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Abstract

A novel and versatile numerical form-finding procedure that requires only a minimal knowledge of the structure is pre-
sented. The procedure only needs the type of each member, i.e. either compression or tension, and the connectivity of the
nodes to be known. Both equilibrium geometry and force densities are iteratively calculated. A condition of a maximal
rank of the force density matrix and minimal member length, were included in the form-finding procedure to guide the
search of a state of self-stress with minimal elastic potential energy. It is indeed able to calculate novel configurations, with
no assumptions on cable lengths or cable-to-strut ratios. Moreover, the proposed approach compares favourably with all
the leading techniques in the field. This is clearly exemplified through a series of examples.
� 2006 Elsevier Ltd. All rights reserved.
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1. Tensegrity structures

1.1. Introduction

Tensegrity structures are usually defined as a discontinuous set of compressional members inside a contin-
uous network of tensile members (see e.g. Motro, 2003 for a review of the field). They are pin-jointed struc-
tures which are mechanically stabilized by the action of pre-stress and are self-equilibrated without the
application of an external force. The tensegrities are commonly modelled with frictionless joints, and the
self-weight of cables (tension) and struts (compression) is neglected.
0020-7683/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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Tensegrities are of interest in structural design studies because of their aesthetic value and light weight. The
last property favours their application as space and deployable structures. There is also an interesting link
between tensegrities and rigidity. For instance, a generalization of the physical model of joints (e.g. atoms)
and members (e.g. bonds) is exploited in the computation of rigidity of molecular structures (Whiteley,
1999) or molecular conformations (Havel, 1998). Furthermore, there is an ongoing debate as to whether
the tensegrity principle (self-stress, tension and compression) is used as a general design principle in biological
materials (e.g. Zanotti and Guerra, 2003) and to what extent and how this principle can be used in the con-
struction of smart materials (e.g. Luo and Bewley, 2005; Skelton and Sultan, 1997).

1.2. Form-finding

The analysis of tensegrities, which belong to the class of statically indeterminate structures, requires an
initial form finding procedure (e.g. Motro, 2003; Tibert and Pellegrino, 2003). This consists in computing
detailed information needed to create a state of self-stress, and usually set in self-equilibrium. A form-
finding procedure could typically compute a critical parameter such as (i) a twisting angle, (ii) a cable-
to-strut ratio or (iii) a force-to-length ratio, which is also known as the tension coefficient or the force
density coefficient.

In most existing form-finding procedures, however, assumptions on either the tension coefficients, the ele-
ment lengths or the symmetry of the whole structure must be imposed a priori (see Motro, 2003 or Tibert and
Pellegrino, 2003 for a survey). For instance, (i) tension coefficients are imposed in a symbolic analysis, (ii) ele-
ment lengths have to be predefined in a dynamic relaxation procedure and non-linear programming, and (iii) a
global symmetry is assumed in a group-theory based form-finding procedure. But this information may not
always be available or easy to estimate beforehand. The evaluation of complex tensegrity structures with these
procedures therefore remains difficult.

In this work, we present a numerical form-finding procedure for statically indeterminate structures in self-
equilibrium. The procedure only requires the type of each member (i.e. either compression or tension) and the
connectivity between the nodes to be known. With this knowledge we approximate the self-equilibrium geom-
etry and the member forces. We iteratively adjust them until a state of self-stress is found.

The paper is organized as follows: the relevant definitions and rank conditions for tensegrity structures are
reviewed in Sections 2 and 3, respectively. The overall form-finding approach is outlined in Section 4. The core
of our form-finding procedure is presented in Sections 5 and 6. The stability of tensegrity structures is briefly
discussed in Section 7. Examples of two-dimensional (2D) and three-dimensional (3D) structures are presented
in Sections 8 and 9. Finally, conclusions drawn from this work appear in Section 10.

2. Geometry and tension coefficients

Here and in the following sections we shall use the same standard terminology as found in Motro (2003) or
Tibert and Pellegrino (2003). The equation of static equilibrium of an unconstrained reference node i con-
nected to nodes j and k are given by
ðxi � xjÞfi;j=li;j þ ðxi � xkÞfi;k=li;k ¼ f ext
i;x ;

ðyi � yjÞfi;j=li;j þ ðyi � ykÞfi;k=li;k ¼ f ext
i;y ;

ðzi � zjÞfi;j=li;j þ ðzi � zkÞfi;k=li;k ¼ f ext
i;z ;

ð1Þ
where any member (A,B), that connects nodes A and B, has an internal force fA,B and a length lA,B; and fext is
the external force. A simplified linearised notation qA,B = fA,B/lA,B known as tension coefficient or force density

is often used. Eq. (1) can thus either be written as
ðxi � xjÞqi;j þ ðxi � xkÞqi;k ¼ f ext
i;x ;

ðyi � yjÞqi;j þ ðyi � ykÞqi;k ¼ f ext
i;y ;

ðzi � zjÞqi;j þ ðzi � zkÞqi;k ¼ f ext
i;z

ð2Þ



G.G. Estrada et al. / International Journal of Solids and Structures 43 (2006) 6855–6868 6857
or as
ðqi;j þ qi;kÞxi � qi;jxj � qi;kxk ¼ f ext
i;x ;

ðqi;j þ qi;kÞyi � qi;jyj � qi;kyk ¼ f ext
i;y ;

ðqi;j þ qi;kÞzi � qi;jzj � qi;kzk ¼ f ext
i;z :

ð3Þ
We study structures in a state of self-stress with unconstrained nodes and zero external load in d dimen-
sions. Let x = [x1 � � � xn]T, y = [y1 � � � yn]T, and z = [z1 � � � zn]T be the vectors of coordinates for n nodes along
the x, y, and z directions, respectively. Here (w)T represents a transpose operation. We use an incidence matrix
C 2 Rb�n, which has one row per member (A,B), and its columns A and B have entries +1 and �1, respec-
tively. Therefore, the projected lengths, e.g. (xA � xB), along the x, y, z-directions are written in vector form
as Cx, Cy, and Cz, respectively.

Let q 2 Rb be a vector of tension coefficients, with one entry for each of the b members. We can write the
matrix form of Eq. (2) by factorizing the projected lengths in the equilibrium matrix A 2 Rdn�b and a vector q

of tension coefficients:
Aq ¼
CTdiagðCxÞ
CTdiagðCyÞ
CTdiagðCzÞ

0
B@

1
CA

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Equilibrium matrix

q ¼ 0;
ð4Þ
where diag(w) is a square matrix with the vector (w) along its diagonal.
Similarly, if we factorize the tension coefficients of Eq. (3), its matrix representation relates a symmetric

matrix D 2 Rn�n, known as the force density matrix (FDM), or stress matrix in mathematics (Connelly,
1982) and the nodal coordinates:
D½x y z� ¼ CTdiagðqÞC
� �|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

FDM

½x y z� ¼ ½0 0 0�. ð5Þ
Eq. (4) relates the projected lengths to tension coefficients, whereas Eq. (5) relates tension coefficients to
nodal coordinates. In the following sections, we shall assume however that neither element lengths nor tension
coefficients are known a priori.
3. Rank conditions

Two necessary but not sufficient rank conditions have to be satisfied in a d-dimensional structure that is in a
state of self-stress (e.g. Motro, 2003; Graver et al., 1993; Connelly, 1982). The first one ensures the existence of
at least one state of self-stress, if
r ¼ rankðAÞ < b; ð6Þ

which is necessary for a non trivial solution of Eq. (4). This rank deficiency provides the number of indepen-
dent states of self-stress s = b � r P 1 and the number of infinitesimal mechanisms m = dn � r, as explained in
Calladine (1978).

The second rank condition is related to the semi-definite matrix D of Eq. (5) as follows:
rankðDÞ < n� d ð7Þ

for a geometric embedding into Rd. For an embedding of maximal affine space (Graver et al., 1993; Connelly,
1982; Connelly, 1993) the largest possible rank of D is (n � d � 1). In other words, the nullity is (d + 1). For
instance, the affine space spanned by a line has a dimension two, for a plane it is three and for a geometric solid
it is four. Our proposed form-finding procedure uses this maximal rank condition in order to find a tensegrity
structure.
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4. Form-finding with prototypes

Contrary to most existing form-finding procedures (e.g. Motro, 2003; Tibert and Pellegrino, 2003), we pro-
pose one that does not require any initial assumption about the lengths of the elements, geometry or the sym-
metry of the structure. Instead our procedure only requires to know the dimensions (d) of the structure, the
incidence matrix C, and initial information about the type of each member. This information is contained in a
vector q0 2 Rb that is seen as a ‘‘prototype’’ of the tension coefficient for each member. We assign the tension
coefficient +1 or �1 to members that are chosen to be in tension or in compression, respectively:
Fig. 1.
vector
as a fu
coeffic
of an e
state o
q0 ¼ ½þ1 þ 1 þ 1 . . .|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
tension

�1 � 1 � 1 . . .|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
compression

�T.
Subsequently, the matrix D is calculated from q0, i.e. D ¼ CTdiagðq0ÞC, and iteratively modified as to satisfy
the rank conditions equation (7). In the course of these iterations, we try to deviate as little as possible from
the signs of the initial prototypes in q0.

An outline of the form-finding process is shown in Fig. 1. In the initialization, shown in Fig. 1a, we define
the incidence matrix ðCÞ, the number of dimensions (d) and a prototype of tension coefficients (q0). At this
stage, the vector of tension coefficients q0 does not produce a state of self-stress (s = 0) in the structure.

Subsequently, we approximate the nodal coordinates as a function of the tension coefficients (Fig. 1b); from
these coordinates we approximate a new vector of tension coefficients (Fig. 1c). These two steps represent the
input

(b) (c)

no

i=i+1

i=i+1

(a)

output

(e)

(d)

iterations

Outline of the proposed numerical form-finding procedure for tensegrity structures: (a) initialization, no state of self-stress. Only a
of prototypes of tension coefficients, the number of dimensions and the incidence matrix are needed; (b) Approximated coordinates
nction of tension coefficients. Coordinates are calculated from the decomposition of a force density matrix with the current tension
ients. (c) Approximated tension coefficients as a function of coordinates. Tension coefficients are calculated from the decomposition
quilibrium matrix with the current coordinates. (d) The previous decomposition is used to test whether or not the structure has a
f self-stress; (e) Final coordinates and tension coefficients that create at least one state of self-stress.
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core of the proposed form-finding procedure. They are repeated until a solution is found (Fig. 1d). At this
point we have at least one state of self-stress, s P 1, and it is the end of our numerical procedure (Fig. 1e).
The procedure shown in Figs. 1b and c will be described in detail in Sections 5.2 and 6.2, respectively.

Finally, for a structure with s P 1 we can verify that the tension coefficients satisfy Aq ¼ 0 and the coor-
dinates satisfy D½x y z� ¼ ½0 0 0�, as well as that both rank conditions given in Eqs. (6) and (7) are satisfied. If
the calculated structure is in a stable equilibrium, see Section 7, we may say that a signed vector of tension
coefficients q0 provides enough information to compute a stable self-equilibrium with x, y, z and q.

5. From tension coefficients to coordinates

5.1. Equilibrium

Let q be the vector of tension coefficients and C be the incidence matrix of a d = 3 dimensional tensegrity
structure in a state of self-stress. The FDM is then given by D ¼ CTdiagðqÞC. If the matrix D is positive semi-
definite of maximal rank (Connelly, 1999), i.e. satisfies the rank condition equation (7), we can perform a
Schur decomposition:
D ¼ CTdiagðqÞC ¼ UVU T;
where the first (d + 1) columns of the matrix U = [u1 u2 � � � un], contain the basis of the nodal coordinates; and
the diagonal matrix V has d + 1 = 4 zero eigenvalues. In this context, the matrix U has the basis for the nodal
coordinates as columns of the nullspace each of which solves the homogeneous Eq. (5). It follows from the
definition of D that the 1-vector, [1 1 1 � � �], solves the homogeneous Eq. (5). However, this vector provides
little information for the nodal coordinates and it should be avoided in the subsequent calculations. See Meyer
(2000) for more information on the null spaces and decompositions. The general solution,
½x y z� ¼ ½u1 u2 � � � udþ1�T

requires a transformation matrix T 2 Rðdþ1Þ�d. We can use T to specify the final shape of the structure. An
infinite number of geometrically different self-stressed configurations can thus be found for a single vector
q. Since the tension coefficients do not change under affine transformations (Tarnai, 1989), we directly use
the eigenvectors of the null space. Thus, we set for simplicity and without loss of generality
T ¼

1 0 0

0 1 0

0 0 1

0 0 0

0
BBB@

1
CCCA.
5.2. Non-equilibrium

A tensegrity structure generated by a vector of tension coefficients q0 is unlikely to satisfy Eq. (7) and there-
fore is not in self-equilibrium. In this case it is necessary to circumvent the lack of a useful nullspace in D, from
which the basis of the nodal coordinates can be computed. Here, we show how an approximation of the nodal
coordinates can be computed if the rank condition Eq. (7) is not satisfied. We present a matrix operation,
Rb ! Rn�d, that uses q to compute an approximation of [x y z].

Let q be a vector of tension coefficients such that the FDM is factorized as
D ¼ CTdiagðqÞC ¼ UVU T; ð8Þ

does not satisfy Eq. (7) and may not be positive semi-definite. In general, a FDM with prototypes of tension
coefficients q0 falls within this definition. The nullspace is therefore useless and other techniques need to be
applied to identify a triplet, {ui,uj,uk} 2 U, of column vectors that satisfies the equation of static equilibrium,
D½ui uj uk� � ½0 0 0�.
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This is an approximated solution of static equilibrium in which the column vectors {ui,uj,uk} do not cor-
respond to the zero eigenvalues of Eq. (8).

One possibility we could use to select these columns is to favour the triplet that produces a dominating
structure (e.g. Connelly, 1993; Connelly and Terrell, 1995), in which struts are of non-zero length but as short
as possible.

This minimal length condition has some advantages, for instance with respect to Euler buckling and glob-
ally rigid tensegrities (Connelly and Terrell, 1995; Connelly, 1999). It is easy to choose the triplet {ui,uj,uk} if
we consider the problem in terms of lengths, in which we can minimize the total squared length of the entire
structure,
Xb

p¼1

l2
p ¼ kCui þ Cuj þ Cukk2. ð9Þ
To this end, the matrix U = [u1 u2 u3 � � � un] computed in Eq. (8), is used to calculate all the projected
lengths,
L ¼ CU ¼ ½ðuA
1 � uB

1 Þ ðuA
2 � uB

2 Þ � � � ðuA
n � uB

nÞ�;
along all n directions for each pair (A,B) of connected nodes. We can remove the column vectors ui for which
Cui ¼ 0. In order to find the {ui,uj,uk}, Eq. (9), we identify the columns of L according to their 2-norm,
½c1 c2 � � �� ¼ arg min
i

Lij jj j. ð10Þ
where the elements of the sorted list [c1 c2 � � �] returned by the minimal argument function, argmin(w), corre-
spond to the indices (i) in which the vector norm kLik is minimized. Notice that there may be multiple indices
that correspond to the minimal 2-norm. Therefore, we take the minimal indices as well as their multiplicity to
have a pool of at least d candidate columns. Eq. (10) helps to narrow the search space to only a few columns.
The reduced matrix ~U ¼ ½uc1

uc2
� � �� is then used to factorize the projected lengths by means of a QR (or LU)

decomposition,
C ~U ¼ QR; ð11Þ
to get access to the upper triangular matrix R. In such a case, the projections along each direction are handled
columnwise, i.e. Cui ¼ QRi, and linearly dependent projected lengths have their pivot set to zero. Finally, these
pivots help to choose the d linearly independent columns as nodal coordinates [x y z].

This selection procedure, Eqs. (10) and (11), helps to find configurations with minimal but non-zero pro-
jections, Eq. (9), with a maximal rank condition of D, Eq. (7), and which have linearly independent projections
½Cx Cy Cz�. In other words, we pick a configuration that dominates all other equivalent ones (see Connelly,
1993, 1999; Connelly and Terrell, 1995). At this point of our form-finding procedure, we have an approxi-
mated equilibrium configuration, such that D½x y z� � ½0 0 0�.

6. From coordinates to tension coefficients

6.1. Equilibrium

Let [x y z] be the nodal coordinates of a structure in a state of self-stress, s P 1. It is known (Pellegrino,
1993) that the basis of vector spaces of tension coefficients and mechanisms of a self-stressed structure are cal-
culated from the null spaces of the equilibrium matrix. We can decompose the equilibrium matrix:
A ¼
CTdiagðCxÞ
CTdiagðCyÞ
CTdiagðCzÞ

0
B@

1
CA ¼ UVW T. ð12Þ
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In this context, the matrices U and W have the following null spaces,
U ¼ ½u1 u2 � � � jm1 � � � mdn�r�;

and
W ¼ ½w1 w2 � � � jq1 � � � qb�r�;

where r is the rank of the diagonal matrix V; the vectors m 2 Rdn denote the m = dn � r infinitesimal mech-
anisms; and the vectors q 2 Rb the states of self-stress, each of which solves the homogeneous Eq. (4). We
define M 2 Rdn�dn�r as the matrix of mechanisms, M = [m1 � � � mdn�r].

6.2. Non-equilibrium

However, if the structure is not in a state of self-stress, we do not have access to the null spaces of A, as
defined in Eq. (12). That is the case when the matrix A is calculated with an approximation of the nodal coor-
dinates (see Section 5.2). We can, however, modify A to be rank deficient, and apply a matrix operation,
Rn�d ! Rb, that uses [x y z] to compute an approximation of q.

Let [x y z] be a matrix of estimated nodal coordinates and d = 3. Using, for instance, the singular value
decomposition of A, we have A ¼ UVW T; where the matrix W = [w1 w2 � � � wb]. In general, if we assume
s = 1, the signs of the last column of W and the prototypes in q0 may not match, i.e. sgn(wb) 5 sgn(q0). So
we may need to use more than one column of W to compute a vector q that best matches q0. We can, for
instance, use a least square fit to calculate the vector of coefficients ~q that minimises the quantity
k½wj � � � wb�~q� q0k2 ð13Þ
for a block of column vectors [wj � � � wb], such that q ¼ ½wj � � � wb�~q. We start by setting j = b � 1 and verify if
the signs match, sgn(q) = sgn(q0). If so, the procedure stops, otherwise we decrease j by one, and repeat it. This
procedure imposes the existence of at least one state of self-stress that matches in signs with q0. At the end, the
vector ~q is the unique least square solution for the system ½wj � � � wb�~q ¼ q0, such that the product of the equi-
librium matrix and the vector of approximated tension coefficients q ¼ ½wj � � � wb�~q gives
Aq ¼
CTdiagðCxÞ
CTdiagðCyÞ
CTdiagðCzÞ

0
B@

1
CAq � 0.
We therefore approximate a state of equilibrium and preserve sgn(q0). This closes the loop in the form-find-
ing procedure because with the vector q we calculate [x y z], as described in Section 5.2.

In summary, the form-finding procedure consists in iterating equations (10), (11) and (13) until the rank
condition Eq. (6) is satisfied. The potential null spaces in D and A are exploited as to impose the existence
of at least one solution. The number of geometrically different configurations and tension coefficients is infi-
nite, but the structural parameter s does not change under affine or projective transformations (Crapo and
Whiteley, 1982; Tarnai, 1989). That is why we are focusing on a certain number of eigenvectors in D and
A, and using the bases of vector spaces for both coordinates and tension coefficients. In fact, it is Eq. (13)
that forces the current equilibrium matrix to have at least one state of self-stress. The auxiliar equations
Eqs. (10) and (11) update the coordinates of the next equilibrium matrix, and so on until s > 0. At the end,
we have a vector q such that Aq ¼ 0, and this single vector q is our solution. The rest of the states of self-
stress, if s > 1, can be calculated from the right null space of A. The procedure guides both D and A to
be rank deficient, with the proper rank, by selecting the appropriate eigenvector(s) in each decomposition
and imposing the existence of at least one solution. We should remark, however, that the final vector of ten-
sion coefficients q is not unique for the given structure. Other vectors q, equally valid, may exist for the same C
and the same signs of q00

. For instance, in Section 9.2 we present an example in which our calculated tension
coefficients are different from previously published research. To calculate the examples presented in Sections 8
and 9, we implemented the form-finding procedure in Matlab version 7.
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7. Initial stiffness

The form-finding procedure stops when a state of self-stress is found. It is convenient to verify that [x y z]
and q create a stable self-equilibrated structure in a kinematically indeterminate assembly. We can check if the
state of self-stress stiffens all the infinitesimal mechanisms.

It is known that a vector of tension coefficients contributes to the tangent stiffness matrix,
KT ¼ KE þ KG;

¼Adiag
eiai

l0
i

� q

 !
AT þ

D

D

D

0
B@

1
CA;
of pre-stressed, kinematically indeterminate structures (see, e.g. Guest, 2006; Murakami, 2001). Here e 2 Rb is
the vector of Young’s moduli, a 2 Rb the vector of cross-sectional areas and l0 2 Rb the vector of initial
lengths of each of the b members of the structure; and D ¼ CTdiagðqÞC for a single state of self-stress.

If an infinitesimal and inextensional mechanism m 2M, M = [m1 � � � mdn�r] as described in Eq. (12), is
applied to KT, the elastic part KE vanishes, i.e. ATm ¼ 0. The stability of this initial state, or initial stiffness,
of a structure therefore only involves the geometric stiffness KG (e.g. Murakami, 2001; Guest, 2006; Volokh
and Vilnay, 2000).

We can thus assess the stability of a pin-jointed structure in d = 3 dimensions, subject to infinitesimal and
inextensional mechanisms M, with the quadratic form of KG,
K ¼ MT

D

D

D

0
B@

1
CAM ;
which is positive semi-definite if and only if D is positive semi-definite, for all m 2 Rdn. For a positive D we
verify whether KG imparts positive stiffness to all directions within the inextensional displacements except for
the six rigid body motions,
eigðKÞ ¼ ½k1 ¼ k2 ¼ � � � ¼ k6 ¼ 0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
rigid body motions

k7 > 0 � � � kdn�r > 0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
positive stiffness

�; ð14Þ
that appear in the analysis of free standing structures in d = 3 dimensions, for eigenvalues in increasing order
and repeated according to their multiplicity. Here, it is assumed that there is a single state of self-stress, which
is the typical example discussed in the related literature. The general case, s P 2, however, is more problematic
to verify whether the assembly possesses stiffness in all considered states of self-stress (e.g. Calladine and
Pellegrino, 1991, 1992).

8. Examples in 2D

We demonstrate the usefulness of our procedure by presenting a few examples of 2D tensegrity units. The
procedure works remarkably well for super stable planar tensegrities (Connelly, 1982, 1999), in which the
matrix D is (i) positive semi-definite of (ii) maximal rank n � d � 1. All examples presented in this paper fulfill
these two conditions. Notice that no struts intersect in any tensegrity structure.

Fig. 2a depicts a tensegrity hexagon. We can analyse this small tensegrity in exact symbolic form (e.g. as in
Tibert and Pellegrino, 2003). The solution is a force density of q = 1 and q = �0.5 in cables and struts, respec-
tively. Here the struts, which are the elements in compression, are depicted by thick grey lines. One of the ear-
liest examples of 2D tensegrity structures is shown in Fig. 2b. It was studied by Mohr (1885). An example
found in Graver et al. (1993) is shown in Fig. 2c. Each one of these three tensegrities (Figs. 2a–c) has six nodes
and nine members, and each tensegrity structure has s = 1 and m = 1.



(b)(a)

(d)

(c)

(e)

Fig. 2. Examples of 2D tensegrities calculated with the new form-finding procedure. Thick gray lines represent struts.
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Fig. 2d is a compound of a square and a hexagon, in which the struts are placed such that there is no nodal
symmetry, and two nodes lack incident struts. Finally, Fig. 2e shows an example found in Connelly and Back
(1998). Both tensegrities (Figs. 2d–e) have s = 1 and m = 2, and they have 8 nodes and 12 members.

9. Examples in 3D

9.1. Expanded octahedron

Using a symbolic analysis, Tibert and Pellegrino (2003) calculated two solutions for the expanded octahe-
dron, of which only one produces a positive semi-definite matrix D. Applying our form-finding procedure, we
find that the expanded octahedron has s = m = 1. The stable structure is shown in Fig. 3a. The 2-norm of Aq

as a function of the number of iterations is plotted in a logarithmic scale in Fig. 3b. It can be seen that the
iterative procedure converges in 14 iterations to one state of self-stress.

The ratio between strut and cable lengths is ls/lc � 1.63299, which is in agreement with other studies
(Motro, 2003). By normalising q with respect to the tension coefficient of the cables, we compute (qc = 1)
and (qs = �3/2) for 24 cables and 6 struts, respectively. These values correspond to the ones found by Tibert
and Pellegrino (2003) using a symbolic analysis.

Moreover, Eq. (14) shows that the state of self-stress imparts a positive stiffness to all but six directions.
This example demonstrates that the proposed form-finding procedure is able to efficiently calculate the solu-
tion that produces a positive semi-definite matrix D.

9.2. Truncated tetrahedron

The truncated tetrahedron analysed by several authors (Tibert and Pellegrino, 2003; Pellegrino, 1986;
Motro, 2003) has one cable length as well as a single length for all struts. This structure is calculated by impos-
ing these conditions a priori, e.g. in a dynamic relaxation (Motro, 1990) or in non-linear programming
(Pellegrino, 1986).

However, there is no such constraint in our proposed form-finding procedure. We have found a solution
with two different cable lengths and all struts being of equal length (Fig. 3c). We compared both solutions
by looking at their elastic potential energies. Global equilibrium is attained in the state of least energy. There-
fore configurations with less potential energy are preferred to other local minima with higher energy.
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Fig. 3. Examples of tensegrities calculated with the proposed form-finding procedure: (a) expanded octahedron and (b) convergence; (c)
truncated tetrahedron and (d) convergence; (e) truncated icosahedron and (f) convergence. Thick gray lines represent elements in
compression.
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We can calculate the elastic potential energy of a tensegrity structure by describing its members as Hookean
springs that store energy upon experiencing a strain e. Let e 2 Rb, e 2 Rb and a 2 Rb be the vectors containing
Young’s modulus, the strain and the cross-sectional area per member, respectively. Then, if we define the
stress and length per member i as ri = eiei and li, respectively, the elastic energy per unit volume of the struc-
ture is given by
U ¼ 1

2

Xb

i¼1

riei ¼
1

2

Xb

i¼1

f 2
i =eia2

i ¼
1

2

Xb

i¼1

l2
i q2

i =eia2
i .
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If we compare two or more structures with the same value of ea, the difference in the elastic potential energy
density is U /

Pb
i¼1l2

i q2
i . We compared the structure calculated by Tibert and Pellegrino (2003), Pellegrino

(1986), Motro (2003) with the one found by us. The solution with a single cable length was calculated with
the non-linear programming approach (Pellegrino, 1986). For the comparison, we assumed that both struc-
tures have the same value for ea, rescaled both structures to fit inside a box of unit lengths, and normalised
their tension coefficients. We found

• 12 cables with q = 1, 6 cables with q = 1.3794 and 6 struts with q = �0.66714 in the structure calculated by
Tibert and Pellegrino (2003).

• 12 cables with q = 1, 6 cables with q = 1.1546 and 6 struts with q = �0.6170 in our structure.

The calculation of the elastic energy density shows that the truncated tetrahedron calculated with a single
cable length has an energy 20% higher than the solution with two cable lengths. In terms of equilibrium and
stability the configuration with two cable lengths is therefore advantageous. The structure with only one cable
length possessing longer struts and larger tension coefficients is suppressed by our form-finding procedure in
favour of the low-energy structure with two different cable lengths.

The form-finding procedure takes eight iterations to start from a configuration with s = 0 and m = 6 to
converge towards the equilibrium configuration with s = 1 and m = 7 (Fig. 3c). Fig. 3d shows the convergence
in a logarithmic scale.

Moreover, the state of self-stress imparts positive stiffness to every infinitesimal mechanism of this struc-
ture, except for the six rigid-body displacements. This demonstrates that the proposed form-finding procedure
is capable of selecting a configuration with minimal elastic potential energy.

9.3. Truncated icosahedron

Murakami and Nishimura (2001) have analysed the truncated icosahedron with a rather complicated form-
finding procedure based on group theory. Their form-finding takes advantage of the symmetry and is devel-
oped for the truncated versions of the five Platonic solids.

After 45 iterations with our form-finding procedure, we calculate s = 1 and m = 55, which is in agreement
with their assumptions (Murakami and Nishimura, 2001). Figs. 3e and f show a truncated icosahedron and its
convergence to s = 1. By normalising the tension coefficients with respect to a reference cable, we have 60
cables with q = 1, 30 cables with q = 0.6775 and 30 struts with q = �0.3285. This solution provides positive
stiffness to all mechanisms, see Eq. (14), except for the six rigid-body displacements.

9.4. Cylindrical tensegrities

Finally, the ability of the proposed procedure to find structures that correspond to global energy min-
ima is further exemplified with cylindrical tensegrities. They are described by a set of two parallel planes,
‘‘top’’ and ‘‘bottom’’ (see Gomez Estrada et al., 2005). Here, each plane consists of n nodal points, and
both planes are connected by n brace cables and n struts. Two well known examples are the triplex and
the quadruplex for which n = 3 and n = 4, respectively. The form-finding of cylindrical tensegrities has
been studied using several approaches, for instance, the dynamic relaxation procedure by Motro (2003)
and non-linear programming by Pellegrino (1986). But these approaches impose the condition of a unique
cable length.

We calculated cylindrical tensegrities with the proposed form-finding procedure. For instance, the triplex
and the quadruplex are shown in Figs. 4a and b, respectively. The pentaplex, or 5-plex for short, is shown
in Fig. 4c. Finally, we show three examples (Figs. 4d–f) of tensegrity cylinders with a high degree of elements,
such as the 20-plex, 50-plex, and 100-plex.

An analysis of their stability shows that the structures possess positive stiffness with the given state of self-
stress. Moreover, the solutions have two cable lengths and one strut length, which is in stark contrast to the
above-mentioned studies. The form-finding procedure is able to selectively calculate the stable configuration
among several sub-optimal configurations (Gomez Estrada et al., 2005).
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Fig. 4. Examples of cylindrical tensegrities: (a) n = 3, the triplex; (b) n = 4, the quadruplex; (c) n = 5; (d) n = 20; (e) n = 50; (f) n = 100.
Thick gray lines represent elements in compression.

6866 G.G. Estrada et al. / International Journal of Solids and Structures 43 (2006) 6855–6868
10. Conclusions

We have presented a multi-parameter form-finding procedure for tensegrity structures. Geometry and ten-
sion coefficients are iteratively computed from an incidence matrix and a vector of prototypes of member
forces. The elements of this vector consist of unitary entries +1 and �1 for members in tension and compres-
sion, respectively. The conditions of a maximal rank of the force density matrix and minimal member lengths,
were included in the form-finding procedure to guide the search of a state of self-stress.

As opposed to most existing form-finding procedures, our procedure requires neither the nodal coordinates,
the symmetry, the element lengths, nor the tension coefficients to be imposed a priori. This lack of assumptions
leads to a versatile form-finding procedure that can calculate, for instance, (i) the expanded octahedron with-
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out assuming any tension coefficients, (ii) the truncated tetrahedron without assuming any cable lengths, (iii)
the truncated icosahedron without assuming any global symmetry, and (iv) the cylindrical tensegrities without
assuming any cable lengths. We are indeed able to calculate novel configurations.

We showed that our numerical form-finding, (i) reproduces solutions obtained with techniques based on
symbolic calculations, non-linear programming, dynamic relaxation and group theory, (ii) selects configura-
tions of minimal elastic potential energy, as well as (iii) reduces the knowledge needed in the design process
to +1/�1 depending on whether the member is in tension or compression. Previous and new structures are
therefore easily handled with our proposed numerical procedure.

Moreover, the proposed form-finding procedure does not require tuning variables nor thresholds. How-
ever, it remains to study in greater detail structures with multiple state of self-stress. Finally, the application
of our form-finding procedure to topology optimization problems is regarded as an interesting research
direction.
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