Local Fusions in Block Source Algebras

LUIS PUIG

6 Avenue Bizet, Joinville-Le-Pont 94340, France

Received November 18, 1985

TO SANDY GREEN

In [3, Sect. 3], we extend the concept of “source” to any interior G-algebra A (i.e., to any O-algebra A endowed with a group homomorphism $\varphi: G \to A^*$) such that 1_A is primitive in A^*, a source algebra of A being the interior P-algebra $B = iA_i$, where P is a defect group of A in Green’s sense [2]. i is a primitive idempotent of A^* such that $i \notin A_Q^*$ for any proper subgroup Q of P, and the group homomorphism $P \to B^*$ maps $u \in P$ on $\varphi(u) i$.

Obviously the most interesting new case where this generalization applies occurs when A is a block algebra of G (i.e., when $A = OGe$ where e is a primitive idempotent of ZOG and $\varphi: G \to A^*$ maps $x \in G$ on xe). In this case, the source algebra B is likely to contains all the “local” information about the block; for instance, by Corollary 3.5 in [3], the module categories of A and B are equivalent through restriction, and it is easy to see that vertices and sources of indecomposable A-modules can be computed from the corresponding B-modules; similarly, it is not difficult to show from Corollary 4.4 and Theorem 1.2 in [3] that the matrix of generalized decomposition numbers can be computed from B.

Our main result here (Theorem 3.1) implies the analogous statement concerning the local category of the block where objects are the local pointed groups on A (see Sect. 1 or Definition 1.1 in [3]) and morphisms are the G-exomorphisms (see Definition 2.1), namely the equivalence class of the local category can be computed from B. In order to prove that, we introduce the so called local fusion category of any interior G-algebra (see Definition 2.15) and then we show that

(i) local fusion categories of A and B are equivalent (see Corollary 2.17),

(ii) local and local fusion categories of A coincide (see Corollary 3.6).

A last comment. The local category probably supplies a better indication on the “difficulty” of the block than the structure of defect groups, and
therefore should be a better "invariant" to classify blocks. At least this turns out to be true in the easiest case: if the local category is equivalent to the corresponding one for a defect group, the block can be studied from all points of view [1, 4], regardless of the structure of its defect groups.

1. Notations and Preliminary Results

Throughout the paper \(p \) is a prime number and \(O \) a complete discrete valuation ring with residual field of characteristic \(p \). All the \(O \)-algebras we consider here are associative with unit element and \(O \)-free of finite rank as \(O \)-modules. For any \(O \)-algebra \(A \) we denote by \(A^* \) the group of invertible elements of \(A \), by \(\text{Aut}(A) \) the group of automorphisms of \(A \) and by \(J(A) \) the Jacobson radical of \(A \).

Let \(G \) be a finite group. Following Green [2], a \(G \)-algebra \(A \) is an \(O \)-algebra endowed with a group homomorphism \(\varphi : G \to \text{Aut}(A) \); write \(a^x \) instead of \(\varphi(x)^{-1}a \) for any \(x \in G \) and \(a \in A \). If \(H \) is a subgroup of \(G \), \(A^H \) is the subalgebra of \(H \)-fixed elements of \(A \) and, for any subgroup \(K \) of \(H \), we denote by \(\text{Tr}^H_K : A^K \to A^H \) the relative trace mapping \(a \in A^K \) on \(\sum_x a^x \) where \(x \) runs over a right transversal to \(K \) in \(H \), and by \(A^H \) its image.

But in most of the \(G \)-algebras \(A \) which we have to deal with, the action of \(G \) on \(A \) comes by conjugation from an explicit group homomorphism from \(G \) to \(A^* \); in such a case, we lose information by considering \(A \) just as a \(G \)-algebra; so, it is worth to consider the more precise (although less general) concept of interior \(G \)-algebra. Following [3, Definition 3.11], an interior \(G \)-algebra \(A \) is an \(O \)-algebra endowed with a group homomorphism \(\varphi : G \to A^* \); as above, simplify notation writing \(x \cdot a \) and \(a \cdot x \) instead of \(\varphi(x)a \) and \(a\varphi(x) \) for any \(x \in G \) and \(a \in A \), and set \(a^x = x^{-1} \cdot a \cdot x \).

Note that an interior \(G \)-algebra has an \((OG, OG) \)-bimodule structure such that \((a \cdot x) a' = a(x \cdot a') \) for any \(x \in G \) and \(a, a' \in A \); conversely,

1.1. An \(O \)-algebra \(A \) endowed with an \((OG, OG) \)-bimodule structure such that \((a \cdot x) a' = a(x \cdot a') \) for any \(x \in G \) and \(a, a' \in A \) has an interior \(G \)-algebra structure mapping \(x \in G \) on \(x \cdot 1 \).

Indeed, if \(a = 1 = a' \) we get \(1 \cdot x = x \cdot 1 \) for any \(x \in G \) and therefore, for any \(y \in G \) we have

\[
(x \cdot 1)(y \cdot 1) = (x \cdot 1) \cdot y = x \cdot (1 \cdot y) = x \cdot (y \cdot 1) = xy \cdot 1.
\]

If \(\psi : H \to G \) is a group homomorphism, denote by \(\text{Res}_\psi(A) \) (cf. [3, Definition 3.1]) the interior \(H \)-algebra defined by the group homomorphism \(\varphi \cdot \psi : H \to A^* \); when \(H \) is a subgroup of \(G \) and \(\psi \) the inclusion map, set \(\text{Res}_\psi(A) = \text{Res}_H^G(A) \).
We will point out two special features of interior G-algebras in comparison with G-algebras. The first one regards induction: if H is a subgroup of G and B an interior H-algebra, the induced algebra $\text{Ind}_H^G(B)$ (cf. [3, Definition 3.3]) is the interior G-algebra formed by the (OG, OG)-bimodule $OG \otimes_{OH} B \otimes_{OH} OG$ endowed with the distributive product defined by the formula
\[
(x \otimes b \otimes y)(x' \otimes b' \otimes y') = \begin{cases}
0 & \text{if } yx' \notin H \\
x \otimes b, yx', b' \otimes y' & \text{if } yx' \in H,
\end{cases}
\]
where $x, y, x', y' \in G$ and $b, b' \in B$; this product is clearly associative with unit element $\sum_x x \otimes 1_B \otimes x^{-1}$ where x runs over a left transversal to H in G; moreover, for any $z \in G$ we have
\[
(x \otimes b \otimes yz)(x' \otimes b' \otimes y') = (x \otimes b \otimes y)(zx' \otimes b' \otimes y')
\]
and we apply 1.1. We do not know an analogous construction for G-algebras.

The second one regards conjugate homomorphisms. Let A and A' be interior G-algebras; a homomorphism f from A to A' (cf. [3, Definition 3.1]) is both an (OG, OG)-bimodule and an O-algebra homomorphism possibly non unitary. But in noncommutative algebra it is handy to consider homomorphisms up to inner automorphisms: an exomorphism (or exterior homomorphism; cf. [3, Definition 3.1]) \tilde{f} from A to A' is the set of homomorphisms obtained by composing f with all the inner automorphisms of A and A'; actually, to obtain \tilde{f} it suffices to compose f with all the inner automorphisms of A' and therefore

1.2. Exomorphisms of interior G-algebras can be composed.

Denote by $\tilde{\text{Hom}}(A, A')$ the set of exomorphisms from A to A'. If $\psi : H \to G$ is a group homomorphism, denote by $\text{Res}_\psi(\tilde{f})$ the exomorphism from $\text{Res}_\psi(A)$ to $\text{Res}_\psi(A')$ containing \tilde{f}; when H is a subgroup of G and ψ the inclusion map, set $\text{Res}_\psi(\tilde{f}) = \text{Res}_\psi(f)$; then

1.3. If $\tilde{f}, \tilde{g} \in \tilde{\text{Hom}}(A, A')$, $\text{Res}_\psi(\tilde{f}) = \text{Res}_\psi(\tilde{g})$ is equivalent to $\tilde{f} = \tilde{g}$.
(cf. [3, Lemma 3.7]). We do not know an analogous result for G-algebras.

We will consider also exomorphisms between groups: similarly, the exomorphism $\tilde{\psi}$ defined by a group homomorphism $\psi : H \to G$ is the set of homomorphisms from H to G obtained by composing ψ with all the inner automorphisms of H and G; as above, it suffices to compose $\tilde{\psi}$ with the inner automorphisms of G and therefore
1.4. Exomorphisms of groups can be composed.

Denote by $\text{Hom}(H, G)$ the set of exomorphisms from H to G and set $\tilde{\text{Aut}}(G) = \text{Aut}(G) / \text{Int}(G)$.

To extend to interior G-algebras the concept of direct summand in module theory, consider the following definition: an embedding \mathcal{f} from A to A' is an exomorphism of interior G-algebras such that

$$\text{Ker}(f) = \{0\} \quad \text{and} \quad \text{Im}(f) = f(1_A) A' f(1_A).$$

For instance, if H is a subgroup of G and B an interior H-algebra, the canonical embedding $\mathcal{f}_{\mathcal{f}}(B) : B \to \text{Res}_{H}^{G} \text{Ind}_{H}^{G}(B)$ is the exomorphism defined by the homomorphism mapping $b \in B$ on $1 \otimes b \otimes 1$. We will employ often the following easy fact about embeddings: let $\mathcal{f} : A \to A'$ and $\mathcal{g} : A' \to A''$ be exomorphisms of interior G-algebras and set $\tilde{h} = \mathcal{g} \circ \mathcal{f}$; then

1.5. If \mathcal{g} is an embedding, \mathcal{f} is uniquely determined by \tilde{h} and is an embedding if and only if \tilde{h} is an embedding.

Let A be an interior G-algebra. Following [3, Definition 1.1], a pointed group H_{β} on A is a pair formed by a subgroup H of G and an $(A^n)^*$-conjugate class β of primitive idempotents of A^n; we say that β is a point of H on A. If $H = \langle x \rangle$, the pair x_{β} is a pointed element on A.

In module theory (i.e., if $A = \text{End}_{O}(M)$ where M is an OG-module) β corresponds to an isomorphism class of indecomposable OH-direct summands. Similarly, in our general situation, an embedded algebra (B, \tilde{g}) of H_β is a pair formed by an interior H-algebra B and an embedding $\tilde{g} : B \to \text{Res}_{H}^{G}(A)$ such that $g(1_B) \in \beta$, and we claim that

1.6. There exists an embedded algebra of H_{β} and, if (B, \tilde{g}) and (B', \tilde{g}') are embedded algebras of H_{β}, there is an unique exoisomorphism $\tilde{h} : B' \cong B$ such that $\tilde{g} \circ \tilde{h} = \tilde{g}'$.

Indeed, to show the existence it suffices to consider the O-algebra $B = i_A i$, where $i \in \beta$, endowed with the group homomorphism mapping $x \in H$ on $x \cdot i$, and the embedding $\tilde{g} : B \to \text{Res}_{H}^{G}(A)$ induced by the inclusion map; moreover, if (B', \tilde{g}') is an embedded algebra of H_{β} it is clear that g' induces an isomorphism $B' \cong i' A i'$ where $i' = g'(1_B)$; then there is $\alpha \in (A^n)^*$ such that $(i')^\alpha = i$ and the isomorphism $h : B' \to B$ mapping $b' \in B'$ on $g'(b')^\alpha$ fulfills $\tilde{g} \circ \tilde{h} = \tilde{g}'$; finally, the uniqueness of \tilde{h} follows from 1.4. Denote by $(A_{\beta}, \mathcal{f}_{\beta})$ an embedded algebra of H_{β} (as Paul Fong pointed out, the definition of $(A_{\beta}, \mathcal{f}_{\beta})$ in [3] was unclear).

Let $\tilde{\mathcal{f}} : A \to A'$ be an embedding of interior G-algebras; it is not difficult to see that
1.7. For any pointed group H_β on A, $f(\beta)$ is contained in a unique point β' of H on A' and $\beta = f^{-1}(\beta')$.

Moreover, $(A_\beta, f^\#(A_\beta))$ is clearly an embedded algebra of H_β. Often we will denote β and β' with the same letter; for instance, β could be the name of the unique point of H on A_β.

Let H_β and K_γ pointed groups on A; write $K_\gamma \subset H_\beta$ and say that K_γ is contained in H_β (cf. [3, Definition 1.11]) if $K \subset H$ and for any $i \in \beta$ there is $j \in \gamma$ such that $ij = ji$. If $K = \langle x \rangle$ write $x_\gamma \in H_\beta$ whenever $K_\gamma \subset H_\beta$. Clearly, the relation \subset between pointed groups is a transitive one and is compatible with embeddings (cf. 1.7). It is not difficult to restate this relation in terms of embedded algebras:

1.8. If $K \subset H$, we have $K_\gamma \subset H_\beta$ if and only if there is an exomorphism

$$\overline{f}_\gamma: A_\gamma \to \text{Res}_\lambda^H(A_\lambda)$$

such that $\overline{f}_\gamma = \text{Res}_\lambda^H(f_\beta) \circ \overline{f}_\gamma$.

Moreover, in this case, it follows from 1.5 above that

1.9. The exomorphism $\overline{f}_\gamma^\#$ is an embedding uniquely determined.

In particular, K_γ is still a pointed group on A_β (cf. 1.7) and $(A_\gamma, \overline{f}_\gamma^\#)$ an embedded algebra of this pointed group.

A pointed group P_γ on A is local (or γ is a local point of P on A)(cf. [3, Definition 1.11]) if $\gamma \not\subset A_\gamma^0$ for any proper subgroup Q of P. Clearly, localness is compatible with embeddings (cf. 1.7). Let H_β be a pointed group on A; a defect pointed group P_γ of H_β is a local pointed group on A which is maximal fulfilling $P_\gamma \subset H_\beta$; by Theorem 1.2(iii) in [3].

1.10. The group H acts transitively on the set of defect pointed groups of H_β.

In particular, identifying any local pointed group on A_γ with the corresponding local pointed group on A_β through $\overline{f}_\gamma^\#$ (cf. 1.7), it follows from 1.10 that

1.11. Local pointed groups on A_β are the H-conjugate of local pointed groups on A_γ.

Similarly, if H is a subgroup of G and B an interior H-algebra, identifying any pointed group on B with the corresponding pointed group on $\text{Ind}_H^G(B)$ through $\overline{d}_H^G(B)$ (cf. 1.7), we get

1.12. Local pointed groups on $\text{Ind}_H^G(B)$ are the G-conjugate of local pointed groups on B.
If \(1_\beta \) is primitive in \(B^H \), this statement follows from Proposition 3.9 in [3], but it is easy to see that a similar argument holds without any hypothesis.

2. **G-EXOMORPHISMS AND A-FUSIONS**

Let \(G \) be a finite group and \(A \) an interior \(G \)-algebra. It is clear that \(G \) acts by conjugation on the set of pointed groups on \(A \); to formalize this action, we consider the following definition.

Definition 2.1. Let \(H_\beta \) and \(K_\gamma \) be pointed groups on \(A \). A \(G \)-exomorphism \(\tilde{\phi} \) from \(K_\gamma \) to \(H_\beta \) is a group exomorphism \(\phi: K \to H \) such that there is \(x \in G \) fulfilling \((K_\gamma)^x \subset H_\beta \) and \(\phi(y) = y^x \) for any \(y \in K \). Denote by \(E_G(K_\gamma, H_\beta) \) the set of \(G \)-exomorphisms from \(K_\gamma \) to \(H_\beta \) and set \(E_G(H_\beta) = E_G(H_\beta, H_\beta) \). Note that \(\bigcup_{\gamma \in \mathfrak{A}(A)} E_G(K_\gamma, H_\beta) = \bigcup_{\beta \in \mathfrak{A}(A)} E_G(K_\gamma, H_\beta) \) since both members coincide with the set \(E_G(K,H) \) of all the group exomorphisms \(\phi: K \to H \) such that there is \(x \in G \) fulfilling \(\phi(y) = y^x \) for any \(y \in K \).

Evidently this definition does not depend on the choice of \(\phi \) in \(\tilde{\phi} \). It is also clear that

2.2. **Composition of G-exomorphisms are G-exomorphisms.**

2.3. If \(\phi \) is onto then \(\tilde{\phi}^{-1} \in E_G(H_\beta, K_\gamma) \).

In particular, \(E_G(H_\beta) \) is a subgroup of \(\tilde{\text{Aut}}(H) \) and the action of \(N_G(H_\beta) \) on \(H \) induces an isomorphism \(N_G(H_\beta)H/C_G(H) \cong E_G(H_\beta) \).

We are interested on the possibility of recognizing \(E_G(K_\gamma, H_\beta) \) as a subset of \(\tilde{\text{Hom}}(K,H) \) without the presence of \(G \); so, we should exhibit some property of \(\tilde{\phi} \in E_G(K_\gamma, H_\beta) \) independent of \(G \); with such a purpose we observe that

2.4. *Any \(x \in G \) fulfilling \((K_\gamma)^x \subset H_\beta \) and \(\phi(y) = y^x \) for any \(y \in K \) induces an exomorphism \(\tilde{f}_x : A_\gamma \to \text{Res}_\phi(A_\beta) \) of interior \(K \)-algebras such that*

\[
\text{Res}_{\tilde{f}_x}(\tilde{f}_x) = \text{Res}_{\tilde{f}}(\tilde{f}_{\beta}) \circ \text{Res}_{\tilde{f}}(\tilde{f}_x).
\]

Indeed, if \(i \in \beta \) there is \(j \in \gamma \) such that \(ij^x = j^x = j^x i \) and therefore we have \((jA_\beta)^x \subset iA_\beta \) but we may assume that \(A_\beta = iA_\beta \) and \(A_\gamma = jA_\beta \), and that \(\tilde{f}_x \) and \(\tilde{f}_x \) are induced by the inclusions \(iA_\beta \subset A \) and \(jA_\beta \subset A \); in this case it suffices to consider \(f_x : jA_\beta = iA_\beta \) mapping \(a \in jA_\beta \) on \(a^x \).

This statement suggests the following definition.

Definition 2.5. Let \(H_\beta \) and \(K_\gamma \) be pointed groups on \(A \). An \(A \)-fusion \(\tilde{\phi} \)
from K, to H is a group exomorphism $\phi : K \to H$ such that ϕ is into and there is an exomorphism $f_\phi : A_\gamma \to \text{Res}_\phi (A_\beta)$ of interior K-algebras fulfilling
\[
\text{Res}_\phi (f_\phi) = \text{Res}_\phi (f_\phi) \circ \text{Res}_\phi (f_\phi).
\]
Denote by $F_A(K_\gamma, H_\beta)$ the set of A-fusions from K_γ to H_β and set $F_A(H_\beta) = F_A(H_\beta, H_\beta)$. Note that if $\beta' \in \mathcal{P}_A(H)$ and $\text{id}_{H} \in F_A(H_\beta, H_\beta)$ then $H_\beta \subset H_\beta$ (cf. 1.3 and 1.8) and so $\beta = \beta'$.

Again, this definition does not depend on the choice of ϕ in $\tilde{\phi}$; indeed, if $\phi' \in \mathcal{P}_A(H)$ there is $x \in H$ such that $\phi'(y) = \phi(y)^x$ for any $y \in K$ and it suffices to consider the homomorphism $f_\phi : A_\gamma \to \text{Res}_\phi (A_\beta)$ mapping $a \in A_\gamma$ on $f_\phi (a)^x \in A_\beta$. It is also clear that the definition above does not depend on the choice of the embedded algebras of H_β and K_γ.

Moreover, the analogous of statements 2.2 and 2.3 are still true.

2.6. **Compositions of A-fusions are A-fusions.**

Indeed, if L_α is a pointed group on A and $\tilde{\psi} \in F_A(L_\alpha, K_\gamma)$, there is an exomorphism $f_\psi : A_\alpha \to \text{Res}_\psi (A_\gamma)$ of interior L-algebras such that $\text{Res}_\psi (f_\psi) = \text{Res}_\psi (f_\psi) \circ \text{Res}_\psi (f_\psi)$ and therefore, considering the exomorphism of interior L-algebras $\text{Res}_\psi (f_\psi) : A_\alpha \to \text{Res}_\psi (A_\beta)$ we have $\text{Res}_\psi (f_\psi) = (\text{Res}_\psi (f_\psi) \circ \text{Res}_\psi (f_\psi)) \circ \text{Res}_\psi (f_\psi) = \text{Res}_\psi (f_\psi) \circ \text{Res}_\psi (f_\psi) \circ f_\psi$; hence $\tilde{\psi} \in F_A(K_\gamma, H_\beta)$.

2.7. **If ϕ is onto then $\tilde{\phi}^{-1} \in F_A(H_\beta, K_\gamma).**

Indeed, first of all notice that, by 1.3 and 1.5 above,

2.8. **The exomorphism f_ϕ is an embedding uniquely determined.**

(Hence, if K maps into A_γ, the existence of f_ϕ forces ϕ to be into.) Now, $\phi(K) = H$ implies $f_\phi (A_\gamma) \subset A_\beta$ and therefore f_ϕ is an unitary embedding, so that f_ϕ is an isomorphism; then, statement 2.7 follows from the existence of the exomorphism $\text{Res}_{\phi^{-1}} (f_\phi^{-1}) : A_\beta \to \text{Res}_{\phi^{-1}} (A_\gamma)$. In particular, $F_A(H_\beta)$ is a subgroup of $\text{Aut}(H)$.

On the other hand, the following trivial fact shows the independence of A-fusions with regard to the whole group G,

2.9. **If G' is a subgroup of G containing H and K, and $A' = \text{Res}_{G'}^G (A)$, we have $F_A(K_\gamma, H_\beta) = F_A(K_\gamma, H_\beta)$.**

However, statement 2.4 above shows that $E_G(K_\gamma, H_\beta) \subset F_A(K_\gamma, H_\beta)$ and precisely

2.10. **We have $E_G(K_\gamma, H_\beta) \subset F_A(K_\gamma, H_\beta) \cap E_G(K, H)$.**

Indeed, by 2.11 we may assume that $H \cong K$, and since $E_G(K, H) =
$\bigcup_{\gamma \in \mathcal{S}(K)} E_\phi(K_{\gamma}, H_{\beta})$ (cf. 2.1), it suffices to prove that if $\phi \in F_A(K_{\gamma}, H_{\beta}) \cap E_\phi(K_{\gamma}, H_{\beta})$ then $\gamma' = \gamma$; but by 2.3 we have $\phi^{-1} \in E_\phi(H_{\beta}, K_{\gamma'} \subset F_A(H_{\beta}, K_{\gamma'})$ and by 2.6 $\exists K \in F_A(K_{\gamma}, K_{\gamma'})$, so that $\gamma = \gamma'$ (cf. 2.5).

In particular, if $K_{\gamma} \subset H_{\beta}$ the exomorphism defined by the inclusion $K \subset H$ is an A-fusion from K_{γ} to H_{β} (this follows also from 1.8). Conversely,

2.11. Any A-fusion decomposes in an A-fusion which is onto and the A-fusion defined by an inclusion.

Indeed, if $\phi \in F_A(K_{\gamma}, H_{\beta})$ set $L = \varphi(K)$ and denote by $\psi : K \to L$ the isomorphism defined by φ; as far as f_{ϕ} is an embedding, the image by $\text{Res}_\phi(f_{\phi}) \circ f_{\phi}$ of the unit element of A_i is contained in a point δ of L on A and it is easy to see that $L_{\delta} \subset H_{\beta}$ and $f_{\phi} = \text{Res}_\phi(f_{\phi}) \circ f_{\phi}$ where f_{ϕ} is an exomorphism from A_{γ} to $\text{Res}_\phi(A_{\delta})$; then we have

$$\text{Res}_\phi^k(f_{\phi}) = \text{Res}_\phi^h(f_{\phi}) \circ \text{Res}_\phi^t(f_{\phi}) \circ \text{Res}_\phi^\delta(f_{\phi}) = \text{Res}_\phi^t(f_{\phi}) \circ \text{Res}_\phi^\delta(f_{\phi})$$

and therefore $\psi \in F_A(K_{\gamma}, L_{\delta})$.

But the A-fusions which are onto are easily related with A^*-conjugation.

Proposition 2.12. Let H_{β} and K_{γ} be pointed groups on A such that $H \cong K$; choose $i \in \beta$ and $j \in \gamma$. A group exoisomorphism $\phi : K \to H$ is an A-fusion from K_{γ} to H_{β} if and only if there is $a \in A^*$ such that

$$(v \cdot j)^a = \varphi(v) \cdot i \quad \text{for any} \quad v \in K.$$

In particular, if H and K map into A^*_β and A^*_γ, any $a \in A^*$ such that $(K \cdot j)^a = H \cdot i$ induces an A-fusion from K_{γ} to H_{β}.

Proof. We may assume that $A_{\beta} = iA_i$ and $A_{\gamma} = jA_j$, and that f_{β} and f_{γ} come from the inclusions $iA_i \subset A$ and $jA_j \subset A$. Assume that $\phi \in F_A(K_{\gamma}, H_{\beta})$ and let $f_{\phi} : A_{\gamma} \to \text{Res}_\phi(A_{\beta})$ be the embedding of interior K-algebras fulfilling $\text{Res}_\phi^c(f_{\phi}) = \text{Res}_\phi^t(f_{\phi}) \circ \text{Res}_\phi^\delta(f_{\phi})$; by our choice of embedded algebras, this equality means that there is $a \in A^*$ such that $f_{\phi}(b) = b^a$ for any $b \in jA_j$ and, as far as $f_{\phi}(j) \in (iA_i)^{\mu}$, we have $f_{\phi}(j) = i$; by consequent, for any $y \in K$, we get $(y \cdot j)^a = f_{\phi}(y \cdot j) = \varphi(y) \cdot i$.

Conversely, if there is $a \in A^*$ such that $(v \cdot j)^a = \varphi(v) \cdot i$ for any $v \in K$, we have $(jA_j)^a = iA_i$ and the O-algebra isomorphism $f_{\phi} : jA_j \to iA_i$ mapping $b \in jA_j$ on b^a is an isomorphism of interior K-algebras from A_{γ} onto $\text{Res}_\phi(A_{\beta})$ fulfilling $\text{Res}_\phi^c(f_{\phi}) = \text{Res}_\phi^t(f_{\phi}) \circ \text{Res}_\phi^\delta(f_{\phi})$; hence $\phi \in F_A(K_{\gamma}, H_{\beta})$.

Corollary 2.13. Let H_{β} be a pointed group on A and denote by $N_A(H)$ the set of $a \in A^*_\beta$ such that $H \cdot a = a \cdot H$. The action of $N_A(H)$ on the image of H in A^*_β induces a group homomorphism from $F_A(H_{\beta})$ to
$N_{A^*_\beta}(H)/(H \cdot (A^*_\beta)^*)$. This homomorphism is an isomorphism when H maps into A^*_β.

Proof. Choose $i \in \beta$ and assume that $A^*_\beta = iA^*_i$ and \overline{f}_β comes from $iA^*_i \subset A^*_i$; by Proposition 2.12, for any $\phi \in F_A(H)$ there is $a \in A^*$ such that $(x \cdot i)^\phi = \phi(x) \cdot i$ for any $x \in H$; hence, ai belongs to $N_{A^*_\beta}(H)$ and it is clear that its image in $N_{A^*_\beta}(H)/(H \cdot (A^*_\beta)^*)$ depends only on ϕ. Conversely, if $a \in N_{A^*_\beta}(H)$ we have $a + (1_A - i) \in A^*$ and $(H \cdot i)^{a + (1_A - i)} = H \cdot i$; hence, if H maps into A^*_β, it follows again from proposition 2.12 that a induces an A-fusion from H, β to H, β.

Next proposition shows that G-exomorphisms and A-fusions are both compatible with embeddings (cf. 1.7).

Proposition 2.14. Let $\gamma : A \to A'$ be an embedding of interior G-algebras, H, γ and K, γ pointed groups on A, and denote respectively by b' and γ' the points of H and K on A' such that $\gamma(b) \subset b'$ and $\gamma(b') \subset \gamma'$. Then,

$$E_{A}(K, \gamma, H, \gamma) = E_{A'}(K', \gamma', H, \gamma') \quad \text{and} \quad F_{A}(K, \gamma, H, \gamma) = F_{A'}(K', \gamma', H, \gamma').$$

Remark. There is still no confusion if we denote β and β' by the same letter.

Proof. The first equality follows from the fact that, for any $x \in G$, we have $\gamma(x') \subset (\gamma')^x$ and therefore the inclusions $(K, \gamma)^x \subset H, \gamma$ and $(K, \gamma')^x \subset H, \gamma'$ are equivalent. To prove the second equality, we may assume that $A'_{\gamma'} = A_{\beta}$ and $A'_{\gamma} = A_{\gamma}$, and that $\overline{f}_{\gamma} = \text{Res}^{\gamma}_{\gamma}(\overline{f}) \circ \overline{f}_{\gamma}$ and $\overline{f}_{\gamma'} = \text{Res}^{\gamma}_{\gamma}(\overline{f}) \circ \overline{f}_{\gamma'}$; in particular we have

$$\text{Res}^{\gamma}_{\gamma}(\overline{f}) = \text{Res}^{\gamma}_{\gamma}(\overline{f}) \circ \text{Res}^{\gamma}_{\gamma}(\overline{f}) \quad \text{and} \quad \text{Res}^{\gamma}_{\gamma}(\overline{f}) = \text{Res}^{\gamma}_{\gamma}(\overline{f}) \circ \text{Res}^{\gamma}_{\gamma}(\overline{f}).$$

By consequence, if $\phi \in \text{Hom}(K, H)$ and $\overline{f}_{\phi} : A, \gamma \to \text{Res}_{\phi}(A, \beta)$ is an exomorphism of interior K-algebras, statement 1.5 above implies that the equalities

$$\text{Res}^{\gamma}_{\gamma}(\overline{f}) = \text{Res}^{\gamma}_{\gamma}(\overline{f}) \circ \text{Res}^{\gamma}_{\gamma}(\overline{f}) \quad \text{and} \quad \text{Res}^{\gamma}_{\gamma}(\overline{f}) = \text{Res}^{\gamma}_{\gamma}(\overline{f}) \circ \text{Res}^{\gamma}_{\gamma}(\overline{f})$$

are equivalent.

The two corollaries below are easier to formulate with the following definition.

Definition 2.15. The local fusion category of A is the category where the objects are the local pointed groups on A and the morphisms are the A-fusions.

Corollary 2.16. Let H be a subgroup of G and B an interior H-algebra. The canonical embedding $\overline{f}_{\gamma}^H(B) : B \to \text{Res}^{\gamma}_{\gamma}(\text{Ind}^H_{\gamma}(B))$ induces an equivalence between the local fusion categories of B and $\text{Ind}^H_{\gamma}(B)$.
Proof: By Proposition 2.14, $\tilde{\alpha}_G^\mu(B)$ induces a faithful full functor from the local fusion category of B into the local one of $\text{Ind}_G^\mu(B)$; hence, by 1.12 above, this functor is an equivalence of categories.

Corollary 2.17. Let x be a point of G on A and P_x a defect pointed group of G_x. The embedding $\tilde{f}_x^\mu: A_x \rightarrow \text{Res}_G^\mu(A_x)$ induces an equivalence between the local fusion categories of A_x and A_x.

Proof: As above, by Proposition 2.14, \tilde{f}_x^μ induces a faithful full functor from the local fusion category of A_x into the local one of A_x; hence, by 1.11, this functor is an equivalence of categories.

If M is an OG-module, O-free of finite rank, $\text{End}_O(M)$ has an evident structure of interior G-algebra and the $\text{End}_O(M)$-fusions have an easy translation in module terms.

Proposition 2.18. Assume that $A = \text{End}_O(M)$ where M is an OG-module O-free of finite rank. Let H_β and K_γ be pointed groups on A, choose $i \in \beta$ and $j \in \gamma$, and consider $i \cdot M$ and $j \cdot M$ as OH-module and OK-module, respectively. A group homomorphism $\phi: K \rightarrow H$ is an A-fusion from K_γ to H_β if and only if ϕ is into and $j \cdot M$ is a direct summand of $\text{Res}_\phi(i \cdot M)$.

Proof: Clearly we may assume that $A_\beta = \text{End}_O(i \cdot M)$ and $A_\gamma = \text{End}_O(j \cdot M)$; hence, $j \cdot M$ is a direct summand of $\text{Res}_\phi(j \cdot M)$ if and only if there is an embedding $\tilde{f}_\phi: A_\gamma \rightarrow \text{Res}_\phi(A_\beta)$ of interior K-algebras; but, in this case, $\text{Res}_\phi^K(\tilde{f}_\gamma)$ and $\text{Res}_\phi^H(\tilde{f}_\mu) \circ \text{Res}_\phi^K(\tilde{f}_\phi)$ are embeddings from $\text{Res}_\phi^K(A_\gamma)$ into $\text{Res}_\phi^H(A_\beta)$ which are both full matrix algebras over O; then, by Proposition 2.3(ii) in [3], these embeddings are equal.

3. The Group Algebra Case

Let G be a finite group and set $A = OG$ endowed with the obvious structure of interior G-algebra. The A-fusions from local pointed groups are quite easy to describe.

Theorem 3.1. Let H_β and Q_δ pointed groups on A and assume that Q_δ is local. Then

$$E_G(Q_\delta, H_\beta) = F_A(Q_\delta, H_\beta).$$

To prove the theorem, we need some preliminary results. First,

3.2. The kernel K of the structural group homomorphism from H to A_β^\times is a p'-group.

Indeed, it is clear that A becomes a projective OH-module by left multiplication; but we may assume that $A_\beta = iAi$ where $i \in \beta$; hence A_β becomes
also a projective \(OH \)-module by left multiplication and the restriction to a Sylow \(p \)-subgroup \(R \) of \(K \) should be both projective and trivial, which forces \(R = 1 \).

In particular, if \(P \) is a pointed \(p \)-group on \(A \), \(P \) maps into \(A^*_\gamma \). Actually, in this case we have a stronger statement, namely

3.3. \textit{There is an} \(O \)-basis \(B \) of \(A^*_\gamma \) \textit{such that} \(P \cdot B \cdot P = B \) \textit{and} \(|P \cdot b| = |P| = |b \cdot P| \) \textit{for any} \(b \in B \).

Indeed, it is clear that \(A \) becomes a permutation \(O(P \times P) \)-module by left and right multiplication; hence, as above, \(A^*_\gamma \) becomes also a permutation \(O(P \times P) \)-module by left and right multiplication; that is, there exists an \(O \)-basis \(B \) of \(A^*_\gamma \) such that \(P \cdot B \cdot P = B \). Moreover, as above, \(A^*_\gamma \) is a projective \(OP \)-module by either left or right multiplication and therefore, for any \(b \in B \), \(|P \cdot b| = |P| = |b \cdot P| \).

But when \(\gamma \) is local, we need a slight more precise result.

3.4. \textit{If} \(P \) \textit{is a local pointed group on} \(A \), \textit{there is an} \(O \)-basis \(B \) of \(A^*_\gamma \) \textit{containing the unit element and fulfilling} \(P \cdot B \cdot P = B \) \textit{and} \(|P \cdot b| = |P| = |b \cdot P| \) \textit{for any} \(b \in B \).

Indeed, choose \(B \) as above and set \(1 = \sum_{b \in B} \lambda_b \cdot b \) where \(\lambda_b \in \mathbb{C} \); as far as \(\gamma \) is local, \(1 \notin (A^*_\gamma)^o \) for any proper subgroup \(Q \) of \(P \); on the other hand, \(A^*_\gamma / J(A^*_\gamma) \) is a (possibly noncommutative) field; by consequent, there is \(b \in B \cap A^*_\gamma \) such that \(\lambda_b \cdot b \notin J(A^*_\gamma) \); in particular, we have \(b \in (A^*_\gamma)^* \) and \(Bb^{-1} \) is still an \(O \)-basis of \(A^*_\gamma \) fulfilling the above conditions.

\textit{Proof of Theorem 3.1.} By 2.10, it suffices to prove that any \(\phi \in F_A(Q_0, H_0) \) belongs to \(E_{\phi,Q,H} \) and by 2.11, we may assume that \(\phi \) is onto. Choose \(i \in \beta \) and \(j \in \delta \); then, by Proposition 2.12, there is \(a \in A^* \) such that \((y)_a = \phi(y) \cdot i \) for any \(y \in Q \). In particular, we have \(jAi = j\alpha j a \) and \(yja = ja\phi(y) \) for any \(y \in Q \); as far as we may assume that \(A^*_\gamma = j\alpha j \), it follows now from 3.4 that there is an \(O \)-basis \(B \) of \(j\alpha j A \) such that \(Q \cdot B \cdot H = B, j\alpha j A \in B, Q\alpha j = j\alpha j A, \) and \(|Qj\alpha j| = |Q| \).

Consider the structure of \(O(Q \times H) \)-module on \(A \) defined by \((y, z) \cdot b = yb^{-1} \) for any \(b \in A \) and \((y, z) \in Q \times H \). On one hand, setting \(Q_\gamma = Q \cap H^{-1} \) and denoting by \(\sigma_\gamma : Q_\gamma \to Q \times H \) the group homomorphism mapping \(y \in Q_\gamma \) on \((y, y^{-1}) \) for any \(y \in G \), it is clear that

\[A \cong \bigoplus_\lambda \text{Ind}_{\sigma_\gamma(Q_\gamma)}^Q(H)(O), \]

where \(x \) runs over a set of representatives for the double cosets of \(G \) with respect to \(Q \) and \(H \), and \(O \) denotes the trivial module; moreover, any direct summand above is an indecomposable \(O(Q \times H) \)-module.
On the other hand, it is also clear that \(jAi \) is a direct summand of \(A \) as \(O(Q \times H) \)-modules, and the existence of the \(O \)-basis \(B \) above shows that \(\sum_{y \in Q} O \cdot yja \) is a direct summand of \(jAi \) as \(O(Q \times H) \)-modules, isomorphic to \(\text{Ind}_{Q \times H}^{Q \times H}(O) \) where \(\sigma_{\phi} : Q \to Q \times H \) is the homomorphism of groups mapping \(y \in Q \) to \((y, \phi(y)) \) and \(O \) is the trivial module.

By consequent, there is \(x \in G \) such that \(\text{Ind}_{Q \times H}^{Q \times H}(O) \cong \text{Ind}_{Q \times H}^{Q \times H}(O) \), or equivalently \(Q' = Q \) and the groups \(\sigma_x(Q) \) and \(\sigma_{\phi}(Q) \) are conjugate in \(Q \times H \); hence \(Q' = H \) and, up to a suitable choice of \(x \), we may assume that \(\sigma_x(Q) = \sigma_{\phi}(Q) \), or equivalently \(\phi(y) = y^x \) for any \(y \in Q \), so that \(\tilde{\phi} \) belongs to \(E_G(Q, H) \).

Corollary 3.5. Let \(Q_\delta \) be a local pointed group on \(A \). The respective actions of \(N_G(Q_\delta) \) and \(N_{A_\mu}(Q) \) on \(Q \) and the image of \(Q \) in \(A_\mu^* \) induce a group isomorphism \(N_G(Q_\delta)/C_G(Q) \cong N_{A_\mu}(Q)/(A_\mu^*)^* \).

Proof. By Theorem 3.1, \(E_G(Q_\delta) = F_A(Q_\delta) \); but the action of \(N_G(Q_\delta) \) on \(Q \) induces \(N_G(Q_\delta)/Q \). \(C_G(Q) \cong E_A(Q_\delta) \) and by 3.2 and Corollary 2.13, \(Q \) maps into \(A_\mu^* \) and the action of \(N_{A_\mu}(Q) \) on this image induces an isomorphism \(N_{A_\mu}(Q)/(Q \cdot (A_\mu^*)^*) \cong F_A(Q_\delta) \).

Corollary 3.6. Let \(H_\beta \) be a pointed group on \(A \). If \(Q_\delta \) and \(R_\epsilon \) are local pointed groups on \(A_\mu \) then,

\[E_G(R_\epsilon, Q_\delta) = F_{A_\mu}(R_\epsilon, Q_\delta). \]

In particular, choosing \(i \in \delta \) and \(j \in \epsilon \), \(Q_\delta \) and \(R_\epsilon \) are \(G \)-conjugate on \(A \) if and only if \(Q \cdot i \) and \(R \cdot j \) are \(A_\mu^* \)-conjugate; similarly, if \(Q = \langle u \rangle \) and \(R = \langle v \rangle \), \(u_\delta \) and \(v_\epsilon \) are \(G \)-conjugate on \(A \) if and only if \(u \cdot i \) and \(v \cdot j \) are \(A_\mu^* \)-conjugate.

Proof. The equality above follows from Theorem 3.1, statement 2.9 and Proposition 2.14. The last statements follow from this equality, Proposition 2.12 and statement 3.1.

References