
File: DISTL2 174301 . By:CV . Date:25:05:98 . Time:13:53 LOP8M. V8.B. Page 01:01
Codes: 3915 Signs: 2514 . Length: 50 pic 3 pts, 212 mm

Journal of Multivariate Analysis�MV1743

Journal of Multivariate Analysis 65, 228�244 (1998)

Testing for Spherical Symmetry of a
Multivariate Distribution

V. I. Koltchinskii and Lang Li

The University of New Mexico

Received December 20, 1996; revised August 20, 1997

We consider a test for spherical symmetry of a distribution in Rd with an
unknown center. It is a multivariate version of the tests suggested by Schuster and
Barker and by Arcones and Gine� . The test statistic is based on the multivariate
extension of the distribution and quantile functions, recently introduced by
Koltchinskii and Dudley and by Chaudhuri. We study the asymptotic behavior of
the sequence of test statistics for large samples and for a fixed spherically asym-
metric alternative as well as for a sequence of local alternatives converging to a
spherically symmetric distribution. We also study numerically the performance of
the test for moderate sample sizes and justify a symmetrized version of bootstrap
approximation of the distribution of test statistics. � 1998 Academic Press
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1. INTRODUCTION

Testing a probability distribution for symmetry is a well-known problem
in the univariate case (see, e.g., Shorack and Wellner, 1986; Cso� rgo� and
Heathcote, 1987; Schuster and Barker, 1987; Arcones and Gine� , 1991), but
it is much less known in the multivariate case, where there are many
different kinds of symmetry, and only few tests have been suggested. For
instance, Beran (1979) considered a test for ellipsoidal symmetry based on
orthogonal projection estimators of multivariate density. Romano (1989)
studied a rather general family of bootstrap tests, including the one for
spherical symmetry of a multivariate distribution with a known center.
Baringhaus (1991) suggested |2-type statistics for testing spherical
symmetry, consistent against all alternatives (the center of symmetry was
also supposed to be known). Heathcote, Rachev, and Cheng (1995) studied
the so called ``diagonal'' symmetry. They suggested bootstrap test based on
the empirical characteristic function. We refer also to the papers of Kariya
and Eaton (1977), Blough (1989), Ghosh and Ruymgaart (1992).
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The goal of this paper is to suggest a new test for spherical symmetry of
a multivariate distribution, based on the extension of the distribution and
quantile functions to the multivariate case, recently introduced by
Koltchinskii and Dudley (see Koltchinskii, 1994a, b) and Chaudhuri
(1996). This test is much closer than previously suggested ones to the
Kolmogorov�Smirnov type tests. In the context of symmetry testing, the
univariate analogues can be found in Schuster and Barker (1987) and
Arcones and Gine� (1991). The test statistic is based on the sup-norm of
certain empirical process, and main results are based on limit theorems
for such processes and their bootstrapped versions. Considering other
functionals of the process (instead of the sup-norm), one can get other tests
for spherical symmetry (e.g., of |2-type). The center of symmetry is not
supposed to be known, and to estimate it we use Haldane's spatial median.
The test statistic is invariant with respect to the groups of all translations
and orthogonal transformations of the space Rd. We prove consistency of the
test against any spherically asymmetric alternative, study the approxima-
tion of the distribution of the test statistics using a symmetrized bootstrap,
and investigate numerically the performance of the test for moderate sam-
ple sizes. In what follows the problem is described in some detail.

Let P be a probability measure defined on the Borel _-algebra B(Rd) of
the d-dimensional space Rd. Given a vector % # Rd, denote by P% the %-shift
of P : P% (A) = P(A & %), A # B(Rd). P is called spherically symmetric
about 0 iff, for all orthogonal transformations O of Rd, P b O&1=P. If
there exists a vector % # Rd such that P&% is spherically symmetric
about 0, then P is said to be spherically symmetric about %. The vector %
is then the center of spherical symmetry. Denote SYM(Rd) the set of all
spherically symmetric Borel probability measures on Rd. Given a sample
(X1 , ..., Xn) of independent random vectors with common distribution P,
our goal is to test the hypothesis H0 : P # SYM(Rd) against the alternative
Ha : P � SYM(Rd).

Preliminaries

Denote x( j) the j th component of x=(x(1), ..., x(d )) # Rd; for an Rd-valued
function F, F( j) denotes its j th coordinate. Let ( } , } ) be the canonical
inner product in Rd and | } | :=( } , } ) 1�2. & }& (often with indices) will stand
for the norms of functions and operators. Also, Bd :=[s : |s|<1], S d&1 :=
[s : |s|=1], and the uniform probability distribution on S d&1 will be
denoted by m. Given u, v # Rd, u�v denotes the linear transformation
x [ (v, x) u from Rd into Rd. For a differentiable function f on an open
subset U/Rd, {f =f $ will denote the gradient (derivative) of f. If F is a
differentiable function from U into Rd, F $ denotes its derivative. Note that,
for s # U, F $(s) is a linear transformation of Rd, so, F $ is an operator-
(matrix-)valued function on U. If A is an invertible linear transformation
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of Rd, inv(A) denotes its inverse. Given an operator-valued function 9,
defined on a subset of Rd, inv(9 ) is the function s [ inv(9(s)) (assuming,
of course, invertibility). Given a function f from a subset of Rd into Rd, and
an operator-valued function 9, defined on the domain of f, the ``product''
9f means the function s � 9(s) f (s).

The main probability space, on which the observations X1 , X2 , ..., are
defined, will be denoted by (0, 7, Pr). E is the expectation with respect to
Pr. We also use the outer probability Pr* and the outer expectation E*.
The symbol w�d is used to denote weak convergence of probability
distribution (in R1 or Rd); w�

p
denotes convergence in probability. The

symbols oP and OP are used in a standard way.
Given a set S, denote l�(S) the space of all uniformly bounded

Rd-valued functions on S with the sup-norm &Y&S :=sups # S |Y(s)|,
Y # l�(S). A sequence of stochastic processes !n : S [ Rd is said to
converge weakly in l�(S) iff there exists a Radon probability measure # on
l�(S) such that, for all bounded and & }&S -continuous functionals
8 : l�(S) [ R1, we have E*8(!n) � �l�(S) 8 d# as n � �. In what follows
S will be a metric space and # the distribution of an a.e. bounded and
uniformly continuous stochastic process ! : S [ Rd. We use the sign w�w for
such a convergence: !n w�w ! as n � �.

Let BL1(l�(S)) be the set of all functionals 8 : l�(S) [ R1 such that for
all Y # l�(S) |8(Y )|�1 and for all Y1 , Y2 # l�(S) |8(Y1)&8(Y2)|�
&Y1&Y2&S . Given two random functions `1 , `2 : 0_S [ R1, defined the
following distance:

dPr(`1 , `2) := sup
8 # BL1(l�(S))

|E*8(`1)&E*8(`2)|.

It can be shown that !n w�w ! as n � � iff dPr(!n ; !) � 0 as n � � (! is an
a.e. bounded and uniformly continuous stochastic process).

Test Statistics
In this paper we use an integral transform P [ FP of the measure P,

defined by (here and in what follows we assume that 0�0=0)

FP(s) :=|
Rd

s&x
|s&x|

P(dx), s # Rd, (1.1)

to construct a test for spherical symmetry of P. Such a transform was intro-
duced by Koltchinskii and Dudley (see Koltchinskii, 1994a, b) and
Chaudhuri (1996) in connection with their extension of quantiles to the
multivariate case (the so called spatial or geometric quantiles). It was
shown by these authors that, for a measure P which is not concentrated in
a straight line, FP is a one-to-one map from Rd into the open unit ball Bd ,
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and, moreover, if P is nonatomic, Fp(Rd)=Bd . FP possesses many proper-
ties of the one-dimensional distribution function, including the fact that
FP=FQ implies P=Q, and its inverse F &1

P is in many respects similar to
the quantile function. Note, that in the one-dimensional case, FP and F &1

P

are simple transformations of the distribution and quantile functions,
respectively. It was also shown that F &1

P (0) coincides with the well-known
Haldane's L1 -or spatial median of the distribution P, defined as a minimal
point of the functional fP(s) :=�Rd ( |s&x|&|x| ) P(dx), s # Rd. In the case
of a spherically symmetric P, the median F &1

P (0) is exactly the center of
symmetry.

The idea of our approach is to use the following functional

#(P) := sup
s # Rd }FP(s+F &1

P (0))&�P( |s| )
s

|s| } (1.2)

with the function

�P(*) :=|
Sd&1

(FP(*v+F &1
P (0)), v) m(dv)

=|
Rd |Sd&1

(*v&x, v)
|*v&x|

m(dv) 6(dx) (1.3)

as a measure of spherical asymmetry of P. Here 6 :=P&% where
% :=F &1

P (0). The next proposition gives the properties of the functional #,
which justify the definition. The proof easily follows from the main proper-
ties of FP (see Koltchinskii, 1997).

1.1. Proposition. #(P) is invariant with respect to all shifts and all
orthogonal transformation of Rd, i.e., for all % # Rd and all orthogonal trans-
formations O of Rd, #(P%)=#(P) and #(P b O&1)=#(P). #(P)=0 iff
P # SYM(Rd), otherwise #(P)>0.

Thus, it makes sense to base a test for spherical symmetry on the
distribution of statistic #(Pn), which is the measure of spherical asymmetry
of the empirical distribution Pn , based on a sample (X1 , ..., Xn). For an
absolutely continuous P # SYM(Rd) with a uniformly bounded density,
we prove (in Section 2) the convergence in distribution of the sequence of
statistics Tn :=n1�2#(Pn), investigate the limit behavior of the test statistics
Tn under a sequence of asymmetric alternatives, converging to a spherically
symmetric distribution, and evaluate the asymptotic power of the test
against these alternatives.
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A Symmetrized Bootstrap

Since the limit distribution of the test statistics depends on the unknown
distribution P, we use bootstrap to estimate the critical values of our test.
A version of bootstrap we suggest can be described as follows (see also
Romano, 1989). Any spherically symmetric distribution P is completely
characterized by its center % and the distribution ? of the radial component
|X&%| , where X is a vector with distribution P. Let us call (%, ?) the
parameters of P. Given a sample (X1 , ..., Xn) from P, denote ?n the empirical
distribution of the sample ( |X1&F &1

Pn
(0)|, ..., |Xn&F &1

Pn
(0)| ). A spherically

symmetric distribution with parameters (F &1
Pn

(0), ?n) will be denoted Ps
n .

Define on a probability space (0� , 7� , Pr@) a sample (X� 1 , ..., X� n) of independent
random vectors with common distribution Ps

n . It is worth noting that such
a sample can be constructed as follows. Let (R� 1 , ..., R� n) be a sample of
independent random variables with common distribution ?n (it is produced
by the regular resampling with replacement from the sample ( |X1&F &1

Pn
(0)|,

..., |Xn&F &1
Pn

(0)|), like in the usual bootstrap). Then take a sample
(U1 , ..., Un) of independent random points with uniform distribution on the
unit sphere Sd&1, which is also independent of (X1 , ..., Xn) and (R� 1 , ..., R� n).
Set X� j :=F &1

Pn
(0)+R� jUj , j=1, ..., n. Denote P� n the empirical distribution of

(X� 1 , ..., X� n). We show (Section 2) that, for any P with a uniformly bounded
density, the sequence of bootstrapped statistics T� n :=n1�2#(P� n) converges in
distribution to a limit random variable. Moreover, if P # SYM(Rd), then
the limit is the same as for the sequence Tn . This allow us to justify the
bootstrap version of the test.

2. ASYMPTOTICS OF THE TEST STATISTICS

In this section, we study the asymptotic behavior of the sequence of
Rd-valued stochastic processes

$n(s) :=n1�2 \FPn
(s+F &1

Pn
(0))&�Pn

( |s| )
s

|s|+ , s # Rd.

Recall that the statistic Tn , suggested in Section 1 to test the hypothesis
H0 : P # SYM(Rd), is exactly the sup-norm of $n . In what follows we
suppose that P has a uniformly bounded density in Rd with d�2,
which ensures that FP is continuously differentiable in Rd with a uniformly
bounded and uniformly continuous derivative F $P . Moreover, F $P(s) is
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positively definite for all s # Rd and FP is a diffeomorphism of Rd and Bd .
Denote

$P(s) :=!P(s+F &1
P (0))&|

Sd&1
(!P( |s| v+F &1

P (0)), v) m(dv)
s

|s|

&F $P(s+F &1
P (0)) inv(F $P(F &1

P (0))) !P(F &1
P (0)),

where !P is an Rd-valued Gaussian process on Rd with zero mean and the
covariance

E!P(s1)�!P(s2)

:=|
Rd

s1&x
|s1&x|

�
s2&x

|s2&x|
P(dx)&FP(s1)�FP(s2), s1 , s2 # Rd.

2.1. Theorem. If P # SYM(Rd), then $n w�w $P as n � �. In particular,
for the sequence of statistics Tn :=n1�2#(Pn)=&$n &Rd we have

lim
n � �

Pr[Tn�t]=Pr[&$P&Rd�t], t�0

On the other hand, if P � SYM(Rd), then, for all t�0, limn � � Pr[Tn�t]=0.

Recall that H0 denotes the hypothesis P # SYM(Rd) and Ha denotes the
alternative P � SYM(Rd).

2.2. Corollary. Given : # (0, 1), let t: :=inf[t : Pr[&$P&Rd�t]�:].
Then

Pr[Tn�t: | H0] � : and Pr[Tn�t: | H:] � 1 as n � �.

Let now P(n) be a sequence of probability measures on Rd such that
P(n) w�d P, where P # SYM(Rd). Let (X1 , ..., Xn)=(X1, n , ..., Xn, n) be an
i.i.d. sample from P(n), and denote by Pn the empirical measure based on
this sample. Given a function 2 : Rd [ Rd, denote

2P(x) :=2(s+F &1
P (0))&|

Sd&1
(2( |s| v+F &1

P (0)), v) m(dv)
s

|s|

&F $P(s+F &1
P (0)) inv(F $P(F &1

P (0))) 2(F &1
P (0)).

2.3. Theorem. If

&FP(n)&FP&Rd=o(n&1�2), (2.1)

233TESTING FOR SPHERICAL SYMMETRY



File: DISTL2 174307 . By:CV . Date:25:05:98 . Time:13:53 LOP8M. V8.B. Page 01:01
Codes: 2836 Signs: 1460 . Length: 45 pic 0 pts, 190 mm

then

$n w�w $P as n � �. (2.2)

Suppose that there exists a sequence an of non-negative real numbers with
an � �, an=O(n1�2) as n � � and a bounded uniformly continuous function
2 : Rd [ Rd such that

an(FP(n)&FP) � 2 as n � � in l�(Rd). (2.3)

If an=n1�2, then

$n w�w $P+2P as n � �. (2.4)

If an=o(n1�2), n � �, then

" an

n1�2 $n&2P"Rd
w�p 0 as n � �. (2.5)

In particular, if 2P �0, then for all t�0, limn � � Pr[&$n&Rd�t]=0.

Now we consider the problem of testing of the hypothesis H0 (the
unknown distribution of the sample (X1 , ..., Xn) is spherically symmetric)
against the sequence of alternatives H (n)

a (the unknown distribution is P(n)).

2.4. Corollary. Let : # (0, 1). Then, under condition (2.1),
Pr[Tn�t: | H (n)

a ] � : as n � �. Under condition (2.3) with an=n1�2

Pr[Tn�t: | H (n)
a ] � Pr[&$P+2P&Rd�t:] as n � �. Finally, under condi-

tions (2.3) with an=o(n(1�2) and 2P �0, Pr[Tn�t: | H (n)
a ] � 1 as n � �.

To justify the symmetrized version of bootstrap, we study the asymptotic
behavior of the bootstrap version of the process $n :

$� n(s) :=n1�2\FP� n
(s+F &1

P� n
(0))&�P� n

( |s| )
s

|s|+ , s # Rd.

The bootstrap version of Tn is T� n :=&$� n&Rd . In what follows, we denote !� P

a version of the process !P , defined on the probability space (0� , 7� , Pr@); $� P

will denote the corresponding version of the process $P . Let Ps denote the
spherical symmetrization of P (more precisely, given a vector X with
distribution P and a vector U with uniform distribution on the sphere
Sd&1, independent of X, Ps is the distribution of |X&F &1

P (0) | U).

234 KOLTCHINSKII AND LI



File: DISTL2 174308 . By:CV . Date:25:05:98 . Time:13:53 LOP8M. V8.B. Page 01:01
Codes: 3230 Signs: 2008 . Length: 45 pic 0 pts, 190 mm

2.5. Theorem. For all P with a uniformly bounded density in Rd (d�2),
dPr@($� n , $� Ps) � 0 as n � � in Pr. In particular, if P # SYM(Rd) (so that
Ps=P), then dPr@($� n , $� P) � 0 as n � � in Pr.

2.6. Corollary. Given : # (0, 1), let tn, : :=inf[t : Pr@[T� n�t]�:].
Then Pr[Tn�tn, : | H0] � : and Pr[Tn�tn, : | Ha] � 1 as n � �. More-
over, tn, : w�

p t: as n � �.

3. SIMULATIONS AND NUMERICAL RESULTS

Next we study the performance of our test numerically for finite samples.
We simulated i.i.d. samples from the following distributions in R2:
H (1)

0 =the standard normal distribution; H (2)
0 =the uniform distribution in

the unit ball B2 ; H (3)
0 =the uniform distribution on the unit circle S 1;

H (1)
a =the distribution of the random vector with two independent expo-

nential components with parameters *1=1 and *2=2, respectively; H (2)
a =

the distribution of the random vector with two independent components,
exponential with parameter *=1 and standard normal; H (3)

a =the mixture
(with parameter 1�2) of two normal distributions in R2 with unit covarian-
ces and with means (0, 0) and (3, 0); H (4)

a =the uniform distribution in
equilateral triangle with center at the point (0, 0). Note that the first three
distributions in this list belong to SYM(R2); the rest of the distributions
are not spherically symmetric, although the last three ones have some
symmetry.

In order to compute the empirical spatial median F &1
Pn

(0) (the center of
symmetry), we used a version of algorithms described in Gower (1974) and
Bedall and Zimmermann (1979). The computation of the test statistics

Tn :=n1�2#(Pn) :=n1�2 sup
s # Rd }FPn

(s+F &1
Pn

(0))&�Pn
( |s| )

s
|s| } (3.1)

is based on the stochastic approximation of the supremum in (3.1) by the
maximum over a large sample of random points (like, e.g., in Beran and
Millar, 1986). More precisely, Tn was approximated by a statistic

Tn(Sn, N) :=n1�2 max
s # Sn, N }FPn

(s+F &1
Pn

(0))&�Pn
( |s| )

s
|s| }, (3.2)

where Sn, N :=[X1 , ..., Xn] _ [Y1 , ..., YN], with Y1 , ..., YN being i.i.d.
standard normal vectors. It can be shown that Tn(Sn, N) � Tn as N � �
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a.e. The function �Pn
(*), involved in (4.1), can be represented as �Pn

(*) :=
n&1 �n

1 .(*; Xj&F &1
Pn

(0)), where .(*; x) :=�Sd&1 (*v&x, v)�|*v&x|
m(dv). The calculation of the function . in the case d=2 can be reduced
to a simple numerical integration. In general case, one can use instead
Monte Carlo approximation.

We compare Monte Carlo simulation and bootstrap approximations of
the distribution of the test statistic Tn in the case of hypothesis H (1)

0 , H (2)
0 ,

and H (3)
0 . For each of these three distributions, we simulated 1000 samples

of size n=200. We calculated the values of the test statistics Tn for each of
the samples. Then, we simulated one more sample of size n=200 from each
of the three distributions, produced each time 1000 bootstrap samples and
calculated the values of the test statistic. In Table I, we compare the critical
values of the test statistic Tn , obtained (a) by Monte Carlo simulation; and
(b) by bootstrap. We calculated these values for significance levels :=0.1,
:=0.05, :=0.01. Table II gives Monte Carlo evaluation of the power
of the bootstrap test for symmetry for each of the alternatives H (1)

a ,
H (2)

a , H (3)
a , H (4)

a , for different sample sizes, and for different significance
levels.

TABLE I
Critical Values of Tn

Sample Size
Significance

Distribution Level Method 20 50 100 200

H (1)
0 100 B 1.16007 0.97156 0.95362 1.00776

E 1.02702 1.01250 1.00776 0.97347
50 B 1.27394 1.03104 1.02888 1.08656

E 1.12278 1.12390 1.08656 1.04135
10 B 1.54635 1.17104 1.19971 1.24562

E 1.42764 1.31297 1.24652 1.17135
H (2)

0 100 B 1.58605 1.79056 2.45002 2.32483
E 2.01084 2.35625 2.59439 2.80528

50 B 1.76256 2.02131 2.71941 2.61772
E 2.14215 2.56910 2.83551 3.07841

10 B 2.01766 2.39789 3.20315 3.35989
E 2.36844 2.93596 3.29352 3.62053

H (3)
0 100 B 1.58710 1.20667 1.14530 1.09400

E 1.19430 1.12518 1.11741 1.10724
50 B 1.78296 1.36261 1.25964 1.17673

E 1.33537 1.23256 1.22629 1.19583
10 B 2.02032 1.66681 1.49717 1.33904

E 1.70394 1.45004 1.47125 1.41920

Note. (B) Bootstrap approximation; (E) Monte Carlo approximation.
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TABLE II

The Power of the Bootstrap Test (Monte Carlo Evaluation)

Significance level

Distribution Sample size 100 50 10

H (1)
a 100 230 160 40

200 940 860 550
H (2)

a 100 920 900 520
200 1000 920 630

H (3)
a 100 140 110 20

200 920 830 440
H (4)

a 100 470 210 70
200 810 570 190

Note. The number of samples is 100.

Based on these (and some other) experiments, we conclude that the
symmetrized bootstrap approximates the distribution of the test statistic
Tn reasonably well for moderate sample sizes. As to the power of the
bootstrap test, it is rather low for the sample sizes �100 (against all asym-
metric alternatives we considered), but it becomes significantly higher for
the sample sizes �200. We have done similar experiments for two other
tests for spherical symmetry, suggested in the literature (one of the tests of
Baringhaus, 1991, and a version of Romano, 1989, bootstrap test). The
performance of these tests for moderate sample sizes was rather close to
ours.

4. PROOFS OF THE MAIN RESULTS

We assume that the reader is familiar with basic notions of empirical
processes (VC-subgraph classes, uniformly Donsker classes, etc.; see, e.g.,
van der Vaart and Wellner, 1996).

4.1. Proposition. For any sequence P(n), such that P(n) w�
d P as n � �,

n1�2(FPn
&FP(n)) w�

q !P as n � �.

The proof easily follows from the fact that the class of functions F1 :=
[ f ( j)(s; } ) :=(s&} ) ( j) |s&} |&1 : s # Rd, 1� j�d] is VC-subgraph and,
hence, uniformly Donsker, and from general results on uniformity in weak
convergence of measures, see Billingsley and Topso% e (1967). We need also
the following proposition, which can be deduced, e.g., from the results of
Koltchinskii (1994a, b; 1997).
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4.2. Proposition. If &FP (n)&FP&Rd � 0, then F &1
Pn

(0) w�
p F &1

P (0).
Moreover, suppose that, for some sequence an of non-negative real numbers
with an � �, &FP (n)&FP&Rd=O(a&1

n ) as n � �. If an=o(n1�2), then
|F &1

Pn
(0)&F &1

P (0)|=OP(a&1
n ) and

|F &1
Pn

(0)&F &1
P (0)+inv(F $P(F &1

P (0))) FPn
(F &1

P (0))|=oP(a&1
n )

If n1�2=O(an), then |F &1
Pn

(0)&F &1
P (0)|=OP(n&1�2) and

|F &1
Pn

(0)&F &1
P (0)+inv(F $P(F &1

P (0))) FPn
(F &1

P (0))|=oP(n&1�2).

Let S be the operator from the space of all uniformly bounded Borel
functions g: Rd [ Rd into itself, defined by Sg(s) :=�Sd&1 (g( |s| v), v)
m(dv) s |s|&1, s # Rd. Let Tg :=g&Sg. Operator S is linear and bounded
(moreover, it is a contraction): &Sg&Rd�&g&Rd . Clearly, T is also bounded.
It is easily seen that if g is spherically symmetric about 0 (in the sense that
it admits the representation g(s)=�( |s| ) s�|s| ), then Sg#g and Tg#0. If
such a g is differentiable with uniformly bounded and uniformly continuous
derivative, then we have T(g$(s) x)= g$(s) x for all s # Rd and x # Rd. Given
% # Rd, denote {% the %-shift operator in the space of all functions from Rd

into Rd: {% g(s) :=g(s+%), s # Rd, g: Rd [ Rd. For a differentiable g with
uniformly continuous in Rd derivative g$ and for any vector s # Rd, the
function % [ T{% g(s) is differentiable with respect to % with the derivative
such that

({%T{% g( } )) x=T{% (g$( } ) x), x # Rd. (4.1)

Moreover, the Taylor expansion of the first order holds for this function
uniformly in s # Rd. In terms of operators {% and T, the measure # of
spherical asymmetry can be written as #(P)=&T{%0

FP&Rd with %0=F &1
P (0).

The process $n can be rewritten as $n=n1�2T{%n
FPn

with %n :=F &1
Pn

(0).

Proof of Theorems 2.1 and 2.3. We start with the setting of Theorem 2.3.
Denote !n :=n1�2(FPn

&FP (n)). Under this notation, the following represen-
tation holds:

$n=n1�2T{%n
FPn

=T{%n
!n+n1�2(T{%n

FP (n)&T{%n
FP)

+n1�2(T{%n
FP&T{%0

FP)+n1�2T{%0
FP . (4.2)
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By Proposition 4.1, !n w�x !P as n � �, so, the sequence !n is asymptoti-
cally equicontinuous. By Proposition 4.2, we have %n=F &1

Pn
(0) w�

p

F &1
P (0)=%0 as n � �. Thus, by asymptotic equicontinuity of !n and the

boundness of the operator T, we get

T{%n
!n=T{%0

!n+oP(1) in l�(Rd). (4.3)

Using differentiability of the map % [ T{%0
FP( } ) and the formula (4.1), we

obtain

an(T{%n
FP&T{%0

FP)( } )

=T{%0
F $P( } ) an(%n&%0)+o(an(%n&%0)) in l�(Rd) (4.4)

(with an #n1�2 in the case of the condition (2.1)).
Suppose the condition (2.1) holds. Then, by Proposition 4.2, %n&%0=

&inv(F $P(%0)) FPn
(%0)+oP(n&1�2). Therefore

n1�2(T{%n
FP&T{%0

FP)

=&T{%0
F $P( } ) inv(F $P(%0))[!n(%0)+n1�2(FP (n)&FP)(%0)]+oP(1),

(4.5)

which implies (still under (2.1))

n1�2(T{%n
FP&T{%0

FP)=&T{%0
F $P( } ) inv(F $P(%0)) !n(%0)+oP(1). (4.6)

We also have in this case &n1�2({%n
FP (n)&{%n

Fp)&Rd=oP(1), which, by the
boundness of the operator T, implies &n1�2(T{%n

FP (n)&T{%n
Fp)&Rd=oP(1).

Now, relationships (4.2), (4.3), and (4.6) yield

$n&n1�2T{%0
FP=T{%0

!n&T{%0
F $P( } ) inv(F $P(%0)) !n(%0)+oP(1)

in l�(Rd). (4.7)

If P # SYM(Rd), we have T{%0
FP( } )#0 and T{%0

F $P( } ) x#{%0
F $P( } ) x,

x # Rd. Thus, (4.7) implies (2.2)
If the condition (2.3) holds, the Proposition 4.2 implies %n&%0=

&inv(F $P(%0)) FPn
(%0)+oP(a&1

n ). In the case an=n1�2, (4.5) yields

n1�2(T{%n
FP&T{%0

FP)

=&T{%0
F $P( } ) inv(F $P(%0))[!n(%0)+2(%0)]+oP(1). (4.8)

If (2.3) holds with an=o(n1�2), we get, quite similarly,

an(T{%n
FP&T{%0

FP)=&T{%0
F $P( } ) inv(F $P(%0)) 2(%0)+oP(1). (4.9)
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Under the condition (2.3), we also have &an({%n
FP (n)&{%n

FP)&{%n
2&Rd

w�
p

0. Since 2 is uniformly continuous, %n w�
p %0 and the operator T is

bounded, we get

&an(T{%n
FP (n)&T{%n

FP)&T{%0
2&Rd w�p 0. (4.10)

If an=n1�2, we have (due to (4.2), (4.3), (4.8), and (4.10))

$n&n1�2T{%0
FP=T{%0

!n+T%02&T{%0
F $P( } ) inv(F $P(%0))

_[!n(%0)+2(%0)]+oP(1) in l�(Rd),

which, under the assumption P # SYM(Rd), implies (2.4)
Finally, under the condition (2.3) with an=o(n1�2), we have (due to

(4.2), (4.3), (4.9), and (4.10))

an

n1�2 $n&anT{%0
FP

=T{%0
2&T{%0

F $P( } ) inv(F $P(%0)) 2(%0)+oP(1) in l�(Rd),

which implies (2.5) (for P # SYM(Rd)). This completes the proof of
Theorem 2.3.

The first statement of Theorem 2.1 follows if P(n)#P. By the well-known
Cirel'son's Theorem, (see Cirel'son, 1975) the distribution of the random
variable &$P&Rd is absolutely continuous with a strictly positive density (on
the interior of its support). Thus, any t in the interior of the support is a
continuity point of this distribution and we have Pr[Tn�t] �
Pr[&$P&Rd�t] as n � �. If P is not symmetric about %0 , then &T{%0

FP &Rd

>0, and n1�2 &T{%0
FP&Rd � +�. Since the sequence &$n&n1�2T{%0

FP&Rd is
stochastically bounded, we get Pr[Tn�t] � 0. K

To prove Theorem 2.6, we need a few more facts and some new nota-
tions. Denote

G(s; %; x; v) :=
s&|x&%| v

|s&|x&%| v|
, s, %, x # Rd; v # S d&1;

G1 :=[G( j)(s; %; } ; v): s # Rd, % # Rd, v # S d&1, 1� j�d],

G2 :=[G( j)(s1 ; %1 ; } ; v1) G(k)(s2 ; %2 ; } ; v2); s1 , s2 , %1 , %2 # Rd,

v1 , v2 # Sd&1, 1� j, k�d].

We skip the proofs of the next two propositions (the first one can be
proved similarly to the fact that F1 is a VC-subgraph class (see, e.g.,
Koltchinskii, 1997).
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4.3. Proposition. The classes of functions G1 and G2 are both
VC-subgraph.

4.4. Proposition. If P has a uniformly bounded density, then

(i) the map Rd_[&r, r]d_S d&1
% (s; %; v) [ G( j)(s; %; } ; v) # L2(P)

is uniformly continuous for all j=1, ..., d and for all r>0.

(ii) the map Rd
% % [ \(s, %) :=�Rd �Sd&1 G(s; %; x; v) m(dv) P(dx) # Rd

is differentiable at the point %=%0 for all s # Rd, and, moreover, the
derivative is uniformly bounded in s # Rd and the Taylor expansion of the first
order holds uniformly in s # Rd.

We denote 1(s) the derivative of the last map at %=%0 . Note that, for
all s # Rd,

FP s
n
(s)=|

Rd

s&x
|s&x|

Ps
n(dx)=|

Sd&1 |Rd
G(s; %n ; x; v) Pn(dx) m(dv) (4.11)

and

FP s(s)=|
Rd

s&x
|s&x|

Ps(dx)=|
Sd&1 |Rd

G(s; %0 ; x; v) P(dx) m(dv). (4.12)

4.5. Lemma. For a probability distribution P with a uniformly bounded
density, n1�2(FP s

n
&FP s)( } ) w�w 4( } ; %0)&1( } ) inv(F $P(%0)) !P(%0), where

4(s; %) :=|
Sd&1

`(s; %, v) m(dv), `(s; %; v) :=|
Rd

G(s; %; x; v) W o
P(dx).

Proof. Denote

`n(s; %; v) :=n1�2 |
Rd

G(s; %; x; v)(Pn&P)(dx),

4n(s; %) :=|
Sd&1

`n(s, %, v) m(dv).

Under these notations, it follows from (4.11) and (4.12), that

n1�2(FP s
n
&FPs)(x)=4n(s, %0)+[4n(s, %n)&4n(s, %0)]

+n1�2[\(s, %n)&\(s, %0)]. (4.13)
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Proposition 4.4(i) and the fact that the class G1 is universally Donsker yield
that `n w�w ` as n � �, which implies 4n w�w 4 as n � �. Since n1�2

(%n&%0)=&inv(F $P(%0)) !n(%0)+oP(1), we get, using Proposition 4.4(ii),

n1�2[\(s, %n)&\(s, %0)]=&1(s) inv(F $P(%n)) !n(%0)+oP(1) in l�(Rd).
(4.14)

Now, the representation (4.13), the asymptotic equicontinuity of the
sequence 4n , and the relationship (4.14) imply the result. K

Using representations similar to (4.11) and (4.12) and the fact that G1

and G2 are uniformly bounded VC-subgraph, and, hence, universally
Donsker, it is easy to get

|
Rd

s( j)&x( j)

|s&x|
Ps

n(dx) w�p |
Rd

s( j)&x( j)

|s&x|
Ps(dx),

and

|
Rd

s ( j)
1 &x ( j)

|s&x|
s (k)

2 &x(k)

|s&x|
Ps

n(dx) w�p |
Rd

s ( j)
1 &x( j)

|s&x|
s (k)

2 &x(k)

|s&x|
Ps(dx)

uniformly in s, s1 , s2 as n � �. Since G1 is uniformly Donsker (as any
uniformly bounded VC-subgraph class), the last relationships lead to the
following.

4.6. Proposition. For a probability distribution P with uniformly bounded
density,

dPr@(n1�2(FP� n
&FPs

n
); !� Ps) � 0 as n � � in Pr.

In what follows the symbol w�
p

means convergence in Pr _Pr@ (it
applies also to the notations oP and OP). Finally, we need the following
statement.

4.7. Proposition. If P has a uniformly bounded density, then

F &1
P� n

(0)&F &1
P s

n
(0)+inv(F $P s (%0))(FP� n

(%0)&FP s
n
(%0))

=oP(n&1�2) as n � �.

The proof follows from Lemma 4.5, Proposition 4.6, the differentiability
properties of functional inverse (see, e.g., Koltchinskii, 1994a, b; 1995), and
the fact that, for a P with a uniformly bounded density, FP s is differentiable
in Rd with uniformly bounded and uniformly continuous derivative F $P s .
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Proof of Theorem 2.5. We follow the proof of Theorems 2.1 and 2.3.
Denote %� n :=F &1

P� n
(0), !� n :=n1�2(FP� n

&FPs
n
). The following representation is

the bootstrap version of (4.2):

$� n=T{%� n
!� n+(n1�2(T{%� n

FP s
n
&T{%� n

FPs)&n1�2(T{%n
FP s

n
&T{%n

FP s))

+n1�2(T{%� n
FPs&T{%n

FP s). (4.15)

The asymptotic equicontinuity of !� n (which follows from Proposi-
tion 4.6), the fact that %� n w�

p %0 (see Proposition 4.7), and the boundness of
the operator T imply

T{%� n
!� =T{%0

!� n+oP(1) in l�(Rd). (4.16)

Since FP s is differentiable in Rd with a uniformly bounded and uniformly
continuous derivative, formula (4.1) implies that uniformly in s # Rd

n1�2(T{%� n
FP s&T{%n

FPs)(s)

=T{%0
F $P s (s) n1�2(%� n&%n)+o(n1�2(%� n&%n)). (4.17)

It follows from Proposition 4.7 and the spherical symmetry of Ps that

n1�2(T{%� n
FP s&T{%n

FP s)(s)

=&{%0
F $P s (s) inv(F $P s (%0)) n1�2(FP� n

(%0)&FP s
n
(%0))+oP(1)

in l�(Rd). (4.18)

By Lemma 4.5, the sequence n1�2(FP s
n
&FP s) is asymptotically equi-

continuous, which implies (since the operator T is bounded and, by
Proposition 4.7, %� n&%n=oP(1))

(n1�2(T{%� n
FP s

n
&T{%� n

FPs)&n1�2(T{%n
FP s

n
&T{%n

FP s))

=oP(1) in l�(Rd). (4.19)

It follows from (4.15), (4.16), (4.18), and (4.19) that

$� n( } )=T{%0
!� n( } )&{%0

F $P s ( } ) inv(F $P s (%0)) !� n(%0)+oP(1) in l�(Rd),

which, in view of Proposition 4.6 and the boundness of T, implies the
statements of the theorem. K
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