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SUMMARY

In Saccharomyces cerevisiae, the Ku heterodimer
contributes to telomeremaintenanceasacomponent
of telomeric chromatin and as an accessory subunit
of telomerase. How Ku binding to double-stranded
DNA (dsDNA) and to telomerase RNA (TLC1)
promotes Ku’s telomeric functions is incompletely
understood. We demonstrate that deletions de-
signed to constrict the DNA-binding ring of Ku80
disrupt nonhomologous end-joining (NHEJ), telo-
meric gene silencing, and telomere length mainte-
nance, suggesting that these functions require Ku’s
DNA end-binding activity. Contrary to the current
model, a mutant Ku with low affinity for dsDNA also
loses affinity for TLC1 both in vitro and in vivo.
Competition experiments reveal that wild-type Ku
binds dsDNA and TLC1 mutually exclusively. Cells
expressing the mutant Ku are deficient in nuclear
accumulation of TLC1, as expected from the RNA-
binding defect. These findings force reconsideration
of the mechanisms by which Ku assists in recruiting
telomerase to natural telomeres and broken chromo-
some ends.

INTRODUCTION

Telomeres provide a shield at chromosome ends to maintain the

integrity of the cell’s genome (reviewed in Jain and Cooper,

2010). Telomeric DNA consists of multiple repeats of a short

sequence; it is mainly double-stranded DNA (dsDNA) but termi-

nates in a single-stranded 30 overhang. The telomeric repeats are

synthesized by the ribonucleoprotein enzyme telomerase

(Greider and Blackburn, 1989). In S. cerevisiae, the telomerase

reverse transcriptase (Est2 or TERT) and the RNA component

(TLC1) are necessary and sufficient for enzyme catalysis (Lingner

et al., 1997; Singer and Gottschling, 1994; Zappulla et al., 2005).
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In addition to providing the template for telomeric DNA

synthesis, the 1.2 kb TLC1 RNA acts as a scaffold to provide

binding sites for the accessory proteins Est1, the Sm complex,

and Ku (Zappulla and Cech, 2004).

Ku is best known for its essential role in DNA break repair via

nonhomologous end-joining (NHEJ) (Boulton and Jackson,

1996; Milne et al., 1996). The Ku heterodimer is composed of

Ku70 and Ku80 (70.6 kDa and 71.2 kDa, respectively, in yeast).

It binds dsDNA in a nonspecific manner through a preformed

ring, which limits Ku to sliding onto DNA from DNA breaks or

termini (Walker et al., 2001). The Ku-DNA interaction is dynamic

in vivo unless Ku is bound to other proteins, as observed in NHEJ

studies (Chen and Tomkinson, 2011; Zhang et al., 2007). In the

two-face model, the Ku80 side of the yeast heterodimer is

responsible for Ku’s telomeric functions, and the Ku70 side is

responsible for Ku’s role in NHEJ (Ribes-Zamora et al., 2007).

In S. cerevisiae, Ku also contributes to telomerase function. If

Ku is absent or unable to interact with telomerase, the native

telomeres shorten; also, Ku-depleted cells have reduced

capabilities in de novo telomere addition at broken chromosome

ends, resulting in a lower frequency of gross chromosomal

rearrangements (Boulton and Jackson, 1996; Gravel et al.,

1998; Myung et al., 2001; Nugent et al., 1998; Polotnianka

et al., 1998; Porter et al., 1996; Stellwagen et al., 2003). When

binding between Ku and the TLC1 RNA is disrupted, nuclear

localization and retention of the holoenzyme are impaired (Gal-

lardo et al., 2008), and the steady-state level of TLC1 RNA

decreases (Mozdy et al., 2008; Zappulla et al., 2011). Ku also

contributes to telomeric chromatin structure through its interac-

tion with proteins such as Sir4 (Roy et al., 2004; Ribes-Zamora

et al., 2007). This interaction facilitates the formation of a cap

that not only protects the yeast telomeres from DNA break repair

machinery but also silences the expression of genes located

near the telomere (Gottschling et al., 1990; Mishra and Shore,

1999).

In genetic screens for loss of this telomere silencing, Ku

was found to interact with a 48 nucleotide stem loop of TLC1 (Pe-

terson et al., 2001). This region is strongly conserved among

several budding yeast species, suggesting a sequence-specific

https://core.ac.uk/display/82141293?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:thomas.cech@colorado.edu
http://dx.doi.org/10.1016/j.cell.2012.01.033


Figure 1. Truncationswithin the Ring of Ku80 Impair NHEJ andGene

Silencing via Telomere Position Effect

(A) Internal deletions within the loop that slides over the dsDNA were designed

on the basis of the crystal structure of human Ku (Walker et al., 2001).

(B) Using a strain with an engineered HO endonuclease cut-site, the Ku

mutants, along with the WT strain and Dku80, were streaked onto plates

containing either glucose or galactose. Galactose induces the production of

HO endonuclease, triggering dsDNA break repair in cells containing functional

Ku. The cells were plated at 100 generations.

(C) Western blot of the mutant yeast protein content after 20 generations. The

loading control is DSK2, an endogenous protein. The Ku80 mutant to WT

protein ratios (n = 4) were as follows: Ku80D4 0.9 ± 0.1; Ku80D12 0.7 ± 0.3;

Ku80D20 0.8 ± 0.3; Ku80D28 1.2 ± 0.6; Ku80D36 1.0 ± 0.3; Ku80D40 1.3 ± 0.4.

(D) Silencing assay for the URA3 gene at 20 generations. This strain is

described in Experimental Procedures.

See also Figure S1.
interaction between Ku and the RNA (Dandjinou et al., 2004;

Zappulla and Cech, 2004). In vitro binding experiments revealed

that mutating three nucleotides was enough to disrupt this inter-

action, which indicates that a specific RNA structure is required

for Ku to bind (Peterson et al., 2001; Stellwagen et al., 2003).

Mutagenesis screening of Ku subunits indicated that the RNA
interaction is disrupted in the yku80-135i allele (Stellwagen

et al., 2003), but because this 5 amino acid insertion is in the

hydrophobic core of the Ku80 subunit, its effect on RNA binding

is likely to be indirect.

How does telomerase use the interaction between its RNA

component and Ku to contribute to the synthesis of telomeric

DNA? Because it has been thought that Ku can simultaneously

bind dsDNA and the TLC1 RNA, Ku was postulated to tether

the telomere and TLC1 during the recruitment of telomerase to

natural telomeres or broken chromosomal ends (Bertuch and

Lundblad, 2003; Fisher et al., 2004; Fisher and Zakian, 2005;

Pennaneach et al., 2006; Peterson et al., 2001). More specifi-

cally, it has been proposed that Ku helps recruit telomerase to

telomeres in G1 phase, before telomerase is active, and then

promotes telomerase action in late S phase (Fisher et al., 2004).

To test the importance of DNA binding to Ku’s involvement in

telomerase recruitment to telomeres and in other processes, we

designed a series of deletion mutations to inhibit DNA binding.

We found that a mutant with reduced DNA affinity was defective

in NHEJ, telomeric gene silencing, and telomere length mainte-

nance. In contrast to expectation, the mutant that was defective

in DNA binding was also defective in TLC1 RNA binding. Using

competition experiments, we discovered that the binding of

wild-type (WT) Ku to TLC1 RNA and to dsDNA is mutually exclu-

sive. These findings contradict the recruitment model of Ku

binding both DNA and RNA simultaneously and lead to a new

model for the mechanism by which Ku’s interaction with TLC1

RNA contributes to telomerase recruitment.

RESULTS

Deletionswithin Ku’sDNA-Binding LoopDecreaseNHEJ
and Silencing
In an attempt to engineer separation-of-function mutants of Ku

that would still bind TLC1 RNA but not DNA, a series of internal

deletions was made in the primary DNA-binding site of Ku80

(Figure 1A). Larger deletions should prevent dsDNA from sliding

through the ring of the heterodimer. As yeast Ku binds dsDNA

and recruits the repair machinery to DNA breaks (reviewed in Da-

ley et al., 2005; Riha et al., 2006), an in vivo NHEJ assay was

utilized to screen for defective Ku mutants that may have lost

the ability to bind DNA. In this assay, an engineered HO endonu-

clease cut-site is cleaved by the HO endonuclease whose

expression is under the control of a galactose promoter, and

cell viability is monitored (Lee et al., 1999; Ribes-Zamora et al.,

2007). It was observed that the DNA-binding loop of Ku80 could

be truncated by 12 amino acids and still function like WT (Fig-

ure 1B and Figure S1A available online). Deletions of 20 amino

acids or more largely prevented the repair of the cleaved chro-

mosome; these deletion mutants were almost as defective as

Dku80 (the vector control strain). The NHEJ defect was not due

to instability of the Ku mutant proteins because protein levels

for all mutants were similar to those of WT (Figure 1C); further-

more, heterodimerization was preserved (see below).

Ku contributes to subnuclear localization of telomeres and to

higher-order chromatin structure, causing transcriptional

silencing of genes near the telomere (Gottschling et al., 1990;

Laroche et al., 1998; Mishra and Shore, 1999). In a yeast strain
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Figure 2. Mutations within Ku’s DNA-Binding Loop

Reduce Telomere Length

(A) Southern blot of Xho1-linearized yeast genomic DNA

shows the length of Y’ telomeres (heterogeneous distri-

bution) and non-Y’ telomeres (discrete bands at 2 kbp and

above) over the course of generations 20, 100, and 200.

The * symbols denote the loading control, which is a

restriction fragment of chromosome IV.

(B) Measurement of average telomere length ± standard

deviation (n = 3). The triangles represent 20, 100, and 200

generations.

See also Figure S2.
with a telomere-proximal URA3 gene (Ribes-Zamora et al.,

2007), Ku mutants with deletions of up to 12 amino acids within

the DNA-binding loop behaved like WT and were unable to

express the URA3 gene (Figures 1D and S1B). Deletions of 20

amino acids or greater allowed URA3 expression, like the

Dku80 control. In a strain with a telomere-proximal ADE2 gene,

the WT strain and ku mutants with deletions of 12 amino acids

or less were not able to express ADE2 and thus appeared red

in color (Figure S1C). The vector control and mutants with dele-

tions of 20 amino acids or more were able to express ADE2 and

appeared white in color (Figure S1C). These results are in agree-

ment with the silencing results seen for URA3.

Both the NHEJ assay and the silencing assays were carried

out over multiple generations. No differences were observed
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between 20 or 40, 100, and 200 generations

(Figures 1B, 1D, and S1), and the yeast did not

senesce.

Deletions within the Ku-DNA-Binding
Loop Decrease Telomere Length
The Ku deletion mutants were assayed for

telomere length maintenance. In Figure 2A,

Southern blots demonstrate that the mutants

with deletions of up to 12 amino acids remained

capable of maintaining telomeres at WT length.

Deletion of 20 or more amino acids resulted in

shorter telomeres similar to the Dku80 control.

This is the same trend observed in the NHEJ

and silencing assays.

The telomere length of the mutants wasmoni-

tored over time up to generation 200. In the

experiment shown in Figure 2A, it appeared

that telomere length increased in WT and

ku80D20 cells between 20 and 100 generations.

However, measurements in independent exper-

iments showed no convincing evidence of

time-dependent telomere length change (Fig-

ure 2B). The main conclusion is that Ku80 can

tolerate the removal of several amino acids

from the ring and still maintain WT telomeric

length, whereas deletions of 20 amino acids or

more are defective.
One explanation for the decrease in telomere length for the

defective Ku mutants could be decreased levels of telomerase,

as Ku has been implicated in the cellular abundance of TLC1

RNA (Mozdy et al., 2008; Zappulla et al., 2011). When analyzed

by northern hybridization, the TLC1 RNAs in the mutant strains

all had the correct size (Figure S2). Although we did detect

with quantitative real-time RT-PCR a modest decrease in the

TLC1 RNA levels for Dku80, the other mutant strains all showed

TLC1RNA levels similar to those ofWT (Figure S2). The variability

in TLC1 RNA levels between experiments, presumably due to

variability in level of the plasmid expressing TLC1, precluded

the observation of any small changes in TLC1 abundance due

to Ku80 mutations. These data did not support the idea that

lower telomerase levels could explain the shorter telomeres.



Figure 3. Ku80D28 Protein Loses Affinity for Both

dsDNA and TLC1-KBS RNA

(A) Binding of 22 bp dsDNA with a 14 nt telomeric 30 over-
hang by purifiedWT Ku and Ku80D28 proteins assayed by

electrophoretic mobility shift assay (EMSA). (Throughout

this paper, Ku80D28 protein refers to a heterodimer of

Ku70 and Ku80D28.) Lanes 1–6 contain the following

amounts of active WT Ku protein: 0; 0.02 nM; 0.2 nM;

1.7 nM; 17.2 nM; 172 nM. Lanes 7–12 contain active

Ku80D28 protein in the same amounts as in lanes 1–6.

(B) Binding of TLC1-KBS RNA to WT Ku and Ku80D28

assayed via EMSA. The amounts of active protein are

the same as in (A).

(C) Graphical representation of theDNAbinding seen in (A).

The active KD for WT Ku is 0.08 nM. The active KD

for Ku80D28 is 0.78 nM.

(D) Graphical representation of (B). The fitted data yielded

active KD = 4.9 nM for WT Ku and active KD = 87.1 nM for

Ku80D28 binding to TLC1-KBS RNA.

See also Figure S3.
Ku Mutant Defective in DNA Binding Is Defective
in Binding RNA
To confirm that the defect in Ku function for the truncated

mutants was due to decreased DNA binding, the Ku80D28 het-

erodimer was purified to homogeneity from yeast and tested

for DNA binding (Figure S3A). Because our measurements

showed a very slow off-rate of DNA from Ku, overnight incuba-

tions were required to reach equilibrium (see Extended Experi-

mental Procedures). The dsDNA contained a telomeric 30 over-
hang (Figure S3B); a double-stranded region of 22 base pairs

was chosen because it was long enough to permit the binding

of one Ku per DNA (Ma and Lieber, 2001). Figures 3A and 3C

demonstrate that Ku80D28 protein has an affinity for the DNA

(active KD = 0.78 nM; active KD refers to the equilibrium dissoci-

ation constant corrected with respect to amount of active

protein) that is about 10-fold weaker than that of WT (active

KD = 0.08 nM); this correlates with Ku80D28 being defective

in vivo. At sufficiently high concentrations of WT Ku, a second

shifted band of dsDNA can be seen, which presumably corre-

sponds to two Ku per DNA molecule.

The binding of Ku80D28 andWT Ku to a 95 nt RNA comprising

the Ku-binding site (KBS) of TLC1 RNA was also measured

(Figures S3C, 3B, and 3D). Ku80D28 had a greatly diminished

affinity for the RNA (active KD = 87.1 nM) compared toWT (active

KD = 4.9 nM). This finding was unexpected; we had hypothesized

that a smaller ring would inhibit DNA binding but not affect TLC1

RNA binding, based on data suggesting that RNA binding

occurred at a different site on Ku80 (Stellwagen et al., 2003).

Mutation of the Ku Ring Inhibits TLC1 RNA Binding
In Vivo
Because of the profound effect of the Ku80D28 mutation on

TLC1 RNA binding in vitro, it seemed likely that this mutant Ku
Cell 148,
would also be defective in TLC1 RNA binding

in vivo. Thiswas testedby a coimmunoprecipita-

tion (coIP) experiment.

Yeast were formaldehyde crosslinked, Myc-

tagged Ku was IP’d on beads coated with anti-
Myc antibodies, and the coIP’d TLC1 RNA was quantified by

real-time RT-PCR. The data showed substantial and specific

association of TLC1 RNA with Ku in the WT strain but about

75% reduced binding in the ku80D28 mutant strain (Figure 4A).

Control experiments showed that the coIP was dependent on

anti-Myc antibody, was eliminated in the Dku80 strain, and

was specific due to the lack of substantial pull-down of ACT1

RNA (Figure 4A). The yeast strains contained similar amounts

of WT and Ku80D28 protein prior to the IP (Figure 1C), and the

amount of Myc-tagged protein recovered by IP was similar for

WT Ku and Ku80D28 proteins as assessed by western blot (Fig-

ure S4). Thus, our experiments provide no evidence that other

factors in vivo are able to compensate for the loss of the primary

binding interaction between Ku and TLC1 RNA; the greatly

reduced RNA binding by the mutant Ku in vivo correlates with

the substantial destabilization of mutant Ku-RNA interaction

measured in vitro.

Mutation of the Ku Ring Reduces Nuclear Localization
of TLC1 RNA
Telomerase RNA biogenesis involves export of the TLC1 RNA

to the cytoplasm and subsequent importation (Teixeira et al.,

2002; Gallardo et al., 2008). Previous work showed that Ku70

is important for the nuclear retention of TLC1 RNA (Gallardo

et al., 2008). Although the mutations studied here are in the

Ku80 subunit, Ku functions primarily as a heterodimer, so we

expected that an RNA-binding-defective Ku80 would also be

defective in nuclear retention of TLC1 RNA. Reduced nuclear

retention of telomerase would in turn help explain the observed

short-telomere phenotype.

The cellular localization of endogenous TLC1 RNA in the

ku80D28 strain was analyzed by fluorescent in situ hybridization.

In contrast to the strain containing WT Ku, where TLC1 RNA was
922–932, March 2, 2012 ª2012 Elsevier Inc. 925



Figure 4. Ku80D28 Loses Association with

TLC1 RNA In Vivo, and the RNA Accumu-

lates in the Cytoplasm

(A) TLC1 RNA immunoprecipitation with Myc-

tagged Ku proteins analyzed by real-time RT-PCR.

Cells were subjected to formaldehyde crosslinking

to preserve RNA-protein interactions prior to

immunoprecipitation on anti-Myc beads. The

highest levels of pull-down (around 15-fold

enrichment) corresponded to 2%of the input TLC1

RNA. ACT1 mRNA, which is not known to asso-

ciate with Ku, served as a control for nonspecific

binding. Bars indicate average of five biologic

replicates performed on four different weeks, and

error bars represent standard deviation (n = 5).

(B) Localization of endogenous TLC1 RNA in WT,

Dku80, and ku80D28 strains was detected with

fluorescent in situ hybridization. DAPI: DNA stain-

ing. Scale bar: 1 mm.

(C) Quantification of TLC1 RNA distribution in WT,

Dku80, and ku80D28 strains. For each strain, a

total of 300 cells were randomly scored in three

independent experiments; error bars give stan-

dard deviation.

See also Figure S4.
predominantly nuclear, the ku80D28 strain showed most of the

TLC1 RNA in the cytoplasm (Figure 4B). The redistribution to

the cytoplasm was not as complete as observed with the Ku80

knockout strain (Figure 4C). This result was in complete accord

with the in vivo Ku-TLC1 RNA-binding experiments (Figure 4A),

which showed that the mutant Ku retained �25% RNA-binding

function.
Binding of Ku to RNA or DNA Is Mutually Exclusive
Because the Ku80 mutation interfered with both TLC1 RNA and

DNA binding, we hypothesized that WT Ku would not be able to

bind dsDNA and TLC1 RNA simultaneously. Three different

forms of dsDNAwere tested: DNAwith blunt ends, a 30 overhang
with a random sequence, and a 30 overhang with a telomere-like

sequence (Figure S3B).Mammalian Ku binds all of these forms of

DNA (Bianchi and de Lange, 1999; Dynan and Yoo, 1998). Simi-

larly, we found that all three dsDNA formswere able to bind yeast

WT Ku (Figure 5A). The shifted DNA-Ku band migrated slightly

faster than the Ku-bound TLC1-KBS RNA. In the lanes contain-

ing equal amounts of both dsDNA and RNA, the resulting shifted

band migrated as the Ku-DNA complex. The amount of radiola-

beled free RNA in lanes 5, 9, and 14 provides independent

evidence that very little if any RNA was present in the shifted
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band. Under no circumstances did we

detect a shifted band that could corre-

spond to both DNA and RNA being

simultaneously bound. Because of Ku’s

higher affinity for DNA than for RNA, the

DNA-Ku complex dominates. Thus, we

conclude either that RNA and DNA bind

to the same site on Ku or that mutually

exclusive binding sites for RNA and DNA
exist on Ku. The DNA 30end does not affect the preference of

Ku to bind only to dsDNA versus forming the complex containing

Ku, DNA, and RNA.

Because the ability of DNA to inhibit the Ku-RNA interaction

was contrary to expectation, we conducted additional tests. To

ensure that equilibrium was being achieved in our studies, the

off-rates were measured for all dsDNAs and TLC1-KBS RNA

(Figure S5). We observed that the RNA had a faster off-rate

than the dsDNA (Table 1). For example, the blunt dsDNA had

a koff = 0.007 ± 0.005 min�1 and t1/2 = 99 min, which was a

substantially longer half-life than that reported for human Ku

(Ma and Lieber, 2001). As a consequence of the slow off-rate,

the incubation times for the binding experiments went overnight

to ensure that equilibrium was achieved.

In an independent test for mutually exclusive binding,

increasing amounts of TLC1-KBS RNA were able to prevent

dsDNA from binding Ku (Figures 5B and S6A). The inhibition

was specific: 3xmutTLC1-KBS RNA and Tetrahymena P4P6

RNA did not hinder DNA binding even at 1 mM (Figures S6B

and S6C). TLC1-KBS RNA prevented the three different DNAs

from interactingwithKubut at different concentrations (Figure 5B

and Table 1), which reflect the differences in the affinity of Ku for

these DNAs (Table 1). The Ki (inhibition constant) of TLC1-KBS

RNA was calculated for each DNA tested using equations for



Figure 5. Mutually Exclusive Binding of RNA and DNA to WT Ku

(A) A mixing experiment shows the complexes that Ku forms with dsDNA

containing different 30 overhangs and with TLC1-KBS RNA. Each arrow

denotes the position in the gel for a particular complex.

(B) TLC1-KBS RNA and DNA compete against one another to bind Ku.

Increasing amounts of TLC1-KBS RNA were added to samples containing Ku

and radiolabeled dsDNA with different 30 overhangs. The fraction bound of

each sample was calculated and fitted to a single binding site competition

formula to calculate the Ki of the RNA.

(C) One hundred nanomoles of TLC1-KBS RNA and 3xmutTLC1-KBS RNA

were added in equilibrium binding experiments to ascertain their effects on

Ku’s affinity for radiolabeled dsDNA with telomere-like 30 overhang. The

fraction bound of the DNA was calculated and fitted to the Langmuir isotherm.

See also Figures S5 and S6.
a single-site binding model (Table 1). The calculated Ki’s are

equal within experimental error to the KD of the TLC1-KBS

RNA, as expected. The 22 bp blunt-ended DNA bound to yeast

Ku with an apparent KD of 180 pM, similar to the KD of 160 pM

reported for human Ku (Ma and Lieber, 2001), 340 pM reported

for human Ku (Roberts and Ramsden, 2007), and 300 pM re-

ported for yeast Ku using a 600 bp blunt-ended DNA (Chen

and Tomkinson, 2011).

The reverse experiment was performed to determine whether

dsDNA could inhibit TLC1-KBS RNA from binding Ku (Figures

S6D and S6E). All three forms of DNA tested hindered the
RNA-Ku interaction equally well with similar IC50 values of

approximately 40 nM (Table 1). Because these experiments

were conducted at Ku and DNA concentrations far above KD,

they exhibit titration behavior (Shoichet, 2006); i.e., the binding

of RNA is limited by the amount of free (non-DNA-bound) protein

rather than the binding constant. The titration behavior is also re-

flected in the steepness of the curves. Thus, IC50 is not expected

to equal the KD for DNA binding.

RNA Competitively Inhibits DNA Binding to Ku
To determine whether the inhibition was competitive or noncom-

petitive, an experiment was performed to see how the RNA

affected the KD of Ku binding to the dsDNA with the telomere-

like sequence. In Figure 5C, the presence of 100 nM RNA shifted

the curve to the right, an increase of the apparent KD of DNA

binding to Ku by 17-fold, but did not change the maximum of

the fraction bound. In parallel to enzyme kinetics, this behavior

is indicative of a competitive inhibitor.

To confirm that the competitive inhibition observed was

a direct result of Ku binding to the RNA and not just a result

of RNA being present, we performed the same experiment

using an RNA nearly defective in Ku binding, 3xmutTLC1-KBS,

which contains the three point mutations described previously

(Peterson et al., 2001). We confirmed that the affinity of

this mutant was substantially weaker than that of the WT RNA

(Table 1); due to the ability to obtain more Ku with our modified

protein purification protocol, we were able to use higher Ku

concentrations to observe this weak binding. Even though the

3xmutTLC1-KBS RNA had a weak affinity for Ku, it was not

able to competitively inhibit the DNA binding at 100 nM

(Figure 5C).

Ku70 Separation-of-Function Mutants Bind DNA
and TLC1 RNA Normally
The inability of Ku to bind both DNA and TLC1 RNA simulta-

neously eliminates the current tetheringmodel for Ku recruitment

of telomerase (Figure 6A) but leaves open a revised model in

which telomere-bound Ku would bind to telomerase-bound Ku

(Figure 6B). This ‘‘synapse model’’ invokes the same Ku-Ku

interactions that are thought to occur between Ku-bound DNA

ends during NHEJ. Importantly, Ribes-Zamora et al. (2007) re-

ported separation-of-function alleles of ku70 with mutations

distant from the DNA-binding ring that were defective in NHEJ

but retained full telomeric functions. This observation would

seem to provide a strong argument against Ku-Ku synapse

formation being involved in telomerase recruitment, assuming

that these mutant Ku70 proteins in fact retained full DNA end-

binding and TLC1 RNA-binding activities.

Therefore, we used site-specific mutagenesis to introduce the

D195A and D195R mutations into Ku70, purified the proteins,

and performed quantitative dsDNA-binding and TLC1-KBS

RNA-binding gel-shift experiments. As shown in Figure S7,

both mutant proteins bound both nucleic acids with essentially

WT affinity. Thus, we concur with the conclusion of Ribes-Za-

mora et al. (2007) that these are true separation-of-function

mutants. The mutations do not perturb DNA or RNA binding,

so they presumably interfere with protein-protein interactions

required for NHEJ but not for telomerase function.
Cell 148, 922–932, March 2, 2012 ª2012 Elsevier Inc. 927



Table 1. Summary of Binding and Competition Data

3xmutTLC1-KBS RNA TLC1-KBS RNA Telomeric 30 Overhang Random 30 Overhang Blunt End

Apparent KD [nM] 353 ± 49 10.5 ± 0.7 0.17 ± 0.10 0.30 ± 0.22 0.18 ± 0.06

koff [min�1] 2.6 ± 1.2 0.005 ± 0.001 0.011 ± 0.002 0.007 ± 0.005

t1/2 [min] 0.27 140 63 99

kon [M
�1s�1] 3.4 x 106 4.8 x 105 5.9 x 105 6.3 x 105

Ki for TLC1-KBS RNA [nM] 51 ± 32 13 ± 5 19.5 ± 8.3

IC50 for DNA [nM] 40 ± 3 42 ± 9 38 ± 6

Average ± standard deviation of 3–8 measurements.
DISCUSSION

The prevailing paradigm in the telomerase field has been that Ku

can bind DNA termini and TLC1 RNA independently, which led

to a simple and elegant model by which Ku could help recruit

telomerase to chromosome ends. Based on this paradigm, we

set out to engineer separation-of-function alleles of yeast Ku

that lost DNA end binding and retained TLC1 RNA binding.

Instead, our DNA-binding mutants of Ku showed substantially

reduced binding to TLC1 RNA both in vitro and in vivo. Although

this genetic evidence was dramatic, it is important to remember

that mutant phenotypes provide information about the mutant,

from which the behavior of the WT is inferred. We therefore

studied the binding of mixtures of TLC1 RNA and DNA to purified

WT Ku protein, and we were able to confirm that Ku cannot bind

both nucleic acids simultaneously. This finding leads to a new

model of how Ku contributes to recruitment of telomerase to

telomeres. In addition, the Kumutants with reducedDNA binding

are defective in NHEJ and telomeric gene silencing, providing

direct evidence for the importance of DNA end binding in these

Ku functions.

Mutually Exclusive Binding of Ku to RNA and DNA
Our in vitro binding experiments showed that the binding of telo-

merase RNA or DNA to Ku is mutually exclusive. The TLC1-KBS

RNA was able to competitively inhibit Ku from binding dsDNA

and vice versa. The mixing experiment showed that a complex

containing both TLC1-KBS RNA and dsDNA could not be

formed, which further supports the conclusion that Ku will bind

to either dsDNA or TLC1-KBS RNA but not to both simulta-

neously. Finally, mutational analysis provided independent

evidence for mutually exclusive binding, as the deletion de-

signed to close the DNA-binding ring also inhibited RNA binding

to a similar extent. The simplest way to achieve mutually exclu-

sive binding is if RNA and DNA both bind to the ring of Ku or if

the RNA-binding site physically overlaps with the DNA-binding

site. The more accurate term ‘‘mutually exclusive binding’’

covers these possibilities and also the additional possibility of

two nonoverlapping binding sites where occupancy of either

site causes a conformational change that precludes availability

of the other site.

Competition between TLC1 and chromosome ends for yeast

Ku has been observed in vivo. In silencing experiments, a

plasmid was engineered to express an RNA containing three

TLC1-Ku-binding sites in tandem and transformed into yeast.
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This RNA and similar constructs disrupted silencing (Peterson

et al., 2001; Zappulla et al., 2011). These data are consistent

with our in vitro observations that TLC1-KBS RNA and dsDNA

compete against one another for Ku, although in vivo it is difficult

to ascertain whether the Ku is bound to the very end of the chro-

mosome through its DNA-binding ring or is bound at more

internal telomeric sites.

Aptamer RNAs that bind human Ku have been identified by

in vitro selection, and they were found to compete with dsDNA

for Ku binding (Yoo and Dynan, 1998). These observations are

very reminiscent of our findings for yeast Ku and TLC1-KBS.

An intriguing possibility is that both TLC1-KBS and the aptamer

RNAs are binding to the ring of Ku by mimicking the structure of

B-form DNA, a known property of some RNAs (Bullock et al.,

2010; Reiter et al., 2008). If the RNA were mimicking DNA struc-

ture, then the two substrates would naturally compete for the

same binding site on Ku. The mutations in the 3x mutant RNA

could then be disrupting its B-like helical structure, which might

prevent the wider A-form RNA helix from even entering the Ku

ring. One implication of this model is that there might be as-

yet-unidentified Ku-binding RNA stem loops that are completely

unrelated in nucleotide sequence but share a B-DNA-like helical

structure.

Models for Yeast Telomerase Recruitment
The currently accepted model is that telomerase recruitment

occurs via Ku simultaneously interacting with both dsDNA (telo-

meric DNA) and TLC1 RNA. Thus, Ku acts as a tether: Ku bound

to telomerase could at the same time recognize and bind to

telomeric DNA or to broken chromosome ends (Bertuch and

Lundblad, 2003; Fisher et al., 2004; Fisher and Zakian, 2005;

Pennaneach et al., 2006; Peterson et al., 2001). The present

study challenges this model of Ku’s contribution to telomerase

recruitment, as we have demonstrated that DNA and RNA

competitively bind Ku. Because Ku cannot bind DNA and RNA

simultaneously, it cannot tether telomerase to the telomere or

to a broken chromosome end (Figure 6A).

A second ‘‘synapsis’’ model is based on the idea that Ku binds

to another Ku to promote the bridging of two DNA ends in NHEJ.

In the nucleus, when the Ku-telomerase complex encounters

a chromosome end, the Ku from the Ku-telomerase complex

might bind to the Ku from the Ku-telomere complex in order to

tether the telomere to telomerase (Figure 6B). A Ku-Ku joining

event to facilitate the end-joining of DNA has been observed

via atomic force microscopy with yeast Ku, although the authors



Figure 6. Models of Ku’s Role in Telomerase Recruitment

(A) Published model shows Ku binding simultaneously to TLC1 RNA and the dsDNA while recruiting telomerase to the chromosome end, which is not possible

according to our work.

(B) Based on the action of Ku during NHEJ, telomere-bound Ku might bind to a telomerase-bound Ku to recruit telomerase to telomeres. However, the Ku70

separation-of-function mutants described by Ribes-Zamora et al. (2007) and data presented herein cause us to discount this model.

(C) In the new model, Ku recruitment of telomerase begins with its key role in nuclear import and retention. When telomerase-bound Ku encounters telomeric

DNA, Ku may be handed off from TLC1 to the DNA (blue line). This hand-off may be necessary to prevent telomerase from being sequestered in telomeric

heterochromatin by Ku-Sir4 binding. The Est1-Cdc13 protein-protein interaction then secures telomerase to the telomere. Other reported interactions include

Est1 and Sir4 binding to the nuclear envelope protein Mps3 (black dashes) and Ku and Cdc13 binding to Sir4 (red dashes).

See also Figure S7.
of the paper noted that the end-bridging event happened less

frequently than the one mediated by the Mre11/Rad50/Xrs2

complex (Chen et al., 2001). However, the Bertuch separation-

of-function Ku70 mutants were defective in NHEJ (which is

thought to require Ku-Ku interaction) but retained telomeric

functions (Ribes-Zamora et al., 2007), and these mutants retain

WT DNA binding and TLC1 RNA binding (Figure S7). This argues

against the Ku-Ku synapse formation that mediates NHEJ being

important for telomerase recruitment, causing us to disfavor the

model of Figure 6B.

Our preferred model for Ku’s role in telomerase recruitment,

which integrates the results from this and other studies, is shown

in Figure 6C. A primary function of Ku binding to telomerase is to

promote its nuclear accumulation (Gallardo et al., 2008; this

study). The mutually exclusive binding of Ku to dsDNA and

TLC1 RNA shown here is proposed to contribute to telomerase

recruitment alongwithCdc13-Est1 andnuclear envelope interac-

tions.When telomerase encounters a dsDNAend, Ku is expected

to become unbound from TLC1 RNA and engage the DNA, as it

has higher affinity for DNA than for TLC1-KBS. This exchange

of Ku between TLC1 and telomeric DNA could explain the Ku-

dependent interaction between telomerase and telomeres

observed by chromatin immunoprecipitation (ChIP) in the G1

phase of the cell cycle, prior to telomerase elongation of telo-

meres (Fisher et al., 2004). In late S phase, telomerase then binds

to theDNAend through twoalreadywell-established interactions:
the base-pairing of the TLC1 template with the single-stranded

DNA at the chromosome end, and the interaction of the Est1

subunit of telomerase with telomere-bound Cdc13 (Evans and

Lundblad, 1999; Qi and Zakian, 2000; Chan et al., 2008).

Also during the S phase of the cell cycle, when telomeres are

being elongated, the telomeres localize to the nuclear periphery

via interactions between Sir4 and the nuclear envelope protein

Mps3 (Bupp et al., 2007). Concurrently, Ku-bound telomerase

is found to be associated with Mps3, which is dependent on

Mps3 binding Est1 (Antoniacci et al., 2007; Schober et al.,

2009). The interactions of telomerase-bound proteins, telo-

mere-bound proteins, and Mps3 may be important for prevent-

ing telomerase dissociation and fully elongating short telomeres

(Teixeira et al., 2004; Chang et al., 2007), with regulation via Siz2

sumoylation of Sir4 and Ku (Ferreira et al., 2011).

DNA Binding Is Necessary for Ku’s Telomeric
and DNA Repair Functions
The crystal structure of human Ku bound to dsDNA (Walker et al.,

2001) revealed a preformed dsDNA-binding ring, providing a

structural basis for understanding how Ku could recognize

dsDNA breaks and facilitate repair via NHEJ. We found that

the larger deletions in the DNA-binding beta strand of yeast

Ku80 inhibited NHEJ, in agreement with our expectation. Our

quantitative measurements of DNA binding by the Ku80D28

mutant protein indicate that a 10-fold reduction in DNA affinity
Cell 148, 922–932, March 2, 2012 ª2012 Elsevier Inc. 929



is sufficient for inhibition, although it is possible that this mutation

could also interfere with protein-protein interactions required

for NHEJ.

Our data on telomeric silencing show that the DNA-binding

ring of Ku is also required for telomeric heterochromatin forma-

tion. Telomeric silencing relies on the interaction between Ku

and Sir4 (Roy et al., 2004; see also Hediger et al., 2002), and

Ku’s functions at double-strand breaks and at telomeres have

been separated by mutations that target potential protein-

binding sites on Ku (Bertuch and Lundblad, 2003; Ribes-Zamora

et al., 2007). Our mutations in the ring of Ku are not near the 80a5

helix, so Ku’s ability to bind Sir4 should not be affected (Ribes-

Zamora et al., 2007). It is worth noting that the yKu80-135i

mutant protein, a mutant defective in RNA binding, still retained

an affinity for DNA, but it was reduced compared toWT (Stellwa-

gen et al., 2003). The reduced DNA affinity, however, was still

strong enough to allow for a physiologically relevant interaction

between the protein and dsDNA to permit the silencing of

the reporter genes (Stellwagen et al., 2003). Because our DNA-

binding-defective Ku mutant did not facilitate the silencing of

either the ADE2 gene or the URA3 gene, we propose that Ku

must bind to dsDNA for its gene-silencing function.

Shortening of telomeres is a more complex phenotype, in that

inhibition of either Ku-TLC1 RNA interactions or Ku-telomeric

DNA interactions could potentially contribute. Previous work

with mutations or deletions in TLC1 RNA that prevent Ku binding

showed redistribution of TLC1 from nucleus to cytoplasm, es-

tablishing one contribution of the Ku-RNA interaction to telomere

length maintenance (Gallardo et al., 2008). The large reduction in

nuclear localization of TLC1 RNA in the ku80D28 strain certainly

contributes to the failure to maintain telomere length. Ku must

also retain its ability to bind dsDNA in order to protect telomeres

from nucleolytic degradation and recombination (Gravel et al.,

1998; Polotnianka et al., 1998).

While this paper was under review, a publication by Lopez

et al. (2011) appeared that concluded that Ku must load directly

onto chromosome ends to accomplish its telomeric functions.

Our conclusion about the importance of Ku’s DNA-binding

activity for silencing of telomeric gene expression is consistent

with that of Lopez et al., and the similar phenotypes observed

with two very different sets of alleles make this conclusion

even more robust. Concerning Ku’s role in NHEJ, the different

alleles in the two studies both reduced Ku’s interaction with

DNA but had opposite effects on NHEJ, so it appears that

the two sets of mutations must perturb different properties of

Ku as it engages the DNA breaks to facilitate repair. Finally, we

remain circumspect regarding the conclusion that Ku’s DNA-

binding activity is required for telomerase function. The DNA-

binding-defective Ku alleles described by Lopez et al. (2011)

did show some reduction of TLC1 RNA binding in vivo, and it

would seem important to know whether TLC1 is still in the

nucleus in these mutant Ku strains. Thus, although it remains

entirely plausible that in the case of WT Ku and WT TLC1 RNA,

Ku uses its ability to bind dsDNA to partake in the regulation of

telomerase recruitment, our new findings that TLC1 RNA and

dsDNA appear to bind in the same site on Kumake it challenging

to use Ku mutants to distinguish between its telomerase-binding

and DNA-binding functions.
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EXPERIMENTAL PROCEDURES

Plasmids and Strains

See Tables S1 and S2.

NHEJ Assay

Assays used the YVL2236 (yku80-D = Dku80) strain containing a galactose-

inducible HO endonuclease and an engineered HO cut-site (Ribes-Zamora

et al., 2007). After transformation with the plasmid carrying a Ku80 construct

and TRP gene, cells from generations 40, 100, and 200 were streaked

onto �Trp �Ura plates containing either glucose or 2% galactose and grown

at 30�C for 2–3 days.

Silencing Assays

Assays (Ribes-Zamora et al., 2007) used the YVL885 (Dku80) strain engineered

to contain ADE2 and URA3 genes located near telomeres V-R and VII-L,

respectively. Yeast were transformed with the plasmids carrying a Ku80

construct and TRP gene and streaked on plates. Cells from generations 20,

40, 100, or 200 were grown overnight. An equal number of cells for each

construct was 5-fold serially diluted onto �Trp, �Trp �Ura, or �Trp �Ade

plates. The yeast grew at 30�C for 2–3 days. To enhance the red pigmentation

of cells grown on the �Trp �Ade plates, the cells were placed at 4�C for

4–7 days and then placed at 26�C for approximately 10–16 days or until

a dark red pigment became apparent.

Western Blots

The protocol followed that of Knop et al. (1999) with adjustments (see

Extended Experimental Procedures). The membrane was cut below the

62 kDa SeeBlue Plus2 Prestained standard (Invitrogen LC5925). The blot

portion containing the Kumutants and other higher-molecular-weight proteins

was probed either with anti-His HRP conjugate (QIAGEN 34460) following the

manufacturer’s protocol or 6X His tag from Abcam (ab9108). The other portion

of the blot was probed with Dsk2 (Abcam ab4119). The blots that were probed

with unconjugated antibodies went through a second blocking procedure

using a goat anti-rabbit IgG-HRP (Santa Cruz SC-2054) secondary antibody.

The proteins were then detected using Amersham ECL Plus Western Blotting

Reagents (GE Healthcare RPN2132). PhosphoImager intensities of the DSK2

bands were measured using Imagequant, and normalization factors were

generated and applied to the quantified Ku bands. The ratios of the Kumutants

to WT were calculated.

Southern and Northern Blots

20–50 ml cultures were grown in �Trp �Ura media until they reached an

optical density (OD)600 of 0.75–1.0. The cells were then harvested, washed

twice with sterile H2O, and split in half after the second wash, and the pellets

were harvested. Northern and Southern Blots were carried out as described

previously (Zappulla et al., 2005), except that the genomic DNA was isolated

using the Gentra Puregene Yeast/Bact. Kit from QIAGEN, and the total RNA

was probed for TLC1 and U1 RNAs.

Real-Time PCR

TLC1 and ACT1 RNA levels were quantified using RT-PCR (Mozdy and Cech,

2006) as detailed in the Extended Experimental Procedures.

RNA Preparation

TLC1-KBS and 3xmutTLC1-KBS were transcribed from PCR-amplified DNA

that contained a 30OMe on the last nucleotide and a T7 promoter. The tran-

scribed RNA was purified as previously described (Kieft et al., 1999), but

a 10% acrylamide gel was used. Contaminating DNA was removed using

RQ1 DNase (Promega) according to the manufacturer’s instructions. The puri-

fied RNAwas dephosphorylated using calf intestinal phosphatase (Roche) and

50-end-labeled as previously described (Kieft et al., 1999).

Ku Expression and Purification

Yeast strain BJ2168 was cotransformed with the plasmid combinations pJP16

and pJP14 or pJP16 and pJP15. The plasmid pRS425TEF-YKU70 (Peterson

et al., 2001) contained a point mutation or polymorphism (D473G), which



was corrected. The transformed yeast were grown in �Trp �Leu media to an

OD600 of 1.2. The cells were harvested, resuspended in lysis buffer (25 mM

HEPES, pH 7.5, 200 mM KCl, 2 mM MgCl2, 1 mM EDTA, 1 mM DTT), and

stored at �80�C. Thawed cells were treated with zymolase before being soni-

cated and spun at 12,000 rpm for 80min. The resulting lysate was passed over

nickel resin (QIAGEN). The resin was washed with 5 column volumes (CV) of

lysis buffer with 20 mM imidazole, 2.5 CV of lysis buffer with 50 mM imidazole,

and 0.5 CV of lysis buffer with 250 mM imidazole. Ku eluted with lysis buffer

containing 250 mM imidazole was concentrated and dialyzed in buffer A

(50 mM Tris, pH 8, 250 mM NaCl, 2 mM DTT, 1 mM EDTA). The protein was

passed over a mono q column using buffer A and buffer B (50 mM Tris,

pH 8, 2 M NaCl, 1 mM EDTA). The fractions containing Ku were concentrated

and passed over a Sup 200 column in buffer C (50 mM Tris, pH 8, 500 mM

NaCl, 2 mM DT, 1 mM EDTA). The fractions containing Ku were concentrated,

dialyzed in storage buffer (25 mM Tris, pH 8, 200 mM NaCl, 20% glycerol,

1 mMEDTA, 2mMDTT), flash frozen, and stored at�80�C. The percent active

protein was measured using titration experiments and DNA as the substrate.

The protein was consistently about 47% active, which is greater than the

15% reported for human Ku (Blier et al., 1993). For Figure 3, the KD based

on active protein concentration is reported, but in all other instances, the

apparent KD is used.

Kinetics and Thermodynamics of Ku-RNA and Ku-DNA Interactions

Assays are described in detail in the Extended Experimental Procedures. A

typical binding buffer was 21 mM HEPES (pH 7.5), 150 mM NaCl, 11% glyc-

erol, 5 mM MgCl2, 1 mM EDTA, 25 mg/ml tRNA, 0.1 mg/ml BSA, 1 mM DTT.

Immunoprecipitation of TLC1-Ku Complexes

As detailed in the Extended Experimental Procedures, yeast expressing myc-

tagged Ku were treated with formaldehyde (1% final) and sonicated. Anti-myc

antibody (Sigma M4439) was added to half of each sample. The other half

comprised the ‘‘minus antibody’’ control. Complexes were pulled down on

protein G plus/protein A agarose (Calbiochem) beads and RNA was purified.

Fluorescent In Situ Hybridization

Yeast fixation and fluorescent in situ hybridization to detect endogenous TLC1

RNA were as described (Gallardo et al., 2008), except treatment with oxalyti-

case was between 15 and 23 min at 30�C. Hybridization with TLC1-specific

probes was performed in 45% formamide.

Image Acquisition and Processing

All images were acquired using a Nikon Eclipse E800 epifluorescence upright

microscope equipped with a 1003 DIC H (1.4 NA) objective and with a Photo-

metrics CoolSNAP fx CCD camera; 100 fields of yeast cells were acquired as

z stacks of 20 planes, with 0.5 mm between planes in the z axis. Maximal

projection of z stacks was performed and merged with DAPI signal for quan-

tification of localization. Images were acquired and processed with Meta-

morph software.

Other Methods

See Extended Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures,

seven figures, and two tables and can be found with this article online at

doi:10.1016/j.cell.2012.01.033.
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