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Abstract

In this paper we want to describe some examples of the active interaction that takes place at the border of rational
approximation theory and linear system theory. These examples are mainly taken from the period 1950–1999 and are
described only at a skindeep level in the simplest possible (scalar) case. We give comments on generalizations of these
problems and how they opened up new ranges of research that after a while lived their own lives. We also describe some
open problems and future work that will probably continue for some years after 2000. c© 2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction

In linear systems, control, and signal processing, rational approximation has always been an im-
portant issue and it has given rise to speci�c problems and insights in approximation theory, it has
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revived forgotten methods and initiated new directions of research. It is the intention of this paper
to illustrate some of these innovating ideas that were born from this interaction of system theory,
linear algebra and approximation theory and formulate some open problems or aspects that are still
under development.
First we recall some mathematical notation and concepts. Next, we shall narrow the focus of

our system theoretic problems by introducing some concepts from system theory and selecting the
subjects we shall discuss from those we shall not consider in this paper.
By Z we denote the set of integers, by N the positive integers, and ‘p= ‘p(Z), (16p¡∞)

is the Banach space of complex sequences x=(xk) with ‖x‖p := [
∑

k ∈Z |xk |p]1=p ¡∞ while ‘∞
is the space for which ‖x‖∞ := supk ∈Z |xk |¡∞. The set of real and complex numbers is R and
C, respectively, and the notation T, D and E are reserved for the unit circle, its interior and its
exterior: T := {z ∈C: |z|=1}, D := {z ∈C: |z|¡ 1}, E := {z ∈C: |z|¿ 1}. The spaces Lp=Lp(T),
(16p¡∞) are de�ned as the function spaces for which ‖F‖p := [(1=2�)

∫ �
−� |F(ei!)|p d!]1=p ¡∞,

and ‖F‖∞ := supt ∈T |F(t)|. L2 is a Hilbert space with inner product 〈F;G〉=(1=2�) ∫ �−� F(ei!)G(ei!)
d!. The Z-transform of a sequence a=(ak)k ∈Z is A(z)=Z(a)=

∑
k ∈Z akz−k . We will use the

convention that Z-transforms are indicated by capital letters: Z(a)=A(z). Note that we use here
the system engineering convention that the Z-transform is de�ned as above, while the mathemat-
ical convention is that z is replaced by z−1. We shall de�ne the Fourier transform correspond-
ingly. Thus F(a)=A(ei!)=

∑
k ∈Z ake−ik!. The Fourier transform is an isometric isomorphism be-

tween ‘2 and L2. Although an integrable function F ∈L1 has a Fourier series
∑

k ∈Z fke−ik! with
fk =(1=2�)

∫ �
−� F(e

i!)eik! d!, the partial sums need not converge in norm or pointwise. The Ces�aro
sums are summation techniques, for example the Fej�er sums that take the average over the �rst n
partial sums, and these have better convergence properties than the ordinary partial sums. The Hardy
space Hp=Hp(D) (16p6∞) is the subspace of Lp of the functions F whose positive Fourier
coe�cients fk with k¿ 1 vanish. Because the series

∑∞
k = 0 f−kzk converge for z ∈D, these functions

have an analytic extension in D. Similar to Hardy spaces, one can de�ne a closed subset of the con-
tinuous functions on T namely A=A(D)= {F ∈C(T): f−n=

∫ 2�
0 F(ei!)ein! d!=0; n=1; 2; : : :}

which is the disk algebra. Again such functions can be extended analytically to D. The closure of
the polynomials in Lp give Hp for 16p¡∞ but it gives A for p=∞. The inclusion A⊂H∞
is proper.
To describe the system theoretic topics of this paper, let us now introduce some terminology from

system theory. Mathematically, a linear system is a linear operator transforming an input into an
output. Depending on the spaces where the input and the output live, there are several possibilities.
A system has an input signal ut say, and an output signal yt . The variable t stands for “time”.
If t ranges over a continuous set (like R) we have a continuous time system, otherwise (e.g.,
t ∈Z) we have a digital or discrete time system. Here we shall restrict ourselves to discrete time
systems.
The system can be single input–single output (SISO) if the input and output are scalar. Otherwise,

if they are in higher dimensional vector spaces, it is a multi-input–multi-output system. We restrict
ourselves mainly to the simple SISO case.
There are two settings for these systems: the I=O signals can be stochastic or they can be purely

deterministic, or even a mixture, like a deterministic signal with stochastic noise. In this paper, we
look mainly at the purely deterministic case.
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So we have excluded a lot of possible problems, but the choice that remains is still overwhelming.
For the areas that are not treated, a specialist would know other problems analogous to those
discussed here. The nonspecialist will �nd enough material to start with.
In the simplest possible form, a system can be described as a convolution: y=Th(u)= h ∗ u, thus

yk =
∑

i hk−iui, k ∈Z, where u=(uk), y=(yk) are the input and output signals, and h=(hk) is
called the impulse response of the system. The hk are also known as Markov parameters. Taking
Z-transforms, we can write the I=O relation as Y (z)=H (z)U (z). If the series H (z) converges, then
H (z) represents a function that is called the transfer function of the system.
Unless otherwise implied, we shall assume that we are dealing with causal systems, which means

that the impulse response hk =0 for k ¡ 0. If a sequence (sk) has �nite energy
∑

k |sk |2¡∞, then
it means that s∈ ‘2. A system is called stable if the I=O operator Th : u 7→ y=Th(u) is bounded. If
u; y∈ ‘2 then the system is stable if h∈ ‘∞, in other words, according to our convention, a stable
causal ‘2 system will have a transfer function H such that H (1=z) is a bounded analytic function in
the open unit disk: H ∈H∞(D).
The I=O signals (sequences) live in the time domain while the Z-transforms live in the Z

domain or frequency domain. Indeed, if z=ei! in the Z-transform, then H (z) is just the Fourier
transform of h=(hk). The function H (ei!) is called the frequency response and |H (ei!)|2 is the power
spectrum.
In many cases, it is very convenient to write a state-space formulation for the system. This means

to de�ne an intermediate vector xk called the state such that

xk+1 =Axk + Buk; uk ; yk ∈C; xk ; xk+1 ∈Cd×1;

yk =Cxk + Duk; A∈Cd×d; B∈Cd×1; C ∈C1×d; D∈C;
where we shall assume that the dimension d of the state space is �nite. The relation between
state-space, time-domain, and frequency-domain formulations are (under appropriate conditions)
given by

H (z)=C(zI − A)−1B+ D=
∑
k

hkz−k ;

h0 =D; hk =CAk−1B; k =1; 2; : : : :

The state space is a space intermediate between input and output space. The previous equations for
xk+1, and yk+1 show one way in which the input is mapped to the state and the state is mapped
to the output. In control problems it is of great importance to know how much of the state space
can be reached from the input side and how much from the state space can be read o� from
the output. This is characterized to some extent by the controllability and observability Gramians,
respectively. The controllability matrix C is the array whose kth column is Ak−1B; k =1; 2; : : : and
the observability matrix O is the array whose kth row is CAk−1, k =1; 2; : : : . The corresponding
Gramians are P=CC ∗ and Q=O∗O. They solve the Lyapunov equations APA∗ − P= − BB∗ and
A∗QA−Q= −C∗C; respectively. (The superscript ∗ means conjugate transpose.) Another important
tool is the Hankel operator �H of the system (see Section 3.2) which maps the past input onto the
future output. With respect to the standard basis, it has a Hankel matrix representation [hi+k−1]

∞
i; j= 1,

which we can also write as OC .
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The state-space formulation is very important for numerical computations and it is the most elegant
way of dealing with generalizations like block Hankel matrices or MIMO systems or time-varying
systems. State-space methods involve basically linear algebra techniques. Many of the most practical
algorithms are based on state-space descriptions and linear algebra techniques. However, conceptually
it is sometimes easier to work in function spaces. So, in order not to develop the ideas twice, we have
made a choice in the di�erent sections of this paper: sometimes we give a state-space description,
sometimes the linear algebra aspects are deliberately neglected.
The general problem that is addressed here is:

Problem 1.1. (General problem) Given some data about the system, �nd (a rational) approximation
of the system.

Of course, this problem has several “names”. For example, in model reduction the aim is to �nd
a simple (i.e., a low degree) approximation of a high-order system. In realization problems the
objective is to �nd an explicit, implementable form of the system. Most often this is meant to be
a state-space realization. Identi�cation of the system means again that the system is pinned down
in some way, and this is usually meant to be in the time domain or in the frequency domain. For
instance, in the time domain this means that a sequence of (possibly perturbed) inputs uk and=or
outputs yk is known. Prediction theory (or forecasting) is vaguely described as trying to identify
or model or approximate a system for which we know only the output (like a seismic or a speech
signal). In control theory one wants a system to generate a certain output, and if the actual output
deviates from the desired one, then the input or the system itself is modi�ed (controlled). To do this
in an e�ective way, it is of course necessary to have at least an approximate model of the system,
and thus the previous problems reappear.
The data that are given for the system can also have many di�erent forms. Sometimes data are

given for the behaviour of H (z) for z near ∞ (e.g., the �rst few Markov parameters hk =CAk−1B
which are the coe�cients in the expansion of H (z) at z=∞, which describe best the steady state
behavior of the system, i.e., the behavior of the system for large t), or at the origin (e.g., the
so-called time moments, or equivalently the coe�cients of H (z) expanded at z=0 which describe
best the transient behavior of the system, i.e., the behavior of the system for small t), or on the
unit circle (e.g., the power spectrum |H (z)|2 for |z|=1). These data could be assumed exact, but
they are in all practical situations contaminated by measurement error or model errors (for example
nonlinear e�ects, while the model is linear, or an underestimation of the model order). Not only the
data and the desired result but also the approximation criterions can be formulated in the time or
frequency domain. That may be some kind of norm (like Lp norms) or some other criterion like
interpolation with minimal degree or minimal norm, etc.
We want to give some samples from the last 50 years that we consider as stepping stones in

the fertile interaction between system theory and rational approximation in the complex plane. We
emphasize that it is never our ambition to be complete, and we do not want to deprecate any work
we do not mention. We give some examples that are obviously colored by our personal interest.
It should be su�cient though to illustrate our main point, namely the rich soil between system
theory, rational approximation, linear algebra, numerical analysis, and operator theory that has been
an incubation place for many new ideas and methods and will continue to be so in many years to
come.
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2. Realization theory

One of the main achievements in system theory of the 1960s was the solution of the so-called
minimal partial realization problem.

Problem 2.1. (Minimal partial realization) Given the expansion H (z)= h0+h1z−1+· · ·+hNz−N+· · ·
for z→∞. Find a rational function Ĥ of minimal degree satisfying H (z) − Ĥ (z)=O(z−(N+1)) as
z→∞.

Writing Ĥ (z)=Pn(z)=Qn(z) with Pn and Qn polynomials, one can solve the linearized problem

H (z)Qn(z)− Pn(z)=O(z−(N+1)); z→∞
instead of the proper problem. If this is written down coe�cientwise in descending order, we see
that the �rst n+1 equations give Pn in terms of Qn and h0; : : : ; hn. The most obvious choice is N = n,
so that generically the next n equations de�ne the coe�cients of Qn, up to a multiplicative factor,
as the solution of a homogeneous Hankel system of linear equations. If this Hankel matrix is not of
full rank there can be more solutions. Then the ratio Ĥ is still unique, but it may or may not be a
solution of the proper problem.
This is equivalent with the construction of a diagonal Pad�e approximation at in�nity [2]. In

Pad�e approximation one considers rational approximants of general type (m; n) [that is (numerator,
denominator)-degree] whose expansion matches a given series in its �rst m + n + 1 terms. The
(m; n)-approximants are arranged in a table called Pad�e table.
The problem can be solved recursively, i.e., it is computationally cheap to update a solution for a

given order N to a solution for order N +1. This kind of algorithms corresponds to fast algorithms
for the solution of Hankel matrices that were recognized as variants of the Euclidean algorithm [14].
These algorithms solve a Hankel system by solving all the systems corresponding to the leading
principal submatrices of the Hankel matrix. In this sequence there may appear singular submatrices
according to a certain “pattern” [29]. This phenomenon is well known in Pad�e theory and corresponds
to singular blocks in the Pad�e table. Such singular blocks are always square and that explains the
“pattern”.
These algorithms are fast because they exploit the structure of the Hankel matrix. However, the

linear algebra operations do not use orthogonal matrices and to maintain the structure of the matrix,
pivoting is not allowed. Therefore, these algorithms potentially su�er from numerical instabilities.
The leading principal submatrices may be nearly singular, which causes large rounding errors. This
problem has initiated an intensive research in the 1990s about look-ahead techniques for such struc-
tured linear algebra problems. These algorithms test if some quantity is below a certain threshold, and
in that case the matrix is considered as being singular, and an update in the recursion is postponed
until the quantity raises above the threshold [25].
The coe�cients that are computed by such an algorithm correspond to recurrence relations for

formal orthogonal polynomials [6] and to the numerators and denominators in a continued fraction
expansion of the transfer function, which are known in realization theory as Cauer fractions.
Note, however, that this technique does not guarantee stability of the approximant and that can be

considered as a major drawback of this technique. The coe�cients of the recurrence relation for the
orthogonal polynomials, or equivalently of the continued fractions, can be used in a stability test.



360 A. Bultheel, B. De Moor / Journal of Computational and Applied Mathematics 121 (2000) 355–378

This is the so-called Routh algorithm: a method to test whether a certain polynomial is stable (in the
sense of continuous time systems, i.e., having zeros in the left half-plane) or not. The parameters in
the Routh algorithm can be restricted, such that the rational approximant that results is guaranteed
to be stable. Another possibility is to start from a high-order denominator polynomial of a stable
system. The Routh algorithm computes the Routh parameters and by truncation, one obtains a low
degree denominator polynomial for the approximation. The free coe�cients in the numerator are used
to match as many Markov parameters as possible. This is an example of a Pad�e-type approximant:
the denominator is given and the numerator is determined in Pad�e sense.
More on the topic of minimal partial realization and on Pad�e and multivariate Pad�e approximation

can be found in the extended contributions in this volume by De Schutter, Wuytack, and Guillaume,
respectively.

3. Model reduction techniques

In the model reduction problem one wants to approximate a linear system by one of lower
McMillan degree. The methods used here are diverse and rely on di�erent mathematical techniques,
on di�erent presentations of the system and on di�erent objectives that are optimized. We give some
examples.

3.1. Balanced truncation and projection of dynamics

The idea is to perform a similarity transformation on the state space, so that the observability and
controllability are “in balance”. This means that the controllability Gramian P and the observability
Gramian Q are equal and diagonal (see [40]). In this balanced realization, a simple truncation
(keeping the most important eigenvalues) does the actual model reduction. The balanced realization
is obtained from an eigenvalue decomposition of the product PQ=T�T−1. Assume that the d
eigenvalues in � are ordered in decreasing order: �=diag(�1; �2) with �1 containing the n6d
largest eigenvalues. After the similarity transformation (A; B; C; D)→ (TAT−1; TB; CT−1; D), we then
keep only the the �rst n rows and=or columns to isolate the reduced system. The reduced system
is stable if the original system is, but the reduced system is not balanced in the discrete case (it is
balanced for continuous time systems though). We note that the eigenvalues of PQ are related to the
Hankel singular values. These are the singular values of the Hankel matrix of the system �H =OC
which maps past input into future output (see Section 3.2). Indeed one has

�i(PQ)= �i(CC
∗O∗O)= �i(C ∗O∗OC)= �2i (�H):

Thus, this technique of model reduction typically throws away the smaller Hankel singular values
and keeps the most important ones.
There are also several extensions. Actually, whenever one has a theory in which two matrix

equations (Lyapunov, Riccati) result in two positive-de�nite solutions P and Q, one can de�ne a
balancing transformation T , a so-called contragredient transformation, that transforms P and Q so
that they are equal and diagonal. Examples are stochastic balancing (in which case the solutions to
the so-called forward and backward Riccati equations of a stochastic system are used to obtain the
balancing transformation, LQG-balancing (where one starts from the solutions of the Kalman �lter
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and LQR Riccati equations, balancing on the two solutions of the H∞ Riccati �ltering and control
equations, relative error balancing (see, e.g., [44,47] for details and references).
Balanced model reduction can be considered as one particular case of the so-called projection of

dynamics. Hereto de�ne the projection �=RL, where R; L∗ ∈Cd×n and LR= In. � is the projection
onto the range space of R along the null space of L. Now, the idea of projection of dynamics is
that at each time instant, the state x(t) is approximated by �x(t)=RLx(t) so that

RLxk+1 ≈ ARLxk + Buk; yk ≈ CRLxk + Duk;

or

zk+1 = (LAR)zk + (LB)uk ; yk =(CR)zk + Duk

with zk :=Lxk .
Since LR= In, it is always possible to �nd a similarity transformation T such that L consists

of the �rst n rows of T and R of the �rst n columns of T−1. Hence the approximating system
(LAR; LB; CR;D) is obtained by �rst transforming the model by choosing a particular basis transfor-
mation matrix T , giving the realization (TAT−1; TB; CT−1; D), and then truncating the transformed
state-space model by restriction to the �rst n rows and=or columns. The oldest methods that can be
interpreted in terms of projection of dynamics are modal decomposition and reduction methods, in
which case the similarity transformation T diagonalizes the matrix A. The eigenvalues of the matrix
A, which are in case of a minimal realization also the poles of the system, are thus revealed. This
allows us to easily choose the poles of the reduced order system as a subset of the poles of the orig-
inal system, or sometimes poles of the reduced system are simply �xed in advance. This is similar
to the Pad�e-type approximants mentioned at the end of Section 2. The advantage of these method
is their simplicity, typically only requiring the solution of one or more least-squares problems.

3.2. Hankel norm approximation

The Hankel norm approximation problem was inspired by a paper of Adamjan, Arov and Krein
that appeared in 1971 [1] and it is therefore also known as AAK approximation. It was worked out
in the context of system theory in the late 1970s and early 1980s.
If the system is stable and causal, then the I=O operator Th de�ned in Section 1 will map the

past onto the future. If we assume that the input and output have �nite energy, then Th is a Hankel
operator in ‘2. In the Z or Fourier domain, this corresponds to a Hankel operator �H mapping
H2 =H2(D) (the Hardy space of the unit disk) to its orthogonal complement H⊥

2 . It is de�ned by
�H =PH⊥

2
MH , where H (z)=

∑∞
k = 1 hkz−k for z ∈T is the Fourier transform of the impulse response h,

and MH is the operator representing the multiplication with H , and PH⊥
2
is the orthogonal projection

onto H⊥
2 . If the system is stable, then �H is a bounded operator and hence H ∈L∞. The function

H ∈L∞ is called the symbol of the Hankel operator �H . Note that only the Fourier coe�cients hk

with k ¿ 0 are relevant to de�ne the operator. Given a Hankel operator, then its symbol is only
determined up to an additive arbitrary H∞ function.
The representation of �H with respect to the standard bases {zk} is a Hankel matrix whose entries

are the Markov parameters.
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Problem 3.1. (Hankel norm=AAK approximation) Given �H ; �nd an approximation �Ĥ such that
we solve one of the following two problems:

• minimum norm problem: ‖�H−Ĥ‖2 is minimal with rank�Ĥ 6 n; or the
• minimum rank problem: rank�Ĥ is minimal with ‖�H−Ĥ‖26 � for given �.

Of course, the minimal norm problem has a solution for general matrices that is given by a
singular value decomposition (SVD), truncated after the �rst (i.e., the largest) m singular values.
Thus if �=

∑
k �k〈·; vk〉wk is the SVD of � with singular values �1¿ �2¿ · · ·, and corresponding

Schmidt pairs (vk ; wk), then the best rank m approximant is given by keeping only the �rst n terms in
this sum. The remarkable fact here is that for a Hankel matrix �H , where this truncated approximation
is in general not a Hankel matrix, we can �nd a Hankel approximant �Ĥ that approximates equally
well. Thus inf{‖�H − �Ĥ‖2: rank�Ĥ 6 n}= �n+1.
The rank of any Hankel operator �H is related to the degree of its symbol H by Kronecker’s

theorem (1890) which says that rank�H 6 n i� H ∈Rn+H∞ where Rn is the subset of all rational
L∞ functions with at most n poles inside the open unit disk D.
It is clear that if �Ĥ approximates �H , then Ĥ should approximate H in some sense. However,

the symbol of a Hankel operator can be in L∞ in general and therefore we have to say that the
“Hankel norm” de�ned as ‖H‖�= ‖�H‖2 is not really a norm for H (z), unless we know that H has
no component in H∞. This Hankel norm is however closely related to the L∞ norm. A theorem by
Nehari (1957) says, for example, that ‖H‖�= ‖�H‖2 = inf{‖H − F‖∞: F ∈H∞}=dist(H;H∞). So
we arrive at the AAK theorem in its simplest form, which solves the minimal norm problem and
gives an approximation result for the symbols of Hankel matrices.

Theorem 3.1. (Adamjan et al. [1]) Let �H be a compact Hankel operator with Schmidt pairs
(vk ; wk) for the singular values �k . Then; with the notation introduced above

inf{‖�H − �Ĥ‖2: rank�Ĥ 6 n}= inf{‖H − Ĥ‖∞: Ĥ ∈Rn + H∞}= �n+1:

Let us introduce the Z transforms Vk =Z(vk) and Wk =Z(wk). Then if �n ¿�n+1; there is a
unique solution Ĥ that is de�ned by

H − Ĥ =
�n+1Wn+1

Vn+1
=

�HVn+1

Vn+1
:

The error function E=H − Ĥ satis�es |E|= �n+1 a.e. on T.

Note that the solution gives a best approximation Ĥ that is in L∞, even if the given H has no
H∞ part. So, to have a causal stable approximant, one should get rid of the H∞ part of Ĥ . Since
Ĥ is rational, this could, in principle, be done by partial fraction decomposition, although this is not
the most advisable way to be followed for numerical computations.
The trouble is that for the solution of the AAK problem, one needs to solve an SVD problem for

an in�nite Hankel matrix. However, when the rank of that matrix is �nite, then the computations can
be done on a �nite number of data like, for example, the state-space description of a matrix. The most
elegant solution of the problem came therefore from the state-space approach by Glover [26], which
is a benchmark paper in this theory. The operation of balancing the state-space representation of
the linear system, as briey explained previously, is crucial in the state-space approach by Glover.
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In this paper it can also be found that generically (when all the Hankel singular values �i are
distinct) one has for a system of degree d that is approximated by a system of degree n that
‖H − Ĥ‖∞6 2

∑d
k = n+1 �i(�H).

3.3. H2 -model reduction

The Hankel norm approximant discussed in the previous section models an approximating system
that minimized the H2-deviation of the future outputs, given that the original and reduced system
had the same past inputs. The H2-norm of the system is the H2-norm of the transfer function ‖H‖2
which equals the ‘2-norm of the impulse response (

∑
k |hk |2)1=2 = ‖h‖2. For a �nite-dimensional state

space, one can derive that this norm can also be expressed in terms of state-space quantities as
‖H‖22 =B∗QB + D∗D=CPC∗ + DD∗. The physical interpretation of the H2-norm is that its square
is the expected value of the power in the output signal, when the input is white Gaussian zero
mean noise with unit variance, or in a deterministic model, a unit impulse. Approximation in the
H2-norm means �nding a least-squares approximation of the impulse response. It is also known that
if Ĥn is an optimal H2 approximant with a pole p, then (dm=dzm)(H (z)− Ĥn(z))z=p−1 = 0, m=0; 1.
This necessary condition can and has been be exploited in algorithms. Compare with Section 4 on
linear prediction where interpolation problems also satisfy least-squares optimality conditions. We
shall stick here to the straightforward characterization, and so our problem is

Problem 3.2. (h2 norm approximation) Given a system with transfer function H or with state space
(A; B; C; D). Find a system with transfer function Ĥ or state space (Â; B̂; Ĉ; D̂) such that ‖H − Ĥ‖2
is minimal where the approximating system can have degree n at most.

Finding Ĥn=argmin‖H−Hn‖2 where Hn ranges over all systems of degree n at most is a classical
least-squares problem that is typically solved using an orthogonal basis and orthogonal projection
techniques. It can be proved that the solution will generically have degree n since the minimum
strictly decreases as n increases. This result is valid even for local minimizers. The H2-norm squared
is clearly di�erentiable everywhere and therefore necessary conditions for minimality may easily
be derived by calculating the gradient of the square of the H2-norm with respect to the state-
space matrices of the candidate approximant (Â; B̂; Ĉ; D̂). It can also be shown that the state-space
model of an H2-optimal approximant can be characterized in terms of projection of dynamics. This
characterization is useful in deriving gradient-based optimization algorithms (none of which can, of
course, guarantee that a global minimum will be found) or in deriving homotopy-based optimization
methods. For an excellent survey and many references we refer to [44].
A quite interesting derivation of properties, characterization of optimality, and even algorithms

goes via linear algebra. Here we reconsider the Markov parameters hk =CAk−1B, k =1; 2; : : : : Let
p(�) be the characteristic polynomial 3 of A, i.e., p(�)= det(�I−A)= �n+�1�n−1 + · · ·+�n−1�+�n.
Then, it follows from the Cayley–Hamilton theorem that the hk satisfy a nth-order recurrence relation,
and thus the p×q Hankel matrix Hp;q= [hi+j−1]

j= 1; :::; q
i= 1; :::;p is rank de�cient, when both p¿n and q¿n.

3 We do not make the distinction here between the characteristic and the minimal polynomial. ‘Generically’, they
coincide. But if not, the presentation here can be re�ned.
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Now, let h1; h2; h3; : : : ; hN be N given data. We would like to model these datapoints by the
impulse response of an nth-order linear system, where n is (a typically small integer) speci�ed by
the user. Using the rank de�ciency result of the Hankel matrix, we can formulate this least-squares
approximation problem as min

∑N
k = 1 (hk − ĥk)2, where the minimum is taken over all ĥ1; : : : ; ĥN ,

subject to the condition that �̂, the Hankel matrix of size (N − n)× (n+1) with symbol Ĥ , is rank
de�cient, i.e., �̂v=0, for some v, with ‖v‖2 = 1. When N →∞, this problem becomes the optimal
H2-approximation problem we considered above. Let us however �rst treat the case where N ¡∞.
Then the problem is a so-called structured total least-squares problem, the structure being that �̂
is required to be a Hankel matrix. The solution to this follows from the smallest singular value and
corresponding singular vector of a nonlinear generalized SVD of the Hankel matrix H ∈R(N−n)×(n+1)

with the data:

Hv=Dvu�; u∗Dvu=1;

H ∗u=Duv�; v∗Duv=1

and v∗v=1, which is called the Riemannian SVD [19]. Speci�cally for the Hankel case, we refer to
[18,20]. In these expressions, Du and Dv are symmetric weighting matrices of appropriate dimensions
and with a particular structure, the elements of which are quadratic functions of the elements of u,
resp. v. For all values of u and v they are positive de�nite. More speci�cally, in this case Du and Dv

are symmetric, positive-de�nite banded Toeplitz matrices, the elements of which are quadratic in the
components of u and v. The least-squares approximant Ĥ of McMillan degree n now follows from
the ‘smallest’ singular triplet (u; �; v) that satis�es the Riemannian SVD equations, as ĥ= h−(u�)∗v,
where a ∗ denotes the convolution of the vector sequences. Heuristic algorithms, remeniscent of and
inspired by the power method to �nd the smallest singular value of a matrix, are described in [44,17].
For a translation to the Z-domain of the H2 problem and the Riemannian SVD problem as N →∞
we also refer to [44].

3.4. The Hilbert–Schmidt–Hankel norm

The Hilbert–Schmidt–Hankel norm is yet another performance criterion. It is de�ned as the Frobe-
nius norm of its Hankel operator: ‖H‖2HSH = ‖�H‖2F . It immediately follows from results in the pre-
vious sections that for a system of degree d

‖H‖2HSH =
n∑

i= 1

�2i (�H)=Trace(PQ)=
∞∑
i= 1

∞∑
j= 1

hi
�hj=

∞∑
i= 1

i|hi|2:

The last equality implies the interpretation of the HSH-norm of a system as a time-weighted H2-norm:
It can be considered as the energy storage capacity, i.e., the expected energy stored in the system at
a certain time, when the system has been driven by white zero mean unit variance Gaussian noise
up to that time [44, p. 28].
A relatively little known interpretation of the HSH-norm is that it is the area enclosed by the

oriented Nyquist plot of the linear system in the complex plane (see [32] for an elaboration and a
proof). Hence, when doing model reduction in the HSH-norm, one tries to minimize the area between
the Nyquist plot of the given system H (z) and its HSH-optimal approximant of lower McMillan
degree.
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From what has been discussed about model reduction so far, it should be clear that the essence
of model reduction in the HSH norm is again a problem of �nding a least-squares rank de�cient
approximation of a Hankel matrix, that is still a Hankel matrix. It thus should come as no surprise
that this problem is again a so-called structured total least-squares problem. For further details,
see [44].
Finally, we mention that for SISO systems in discrete time, we have ‖H‖26 ‖H‖∞, but there is

no upper bound for the H∞-norm in terms of the H2-norm. This means that these two norms are
not equivalent. However the HSH-norm, the Hankel norm and the H∞-norm are equivalent:

‖H‖�6 ‖H‖HSH6
√
n‖H‖� and

1
2n

‖H‖∞6 ‖H‖HSH6
√
n‖H‖∞;

where n is the degree of H (see, e.g., [44]).

4. Linear prediction

The aspect of prediction theory is even older and dates back to the theory of Wiener [48],
Wiener-Masani [49], Grenander and Szegő [30], and it was revived in the 1980s by Dewilde and
Dym [21]. The problem can be described as follows [12]. Suppose that for an arbitrary n we
observe a stationary signal {hk}n−1

k =−∞ up to time moment n − 1 and we want to predict the next
value hn. In other words, we should �nd a model for the signal h. Assume that hn is predicted
as ĥn= − ∑∞

k = 1 akhn−k , then the prediction error en= hn − ĥn should be minimized in ‘2 sense.
Taking Z transforms, we get E(z)=A(z)H (z), where A(z)= 1 + a1z−1 + a2z−1 + · · · : Minimizing
the L2-norm ‖E‖= ‖AH‖=: ‖A‖|H |2 leads to a weighted least-squares problem formulated and solved
by Szegő. To give an easy formulation, we introduce F =A∗ where the substar is used to denote
the parahermitian conjugate A∗(z)=A(1= �z). Note that F(0)= 1.

Problem 4.1. (Szegő) Given some positive measure � on T; �nd a function F ∈H�
2 that solves

inf{‖F‖2�: F ∈H�
2 ; F(0)= 1}.

The norm is taken in the Hilbert space L�
2 with inner product

〈f; g〉�=
∫
T
f(t)g(t) d�(t)

and H�
2 is the subspace of functions analytic in D. In the prediction problem, the measure � is called

spectral measure since the weight is the power spectrum: d�(ei!)= (|H (ei!)|2=2�) d!. The Fourier
expansion for the power spectrum W = |H |2 is ∑

k ck t
−k , t ∈T where the ck are the autocorrelation

coe�cients of the signal h. These coe�cients satisfy c−k = �ck . Since |H |2¿ 0, the Toplitz matrix
TW = [ci−j] is positive de�nite. Note also that ‖A∗‖�= ‖A‖� for any A and any positive measure
on T.
Once the predictor A=F∗ is known, we can invert the whitening �lter relation E=AH and model

H as E=A. However, E is not known, but if the prediction is good, then we can assume that it has a
relatively at spectrum. If the in�mum in the Szegő problem is G2¿ 0, then we can approximate H
by Ĥ =G=A. Thus, the signal h is approximated as the impulse response of a system with transfer
function Ĥ which is called the modeling �lter.
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Szegő’s theorem says that if W ∈L1(T), then the optimal predictor is Ĥ with Ĥ∗(z)=F(z) :=
S(0)=S(z) where for c∈T and z ∈D

S(z)= c exp
{
1
4�

∫
T
D(t; z)logW (t) d!

}
; D(t; z)=

t + z
t − z

is an outer spectral factor of W . If W is rational, then this means that S has no zeros and no poles
in D and |S(t)|2 =W (t) for t ∈T.
The practical computation of this in�nite-dimensional problem is by computing the solution of the

prediction (alias Szegő) problem in �nite-dimensional subspaces of H�
2 . LetLn be (n+1)-dimensional

subspaces that are nested · · · ⊂Ln ⊂Ln+1⊂ · · · and such that the L�
2 -closure of

⋃
Ln is H�

2 . We
then try to solve the partial Szegő problem

Problem 4.2. (Partial Szegő) Find a function Fn ∈Ln ⊂H�
2 , with Fn(0)= 1 such that we solve one

of the following problems:

• minimum norm problem: given n; �nd Fn that minimizes ‖Fn‖�; or
• minimum degree problem: given �; �nd Fn with smallest n such that ‖Fn‖�6 �.

If {�k}n
k = 0 is an orthonormal basis for Ln, n=0; 1; : : :, then kn(z; w)=

∑n
k = 0 �k(z)�k(w) is a

reproducing kernel for Ln. This means that 〈f; kn(·; w)〉�=f(w) for all f∈Ln. The solution Fn of
the minimum norm partial Szegő problem in Ln is then given by kn(z; 0)=kn(0; 0) and the in�mum
is 1=kn(0; 0).
In the original theory of Grenander, Wiener and Szegő, the subspaces were the polynomial

subspaces: Ln=�n, the polynomials of degree at most n. Then, it can be shown that kn(z; 0)=
�n�#n(z)= �nzn�n∗(z) with {�n} the orthonormal polynomials and �n ¿ 0 the leading coe�cient of
�n. Thus �n=�#n(0) and so kn(0; 0)= �2n, giving Ĥn(z)= zn=�n(z). Note that the zeros of �n are in
D so that this is a stable and minimal phase transfer function, or in mathematical terms a conjugate
outer function since all its poles and zeros are in D. This solution also results in a Chebyshev–Pad�e
approximation of W (z) since indeed the Fourier series of Wn= |Ĥn|2 is ∑

k ĉke
−ik! where ĉk = ck for

all |k|¡n + 1. Moreover, it can be shown that d�n=(Wn=2�) d!, solves the partial trigonometric
moment problem as formulated below.

Problem 4.3. (Trigonometric moments) Given ck ; k ∈Z; �nd a positive measure on T such that
ck =

∫
T tk d�(t); k ∈Z. The partial problem is: given c0; : : : ; cn; �nd a positive measure �n such that

it has exactly these moments or equivalently such that 〈f; g〉�= 〈f; g〉�n for all f; g∈�n.

Thus
∫
T tk d�n(t)=

∫
T tk d�(t) for |k|¡n+ 1. The Riesz–Herglotz transform of �, given by

C(z)=
∫
T
D(t; z) d�(t); D(t; z)=

t + z
t − z

is in the Carath�eodory class C= {C ∈H∞: ReC(z)¿ 0; z ∈D}, and it has the expansion C(z)=
c0=2+

∑∞
k = 1 ckz

k ; z ∈D. The ck are the trigonometric moments. If Cn is the Riesz–Herglotz transform
of �n, then C(z) − Cn(z)=O(zn+1) for z→ 0, so that we have also solved a Carath�eodory–Fej�er
interpolation problem (see below).
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When the construction of the orthogonal polynomials are formulated in terms of linear algebra,
then the coe�cients of the orthogonal polynomials are obtained as the solution of the Yule–Walker
equations, which are in fact the normal equations for the least-squares problem posed by the linear
prediction. The matrix of the system is a (positive-de�nite Hermitian) Toeplitz matrix, and again,
like in the Hankel case, fast algorithms exist that solve subsystems by considering the leading
principal submatrices of the Toeplitz matrix. For the duality between Hankel and Toeplitz systems
and the associated (formal) orthogonal polynomials, see [13]. However, here the Toeplitz matrices
are positive de�nite, unlike the Hankel systems in the partial realization problem. Therefore, in the
linear prediction problem we are not confronted with a numerical and system theoretical instability
problem as in the partial realization problem.
The well-known Levinson algorithm is a fast (i.e. O(n2)) algorithm to solve Toeplitz systems. It is

a version of the Gram–Schmidt orthogonalization that is fast because it exploits the structure of the
Toeplitz matrix. Since the solution of the system is computed recursively, the algorithm computes
as a bonus the so-called reection coe�cients that are related to the recurrence coe�cients that
occurred in the recurrence relations for the orthogonal polynomials as derived by Szegő. They
are also called Schur coe�cients because they also occur in a continued fraction like algorithm
that was designed by Schur to see whether a given function is in the Schur class, that is the
class S= {f∈H∞: ‖f‖∞6 1}. The Schur algorithm is based on the simple lemma that fk ∈S
i� �k =fk(0)∈D and fk+1 = (1=z)[fk − �k]=[1 − ��kfk]∈S. These �k are the Schur parameters.
When translated in terms of linear algebra we can say that the Levinson algorithm gives a L∗DL
factorization of T−1

W while the Schur algorithm gives an LDL∗ factorization of TW where TW is the
Toeplitz matrix with symbol W . The Jury test to check the discrete stability of a polynomial (i.e.,
to see whether all its zeros are inside the unit circle) can also be seen as a variant of the Schur
algorithm.
The mathematical ideas that we have just described were developed around the beginning of the

20th century. The multipoint generalization by Nevanlinna and Pick was published around 1920. The
breakthrough of this multipoint generalization in signal processing, system theory, inverse scattering,
transmission lines, etc., came not before the 1980s and was related to the introduction of the AAK
ideas.
Let us reconsider the linear prediction problem, but now we take for Ln subspaces of ra-

tional functions to be de�ned as follows. Let {zk}∞k = 1 be a sequence of not necessarily di�er-
ent points in D and set �0 = 1 and �n(z)=

∏n
k = 1 (1 − �zkz). The spaces Ln are then de�ned as

the rational functions of degree at most n whose denominator is �n: Ln= {f=pn=�n: pn ∈�n}.
De�ning the Blaschke factors �k(z)= �k(z − zk)=(1 − �zkz), k =1; 2; : : : where �k =1 if zk =0 and
�k = − �zk=|zk | otherwise, then it is obvious that Ln is spanned by the Blaschke products B0 = 1 and
Bk =

∏k
i= 1 �i, k =1; : : : ; n. Note that if we choose all zk =0, then we are back in the polynomial

case.
Following the same lines as above, we can construct an orthogonal basis by Gram–Schmidt orthog-

onalization of the {Bk}. Let us denote the orthonormal basis as �k = ak0B0+ak1B1+ · · ·+akkBk , with
�k = akk ¿ 0. To solve the partial linear prediction problem in Ln, we then construct kn(z; 0)=kn(0; 0)
where kn(z; w)=

∑n
k = 0 �k(z)�k(w). However, in the general case kn(z; 0) will not simplify as in the

polynomial case so that we are stuck with the expression Ĥ =1=Kn∗ with Kn(z)= kn(z; 0)=
√
kn(0; 0)

but this is again a minimal phase and stable transfer function. Indeed, Ĥn is of the form
∏n

k = 1 (z−zk)=
Pn(z) where Pn is a polynomial with all its zeros in D.
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All the approximation properties that we had before are transformed into multipoint versions.
For example, if Wn= |Ĥn|2 and d�n=(Wn=2�) d!, then 〈f; g〉�= 〈f; g〉�n for all f; g∈Ln. This
means that we solve a partial moment problem in Ln · Ln∗ where the moments are given by
ck =

∫
T Bk(t) d�(t); k ∈Z with B−k =Bk∗=1=Bk . The Schur interpolation algorithm is replaced by

the Nevanlinna–Pick (NP) interpolation algorithm, which solves the NP interpolation
problem.

Problem 4.4. (Nevanlinna–Pick interpolation) Given z0 = 0; z1; z2; : : : ; zn ∈D, and w0 = 0; w1; w2; : : : ;
wn ∈C; �nd a function F ∈H∞ such that F(zk)=wk , k =0; 1; 2; : : : ; n. For the partial problem; n
is �nite; for the full problem; n is in�nite. If there are more solutions; one can characterize all the
solutions and solve one of the following two problems:

• minimum norm problem: �nd a solution with minimal norm ‖F‖∞ or the
• minimum degree problem: among the solutions with ‖F‖∞ ¡�; �nd one of minimal degree.

This formulation corresponds to mutually di�erent points zi, but it is not di�cult to imagine what
the conuent case involves. If several of the zk points coincide, then it is, in fact, a reformulation of
an Hermite–Fej�er problem and if all the points coincide at zk =0, then the NP algorithm becomes the
Schur algorithm and the above problem becomes a Schur or Carath�eodory–Fej�er problem, although
the latter is usually formulated by conformally mapping the function values from the unit circle to
the right half-plane, so that the Schur class S is replaced by the Carath�eodory class C. The original
NP and Schur algorithms just checked whether some F was a Schur function, thus whether there is
a solution with ‖F‖∞6 1. Like the Schur algorithm, the NP algorithm is based on a simple lemma
that is a slight generalization of the Schur lemma: fk ∈S i� for some zk ∈D; �k =fk(zk)∈D and
fk+1 = (1=�k)[fk − �k]=[1− ��kfk]∈S.
This is a good place to introduce the Nehari problem since it can be seen as a generalization of

the NP problem and hence also of the Schur problem.

Problem 4.5. (Nehari) Given {hk}∞k = 1; �nd the function H ∈L∞ such that ‖H‖∞ is minimal and
hk =(1=2�)

∫ 2�
0 H (ei!)eik! d!; k =1; 2; : : : .

If we de�ne Bn as the Blaschke product with zeros z1; : : : ; zn and G ∈H∞ as a function that satis�es
the partial NP interpolation conditions, then the set of all functions in H∞ satisfying the partial NP
interpolation conditions is given by G+ BnH∞, and a minimal norm solution F is given by solving
the Nehari problem inf{‖B−1

n G − H‖∞: H ∈H∞} and setting F =G − BnH . This minimal norm
solution is rational. As in previous problems, one can require that (after rescaling) ‖F‖∞6 1, and
then �nd the rational solution with minimal degree.
The Nehari problem is particularly important for applications in control theory, where it usually

appears under a slightly modi�ed form which is a minimum degree version: �nd a solution satisfying
‖H‖∞6 � for a given �. By appropriate rescaling, one can reduce this problem to the standard form
where �=1. If there is more than one solution then one could select the one with the minimal
degree.
The relation between the Nehari problem and the minimal norm AAK problem should be clear.

Given a Hankel operator �H , i.e., the numbers {hk}∞k = 1, �nd a function E ∈L∞ such that hk =
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(1=2�)
∫ 2�
0 E(ei!)eik! d! and such that it has minimal norm ‖E‖∞= �n+1. The latter means that E is

equal to �n+1 times an all pass function, or in mathematical terms, a function that is unimodular on
T almost everywhere, and the solution of the AAK problem is then Ĥ =H − E. Note that if H is
rational, then E is rational as well. Thus the all pass function is a Blaschke product and thus is E
equal to �n+1 times a Blaschke product.

5. Chain scattering matrices and H∞ control

Consider a 2 × 2 matrix valued functions M (z), and suppose J is a constant diagonal matrix
with diagonal entries +1 and −1. Then M is called J -unitary if M (z)∗JM (z)= J . The matrix is
called J -contractive if J − M (z)∗JM (z)¿ 0 where the inequality is to be understood in the sense
of positive-de�nite matrices.
In a more general context, J -unitary matrices were studied by Potapov [43]. It was only since 1978

[24,21,22] that Dewilde and coworkers used the full power of J -unitary matrices in prediction theory
and related matters like transmission lines, and inverse scattering. In fact, the recurrence relation for
the orthogonal rational functions �n and for the reproducing kernels kn(z; w), of the previous section
can be written in the form of a matrix relation. For example with Kn(z)= kn(z; 0)=

√
kn(0; 0) and

K#
n (z)=Bn(z)Kn∗(z), there exist J -unitary matrices �n(z) such that

[
K#

n+1(z)
Kn+1(z)

]
= �n(z)

[
K#

n (z)
Kn(z)

]
= �n(z) · · · �0(z)

[
K#
0 (z)

K0(z)

]
=�n(z)

[
1
1

]
;

where we assumed an appropriate normalization:
∫
T d�(t)= 1, so that �0 = 1 and hence K0 =K#

0 = 1.
Since the product of J -unitary matrices is a J -unitary matrix, the matrix �n represents a scattering
medium consisting of n layers. At the boundary of layers n and n+1; Kn and K#

n can be considered
as incident and reected wave on the n side of the boundary, while at side n+ 1 of the boundary,
we have Kn+1 and K#

n+1. The �n are called chain scattering matrices (CSM) because if the medium
consists of several layers, then the CSM for the whole medium is the product of the CSMs of each
layer. Adding one extra layer just requires an extra � factor. Since the matrix �n will depend on the
part of the energy that is reected and the part that is transmitted, it will depend on the reection
coe�cients. In fact, this is the origin of the name reection coe�cient. The variable z enters as a
delay operator representing the time needed for the wave to pass through and back an homogeneous
layer. Physically, if the system is passive, i.e., if it does not add or absorb energy, then the CSM is
J -unitary in T and J -contractive in D. It also explains why the reection coe�cients are bounded
by 1 in modulus: they represent the fraction that is reected.
In terms of electrical circuits [5], the � matrices represent a 2-port (two I=O pairs) mapping one

I=O pair into another I=O pair. A CSM is equivalent to a scattering matrix mapping inputs into
outputs. A scattering matrix of a passive network is a unitary matrix on T and contractive in D,
but the concatenation of 2-ports gives rise to a complicated star product for the scattering matrices,
replacing the ordinary product of the CSMs.
The special structure of the � matrices does not only give a direct lattice realization of the

whitening �lter (analysis) or modeling �lter (synthesis), but they can even be used for the design
of dedicated hardware implementation with systolic arrays [36].
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The CSM can also play a prominent role in H∞ control. Let us consider a simple standard control
problem[

Z
Y

]
=

[
P11 P12
P21 P22

] [
W
U

]
;

U =KY;

where Z is the errors to be controlled, W the exogenous input, Y the observed output, U the control
input, P the plant matrix, K the controller.
The closed-loop transfer function from W to Z is

H =P11 + P12K(I − P22K)−1P21:

Thus if W is some disturbing noise, then the controller should ensure that the observed error Z is
only inuenced marginally.

Problem 5.1. (H∞ control) Find the controller K such that ‖H‖∞ ¡ and such that the system
is internally stable.

Internal stability means that no fuses in the plant may burn, i.e., no state variable in the plant
should become in�nite. This problem can be reformulated in terms of CSMs. Indeed, the natural
way to look at this problem is to consider the plant P as a 2-port (inputs W and U , outputs Z and
Y ) that is loaded by the controller: a 1-port (input Y , output U ). The above description is a typical
scattering matrix formulation, mapping inputs into outputs. However a CSM approach is much more
interesting. Then the I=O pair (Y; U ) is mapped into the I=O pair (W; Z). This gives[

Z
W

]
=�

[
U
Y

]
with

[
Z
W

]
=

[
H
I

]
W and

[
U
Y

]
=

[
K
I

]
Y:

Note that this relation expresses that H is a linear fractional transform of K , characterized by
�: H =LFT(�;K). If � is J -unitary, then it maps K ∈S into H ∈S. Thus ‖H‖∞ ¡ if ‖K‖∞ ¡.
The solvability of the control problem reduces to the existence of a J -lossless factorization. This is
an inde�nite matrix version of the classical inner-outer factorization of complex functions. Assume
that � is the CSM representation of a plant and assume it can be factorized as �=�� with � an
invertible J -unitary matrix and � is the CSM of a stable plant, which means that it is J -contractive
in D. Thus � absorbs the instabilities of the plant. Since � now has the property that any controller
K̃ , with ‖K̃‖∞ ¡ will solve the problem, we have an in�nite set of controllers for the plant �
given by K =LFT(�−1; K̃) since indeed H =LFT(�;K)=LFT(��−1; LFT(�;K))=LFT(�; K̃).
This J -lossless factorization can be obtained by a Nevanlinna–Pick type of algorithm. For more
details we refer to [38] where it is also shown that many other related control problems can be
reduced to the present one or a vector generalization thereof.

6. Identi�cation

We consider an identi�cation problem in the frequency domain. Suppose we know the frequency
response H at some speci�c points {ti: i=1; : : : ; N}⊂T. Depending on what norm or what other
objectives one wants to achieve, there are several di�erent approximation problems to solve.
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6.1. Discrete linearized least squares

As a �rst example, one can try to �nd a rational function (of smallest possible degree) that
interpolates the given data, or if a restriction is given on the degree, �nd the one that interpolates
in a discrete least-squares sense. The problem remains linear if we multiply out the denominator.

Problem 6.1. (Discrete linearized least squares) Given {ti}N
i= 1⊂T and couples of numbers

{(fi; ei)}N
i= 1 such that H (ti)=fi=ei; i=1; : : : ; N; �nd an approximant Ĥ (z)=N (z)=D(z) of degree

at most n such that
∑N

i= 1 wi|Ri|2 is minimal where Ri=N (ti)ei − D(ti)fi and {wi}N
i= 1 are positive

weights.

The solution of this problem is again related to the Schur algorithm, but now with a discrete mea-
sure that has some mass concentrated only at the points ti. For such a measure the Schur algorithm
will break down after a �nite number of steps because a reection coe�cient will become one in
modulus. If the degree n is reached before all the interpolation conditions are satis�ed, then the algo-
rithm is arti�cially forced to an end, pushing some masses to the points ti on T. Linear least-squares
problems are typically solved using orthogonal polynomials and can therefore be formulated solely
in terms of linear algebra. A fast algorithm for discrete polynomial least-squares approximation on
the real line is given by Forsythe (1957). It performs a Gram–Schmidt orthogonalization and stores
the polynomials by their three-term recurrence relation. The analog for the unit circle uses the Szegő
recurrence and stores the polynomials via their reection coe�cients [46]. More precisely, we write
the solution as a polynomial vector

S(z)=
[
D(z)
N (z)

]
=

n∑
i= 0

�i(z)Ci; Ci=
[
�i

�i

]
;

where the Ci are constant vectors and �i are 2 × 2 polynomial matrices that are orthogonal in the
following sense:

〈�k; �l〉W =
N∑

i= 1

�∗
k (ti)Wi�l(ti)= �k; lI2; Wi=E∗

i viEi; Ei= [fi − ei]:

The superscript ∗ denotes the adjoint. We want to minimize 〈S(z); S(z)〉W . The minimum is obtained
for all Ci=0, except for Cn, because the degree should be n. Choosing the two variables �n and
�n is a very simple problem because 〈S(z); S(z)〉W = |�n|2 + |�n|2. The algorithm to generate the
orthogonal polynomials �i is a block version of a Szegő-like recurrence relation. It results in the
following recursive matrix interpretation. De�ne the matrix E whose ith row is Ei; i=1; : : : ; N and
Z =diag(t1; : : : ; tN ). Then de�ne

M =
[
0 E∗

E Z

]
and M̃ =Q∗MQ=



0 �∗

0 0
�0 H
0


 ;

where Q is a unitary matrix, �0 is a 1× 2 vector and H is a unitary upper Hessenberg matrix. It is
unitary because it is a unitary similarity transformation of the original matrix Z , which is unitary.
If M̃ is extended with the new data EN+1 and tN+1, then the same Hessenberg structure is restored
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by a unitary similarity transformation. This updating is fast because the Hessenberg matrix is stored
by its block Schur parameters, and this update is performed very e�ciently.

6.2. Robust identi�cation

Robustness is an important issue in systems and control. It essentially means that it is not only
su�cient to solve the problem within some tolerance, but the performance should remain within
this tolerance in the worst-case situation when certain perturbations are allowed. For example, in
the control problem we had to design a controller that generated a transfer H with ‖H‖∞ ¡. In
robust control, this should be satis�ed for all possible perturbations of the plant P that remain within
certain bounds. Sometimes this robustness is obtained by formulating a weighted problem where the
weight is chosen so as to emphasize the sensitive parts of the objective function. There is also a
technique of structured singular values or �-analysis where some singular value is monitored within
some bounded perturbations of variables that cause a structured perturbation of the matrix. Because
this is essentially a linear algebra technique, we will not go deeper into this matter. As an example
of a robustness problem, we discuss here the robust identi�cation problem.
Suppose that we know the frequency response H of a stable system in N points ti ∈T; i=1; : : : ; N .

We can, of course, �nd an approximant ĤN and we want the algorithm to be such that ĤN →H for
N →∞ for all stable H . By a mapping z 7→ z−1, we can reformulate the problem in the disk algebra
A. Thus setting F =H∗, we have F ∈A. Robustness means that we now allow the observed data
to be contaminated by noise. Thus, we are given F(ti) + �i with |�i|¡� (i.e., ‖�‖∞ ¡�). We still
want the algorithm to be such that in the worst case situation, the convergence still holds for �→ 0.
The problem is thus described as follows.

Problem 6.2. (Robust identi�cation) Given is a function F ∈A. This function can be computed in
points ti ∈T with some error �i bounded by �; so that we can compute F̃i :=F(ti)+ �i; i=1; : : : ; N
with ti ∈T and ‖�‖∞ ¡�. Design an algorithm AN : A→CN →A : F 7→ F̂N that constructs an
approximant F̂N using the values {F̃i}N

i= 1 such that

lim
N →∞; �→ 0

sup
‖�‖∞ ¡�

sup
F ∈A

‖F̂N − F‖∞=0:

It was shown by Partington in 1992 that there is no linear algorithm that solves this problem. So
the problem is usually solved in two steps.

(1) Find a linear algorithm VN that constructs an approximant GN in L∞.
(2) Find a rational approximant F̂N ∈A of GN ∈L∞ that minimizes ‖GN − F̂N‖∞.
The �rst problem is a problem of sampling theory: how much (i.e., what samples) do we need to
know about a function to be able to recover it, if we know that the function is in a certain class. The
second problem is in fact a Nehari problem, that has been discussed before (Problem 4:5). Suppose
the approximant of F generated by VN , given F̃i=F(ti) + �i; i=1; : : : ; N , is denoted as VN (F + �).
Because VN is linear and ‖�‖∞ ¡�, we have

‖VN (F + �)− F‖∞ 6 ‖VN (F)− F‖∞ + ‖VN (�)‖∞
6 ‖VN (F)− F‖∞ + ‖VN‖∞�:
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Thus VN (F + �) will converge to F in the sense of robust identi�cation in the set L∞ if limN →∞
‖VN (F)− F‖∞=0 and VN is bounded in A.
A simple example for the algorithm VN is to choose tl as the N th roots of unity tl=e2�il=N and to

compute the discrete Fourier transform (DFT) for the given samples: cN (k)= (1=N )
∑N

l= 1 f(tl)t
−k
l ,

k ∈Z, which de�nes an approximant G̃n;N (ei!)=
∑n

k =−n cN (k)e
ik!. However, this approximant does

not in general converge to F when n and N go to in�nity. We need a special summation technique,
for example the Fej�er sum, which takes the average of the G̃k;N , k =1; : : : ; n: Gn;N =(1=n)

∑n
k = 1 G̃k;N .

This corresponds to the introduction of weight coe�cients in the DFT, thus we use a windowed DFT:
Gn;N (ei!)=

∑n
k =−n wkcN (k)eik! with wk =1−|k|=n. Other summation techniques (e.g., de la Vall�ee-

Poussin) exist that correspond to other weights. Finally, the approximant GN is then given as
GN = limn→∞ Gn;N .
This construction of trigonometric approximants should be generalized so that we need not neces-

sarily take equidistant points on T. However, it is intuitively clear (and a hard proof exists) that the
points ti should be eventually dense in T if we want to recover F exactly. Of course, modi�cations
can be made if we know that the signal is band limited, or if only approximants in a certain band
are important, while outside that interval, the approximant may even diverge.
Anyway, when using trigonometric approximants, the convergence may be very slow, especially

when there are poles close to T. In that case it might be wise to use rational basis functions instead
of (trigonometric) polynomials. In fact, it was for a similar reason that in prediction theory, the
Nevanlinna–Pick algorithm replaced the Schur algorithm, so that AR models could be replaced by
ARMA models.
Assume that we have some estimates of the poles. So we are given a sequence of (not necessarily

distinct) zk ∈D. The orthogonal rational functions �n with poles {1= �zk}n
k = 1 as discussed in Section 4,

but now made orthogonal with respect to the Lebesgue measure on T are known explicitly (Walsh
attributes them to Malmquist) and they are given by

�n(z)=

√
1− |zn|2
1− znz

z
n−1∏
k = 1

z − zk
1− �zkz

; n¿ 0:

It is known that span{�k : k =0; 1; : : :} is dense in H2 and in the disk algebra A i�
∑∞

k = 0 (1 −
|zk |)=∞. Some special cases became rather popular in identi�cation: when all the zk are equal to
some �xed a∈ [− 1; 1], then this system is known as the Laguerre system because it is related to a
transformation of the Laguerre functions. This system was used by Wahlberg in 1991. In 1994 he
also introduced the Kautz system based an a complex conjugate pair: zk = �zk+1 = a. For a survey of all
kinds of orthogonal (rational) bases and their use in system identi�cation see [41]. Schipp and Bokor
proposed yet another system which corresponds to a cyclic repetition of the poles {1= �z1; : : : ; 1= �zd}.
It is constructed as follows. Let Bd be the Blaschke product with zeros z1; : : : ; zd and consider an
orthonormal basis {�1; : : : ; �d} of BdH1(D). Then {�lBk

d: 16 l6d; k =0; 1; : : :} is an orthonormal
basis for H2(D).
More recently, also rational wavelet-like bases were used to represent functions in the disk algebra.

For example, the Franklin system is a piecewise linear L2-orthogonal system in C(T). First let  (!)
be the hat function in [0; �] (zero in 0 and �, one in �=2 and linear in between). Then de�ne
 nk(ei!)=  (2n! − k�) for k =0; : : : ; 2n and n∈N. These functions are orthogonalized to give a
Faber–Schauder basis �nk for functions in C(T+) where T+ means the upper half of T. Because
the trigonometric conjugate system �̃nk is also continuous, the functions �nk :=�nk + i�̃nk , when
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extended to the lower half of T by �nk∗=�nk and analytically extended to D, form a basis for the
disk algebra A.
Another rational wavelet-like basis can be obtained by using the the Cauchy kernel C(z; w)= 1=(1−

�wz). Therefore de�ne the set W = {wnk = �nei!nk : k =0; : : : ; 2n − 1; n=1; 2; : : :} where �n=1 − 2−n

and !nk =2k�2−n. The system {C(z; w): w∈W} is dense in the disk algebra A. In fact, this is an
overcomplete system because it is su�cient that

∑
k; n (1− |wnk |)=∞ for the system to be dense.

7. Generalizations: past and future

The basic idea relating Pad�e-like approximations and partial realization has been extended in
many directions, e.g., to MIMO systems (giving rise to block Hankel matrices) and to two-point
Pad�e approximations, (using information at 0 and ∞) and multipoint Pad�e approximation and general
rational interpolation. Sometimes a combination of Markov parameters and correlation coe�cients
are �tted like in q-COVER [44]. Many generalizations of the Pad�e approximation and interpolation
problem lead to new developments Laurent–Pad�e [7], vector-Pad�e [2]. Many matrix valued rational
interpolation problems are for example discussed in [4] and related problems are discussed in several
volumes of the same series, edited by Gohberg. It is also interesting to see how many techniques
like state-space descriptions, controllability and observability matrices, are used in the analysis and
solution of these problems. See [11] for a bibliography on Pad�e techniques in systems theory. The
original matrix minimal partial realization problem got a �rst satisfactory solution in state space
from, described by Ho and Kalman [35].
In many applications, notably in controller design applications, the objective of the model reduction

problem can be weighted in the frequency domain. The reason is that often (especially in control
system design) one is interested in a good match between the reduced model and the original one,
at a certain frequency or in the neigborhood of a certain frequency (e.g. the so-called cross-over
frequency in control system design). Therefore typically frequency-domain weighting matrices are
included in the model reduction framework, so as to minimize the input–output weighted error
Wo(z)[H (z)− Ĥ (z)]Wi(z). Here Wo(z) and Wi(z) are the output, resp. input weighting functions that
emphasize certain frequency regions in which the approximation error should preferably be small.
References to extensions in this direction to H2-optimal model reduction, Hankel norm approximation
and balanced truncation can be found in [44, p. 33]. An important special case occurs when one of the
weights in the weighted error is the inverse of the original system, in which case one is minimizing
the so-called relative error. Balanced stochastic truncation is one such method that achieves balanced
truncation in a relative error framework (see [44, Chapter 4] for a survey and some error bounds
upper bounding the H∞-norm of the ‘relative’ error to the so-called balanced stochastic singular
values). For references on frequency weighted open- and closed-loop balanced truncation, we refer
to [44, Chapter 3].
The generalization of the realization problem to the situation where only input–output data of the

system are available, uk ; yk ; k =0; 1; 2; : : : (e.g., via measurements obtained from sensor devices), can
be solved via so-called prediction error methods [39] or subspace system identi�cation methods
[47] (also check these references for literature surveys). Explaining this in detail would lead us
too far. Su�ce it to say that the identi�cation problem is very important in many mathematical
engineering problems in the process industry and that it leads to model-based control system design
and optimization, softsensors, observers, etc.
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Stimulated by the AAK problem from system theory, several related research projects were started
in approximation theory. The fact that a Hankel norm approximation is, under certain conditions,
nearly a best approximant in ∞-norm, was exploited by Trefethen and Gutknecht to construct near
best polynomial and rational approximants. They called it CF approximation because they started
from the classical Carath�eodory–Fej�er theorem that deals with the polynomial case (i.e., n=0).
The system theoretic approximant is again diagonal in the sense that the degree of numerator and
denominator are equal. This has been generalized in many directions including an analysis of the
structure of a CF table in analogy with the Pad�e table [33]. The equi-oscillation condition of the
error curve in real Chebyshev approximation on an interval is replaced by the circularity of the error
curve and the winding number is large enough. As it is usually assumed in computations, H is a
rational of high degree and Ĥ is a low degree approximant. Then the error H − Ĥ is �n+1 times a
Blaschke product. The winding number is then associated with the degree of this Blaschke product
and this is related to the multiplicity of �n+1 as a singular value [45].
There is a tendency to generalize one or two point interpolation (as in Pad�e approximation or in

the Levinson algorithm) to more general multipoint (Hermite) interpolation problems (like in the
Nevanlinna–Pick interpolation). This implies a shift from polynomial bases to rational bases. We
gave some examples of this idea before. Here is another one. Recall that in the Nevanlinna–Pick
problem, some points zk were chosen which were used as interpolation points, but at the same
time they featured as transmission zeros in the model. Recently, the problem was raised whether
it is possible to keep all the nice properties of this approach but separate the role of interpolation
points and transmission zeros [15]. The problem reduces to a constrained optimization problem to
guarantee stability and yet obtain an interpolant that is of minimal degree. The search space is the
set of all stable solutions to the interpolation problem which can, for example, be parametrized by
the reection coe�cients.
The H∞ control problem has many facets and many di�erent kind of subproblems. The discussion

given in Section 5 is just a start. It should be obvious that the analysis of J -unitary matrices is
essential. The �ne structure for matrix and operator valued functions that are unitary and=or con-
tractive with respect to an inde�nite matrix was initiated by Potapov, but because it is so essential
in all kind of generalizations of the Nevanlinna–Pick theory, of moment problems, and all the engi-
neering applications, the study of these matrices and all the related problems has grown out into an
independent discipline generally known as Schur analysis. Some generalizations of Potapov’s work
are found in [27]. The importance of J -unitary matrices is surveyed in [10] which contains many
references, especially to the Russian literature. For all kind of generalizations of the Nevanlinna–Pick
algorithm see also [16].
The linear algebra problems (Hankel matrices in realization and Toeplitz matrices in linear pre-

diction) were solved by fast algorithms because the structure of these matrices could be exploited.
When considering signals which are not stationary, then the covariance matrix is not Toeplitz, but
if the nonstationarity is only mild, then the matrices do not deviate too much from a Toeplitz ma-
trices. The structural deviation from a Toeplitz matrix could be measured by the displacement rank,
introduced around 1979 and studied by Kailath and many others [34,37]. Designing stable and fast
or superfast algorithms for all sorts of structured matrices is still an active �eld of research.
The nonstationary prediction problem has been generalized to the time-varying case. The easiest

way to see what this means is to consider the state-space description with the matrices (A; B; C; D).
The time-varying case is obtained when we let these matrices depend on the (time) variable k
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[3,23,31]. Many of the concepts, from Hankel matrix to orthogonal polynomials have been gen-
eralized. There is however much more work to be done before these techniques will be widely
accepted.
The algorithm of Section 6.1 is a unit circle analogue for discrete time systems of an algorithm

that starts from data given on the real line and that is used for continuous time systems. In the
latter case the problem is related to a Hankel matrix and because of the symmetry, the (block)
Hessenberg matrix will be (block) tridiagonal. This idea was �rst elaborated by Ammar and Gragg
in 1984. Further generalizations are available and many variants of the algorithm exist and several
applications are found in di�erent domains. Also the so-called UHQR (unitary Hessenberg QR) and
the TQR (tridiagonal QR) algorthms are closely related. They solve not the least squares, but the
eigenvalue problems for unitary Hessenberg or tridiagonal matrices. Many references related to this
circle of ideas are found in [28].
There is much research still going on about the generalization of classical sampling theorems.

This is also stimulated by the interest in wavelets. The ultimate question is: how much function
values does one have to know of a function to be able to reconstruct the function perfectly. The use
of other bases than the usual complex exponentials is thereby an essential element. Mathematically,
this is related to density problems: will the span of a certain set of basis functions or a frame be
dense in the space where we want to approximate? There are many recent results, but there are still
a lot of questions to be answered.
As for the use of orthogonal rational bases, there is a lot of theory accumulated on orthogonal

rational functions with respect to a general positive measure on the unit circle (and on R) in
[9]. This monograph gives convergence and density results, interpolation properties and generalized
moment problems in the scalar case. It is very useful if the ideas of identi�cation are used with
weighted approximation conditions, thus using another basis than the one orthogonal with respect
to the Lebesgue measure. Moreover, this theory can be generalized to the matrix case and although
there are many partial results available in the literature, a systematic study is not published. Another
way of potential application of the monograph lies in the fact that also orthogonal rational functions
are discussed whose poles are on the unit circle (and not inside the open disk D). This has many
potential applications in systems and identi�cation that has not been explored so far.
The use of wavelets in identi�cation is just starting up and a lot of work has to be done here. For

example, the orthogonal rational wavelets based on reproducing kernels [8] may open a new horizon.
Among the problems that are only partially explored, one can count the problem of selecting a best
basis in a dictionary of possible bases.
An extremely useful survey from an approximation theoretical point of view about rational ap-

proximation and system related problems is given in [42].
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