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Finding Identities with the WZ Method
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Extending the work of Wilf and Zeilberger on WZ-pairs, we describe how new termi-
nating hypergeometric series identities can be derived by duality from known identities.
A large number of such identities are obtained by a Maple program that applies this
method systematically.
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1. Introduction

Wilf and Zeilberger (1990) introduced a new and powerful method, based on Gosper’s
indefinite summation algorithm (see Gosper, 1978), for proving identities for hyper-
geometric series (see also, Petkoviek, Wilf and Zeilberger, 1996). They also showed how
their approach led to new identities through duality.

In this paper we extend Wilf and Zeilberger’'s duality approach, and with the help of
Maple, apply it systematically to obtain a large number of identities, many of which are
new.

2. The WZ Method

Suppose we want to prove an identity of the form
o0
> A(n.k) = B(n).
k=0

If B(n) # 0, then we may set F(n,k} = A(n,k)}/B(n) and rewrite the identity to be
proved as

i F{n,k)=1.
k=0

Now suppose that we can find a function G(n, k) such that

F(n+1,k) - F(n,k) = G(n, k + 1) — G(n, k). (2.1)
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Then summing (2.1) on k from 0 to oo, we obtain

Z F(n+1,k) - i F(nk) = kllnc}o G(n,k +1) - G{(n,0).

k=0 k=0
If G(n,0) and limg_, o, G(n, k} are 0 then we have
o oC
Y Fn+1,k)=)_ P(nk), (2.2)
k=0 k=0

and thus }"7- , F(n, k) is independent of n, so if we can evaluate the sum for one value
of n (which is usually n = 0), we can evaluate it for all n. In most of our applications
F(n,k) and G(n,k) will be 0 for k sufficiently large, so we will be working with finite
sums.

In order to use this idea, we need to be able to find the function G(n,k), which
we call the mate of F. The only cases that we will be concerned with are those in
which F and G can be expressed explicitly in terms of gamma functions, and in these
cases G(n,k)/F(n,k} is a rational function of n and k, which we denote by Q(n, k).
Note that if we are given Q(n, k), it is easy to verify that (2.1) holds with G(n,k} =
F{n,k)Q(n, k), and thus Wilf and Zeilberger describe Q(n,k) as a “proof certificate”
since the verification is purely mechanical. (Actually, Wilf and Zeilberger use the ratio
R{n,k} = G(n,k)/F(n,k — 1) as their proof certificate rather than our Q(n,k).) We can
find Q(n, k), as described in Wilf and Zeilberger (1990), by R. W. Gosper’s indefinite
summation algorithm {see Gosper, 1978, and Graham, Knuth and Patashnik, 1989).

3. WZ-functions

It turns out to be very helpful to consider functions F' and G satisfying (2.1) in which
7 and k may be complex numbers and F and G have a “closed form”. This enables us to
verify (2.1) completely formally, without having to worry about the dornain of definition
of F and G. We may then take a lunit, when necessary, to deal with cases in which
the formulas for F' and G may be ambiguous (and these cases often arise in interesting
identities).

Let us call a function f(n, k) of complex variables n and k a gemma gquotient if

[Iio: T(ain + bik +7)
;:1 I"(cjn +d;k + é;) '

f(n,k) = ang* (3.1)
where a, §, i, and §; are complex numbers, and a;, b;, ¢;, and d; are integers. If n
and & are complex numbers such that (3.1) contains a gamma function evaluated at a
non-positive integer, then we interpret f(n, k) as limn o, (limex F{n', k') if this limit
exists; otherwise f(m, k) is undefined. Note that we are taking the limit in k first. This
definition is the one most useful for our applications, even though it is not symmetric in n
and k. (For example, if f(n, k) = (n+2k)/(n+k) and g(n, k) = f(k,n) = (k+2n)/(k+n)
then f(0,0) = lim,_,gn/n =1 and ¢{0,0} = lim,, s 2n/n = 2.)

We call a pair (F, G} a WZ-pair if F' and G are gamma quotients satisfying (2.1) for all
complex n and k for which both sides are defined. Note that to verify (2.1) it is sufficient
to do so under the assumption that all gamma functions involved are defined; we may
then take a limit, if necessary, for the remaining values. {Our definition of a WZ-pair
is slightly different from that of Wilf and Zeilberger (1990) in that they do not require
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F and G to be gamma quotients.) It is easy to show that if (F,G) is a WZ-pair then
G{n,k)/F(n, k) must be a rational function of n and k. In fact, (2.1) may be written as

G(n, k)  F(n+1,k)/F(n,k) -1
F(n,k)  G(n,k+1)}/G(n, k) -1’

so if F(n +1,k)/F(n,k) and G(n,k + 1)/G(n, k) are rational then so is G/F.

We call a gamma quotient, F', a WZ-function if there exists a gamma quotient, G,
such that {(F,G) is a WZ-pair. If F is a WZ-function then its mate G can be found by
Gosper’s algorithm.

Once we have a WZ-pair (F, G), we can easily find other WZ-functions. The following
theorem is straightforward:

THEOREM 3.1. Let (F,G) be a WZ-pair.

(i) For any complex numbers a and 3,
(Fin+ o,k + B),G(n+a,k+ 8))

18 ¢ WZ-pair.

(i) For any complez number v, (YF(n,k},vG(n, k)) is a WZ-pair.

(iii) If p(n, k) is a gamma product such p{n+1,k) = p(n, k+1) = p(n, k) for all complex
n and k for which p(n, k) is defined then

(p(n, k)F(n, k), p(n, k)G{n, k))
is a WZ-pair.
(iv) (F(-n,k),—G(—n —1,k)) is a« WZ-pair.
(v) (F(n,—k),—G(n,—k + 1)) is a WZ-pair.
(vi) (G(k,n), F(k,n)) is a WZ-pair.

We shall call the WZ-pairs obtained from (F,G) by any combination of (i}—(v) the
associates of (F,G), and (extending the terminology of Wilf and Zeilberger) we call {vi}
and all its associates the duals of (F, G). We shall also use the terms associate and dual
to refer to the WZ-functions themselves and to the identities obtained from them.

Although (ii) is a special case of {ii1), it is so useful that it deserves separate mention.
The most important application of (iii) for non-constant p arises through the reflection
formula for the gamma function, I'(z)['(1 — z) = n/sin7z: let a and b be integers, let -y
be an arbitrary complex number, and let

p(n, k) = (=1)*" T D(an + bk + v)T'(1 — an — bk — 7),
where (—1)% may be unambiguously defined as €!"*. Then by the reflection formula,
p(n, k) = (=1)** % /sin w{an + bk + )

and thus p(n,k) satisfies the conditions in (iii). So from any WZ-function F' we may
obtain a new WZ-function by replacing any factor ['(an 4 bk + ) with (—1)en+% /(1 —
an — bk — ). (Cf. Section 4 of Wilf and Zeilberger, 1990.)

We shall use the standard notation for hypergeometric series: The rising factorial is

() =ala+1)--(a+k—1),
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if k is a non-negative integer, and more generally,
(a)x = T(a+ k)/F(a)

for all k, with our usual interpretation for gamma quotients. The hypergeometric series
is

o0
ay,...,a (e1) - (ap)k >
oy 3.2
(bl} r | ) ZO k(bl)k (b ) ( )
which when not displayed we write as ,Fg(ai,...,ap b1, ..., b | 2). The a; are called

numerator parameters and the b; are called denominator parameters. Qur interpretation
of gamma quotients implies that a factor of (a + 1)k /{a)x should be interpreted as (a +
k)/a, even if a is a negative integer, and this must be interpreted as 1 if k = 0 and a = 0.

A modification to the definition of the hypergeometric series is necessary for some
identities. Suppose that after replacing each (@ + 1)x/{a}x with (a + k}/e, there remains
a numerator parameter which is a non-positive integer. If —m is the one of least absolute
value, then we interpret the sum in {3.2) as stopping with the term k& == m. For example,
if n is a non-negative integer, we interpret the hypergeometric series 2 F3 (6, —n; —2n | 2)
as

Zn: (la) k( n)k k (33)

even though according to our definitions (—n)y/(—2n) is non-zero for £ > 2n. There
is one further complication: if n = 1, we want o F1 (g, —n; —2n | 2) to be interpreted
as (3.3), even though the terminating numerator parameter —1 is one more than the
denominator parameter —2. For the general rule used in this paper, suppose that f(n)
is a hypergeometric series in which every numerator and denominator parameter is a
linear function of n. Then if a numerator parameter rn + s is a non-positive integer for
some value of n, we take it as a terminating parameter unless there is a denominator
parameter given by the formula rn + s —1.
We shall also use the notation

ai,-..,apy\ _ Fla1)---T{ap)
F(bh---wbq) ~ T(b1)---T(by)

4. An Example: Gauss’s Second Theorem

We now give an example of the approach we shall take. We start with a hypergeometric
series identity which we write in the form

> fk,ab,..) =
k=0

where f(k,a,b,...) is a gamma quotient involving & and the parameters a, b, . . ., but not
n. {It does not matter if the identity holds only when it terminates.) We construct a
potential WZ-function F(n, k) by making a substitution in f that introduces n, and we
apply Gosper’s algorithm to determine whether a mate can be found for F(n, k). If so,
we try to find an associate of F(n, k) that is a terminating hypergeomestric series, and if
its mate G(n, k) satisfies G(n,0) = 0 and limg_,o, G(n, &) = 0, then we will have a WZ
proof of a terminating form of our original identity or of a closely related identity. Next
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we look for terminating hypergeometric series among the duals of F, and again check
that their partners satisfy the right conditions.

As our first example, we take one of the standard hypergeometric summation formu-
las, which is sometimes called Gauss’s second summation theorem (Bailey, 1935, p. 11,

equation (2)):
2 (%(A+B+1) ‘ 5) _P(%(ZAZ-I),%(B+1))' (4.1)

We first express this identity in such a way that the coefficients of the parameters on
both sides are integers. Thus we set A = 2a and B = 2b, in (4.1), obtaining

2a,2b 1 Lat+b+l
F ol ) =Tl |,
2 1(a+b+% 2) (a+%,b+%

«© 2a+ k20 +ka+ib+1 k
ZF a -+ y + 1,0- P 21 l =1. (42)
= l+ka+b+3+k2a,2b 5 2

which we rewrite as

To get a potential WZ-function from (4.2}, we make a substitution of the form a =
a+pn, b:=b+gn, k:=k+ rn, where p, ¢, and r are integers. There are many ways
to do this that give WZ-functions, but we shall consider only two of them. First let us
replace a with @ — n. Applying Gosper’s algorithm, we find that the function

2a—In+kW+ka—n+ibtrl V¢
Fin,k)=T ! ! 2772 — 4.3
(n,k) (1+k,a—n+b+%+k,2a—2n,2b,%) (2) (4.3)
is a WZ-function with mate
2%k(a—n+b+k-—1
G(n, k) = F(n, k) (a—n 2 (4.4)

(2a—2n+k-1)2a—2n+k—-2)
Note that we could have reduced the computation required in Gosper’s algorithm by

computing (4.4) first in the case a = 0, and then replacing n by n — a, as allowed by
Theorem 3.1(i).

We would now like to specialize the parameters in (4.2) so that >, F(n, k) is a ter-
minating hypergeometric series when n is a non-negative integer. We may write Fi{n, k)

as
(2a — 2n)x (26} (1\F
(Wila+b—n+ 1) (E) Uin) (45)

for some function U;{n). Summing on k will yield a terminating hypergeometric series
if 2a — 2n is a non-positive integer, and without loss of generality we may take a = 0 or
a=—1/2.

In the case ¢ = 0 we have

_ (2020 (1\F (b Dn
Fin.k) = (Dr(b—n+ 3 (2) (3)n
and
2k(-n+b+k—3)

Gl k) = Fln ) e e oo s k= D)
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for all non-negative integers n. We have G(n,0) = 0 and G(n, k) = 0 for all integers
k > 2n + 2, so we may conclude that

—-2n,2b | 1 ($)n
F O 3) = 46
’ ‘(b—n+% 2) (=b+Dn (49
when n is a non-negative integer, which is, of course, just the case a = —n of (4.1).
Similarly, the case a = —1/2 gives
(—2n — 1), (2b)x (1)" (—b+1), (321-b
Fln,ky=—+—"—"-|(=}) ——T 4.7
(n, k) (De(b—n)e \2 (Ln $-b (47)

and we find that
—2n—-1,2b | 1\ (—b+ 1),
2 Fy =) —
b—n 2 (n

iz a constant for n a non-negative integer. Checking the case n = 0, we find that the

constant is 0, so
—2n—1,2b 1
F ! —}=0
241 ( b—mn 2) ’
which is the other terminating form of (4.1}.

We now lock at the associates of F. Let us first replace & with k4 ¢ in (4.3). (There is no
need for a similar substitution with n, since the parameter e already shifts n arbitrarily.)

We obtain
(2a — 2n + ) (2b + )i (l)k
{1 +C)k(ﬂ+b—'n+~% + el \2 Uz(n) (4.8)

for some function Ua(n). To get a terminating hypergeometric series from (4.8), we at-
tempt to choose the parameters so that when n is a non-negative irteger, one of the
numerator parameters 2a — 2n + ¢ and 2b + ¢ is a non-positive integer, and one of the
denominator parameters 1 +canda+b—n + —% + cis 1 {independent of n)T. It is clear
that the denominator condition requires ¢ = ¢, and the numerator condition implies that
in addition, either a = 0, giving the case we have already considered, or b is a negative
integer or half-integer, say b = —m/2. This second case leads to the identity that for any
non-negative integer m,

B (s o | 3) o

is independent of n. Unlike the other cases we have seen, we cannot fmd out what this
quantity is by setting n = 0, although it is not hard to determine that it is 0 for m odd
and {(),,/2/(3 — @)m/2 for m even. (This is, not surprisingly, equivalent to (4.6) and
(4.7).) For simplicity, we shall not pursue identities of this type, and shall henceforth
consider only those in which the terminating parameters are linear fur.ctions of n.

We may also replace k with —k in (4.8), getting the associate

(—e)g(n—a—-b—-c+ %)k
(1+2n—2a— e}l — 2b— )

QkUz(n).

T It would be sufficient to make one of the denominator parameters a positive integer, possibly de-
pending on n, but in that case we would need to start the sum at a point other than & = 0. For simplicity
we do not pursue these possibilities, although we may thereby miss some identities.



Finding Identities with the WZ Method 543

We can get a WZ-function that will give a terminating sum of the type we want by
replacing n with —n, and then setting b = a — 1/2 and ¢ = 1 — 2a. After multiplying by
a constant {which depends on a), we obtain the WZ-function

(2¢ — Dr(—n)k 4 (3)n

B RED e

(4.9)

with mate
1 k(2n—k+1)
G(n,k)=—— F{n, k). 4.10
L e s AL (4.10)
We would like to evaluate the sum Y ,_, F(n, k) for n a non-negative integer. Unfor-
tunately, it is not true that F(n, k) = 0 for all ¥ > n nor is G(n, k) = 0 for all sufficiently
large k. However, we do have F(n,k) = 0 forn+1 < k£ < 2n and G{n,k} = 0 for
n+2<k<2n+1, and thus we have

n+1 n n+1l
D F(n+1,k) =Y F(nk) =Y (F(n+1,k) - F(n,k))
k=0 k=0 k=0
n+l
=Y (G(n,k +1) — G(n,k))
k=0
=G(n,n+2})—G(n,0)=0
for n > 1. We deduce that "7 _ F(n, k) is independent of n for n > 1, and checking the
values of the sum for n = 0 and n = 1 yields the identity

2Fy (2a 121?’;" ‘ 2) = Eg)): (4.11)

for all non-negative integers n.
If we reverse the order of summation in the sum in (4.11}, we obtain

F —n,n+1 ’1 _ {a)n
rl2-2a-nl2) (2a-1),

which is a terminating case of the well-known identity (Bailey, 1935, p. 11, formula (3}))

A1-A4 1 £ &£41
2F1( ’ ’—)=F(C LRI T (4.12)
¢ 12 FTtezti—2
(The identity (4.12) is sometimes called “Bailey’s theorem”, but it can be found in
Kummer, 1836.} The identities (4.1} and (4.12) are associates in a certain sense; they
sum (by shifting the starting point)} the two special cases of the bilateral hypergeometric

series
o

§ (A+B- (B A), (1)"
(B)e{Cs 2
in which either B or C is a positive integer.
If we apply Theorem 3.1(vi) to (4.9) and (4.10), we obtain the dual WZ-function
(1-a)(3/2—a-b-—n)
(2-a-n/2)k(3/2 —a—n/2)

(4.13)

k=00

U3('n)



544 I. M. Gessel

for some function Us{n). It is not difficult to see that any identity we obtain from this
WZ-function will be an instance of Vandermonde’s theorem, so we don’t consider it
further.

It was very convenient in our examples that when we adjusted the parameters so as to
make Y, F(n, k} a terminating hypergeometric series, G(n, &) had the right properties to
make the WZ method work. In fact, this is not a coincidence, and we siate the following
theorem without proof.

THEOREM 4.1. Let (F, G) be ¢ WZ-pair such that for each non-negative integern, F{n, k)
= 0 whenever k is o negative integer or o sufficiently large (depending on n) positive
integer. Then for all non-negative integers n, G(n,0} = 0, and for all but finitely many
non-negative tntegers n, G(n, k) = 0 for k sufficiently large.

To see that we cannot replace “all but finitely many” with “2ll”, consider the WZ
function F(n, k) = (5;}/2*"!, with mate

G(n, k) = —F(n,k)k(k - 1)/n(n -2k +1) = -27" (;c _12)
We find that G(0, k) = —1 when k is a positive integer, but if » and % are positive integers
then G(n,k} = 0 for & > (n + 1)/2. Thus we may conclude that 3 ;- o F{n,k) = 1 for
n > 1; but this identity is false for n = 0.

It is possible to find a more complicated generalization of Theorem 4.1 that covers cases
such as that of (4.9} and (4.10), but it is easy enough in any particular case to verify
that the right conditions are satisfied. We find that whenever F satisfies appropriate
termination conditions, we do get an identity.

Next we return to (4.2) and apply a different substitution, ¢ == a +n, b := b+ n,
k := k — n. We obtain the WZ-function

F(n,k)=[‘( 2a+n+k2+n+ka+ntibintl )

—n+1+k,a+b+n+é—+k,2a+2n,2b+2n,%

with
1 (3n+2a + 2b+ k)(k — n)
Gln,k) = = F 0 D) s+ )

This WZ-function and its associates give us no new identities, but its duals do. Applying
Theorem 3.1(vi), then substituting n + ¢ for n and dividing out the factors not involving
n or k, gives the WZ-function

(e +n+c)(2b+n+ B+ +2+E4 Di(-n-ct+ 1)
F(n’k) = 1 2b 2a 1 c
(a+b+s+n+chi(B+2+E+ (et )b+ 1)

1Y (20 + 0)n(2b + )20+ 20 + ¢+ 1) (1"
x(_g) (@a+b+3+0)n(2b+2a+C)n(Chn (_) ' (4.14)

2

To get proper termination in {4.14), we may set ¢ = 1 and & = 0, and we obtain the
identity

F 2a+n+1,n+l,—23£+%+%,—n! 1\ (@a+3/2n.,
P e+ denZitilagt 8] (2a+2),
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If we now consider the associate of (4.14) obtained by replacing n with —n, we find two
further identities. To make —n the terminating parameter, without loss of generality we
set ¢ = —2a and we obtain the WZ-function

(—n)e(2b—n — 2a)k(— ~ 3 4 1)i(2a +n 4+ Vi (—1/8)
(b-a+ 5 —n)k(— = 3la+ Db+ 1)k
(a—b+3)n(l —2b)n(2a +1),2"
(l)n(l - 2b+ Za)n(_Qb)n

To make one of the denominator parameters in (4.15) equal to 1, we may set @ = 0 or
b = 0. If we set a = 0, we obtain the identity

-n,2-n,2 -2 +1n+1 _ (=20, 1"
sFsl 2b 1 —= .
+-2——n,?—3,b+1 ——b)n
If we try to set b = 0 in (4.15), we get a factor of (0}, in the denominator. To avoid this,

we multiply (4.15) by —2b and then take the limit as b approaches 0, and we obtain the
WZ-function

F(n, k) =

(4.15)

(=n)e(—n — 2a)x(1 — 2)e(2a +n+ 1) e (a+ 2)n
DG a- e D TV

It then follows that for n > 1, 3°F_ F(n, k) is a constant,which turns out to be 0. Since
0-(1)p-1 = {0)y, we write the identity obtained in this way in the cryptic-looking form

g (T2l B2k nt 1l 1) (), (1)"
s %wa—n,—g,a+1 8 (a+1)n \2

in order to indicate the WZ-function from which it is derived.

F(n, k) =

5. Integral Forms and the Multiplication Formula

In order to extract a WZ-function from an identity involving several parameters, we
must normalize it so that its parameters appear with integer coeflicients. We call these
normalizations the integral forms of the identity. In addition to the usual integral form
of an identity, we can, in many cases, specialize the parameters and use the duplication
or multiplication formula for the gamma function to obtain inequivalent integral forms
whose duals give different identities. For example, Vandermonde’s {Gauss’s) theorem has

the usual integral form
c—a—b
R ‘ =T . .

If replace a by a/2 and b by (a + 1)/2, then after applylng the duplication formula for
the gamma function, we obtain an additional integral form

g & 4 —g-—1
(23 ’1) {@)ak o2 _ gte-a-ap( GCTE 3 ,
2 1( 2(1),c 2c—a-1,3

which may be written

> a+2k,2—a—1,4%
T ’ P L 5.2
z (1+k,c+k,a,c— 1) (5:2)

k=0 a_i
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For example, if we substitute a + 2n for @ and ¢ + n for ¢ in (5.2), one of the dual
identities that we obtain is

1 5 3 1
4F3(§—n,z—£,§“6,“ﬂ’_1) (_ﬁ)n

i T (A-b)’
which is a special case of the very-well-poised 4F3(~1). (See, for example, Bailey, 1935,
p. 28, equation (3).)

6. Specialization and Factorization

There is one more technique that we shall use to find additional identities. Let us make
the substitution & := a -+ n, ¢:= ¢+ 2n in (5.2). Applying Gosper’s algorithm to

a+n+2k,%,2c+3n-1*a

l+kec+2n+ka+tnctn—a—1

F(n, k) =r(

yields G(n, k) = F(n,k)Q(n, k) where

k(—4c2—10cn+6ca+2c—a2+10na—5n2+3n—a+2ak+2nk)
(a+n)(2c+2n—2a—1)(c+2n+ k)

Although dualization of (F, G) can yield identities, the complicated numerator in (6.1}
will cause them to be inelegant. We may hope to find specializations of the parameters
a and ¢ that will make Q(n, k) factor into linear factors. One way to proceed is to find
a specialization that will cause the numerator to be divisible by one of the factors in
the denominator. For example, if the numerator is to be divisible by @ + n, then setting
n := —a in the numerator must cause the numerator to vanish. We find that setting
7 := —a in the numerator yields —2k{c — 2a}(2¢c -- 4a — 1}, and this vanishes if ¢ = 2a or
¢ = 2a + 1/2. Substituting ¢ := 2a yields the WZ-pair

) 22—2k—2c—3n+a

Q(n; k) = . (61)

F(n,k) =1"(

3:3a+3n—la+n+2k 92-2k—la—3n
1+k,a+n,a+n*%,2a+2n+k ,

k{—-5a —5n+2k+3)
(2a+2n+ k)(2a + 2n - 1)’

and dualization yields, for example, the identity

F(—-+—+— 32) (2/3)(3)n

G(n, k) = F(n, k)

§,-2n, 8+ 20 27 7 (1/Da()n

The other specialization ¢ := 2a + 1/2 yields similar identities.
Example 3 of Wilf and Zeilberger {1990) involves this type of specialization. They

dualize the WZ-function
2
n 2n
o= (2 (), o

which corresponds to a special case of Vandermonde’s theorem. In fact, if we make the
substitution ¢ := a — n, b := b — n in the Vandermonde summand

at+kb+kc—a,c—~b
1+k,c+ka,bc—a—b
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then the case @ = 0, b = 0, ¢ = 1 yields the WZ-function of Wilf and Zeilberger's example.
We find that without restrictions on a, b, and ¢ we obtain a quadratic factor in G(n, k),
but the procedure described above shows that it factorsifc=14+e-b{ore=1-a+5).
We obtain by dualization a number of identities with one more free parameter than those
in Wilf and Zeilberger {1990). A typical example is

b
F -n, 2241 b—nb+] |4 _ (=B
Z_2np4+1,20+1 (b+ Dn

7. Non-terminating Identities

The W2 method can also be used to prove general non-terminating forms of hyperge-
ometric summation formulas. (Wilf and Zeilberger (1990) proved some non-terminating
identities but these all had integrality restrictions on the parameters.) We give only
one simple example, but the same approach can be used for many of the identities de-
rived here. The basic idea is that we prove (2.2) as usual, but instead of evaluating
2:10 F(n,k) at n = 0, which is no easier than for any other value of n, we evaluate
the limit as n — oco. A similar approach has been used by Karlsson (1986} to prove
some non-terminating 2 F} evaluations conjectured by Gosper, but using the contiguous
relations for the 3 Fy rather than the WZ method to obtain the basic recurrence.

In this way we prove Gauss's theorem (the non-terminating form of Vandermonde’s

theorem),
JFy (a,b | l) =F(c,c—a—-b)’
c c—a,c—b

for Re(c — a — b) > 0. The identity may be written

i Vik) =1,
k=0

where
a+kb+kc—ac—b
V(k)=V(k; = ’ ’ ’ .

(k) (ki a,b,¢) F(1+k,c+k,a,b,c—a—b)
Let us set F(n,k) = V(k;a,b,c + n). We find that F(n,k) is a WZ-function with mate
G(n, k) = F(n,k)k/(c+n—a~-1b). Clearly G(n,0) = 0, and by Stirling’s formula we find
+n—ac+n—>b
G k Nka+b—c—n c b
(m. k) F(a,b,c+n—a—b+1)

as k — oc. So if Re(c —a — b) > 0 and n > 0 then limg_,, G(n, k) = 0, and we may
conclude that for n > 0,

i F(n, k) = iF(n +1,k).
k=0 k=0

It follows that for every non-negative integer n, >2° o F(0,k) = >>7 ; F(n, k), and thus
Yoo F(0,k) = limp_oe ¥ pe o F(n, k). By Stirling’s formula, we find that F(n, k) =
n~*(1 4 O(1/n}) uniformly in k as n — co. Thus

iV(k) = iF(O, k) = lim iF(n, k) =1.
k—0 k=0 T o
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8. Computer Generation of Identities

Given a WZ-function, the derivation of the terminating hypergeometric series corre-
sponding to its dual is essentially mechanical, and the last sections of this paper consist
of lists of identities obtained in this way, vsing programs written in Maple,

We start with a set of known hypergeometric series summation formulas. Here we
have used the major summation formulas found in Bailey’s book (1935), but many other
known summation formulas could also be used. For each summation formula we attempt
to find all of its inequivalent integral forms. (This was done by hand, but with some help
from the computer, and it is possible that some may have been missed.) Each integral
form may be written as 3, f(k,a,b,...) = 1 for some function f(k,e,b,...) expressed
as a quotient of gamma functions. (In some cases ), f(k,a,b...) will not converge to
1 unless it terminates, but this is irrelevant to the application of the method.) The
program is given a list of substitutions that replace some of the parameters with linear
functions of n. (The substitutions are chosen so as to include nearly all possibilities
involving integers small enough to give nice results.) Each substitution yields a potential
WZ-function F(n, k).

The program starts by making a substitution such asa:=a+n, b:=b-n, k—n
in the function f, yielding a potential WZ-function F(n, k). Since one of the variables
is now redundant, we set one of these variables equal to 0. (In our example we might
set @ = 0; i.e., the substitution is now e := n. Eliminating a redundant variable makes
Gosper’s algorithm run faster.) The program next applies Gosper’s algerithm to find the
mate G(n, k), if it exists. If G/F does not factor into linear factors, the program tries to
find specializations of the parameters that will cause it to factor. Next the program takes
the shifted dual WZ-pair (F(n, k), G(n, k)) = (G’(k + 8,n+a), F(k + 3,n + a)), where
a and 8 are new parameters, and finds specializations of the parameters in F(+n, £k)
which lead to terminating hypergeometric series. Finally the identities corresponding
to these specializations are constructed. Duplicates and identities that are special cases
of the most frequently occurring “classical identities” are removed, and the remaining
identities are converted into TEX.

A large number of identities were found, and those presented in this paper are only
a selection, though they include the most interesting identities. Many of the identities
included are different terminating forms of the same non-terminating sum, and if we
consider bilateral sums, the number of “different” identities may be decreased further,
as in (4.13), though it is clear that the number of truly different identities is still large.

The problem of finding an algorithm for determining when two identities are equivalent
(i.e., up to a change of variables) does not seem to be easy. An abstract version of the
problem is: given a finite-dimensional vector space V with a distinguished basis and two
subspaces V] and V5, does there exist a permutation of the basis elements that takes V}
to V57

9. The 2-3-5 Rule

An interesting observation suggested by our results is the “2-3-5 rule”: in nearly every
identity, the argument 2 has the property that the numerator and dencminator are (up
to sign) powers of 2, 3, or 5, and moreover, 1 — z has the same property. Thus we
find identities with z = 4, 16/25, 27/32, and 2/27 (and Gosper has found some with
z = 3/128), but we do not find identities with z = 6, 8, —9, or 4/27. There are a few
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exceptions to this rule: the only one occurring in this paper is z = 16/27, but a few
identities with 2 = —27 are given in Gessel and Stanton (1982), and Kummer (1836)
found some ;F) evaluations at irrational values. Moreover, some possibilities allowed by
the rule, such as 2/3, 3/8 and 4/9, do not seem to occur.

10. The Identities

The next sections contain a listing of some of the identities found by the program,
together with their “proof certificates” Q(n,k) = G(n,k)/F(n, k), where F(n, k) is the
WZ-function corresponding to the identity, and G(n,k) is its mate. Each subsection
begins with a function f(k,a,b,...) obtained as described above from an integral form of
one of the standard hypergeometric summation formulas. The names assigned to these
summation formulas are (for simplicity but not necessarily complete historical accuracy)
those used by Bailey (1935), with the following clarifications: “Bailey’s theorem” and
“Gauss’s second theorem” have already been mentioned (our equations {4.1) and (4.12))
and “Dougall’s 3 Fy theorem” is the very-well posed 5F3(1) evaluation (Bailey, 1935,
p- 25, equation (3), and p. 27, equation {1)). Next comes a list of identities obtained
from this function by the procedure described above. These identities were selected from
a much larger collection of identities {not all inequivalent) produced by the program.
A few classical and trivial identities have been included to give an idea of the range of
identities that appear. The TEX output produced by the program has been edited only
minimally, so the order in which the parameters appear is random.

No attempt has been made here to identify the output of the program with identities
in the literature. However, it should be noted that some of them are cases of unpublished
identities of Gosper, and some can be found in Chu (1993), (1995) and in Gessel and
Stanton (1982).

11. From Bailey’s Theorem

I'(2a+ k(1 —2a+k)T(2a+26)(2a+ b (b+1/2) (1/2F
D+ D02+ 26+ K){2e)T(1 — 2a){a +b)[(a+ b+ 1/2)

n+1, n,3 +1+3,4a+nl_l _ (1+2a), (11.1)
Pl 2et+n+1,4242,1/242¢ ) 8) (da+ 1)a (1720 '
02 (da —1+2k)k
T "(Ae+3k+n)(-n—1+k)
1-%2,-nda-1-n,2—-4a+n (0)n
F 307 }—— - 11.2
4 3( ~2.2a-n,3/2~2a ) 1 ~2a).27 (112)

2e—n-1+k)k(l—4a+2k)
B3k—n)(-n-1+k){da—-2-n+k)

+1,-n,42 1+ 2/3 -2 40-1— 1 1-4
oF (” - 3 T2/3-5.4a n '___) _ _(1-49n (11.3)
3

Q=4

~1/3-%,1/2+2a,2a-n T (1—2a)2"



550 1. M, Gessel

Q=14 (2a—n-14+k)(da—1+2k)k
C de-1-n43k){(-n-1+k)(4a-2-n+k)

12. From Dixon’s Theorem

['(2a + k)/70(b+ 2k)T(1 + 20)22572°T(1 + 4a — 2 1)
T(1/2+a - b)I(2a)T(HT(1 +4a ~ b+ 2k)T(1 +a)l(k + 1)

-n,1-2b1-2b+n,4/3-42,1/2-2b 3/2-2b),
sFy 4/ / | _ 3/2- 2 (12.1)
~2n,1-5,2—4b+2n,1/3 - 4L (1/2)n

Q=2 (k—2n—1)k(k—b)
(k- 4b+24+2n)(8k—4b+1)(-n—1+k

2/3- 22122 4/3-22 |27 (-1/2),"

Q=2 (3k+1-2n)(3k-2n)(-1—2n +3k)k
T Y(1lk—6n)(k+3-2n)(—n—1+2k)(2-2n+k)

-3/2,1-321/2_14 "4 2 16 —-3/2)n
“( /21~ 33,1/2-3, n _):1/6( Do o3 a22)
11’

-, 3/4,1/4 - 2n,47 §1/2-%,-3 |16\ _ (3/8)n(=1/8)n (12.3)
B-B B -Esa-h-% %) (R

B (12k -5 —8n)(12k—1— 8n) (12k + 3 — 8n) ik
Q= (44k+3-24n)(4k-3-8n)(—n—1+2k)(4k—7—8n)

13. From Dougall’s 5 #4 Theorem

(a+2K)T{a+ K (c+ B)Y(d+ &) (e+ E)T{1 + a)
alllk+1)[(14+a—c+k){(1+a—d+ K (1+a—e+k)
Fl+a—-d-el'(l+a—c—el'(1+a—c—d)
@' (e){d){e)I{1+a—c—d—¢)

F, ~3b,—m,-2b-n,-b—n,1 - & iz |__ (126} (20}
S 12 -2 %,1u3—2”—%,—6—$—3;,1*2b+n C (1= b)a(B3b)s
(13.1)

B k(k—b—2n—2)(2k—3b—n—1)(-3b—n+2k)
@ = 60 -3n 5k (cn- LR (b 14R(2b—n-1%F

—nl—b-n2-2b-n,3b-3,1-32, 1 (0)n (46 — 3)n
Sy ) LI g : (13.2)
1/2+§—§,4b—3+n,§—%,_? 4 (Sb_Q)n‘\l'_b)

0- (1-3b+k-20)k{(b—2+2k-n)(b—1+2k—n)
 (5k—3n)(-n-1+k)(-b—n+k)(1 -2b-n+k)
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2

5F4(3-3e,1/2-g,n‘4e+4,1—3?’1,_& _4):1/3(?1—_35),,’ n>1 (133)
_ kle-n-14+k)(de-5+k—-2n)(2e-2+k—n)(k-n)
- (5k-3n)(3e-3-n)(2e-n-2)(de—4-n)(-n—-1+2k)

l1-ne—n2e—1—n, -3

Q

14. ¥rom Dougall’s 5 ¥4 Theorem

T{c+2k)T(1/2+a—c)(a+2Kk)4°T(b+ k)T(a + k)T(1 + 2a — c — 2b)
TOT(k+ )Tl +2a—c+2kI(1/2+a—c—BI()L(1+a—b+ k)

F -n,d+n,4/3-%5,1-¢3/2~d-c | O (3/2- )1 §)n
T \2-c-2d-2n,1/3-§,2d-14¢2-c+2n | ) T (E-1/2+ )l + d)n
(14.1)
Q__(1+d+2n)(2d—2+c+k)(1—c+k—2d—2n)k
T 2-c+2n+k)(d+n)(1—c+3k)(-—n—-1+k)
b+1/2,b—n,-n2d—-2n,1+ 2% 22 (1/2 — d)n(~b)n
5H4 26 _ 2n 4)= (14.2)

(d+k—2n—2)(k—d+bk(2b+k)(k—1—2n)

Q= BEr o2 (Cn- it -n_1+R(2d—m—2+F) 2d—2n T F=1)
_2n,b—2d+1/2,1—QT",d—'n,d—b—n’ B (1/2)n (0},
P\ 1-24,4d-2b-2n,2b-2d+1,-2p T b-2d+1/2).(1+b-2d),
(14.3)
Q=_(4d—25+k—2n—1)(2b—2d+k)(k—2d)k(k~b+2d—2n—2)
(Bk—-2n)(k—b+d-n—-1N(d-n—-1+k)((k-2-2n)(k—-1-2n)
P w2n,1+2m+2b,b+1,2n_2a+2,%+5/3}1 O (1/2)a(2+b)s
U t4ae+b-n24232+0+4n,3/2-a 4] (~a-b)a(3/2—a)
(14.4)
Q- k(l-2a+2K)(a—-2n-2)(a+k+b-n)
T T(2b+2+3K)(e-n—-1)(k-2-2n)(k—1-2n)
15. From Dougall’s 5 F4 Theorem
(a+2k)3 T (a + k)T(3k + )T (3a — 2b)
C(k+1DT(1+3a - b+ 3k){B)(a — b)
—-3n,2/3—¢,14+3n 3 (€)n
F 2y Wn _
32( 1/2,2 - 3¢ ‘4) (4/3 — c}n (15.1)
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j (3n+2)(1—3c+k)(2k-1)k
= S Dt n) (Bn—3+ R (h—3n_7)

=3n,2/3-¢,3n4+2 3  (c+2/3)n(1/3)n
SFQ( 3/2,1 -3¢ Z)‘ = a.(a/3), (15.2)

(5+6n)(k—3cyk(1+2k)
Q= (30+2+3n)( 3n—-3+k)(k-3n-2)(k-3n-1)
~3b,-32,1/2- 22 | 4\ _ (1/3-b),
3F2( _3n 2/3 b—n —) —m (15.3)

Q= k(k—3n—-1)(-1-3b-3n+3k)(3k-5-6%)
T (-3n-1+42K)(-2-3n+2k)(-3n-3+2k)(3b—3n-1)

ggn,5/4——1/2——3n+2— | _(1/3)n{4/3 — b)n (15.4)
*\3/2,4/3-b+n,1/4-322/3 b—n |9 (1/356)n(4/3)n '

_ (—1-3b-3n+3k)k(L+2k)(5+6n)
Q= (1—3b+4k)( In-3+k)(k—-3n-2)(k—-3n-1)

-3n,1+3n,3/4—- 322 30 _1/2 _(2/3—b)n 155
5 1/2,1/3—b—n,2/3—b+n,————1/4‘9 C (234 D) (15.5)
Q=— k(2k—1)(-3b—-2-3n+3k)(3n+2)
O (-3b-14+4k)(-3n-3+k)(k—-3n—-2)(k—3n—1)
—b,~b-1/3-n,3/4- 32 38 _3n 1/ dn _(1/3+4b),
5F"( —3n,-38 174 3z ,1/;—3—2", 3 9)_(_173—b)n (15:6)

(k—3n—1)(=1—3b+2k)

Q:_(—3b—1—3n+4k)(—2—3n+2k)(—3n—1+2k)
(=3b—2+2k)k(3k—5—6n)

*T3n 3+2k) (-3b-4-3n+3K)

1/2—3—" —-3b 31 143b-3n

—b,-n,1-3p1/2+ 3k 3n 7 4 3b_dn
5F4( G / 2o =(—_(0-)“— (15.7)
? 2!

0= (3b+k—3n)(2b—1+k—-2n)k(-3b—2+2k) (-1 -3b+2k)
T (3b-3n+2k)(dk—-3n){(3b-1-3n+2k}(3b 2-3n+2k)(-n—1+k)

F, 1+a,—n,1+32 32 3/24 3. 30 3/54 32 3u |9
1/2,3a+3,1/2+ 32 32 _3p
— (71/370')71(_2/3_0‘)71 (15.8)
(1/3)n(2/3)n




Finding Identities with the WZ Method 553

(@—14+k-2n){3a+24Kk)
(1+3a—3n+2k)

Q=-2

« kE(2k - 1)(k-3n—-1)
(3a—-3n+2k)(2+32a-3n+4k)(3a—-1-3n+2k}(-—n—-14+k)

16. From Dougall’s Theorem

F2a+1/2-b—d—c+ &b+ 2k (c+k)l(a+k)(d + k)
Tk+1)L(b~a+1/2+d+ec+k)(1+a—c+k)I(§+KT(l+2a—b+2k)
Fb—-a+1/2+d+I(5)I(1+2a-b-2c)T(1 +a)l(§+1+k)
“TOT(Za+1/2-b—d-cl(1 t2a—b—2d—2c)l@I(L +a—d+k)
MM +2a-b-2dT{l+a—c-dT(1/24+a-b—-c—d)(1/2+a - b)
% T(2 + D(@T(1/2 +a—b— dT(OT(1/2+a—c—b)

b+1,-n,3/2—e+b3-2e+b-2d,4/3+%,2e-2-b+2de+n ll

TP \24b—-2¢—2n,-1-b+26,2+b+2n,5/2—e+b—d,1/3+%,d+e
(324 Da(e=3/2- b+ d)n(1 — d)n(1 + H)n
(e_%)n(5/2_e+b“d)n(d+e)ﬂ(_%_1/2+3)n

(16.1)

(3-2e+2k+2b-2d){(k—-b—-2+2e)k(e—1+d+k)
T Q+b+3k)(e+n)(3—de+2b—2d—2n)(d-n - 1)
(k+b+1—-2e-2n)(1+e+2n)
2+k+b+2n)(-n—1+k)

Q:

17. From Dougall’s Theorem

F3k+b)I'(2a—b—c+k)(c+ k)T(a + k)(5 + 1+ k)
T(k+ DT(b—a+1+ct k(1 +3a—b+3KI{(1+a—c+RI(E 1k
FBa-20(a—b—c)T(S)T(1+a)l(1+3a—-b-3c)['(1 -a+c+b)
Le)Ma)[(§ + I (2a —b—c)'(8e — 20— 3c)'(a — b)

B, 4/3 —d,—3n, 38 +5/4,28,1/2+ 28, c—1/3+d,3n +2 |1
3/2,3-3d,2/3+c—n,4/3+n+c,1/4+23£,3d -2+ 3¢
— (4/3 + C)n(d)n(5/3 —d- C)n(lls)n
(4/3)n(c+ d}n(5/3 — d)n(1/3 — ¢)n

(17.1)

(2-3d+K)(1+2k)k(3d-3+k+3¢)
(Bc+1+4+4k)(d+n)(3d—-5+3¢c—3n)(-3n—-3+k)
(5+6n)(3k—1+3¢c—3n)
(k—3n-1}(k-3n—-2)

Q=2/3
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P 1/3 - d, 3n,2,c—1/3+d $+3/4,8 -1/2,143n |1
7 1/2,2/3+n+c,1—3d,3d—1+3c,1/3+c—n,§4-c-1/4
_{l—d-chn(d+1/3)nlc+2/3)n
(2/3 =)l —d)n(1/3 +d+0)n

(17.2)

(3d—2+k+3¢)(2k — 1)k (k — 3d)
(Be—14+4k)(1+3d+3n}{—n—1+c+d)(-3n—-3+k
(3k—2+3c—3n)(3n+2)
(k—3n-2){k—3n—-1)

Q=4/3

1-% —n,20-3a+3,32-1-532-1/2--b,-b1-a+n
7Fs ’1

a—bl—b+3n,-——+2 ~b b _32.3/534-2-b-3n

1= 5n2/3 = Dal1/3- a2 =20+ b,
C(l-a+ %)n(5/3 —a+2),(4/3-a+ %)n(a —b)n

(17.3)

Ba-b+k-3n-3)(a—2n-2){a—b-1+k)
Ak -b)(3a—b-2-m(2—bik+3n)
y (b—-3a+2k+1)(2-3a+b+2k)k
(1-b+k+3n)(-—n—-1+k}(a—n-1)

Q:

18. From Dougall’s Theorem

Dla+k)(2a—1/2-b+K)T(§ + 1+ k)T(b+4k)
Pb—a+3/2+kT(k+1T(E + k(1 +4a—b+4k)
264 36-20(b —a+3/2)[(1/2 + 2a - H)[(L + a)T(4a — 1 — 2b)D(a — 1/2 - B)T(S)
T{a)['(2 + 1)I(da—2 - 30 (B} (2a — 1/2 - b)

P 24+4n,2/3 -2 7/5 - 4£1/3 -4 1 4¢ 4n|:z7
65 3/2,1ﬁc—n,3/2~c+n,2/5—%,1—40 32

_ (1/4)(e+1/2)a(3/2 — &)
(c)n(l - c)n(5/4)n

(3+4n)(1+2k)(k-40)k(2k-1)(—n—c+ k)

(18.1)

@= (2—4c+5k)(1+2c+2n)(k 4—4an){k—-3-4n)(k—-2—-4n)(k—1—4n)
6/5- 24, 1+4n,2/3 - £, 1/3 - 45145 —4n | 27\ _

6F5( 1/2,1 —c—n,5/4—c+n,1/5- 42 —4¢ E‘é) =1 (18:2)
0=4 k(1 -de+k)2k- 1) (k-1 {-n—-ec+k}(5+8n)

(1—4dc+8k)(c+n)k—-1—-4n)(k—2—-4dn) (k-3 —4dn){k—4—4n)
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19. From Dougall's Theorem

IF'2a—b—c+k)T{a+k)T(c+2k)T(b+2K)I(§+ 1+ k)
TG+ kI(14+2a—c+2kT0-a+1+c+k) I+ 1I(1+2a—-b+2k)
L2 26-2e-11(1/2 4 a — )T(a — b— )T(1/2 + a — H)(Z)
Ta)'(2a—-2b-¢)
Fl+2a-b-cl'(1+a)T(1 —a+c+b)
T TRa-b-20T(BI(Or (G +1)

3/2,-2a-3d+1,1/3-£,2n-d+2,2a+3d—2n
(- a - d)a(3/2 ~ Dn(l - $a(1/2 -~ a - 2d),
- (l_d)n(l/‘z_a_%é)n( a__+1)n(3/2)n

s ( —n,d+1,4/3-%,a+d+1/2,-a—2d+n+1,-d ’1)

(19.1)

(Za+k+3d—1-2n)(k—d)k(1+2k)

= A d73m@aetdd-1-2n(ard-n-1)
(k-2a—-3d}(a+2d—-2n-2)
(k d+2n+2(a+2d-n-1}(-n—-1+k)
A -n,d-1+a,2/3+ 4% +“2d—1+a+n1/2—d1—a—d‘1
°\ 1/2,d+a+2na-1+3d,4-1/3+2,2-3d—a—-2n
_ (a_1/2+2d)n(d)n(§ +1/2) ( d)n (19 2)
- (a+d)ﬂ%_1/2+32d)n(2 32.1)“(1/2)“ .
o0 (a—2+3d+k)(2k—1)k(1—3d—a+k—2n)
T (2d-1+a+n){dte+2n+k}{d+n)(2a+4d—1+2n)
{(d-1+a+k){a+2d+2n)
X
(d—1+a+3k)(—n—-1+k)
b, nb~1/2+d2d~12/3+3+3,b+d+n ’
S \2b+2d+2n, 20,28 —1/3 422, 8 4 d 24 d+1/2
_ (1+ E)n(d)n(1/2+b+d)n(§ +1/2)n (19 3)
b+ V)n(1/2)n{t + Dl +d+1/2), '
oo _ K(dtb-242k)@d+b-1+2k)(k=1-2n)

(b+1+2n)(k+2b+2d+2n){d+n)(2+b+2n)
b+E)(d+b+2n+1)
(2d—14+2b+3k)(—n—-1+k)
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a—1/2+2d,1-d-n,22 ~2/3+28 2a4+2d-1l,a+d+n

F (1—24,—2n,a+d—1/2,d—1+a,1/3+%+%,4d-2+2a+2n ’1
6£5
T

(19.4)
Q_(a+2d+2n)k(—d—n+k)(2a+2d—2+k)
T (2d-1+a+n)(2e+4d-1+2n)(d+n)
y (k—1)(2a+4d -3 =-2k)
(2a—2+2d+3k)(k—2-2n)(k—1—2n)
F( -2n,1-¢,c—1+2d,3/2-d~¢,3/2—-%,2d+2n ‘_
" \1/2-¢%2-c+2n,3-2d—-2¢,1/2+d,2—c—2d—2n
(3/2 - ';‘)n(]- - %)n(c -1+ 2d)n(1/2)n (19 5)
(£ -12+d)n(§+d)n(2—d—c)n(1/2+d)n '
Q_l/z(d+1+2n)(c—2+2d)(k—c+1—2d«~2n)
- (2d—1+c+n){2—c+k+2n)(d+n)
o (E+2-2d-2c)k(2d~1+2k)
(1—ec+2k)(k-2-2n)(k—1—-2n)
P b+1,-2n,-bb—-2d+2,2n+1,2—d+2
8% 3—2d+2b,2—2d,2+b—2d—2n,%—d+1,bﬁ2d+2n+3‘_
_ (3 -d+Qu(d)n(-1/2-b+d)n(3/2+ 5 - d)n (19.6)
(3/2 -~ a2 - d+b)n(d = Pn(-1/2 - + ) ‘
0= (b—2d+2)k(1—-2d+k)(2—2d+k+2D)
T (2-2d+b+2k)(d+n)(k-2-2n)(k—1-2n)
y (1+k+b—-2d-2n)(3+4n)
(1+2b-2d-2n)(b—2d+2n+k+3)
20. From Dougall’s Theorem
51-a1(5/2 —a) (1 +2a)T(5k - 2a)[(1/2 —a + k) (1 — 2a + 4k)
AT(7/2 - 3a + SK)T(k + 1)['(—2e)T{a + 3/2)
1/2,1-282,2/3 - 50 1/3 52 _5r o7
54 n Sn n ——]=-1 n>1 20.1
( —3r, 58 .4/5-n1/2- 52 5 (201)
0 (-1-5n+5k)(2k—1-5n)(k- 1)

T {@k—b5n)(1+5n)(—1-5n+3k) (3k-4-5n)
y (6k—7—-10nYk(k—~2)(2k —5n)
(3k—-3-5n)(3k—2-5n)(-5n—5+3k)
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1/2,-n,5/8 ~ &8, -3/4 -
5F4( 1/3 - 52 1/3——“,—— —3/8——
 (1/10a(0/10)a(7/10)a(3/10),
— {4/5)n(3/5)a(2/5)n(6/5)n

2k+3)(1+2k)k

8k-3—-10n)(—n—-1+k)
(Bk—-2-5n)(3k—4-5n)(3k—3-5n)(2k—5—4n)

(4k 7-10n)(4k—9—-10n)(4k—-11-10n) (44 - 13 -10n)(4k — 15— 10n)

_3
27

3
"7

(20.2)

Q=32

P 1/2,5/4— 22, 1/2— 22 1/2 —n, - 32

"N\ 1/4- B2 7/6 - 52 1/2 - B0 576 B2
_ (—1/5)n(1/5)n(2/5)n(3/5)n

(7/10)11(_1/10)n(3/10)n(1/10)n

(20.3)

2k +3) (1 +2k) k(2k — 3 — 4n)

Q= 15 2k —1=2n)
(6k+1—10n)(6k —3—10n)(6k—1—10n)
“Rk-1-bn)(2k-2 5n)(2k—-3-5n)(2k—4-5n)(2k -5 —5n)
1/4,2/3,-1/4,~5n,1+5n | 16\ _
5F4(1/2 -1/3,3/5+n,2/5—n %)_1 (20-4)
o (k—1)(2k—3)(2k— 1) (-3 —5n+5k) k(3 +5n)

(3 Sn+k)(k—-4-5n)(k—-5n-1){k—-5n—-2)B3k-1}(k—5n-5)

1/4,3/4,7/6,~5n,5n +2 | 16
5Fy =1

3/2,1/6,6/5+n,4/5—n | 25 (20.5)

Ck-D{k-1Dk(-1-5n+5k)(1+2k)(7+10n)

Qz_4(—3—5n+k)(k—4—5n)(k—5n—1)(k—5n—2)(1+6k)(k—5n—5)

n ( 1/4,3/4,-n, 18,1 + 3/2 @) _ (17/10)n(11/10)(9/10)(18/10)n 5 o

“\3/2,9/2+5n,-3-5n,% | 16 (6/5)2(7/5)n(8/5)n(4/5)n

(3+4k) (1 +4k) k(1 +2k) (5 +4n)

= —128
@ (12k+7)(11+ 2k +10n) (9+ 2k + 10n)

(k—4-5n)
X
(15+2k+10n) (13+ 2k +10n) (—n— 1 + k)

5F ( 1/4 _1/4 -1, ,n+ 1/2 25) _ (11/10)n(9/10)11(7/10)11(3/10)“ (20_7)

1/2,1/12, -5 - 1 3/2+5n 16 (2/5)n (4/5)n(3/5)n(6/5)n
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(1+4k)(4k—1)(2k - 1) k(3 +4n)

= -128
@ (1+12k)}(2k+5+10n)(3+2k+10n) (9+ 2k +10n)

(k—5n-2)

(7+2k+107. {(-n—-1+k)

21. From Gauss’s Second Theorem

T(2a + k)[(2b + K)T(a + 1/2)0(b + 1/2) (1/2F
C(k+ )T{a+b+1/2 + K[ (2a)L(20) VT

gL } _(2-2b)
Z1\2-20+ni2) (B/2-b2"

_k
-n—-1+k

(M08
n
1/2’_-5-

Q=2

1
—) =2l-" n>1

k(2k —1)

Q=8(6k—n)(—n—1+2k)

F 1+2b+n,1—1§-,——n,—2b—n‘ 1y (0),1__
453 T b+ 1/2),27

~8.b+1,1/2-b—n 8

(—1—2b—2n+2k) (b+ k) k

Q:4(3k—n)(—n—1+k)(—2b~n—1+k)
ﬂ+1—n———-——+1—26—n' 1y 28),
-2 _n1/2-b-n 8] (b+1/2),2n
0= (k—b)k(-1-2b6-2n+2k)
( 26-n+3k)(-—n-14+k)(-2b-n—-1+k)
22. From Kummer’s Theorem
F(2a+ k)T + &)1+ 2a)T(a — b+ 1)(-1)*
Tk+1DT(1+2a—-b+KT{2a)T(6)T(1 + @)
2 _2b_ng gy p 21/
+Fs 27 3 s T 2+/ '4 =(-1)"
l—b,—T”—%l 2b—n
Q=- {(k—2b-m)k{k—b)

2
(=26 —mn+3k)(—n—-14+k)(-2b—n-1+2k)

(21.1)

(21.2)

(21.3)

(21.4)

(22.1)
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-n,-%-al1/2-%—a,1-
a3

i 4) = (-1 22.2
l-a,l—-n—2a,— 3 (-1) (22.2)
a)k

(n—l+k)( l-n+2k—-2e}(3k—2a—n)

2a

3

Q=- (k—2a—n)(k-

23. From Saalschiitz’s Theorem

(a+ kB +ETc+k(1+a+b+ec—d)(d—-¢)

d
Ck+1DTd+ET(14+a+b+c~d+ K (a){BI(c)
I'd-a-

—c)I'(d — a}'(d — b)
Td-—ae—-c)I{d—b—c)[{d-a—5)

5 5
F, (n1+ Sno_p,1/12, -3

_ (1/2)a(2/3)n
1/3,52,1/4+ 3,3/4+ % 1)‘(5/6)n(1/3)n (23.1)
 (Mk-1+20)(3k-2)k
Q_(4k+5n)(2+3n)(fn#1+k)
3d 1 1/4- 32 nd—-1-n,3d—3,d— 1/2 @2 -da(l - d)n
SF“(%—%—I/M%—I—%T 3/4- 71)—W 252
o _

(3d—3-n+2k)(2k—4+3d—n)(d+k— 1)k

(3d-3-3n+4k)(d-2—-n){d-2—-n+k)(-n—1+k)
1/4,3/4,—n,5/6 — 22
5F4( /4,3/4,~n,5/6 — &

4/3+n 1) = (5/6),(2/15)
53,8 -%% %16~ (

my ez N
_ (1-6n+12k)(3k+2)k(12k—5—6n)
@= (-2 -15n+12K)(5+6n)(4+3n)(-n—-1+k)
5F4( -L2- -3, /2—— 1) _ (1/3)n(8)a(2 = b)n
3/2,8 —n,1- 1/4 (4/3)($)n
=1/2

Ty (23.4)
(1+2k)k(2k—b—2n)(2k—2+b—2n)
k-

1-3m)(b+n)(b—2—n)(—n—14+2k)
oFy ( B8

y Ty _11—3_n b _b-n,
NIk DAt o P PP UMD
1/2,1 -4 —-n1+% —n, -3¢

(Bn(=3)n’

1) (2k —b—2n) (2k +b—2n)
(Ak—3n)(b+n)(b—n)(—n—1+2k)

n>1
:1/2k(2k—

(23.5)
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1-n,d—n,—22,5/2 - 2d @-ddn(l-dn =
(23.6)

—2,1/2-2,1-322_24,3-3d —3d).(2 — 24).,
5F4( / ’1)=2/3(3 3d)n(2 - 24)

2k—4d+3)k(d—n—1+k)(k—n)
(4k—3n)(3d—3-n)(2d—2-n)(-n—1+2k)

_ (3/2)11(—1):1
1) = m, > 2 (237)

(6k+5-6n)(6k—5)k

Qz_

. (7/6:5/6:-%3,1/2 - 3,9/4 -
e 1/6,%—7;,5/4—— 3/2+n

=2/9
Q=2 (-n—-14+2k)n{dk+5—-5n)
F, —n31/4———‘iTn, e a—l—3/2——-—— -3 )
“—3/4———(1 1/2-%,-% —a,-2-3a

(e}l +a),
T (=1-2a(2+2a),

{(-2¢-2-n+2k)(-3-3a+K)k{(2k—3—-2a--n)
(a-n)(—-3a—-3-3n+4k)(-n—2—a+k)(-n—1+k)

n,—n,1+ 32 3533 3b 1 3-—2b0).(2b~ 1),
sFy (1/2 l——) :( ) ( ) (23.9)

(23.8)

Q=_

,35",2b—1+n3 2b+nl 4 (B)n(2 — b)p
0= k(2k —1)
T T(5k+3n)(-n—-14+k)
n,1— 52, —n,—35,3b (b (—b)n
~3) = Tannab, 10
5F4(1/2,—3?“,142b—n,1+2b—n’ ) (—25)n(2b)n (23.10)

(2b—n+k)(2k—1)k(k—2b—n)
(b-n}(b+n)(5k—-3n)(-—n-1+k)

Q=-2
24. From Saalschiitz’s Theorem

272k-2¢0(3/2 +a+c - BT (c+k)[{b—a—-1/2-c)T(b-c)L(a+ 2k (2~ 1 -a)
Fr2b—a—-1-2cI(a)['(3/2+a+c—-b+k)I(k+1)['(b—a—1/2)T(c)T'(b+ k)

1-2d,2-4d- 26,——0—3d+n+22/3~———2d
_ (/a2 -c—3d}n
- (3/2_C_2d)n(1 _d)n

( 21,1~ 2d —¢,5/3 - 26 ~2d,1-3d—¢,1/2~d )
s Fy

(24.1)
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k(k—2d)(1—4d+k—2¢)

@ = Bk 2c+2-6d)(k—2n-2)(k—2n-1)
-n,2-2b+2¢,5/3—-22 - 22 1-b—n,3/2— bl4 (b~ 1)n(3/2+c—b)n
54 —2n,2/3-2 _223_92h1—c—n - (©@n(1/2)n
(24.2)

(2-2b+ k) k(k—c—n)(k-2n—1)
3+2c_2b+2n)(3k—2b+2—2n)(-b—n+k)(—n—1+k)

Q:—l/z(

25. From Saalschiitz’s Theorem

3-1-3k-aT(g — b4+ 2)T(b-—a - 1)T{a +3Kk)[(3b—a—2)
T(k+1)T(3b—2a—-3)L(2+a—b+ k)T (a)T(b + k)

-n,2-3¢,3¢—113)  (e)hn(l —¢)n
B (" 5 5) = W 5D
o 2 (k-3n-1k@k-1)

27 (c+n)(c—n—-1)(—n—-1+k)

-n,4-3¢,3¢—2 |3 _ (c)a(2-0)n
(Tt |5) = R (52)

2 (k-3n-2)(1+2k)}k

= S erne—z-n)(n-17F

) 1
3b-2,-32 1/2-3n 3k _3/4_3n (1/3}n(2/3)x

(3b—-3+k)k(2k—1-3n)(—2—-3n+2k)
(—n—1+k){(k—2+b—n)(3b+4k—-3-3n)(b+n)

5F4(—nb—n—l +1/ 'Irl%_é_ /2’3_211_1'9)_ (l_b)ﬂ(b)n (253)

Q=-1/27

26. From Saalschiitz’s Theorem

T'(l1-c+2a+25T(b+kT(c—2a)2%*T(a+ k)(c~1/2—a—b+k)
D(c+ 2k)D(k + DI{a)'(c—1/2 —a — b)I'(1 — ¢ + 2b)['(h)

- (—a 1-2d,—n,—n—a—1/2, 2/3—_7— 2a 4) _(=dn(@+l/Dn o0y

d—n-a,—2a,-2n,-1/3 T (1/2).(1 + a —d)y,

(k—1-2n)(d-n-1+k—-a)k(-1—2a+k)

Q=1/2(_1_2a_2n+3k)(d—n—l)(—n—1+k)(—2a—3—2n+2k)
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27. From Saalschiitz’s Theorem

T(b-a)M{a+2k)T(b—a—1+k)
T(k + DI(a)L (b + 2k)T(b — 2a — 1)

N _ G215
(172)0(5/6)

-1,1/2,-n,1/2 —n,3 - 2
S4\3/2,1/4-3,3/4-2,1/8 - &2

B (=3 —2n+4k) (dk—1—2n)k (L +2k)
= BrT 1l 6nm B ran (=15 R (-1 —2n728)

1/2—¢,-2n,1 - 28, —¢
4F3 / ve 1 o |4 =1
l-—c+n,—%,1-2¢

B k(k—1)(k—2c)
Q__(3k—2c)(k—2n—2)(k—1—2n)

4F3 a’!_aa_n1%+1 _];) _ (%+1)ﬂ(1/2+%)n

1/22n+e+1,$ 14/ (1/2(1 4+ a)n

02 (2k — 1)k (a+ k)
T e+ 3k (a+ 1+ 2r 4+ k) (—n—1+k)

28. From Saalschiitz’s Theorem

(—1)23-1-3%~agl+2k1(gq 4 3K)T{a + 5/2)
L{k+1)(a)(1+2a)1(3/2+a+ 2k)

1/2,-3n | 1\ _ (2/3)a(1/3)n
2f1 (1/2—2n ’ _") T (3/4).(1/4),

3
B (~dn—1+4+2k)(3+2k)k
Q“3/16(—3n—3+k)(k—sn—2)(k—3n—1)

- (—1/4,5/4,—11 | Z) (3/4)n(1/4),

1/2,~3n T 2/3).(1/3)n

0-_ 3 EQk—-1)(k-3n—1)
T2 B3+4n)(1 +4n)(—n—1+k)

1/4= -n, 7/4 3 (3/4)71(5/4)11

o2 (3/2, ~3n-1 Z) ~ (4/3).(2/3)n
32 (142K k(k-3n-2)

Q__E'?(5+4n)(3+4n)(-n—l+k)

(27.1)

(27.2)

(27.3)

(28.1)

(28.2)

(28.3)
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1/4,-1/4,-3n | 4\ _ (2/3)n(1/3)n
3F2( -1/2,1/2-n ‘5) T (/22 (28.4)
0= 34 k(2k—3)(—1—2n+2k)

(Bn-3+k)(k-3n-2)(k-3n_1)

/4~ 3,174, -32,1/2-32,7/4 11\ (1/3)u(=1/3)s
sf1 ( 3/2,1;4— STﬂ,a;Mn, 5/42—11 | 5) T /4 (—1/4), (28.5)
.9 (1+4k -~ 4n)k(1+2k) (-1 —4n+4k)
Q_8(1—3n+4k)(2k—2-»3n)(2k—1—3n)(—3n—3+2k)
5/4,1 —3n _p 7/4, 1/2—n (=1/2).(3/2).
sF4 (5/2 3/8 _Tn ~32 170 9) T 2/3).(1/3)n (28.6)
4 (3+2k)k{2k—1-3n)(2k~2—3n)
Q__§(3+8k—6n)(3+2n)(—1—2n+2k)(—n—l+k)
1/2,-n, 15 —-— 42n—1/2 (1 4)n(3/4)n
«Fs ( -3/10 - 82, 3,., ,1/2 - |_16) T 2/3)n(1/3)n (28.7)
16 (3+2k)k(2k—1—-3n)(2k—2—-3n)
@ = Bk —3-dn)(10k -3 12n) 2k -5 —dn) (- =15 F)
1/2,-321/2-321-52 1 16) _ (1/3).(0)n
“F3( —6?",25/6—n,2j3—2ns _3) T Ta/e)2 (28.8)

—1/s (-1—6n+6k)(~1—-6n+3k)k(k—2)
Q=1 (5k—~6n)(2k~2-3n)(2k—1-3n)(-3n—-3+2k)

29. From Vandermonde’s Theorem

T(a+ K)['(b+ k)I'(c — a)T(c ~ b)
T(k + Dl (c+ KM@ (B (c—a - b)

4F3(1_“/2_ — % g ) 1/2 ) n>1 (29.1)

1-n1/2+5-n (1/2— IR

(b—1+2k-2n)k{k—n)
Bk-2n)(b—n—-1)(-—n-1+4+2k)

__(b)n
4) T (29.2)

Q=1/2

1/2~b,-n,—b—n1-2 22
+#s 1-5,1-2b~2b 22
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(k — 2b) k (k — b)
(—2b—2n +3k) (~b—n—1+k) (-n-1+k

1+2-n (1) _ (0)a
QF‘( 2 ‘Z)”(l/z)n
2k—-1)k
(n+3k)(—n—1+k)

n, )n
4F3(/;~.§1’1—2b n|4) (—(2%)_7;

Q:_

Q=2

(k—2b—n)(2k— 1)k

Qz—z(—n—1+k)(b+n)(3k—n)

. —n—n—a—1—2 2¢,1/3-% -3 11\  (1+a)n
ars -2/3-22 -1/2-%-a,-%—a 2+ 2a)n

4

Q= k(-3-n+2k—-2a)(-2—n+2k—2a)
T (8k-2a-2-2n)(-n—-1+k)(k-2-n-a)

2k - 1)k
(5k—n}(-n—-1+k)

Q=2
30. From Vandermonde’s Theorem

4/TT(2b— 1 —a)[(a + 2k)2"2k-2b+a
I'(k+1)T(@)T(b—a—1/2)I(b+k)

1/2"%51_274% — (_1)11
3F2( 4 1)_(1/2)71’”22

1/2,-%
(2k—-1)k(4k—-1)
dk—-n)(n—-1)(-n—-142k)

4)=~1, n=>1

(k—1)k(2k —1)
Bk—2n){(-n—-1+k)(2k-2n-1)

Q=

1/2 —n,—n,1- 22

F.
3F3 1/2,~2n

Q=-

—n,b—1/2,b— n—1,2—;+1/3—%n
aF3
~2n, 2 20 _9/3 951

_ -
‘8) = i

(20.3)

(29.4)

(29.5)

(29.6)

(30.1)

(30.2)

(30.3)
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01/t k(k—2+2b)(k—2n—1)

(2b-243k-2n)(b—24+k—n)(—n—-1+k)

Fy (3/2+ 2.2/3,-n,2+2n l %) _ (5/2)a(11/6)n

U n4/3,1/2+2 (3/2)n(7/2)n
AL — JES;:; (ﬁél’l 5+2n)
(e 1) 6%
Q=19/4 —n _kl(ikk;(i)k +n)
+Fs (12//33 171(1JJ+rzn%/lg+n I 27) %3
k(3k 1)

ng/2(—n-1+k)(10k+1+2n)

(5/6,—n,2+ 2n,9/5+ %
aF3 77

2 ) _ (9)a(5/3)n
5/3,4/5+ %,5/3+n

27)  (3/2)a(5n

(B3k+2)k

R e Y [ g

R 1/3,2/3,-2n,7/5 + 22 _ {(Da(1/2),
E\s/a-2 22 o 5/4-2132] T (2.(-1/2).

_ (1-2n+4k)(-1-2n+4k)k
S T2n+2+5k)(k-2n—~2)(k—2n—1)

BN +1,5/6,-2n ) 32) _ (1/2)a(3/4)n
I\ 43.5/3,6/5+82  137) T (7/6)a(7/8)n

k(3k+2)(3k+1)

Qz“3(6+8n+5k)(k—2n—2)(k-2n—1)
1/3,1/2-8,-3,1+ 3 | 22} _ _(1/6)a
41«“3( 2/312_21';2,2“ i 5‘5) .=t
27 (k-2n)(3k-1)k

2 (1+6n)(2n+5k) (—n—1+2k)

(30.4)

(30.5)

(30.6)

(30.7)

(30.8)

(30.9)

(30.10)
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31. From Watson’s Theorem

T'(2a + k)T(2b+ k)T (c+ kT (2c)T{a + 1/2)T(b + 1/2)T(c — a + 1/2)T(c — b+ 1/2)
T(k+1)I{a+b+1/2+ k)T (2c+ BT (2a)l(2b)I(c)/aT{c + 1/2)0(1/2 —a — b+ c)

£ 1/24a-¢,-n,n+1,2-2c+n,5/3-2£+% 1 _ R-cp(2-2a)
RN 2-c4n2/3-2 42 n-2a+423/2-¢c 4] (3-20)a(3/2-a)n
(31.1)

k(1= 2c+2k)

= e nT 3R (cn 15K
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