponding elemékip, ..., X,—2, X,) is an adapted basis
of the quotient

o2 = (X0, X1) ®(X2)®--- B (X, Xp) B -+~
g
(S (Xn74> ® (Xn73> ® (Xn72>'

Thus, the quotientg/(X,—1) is a graded quasi-filiform Lie algebra, with

dimensiom even, to which the induction hypothesis can be applied. Then,
[Xo, Xil = Xiya1, 1<i<n-2,

g={[Xi. X, i]1=(=D71X,, 1<i< 5,

[(Xi, Xp-1-i]=in-1-iXn-1. 1<i< 252

Next, letay ,—2 = «. From the Jacobi relation$(Xo, X;, X,—2—;) = 0, when

1<i<(n—4)/2,we have that

ain1-i=(-D"te, 1<i<
and the lemma is proved for3r <n — 4, whenn + 1 is odd.

Casen + 1 evenWe will deal with the case of = n — 4 aside, since on computing
the quotienty/(X,—1), we have a graded algebra with dimensioto which the
induction hypothesis cannot be directly applied.

(1) Let g be a graded quasi-filiform Lie algebra with dimensios 1 of type
g=1t,, with 3<r <n — 6. We have the following decomposition for algelgra

(X0, X1) D (X2)® - ®(Xr, Xp) D D (Xy—3) D (Xp—2) ® (Xp—1).

Proceeding as above, we have now thatX, 1) is an algebra, with dimension

n odd, to which the induction hypothesis can be applied. Then, from the Jacobi

relationJ (Xo, X;, Xp—2-;) =0, 1<i < (n — 3)/2, follows

[Xo, Xil = Xit1, 1<ig<n—-2,
[Xi, X,—il = (=1 X, 1<i< 5,
o= - e
[Xi, Xn—2-i] = (=1 FaX,-2, 1<i <15
[Xi, Xn-1-i]= (D125 2ax, 5, 1<i<SS

Hence, the Jacobi identity (X1, X(,—3)/2, X(4—1)/2) = 0 impliesa = 0, so the
lemmais proved for X r <n — 6, whenn + 1 is even.
(2) Let nowg be an algebra of typg= t,,_4, with the decomposition

(X0, X1) @ -+ D (Xn—a, Xn) ® (Xn-3) ® (Xn—2) ® (Xp—1).

Then,g/(X,_1) is a graded quasi-filiform Lie algebra, with dimensierodd,
to which Proposition 4.3 states that it B, ,—4), Qu.n—4)y OF T(nn—a (in



J.R. Gomez, A. Jiménez-Merchan / Journal of Algebra 256 (2002) 211-228 225

the particular case of difg/(X,—1)) = 9 it can be directly checked that of
type g = tg, with dimension 10, verifies the induction hypothesis). But, algebra
9/(Xn-1), whenn > 11, cannot beZ, ,_4), Since getting the corresponding
expression fog, the Jacobi relationg(Xo, X;, X;,—2-;)=0,1<i < (n —5)/2,

J (X0, X(n—3)/2: X(n—1)/2) = 0 and J (X1, X (,—3)/2, X(n—1)/2) = O prove thatg

is not a Lie algebra. Therefore, algelya(X,_1) must be either’, ,_4) or
Qwm,n—4) and then it is obtained that

[Xo0, Xil= Xit1, 1<i<n—-2,
[Xi, Xn—a—i] = (=1)I71X,, 1<i <558,

8= [Xi, Xy—o—il=(— 1)’ 1aX,, 2, 1<,’<n_53’
[

Xi, Xn—1-il = ain-1-i Xn-1, 1<1<L%J:%~

Now, the same Jacobi relations considered above implies dhat0 and
ajn—1—i =0forall1<i < (n—3)/2, sothe lemma s proved wheiis an algebra
of typeg = t,_4 and the proof for the dimension+ 1 even is completed. O

The immediate consequence from Lemma 4.1 is the classification of the
considered algebras. Wheris odd, we only need to takeX,_1 in the adapted
basis.

Proposition 4.4. If g = t,, in the conditions of Lemmad.1, it is verified that
g="Lu,r, ifniseven, ang =L, , or g= Q. if n is odd.

The following theorem summarizes the results obtained in this section and
provides the classification of naturally graded quasi-filiform Lie algebras.

Theorem 4.1. Every naturally graded quasi-filiform Lie algebra with dimension
n is isomorphic to one of the following algebras

— IfniseventoL,_1 @ C, Tn,n—3) Of L.y, Withr odd and3<r <n — 3.

— IfnisoddtoL,—1®C, Q1D C, L,n-2), Tin,n-4) Lin,r)» OF Qn,ry, With
r odd and3 < r <n — 4. In the cases ofi =7 andn = 9, we add those
algebras in Remark.1

4.3. Symbolic calculus in Lie algebras

The use of a formal language that allows programming and symbolic
computing as the software Mathematica [5] was very useful in order to obtain
the classification of graded quasi-filiform Lie algebras. Mathematica was used
as an assistant when getting examples (in a reliable way) of specific graded
algebras in dimensions high enough. The observation of these examples turned
out to be extremely valuable for the understanding of the structure, letting us
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prove or dismiss the new conjectures derived from the new results. In order to
obtain graded algebras in a specific dimension, the process to carry out can be
summarized in the following steps:

(1) To generate the set of algebras laws, defined by the structure constants in a
basis that is supposed to be adapted.

(2) To determine the polynomial equations between structure constants obtained
from the Jacobi identities.

(3) To reduce the equations of item 2.

With the reduction obtained in item (3), we proceed until obtaining the
classification. In the three items above we udgathematica We use its
programming language face to automatize items (1) and (2), and, then, we
switch to the symbolic calculator for simplifying the unhandy output obtained
in the previous step. ThMathematicanotebook interface takes advantage of
the system’s graphical interfaces by manipulating input and output at interactive
documents friendly.

The key rule-function code in the program developed for solving the tasks
described by items (1) and (2) above is now considered. A general bilinear
alternate lawu can be stated by the rules

mu[0, x_]:= 0;

mu[x_, 0]:= 0;

mu[x_, x_]:= 0;

mu[x_, y ]:= Sinmplify[-mu[y, x]]/; Oderedd{y, x}];
mu[x_+y , z ]:= Sinplify[mu[x, z]+muly, z]];

mu[z_, x_+y ]:= Sinmplify[mu[z, x]+mu[z, y]];

mifa_ x_, y_]:=a nu[x,y];

mi[x_, a_y_]:=anu[x,y];

If g- = (X,, X,—1), bracket product$X;, X ;] of a graded quasi-filiform Lie
algebra in an adapted basis can be obtaige@¢ =, di m=n) by

mu[ x[ 0], x[dim2]] 0;
mu[ x[ 0], x[dim1]] 0;
For[i=1, i <=dim3, i++, nu[x[0], x[i]] = x[i+1]];
For[i=1, i <=dim2, i++,
If[i <= di mgrad-2,
mu[ x[ di m 1], x[i]]
mu[ x[ di m 1], x[i]]

a[i] x[i+grad],
0

]
|
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For[i=1, i <= dim3, i++,
For[j=i, ] <=dim2, j++
[fl[i+ <=dim2 &&i !'=]j ,

If[i+) !'= grad,
mulx[i],x[j]] =a[i,j] x[i+4],
mulx[i],x[j]] =a[i,j] x[i+] + b[i] x[dim1]
1.
]mJ[X[i],X[J']]=0
]
l;

Also it is needed to determine the polynomial relations between the structure
constants (automatized in the program) given by Jacobi’s identity which are
obtained from “select” nonzero coefficients in expressions

mufmu[x[i], x[j11, x[k]] + mu[mu[x[j],x[k]], x[i]]
+mul mu[x[ k], x[i]], x[j]].

As results that allowed the simplification of the considered family were
obtained, the algorithms were modified in order to get examples in greater
dimensions in those cases in which relevant information could be applied. For
example, when Proposition 3.3 has been proved (at first, it was only a conjecture)
the code can be updated, replacajg ] bya, andb[i] by (-1)"i.

This approach can be used for those analogous problems of classification
because it allows a significant progress. Moreover, the symbolic formulation
of a problem and its treatment can point out the interest for studying certain
“similar” objects to those that are being studied and that become apparent during
computations. Thus, for instance, quasi-filiform Lie algebras with dimensjon
A andBy, »y defined as

Apry (=25 2<r<n-23):

[Xo, Xil = Xit1, 1<i<n—-3,
[(Xn—1, Xil=Xiqr, 1<i<n—-2-r;

Bury m=7 nodd3<r<n—4(rodd) andr =n —3):

[Xo, Xil=Xit1, 1<i<n-3,
[[an,Xi]=Xi+r, 1<i<n—-2-r,
[Xi, Xn—2-i1= (1) Xp—2, 1<i< "_53

are the only non-split algebras admitting the decomposition

g= (X0, X1) & (X2) - D (X, Xp1) @+ B (Xp—2)
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when (Xo, ..., X,—1) IS a homogeneous adapted basisgadnd strict relation
[g1, g-—1] C g, is considered.

In [3], the algebrasA, , and B, ), defined above, are obtained from a

“quasi-natural” filtration(F;), in terms of the descending central sequencg, of
of which the natural filtration constitutes a particular case. In fact, the associated
graded Lie algebras gr= P g;, with g; = F;/F; 11, are the algebrasi, ),
B,r), and the algebras stated in Theorem 4.1. In dimension 8, we can find those
algebras in [1], where they separate the irreducible components on the variety. So,
it could be an interesting problem to study other non-natural graded Lie algebras
in a similar way.

One can wonder then about gradations of that type, considering the problem
from the point of view of obtaining the decomposition of an algelirdo as many
subspaceg; as possible withg;, g;1 C gi+;, without using the natural filtration.

In the study of those gradations, homogeneous adapted bases could be found, and
new graded Lie algebras obtained could provide us relevant information for the
study of nilpotent Lie algebras.
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