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Abstract-It is shown that the suitably normalized maximum likelihood estimates of the para- 
meters of periodical type of some multidimensional stationary AR processes have exactly normal 
distribution. This provides a generalization of the well-known behaviour of the estimate of period of 
a complex l-dimensional AR process (see [l-6]). 

Keywords-Multidimensional stationary autoregressive processes, Radon-Nikodym derivative, 
It8’s formula. 

1. INTRODUCTION 

Consider the complex-valued stationary autoregressive process c(t) = 51 (t) + i&(t), t 2 0, given 

by the stochastic differential equation 

de(t) = -rE(t) dt + dw(t), 

where w(t) = wl(t) + iwz(t), t > 0, is a standard complex Wiener process (i.e., WI(t) and wz(t) 

are independent standard real-valued Wiener processes) and y = X - iw with X > 0, w E R. 

Consider the statistics 

s;(t) = s ot lW12 dv q(t) = 0t WI2 de(u), s 
where e(t), t 2 0, is defined by 

t(t) = I<(t)p? 

The process 

rc(t) = 
s 

OL(<&) c&(U) - [z(u) @l(u)), t 2 0, 

is called L&y’s stochatic area process. (It is interesting to remark that in case y = 0, i.e., 

E(t) = w(t), T,(t) = Ji(wl(u) dW2(U) - WZ(U) &(u)) the process (Wl(t),W2(t),T,(t)), t 2 0, is 
just the standard Wiener process on the Heisenberg group, see e.g., [7,8].) 

It is known that the maximum likelihood estimate of the period w is 

rdt) G<(t) = -, 
s;(t) 
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and 

J- 
s;(t) (Ljc(t) -w) f N(O,l) for all t > 0, 

where 2 denotes equality in distribution. Surprisingly, we have exact distribution, not only an 
asymptotic property! This statement was first formulated in [4]. Complicated proofs can be 
found in [1,5,6,9]. Using Novikov’s method, Arat [3] gave an elegant new proof. 

The above mentioned result can be reformulated in the following way. Let us consider the 
2-dimensional real-valued stationary autoregressive process X(t), t 2 0, given by the stochastic 
differential equation 

where W(t), t 2 0, is a standard 2-dimensional Wiener process, and X > 0, w E W. Consider the 
statistics 

sgt, = o’(x:(u) +X,“(u), du, I TX(t) = Ot(x,(u)dXz(u) -X2(u)dX1('1L)). 
s 

Then the maximum likelihood estimate of the period w is 

rx (t) 2x(t) = - 
4 (t) ’ 

and 

J- s:(t) @X(t) - w) 2 h/(0,1) for all t > 0. 

The aim of the present paper is to generalize this result for some 3- and Cdimensional stationary 
AR processes. 

2. PRELIMINARIES 

Let X(t) = (Xl(t), . . . , X,(t)), t 2 0, be the k-dimensional stationary (continuous) process 
given by the stochastic differential equation 

dX(t) = AX(t) dt + dW(t), 

where W(t), t 2 0, is a standard k-dimensional Wiener process, A is a k x k matrix with 
eigenvalues having negative real parts. It is known that X(t), t 2 0 is a Gaussian process with 

EX(t) = 0, lEX(s + t)X*(s) = R(t) = etAR(0), 

where R(0) = lEX(s)X*(s) is th e unique solution of the matrix equation 

AR(O) + R(O)A* = -I, (1) 

where I is the unit matrix. 

Let Pt,x and Pt,w be the measures generated on ((C[O, t])“,B((C[O, t])k)) by the processes 
X(s), 0 5 s 2 t and W(s), 0 5 s 5 t, respectively. If R(0) is nonsingular, the the measures lPtt,x 
and lP,,w are equivalent and the Radon-Nikodym derivative has the form 

g(X) = (2n)-k/2 (Det R(O))-“2 exp {-i (R-‘(0)X(0),X(O)) + 1’ (AX(u),dX(u)) 
0 

- f 
s 
ot (AX(u), AX(u)) du} . 
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For an arbitrary symmetric matrix M, It6’s formula implies 

I 
t 

0 
(MX(u), dX(u)) = f ((MX(% x(t)) - (MX(O), X(O))) - ft Tr M, (2) 

where Tr denotes the trace. Formula (2) can be applied for evaluation of the Radon-Nikodym 
derivative splitting the matrix A into its symmetric and skew-symmetric parts 

A = ;(A + A*) + ;(A + A*). 

For investigation of the distribution of functionals of integral type we shall use the following 

statement (see e.g., [lO,ll]). Let 11 : [d, T]” + R be a function such that $, 2, 

&, 1 i i,j 5 Ic are bounded continuous functions. Then the function u(t,x), 0 5 t 5 T, 

x ; W” defined by 

( IS 

t 
u(t,x) = IE exp 

0 
+(X(s)) ds}( X(O) =x) 

is the solution of the Cauchy problem 

dU 
- = LAu + (AX, ‘Vu) + $(x)u, 
at 2 

u(O,x) = 1 for x E Iw”. (3) 

For computation of expected value of a random variable the following simple formula holds. 

Let < and Q be random variables with distributions lF’[ and P, such that PC < P, (PC is absolutely 

continuous with respect to PV). Let g : R. -+ R be a bounded Borel-measurable function. Then 

&l(J) = lE (ddgy) . 
We shall make use of the conditional version of the above formula. 

LEMMA 1. Let (0, A, P) be a probability space and (X, X) a measurable space. Let <, Q : Cl --+ X 

be random elements with distributions PC and P, such that PC < P,. Let g, h : X --+ Iw be 

measurable functions and suppose that g is bounded and Ph(?) < Ph(c), Then 

E (g(E) I h(J) = x) = E (dd~(v)l h(v) = x) z(x) @‘WE) as > . 

PROOF. It is only to show that for any Bore1 set B E a(R) 

The left-hand side is equal to 

E g(v$j+) h(v) = x bqq) (dx) = 
q I > J 

g (v(w)) $$ (v(w)) p (du) 
17 

B {w:h(ll(w))EB) 

= lE (mxh-‘(B)qgy) = ~ (SWXh-‘(B)(J)) = / 9 (E(w)) p C&h 
tw:Nc(w))Ew 

where x~-I(B) denotes the indicator function of the set h-‘(B) = {x E IR : h(x) E B}. Hence 

the assertion. 
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3. A S-DIMENSIONAL AR PROCESS 

Consider the 3-dimensional stationary AR process X(t), t 2 0 given by 

where W(t), t 2 0 is a standard 3-dimensional Wiener process, and X > 0, w E Iw. Consider the 

statistics 

s%(t) = 2 ct (X;(U) +X,“(U) +X,“(u) - X+)X2(4 - -71(u)x3(u) - x2(21)x3(u)) du J 
= (Xl(U) - X2(4)2 + (Xl(U) - x3(4)2 + (X2(u) - x3(4)2) du, 

TX(t) = 
J 
0t (X1(u) dXz(u) - X2(u) dXl(u) + XI(U) d&(u) - Xdu)dX1(u) 

+X2(u) dX3(u) - X3(u) dXz(u)). 

First we investigate the distribution of the statistic s%(t). 

LEMMA 2. The distribution of s:(t) does not depend on the parameter w (it depends only on 

the parameter X). 

PROOF. We present two methods for proving this important statement. 

First we examine the conditional Laplace transform 

u(t,Xl,X2,X3) =lE(exp{-ck&}lX1(0) =X1,X2(0) =X2,X3(0) =X3). 

Applying (3) we obtain that u : [0, 00) x R3 -+ R is the solution of 

dU 1 d2U 

dt = 5 ( 
-++++ +(-A du 

ax; ax; ax; ) 
Xl - wx2 + WX3)z + (wx1 - xx2 - wx3)-g 

1 2 

+ (_WXl + wx2 - xx3g - 2a (XT + x; + xx - Xl22 -21X3 -X2X3) U 
3 

with ~(0, xi, x2, ~3) = 1 for ~1, x2, x3 E I& It can be shown easily that there is a function w(t, Q), 

t, Q 2 0 such that 

U(t, Xl, X2, X3) = W (t, XT + Xz + Xi - X1X2 - 51x3 - X2X3) 

and v is the solution of 

- = 39 + 2(3 - &)e - 2a~v 
au 
at de2 ae 

with ~(0, x1, x2, x3) = 1 for 51, x2, x3 E R. Consequently, we obtain that the conditional distrib- 

ution of the statistic s%(t) under the initial condition 

Xl(O) = Xl, X2(0) = X2, X3(0) = X3 

does not depend on the parameter w. Solving the equation (1) we obtain EX(O)X*(O) = R(0) = 
(2X)-i1, thus the distribution of the variable X(0) = (Xi(O), X2(0), X3(0)) also does not depend 

on w. Hence the assertion. 
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The second method for proving the lemma is based on Ito’s formula. Let us examine the 

process 

2X(t) = X,2(t) +X;(t) +X,2@) -xl(t)&(t) - xl(t)X,(t) - X2(t)X3(t). 

Using 

d(X,2) = [2X1(-Xx1 - wXz + wX3) + l] dt + 2X1 dWl 

d(XlX2) = [XI(WXI - XX2 - wX3) + X2(-Xx1 - wX2 + wX3)] dt + X2 dWl + X1 dW2 

and similar formulas for the other terms of 2x(t) we obtain 

dZX = (3 - 2xzx) dt + (2x1- X2 - X3) dWl.+ (2x2 - X1 - X3) dW2 + (2x3 - x1 - xz) dW3. 

Consider now the process W(t), t 2 0 defined by 

F:(t) = 
I 

t (2x1- x2 - x3) dW1 + (2X2 - Xi - X3) dW2 + (2X3 - X1 - X2) dW3 

0 J6(x,2 + Xz + Xi - XIX2 - XIX3 - X2X3) 

The paths of the process W(t), t 2 0 are continuous with probability 1, and we have for all 
o<s<t 

E (iv(t) 1 q) = W(s) 

IE ((iv(t) - Eqs))’ 1 q) = t - s, 

where 3,” = 0 {W(U) : 0 < u < s}. Thus Levy’s theorem implies that W(t), t 2 0 is a standard 

Wiener process. Consequently, the process Zx(t), t > 0 is a weak solution of the stochastic 

differential equation 

dZx(t) = (3 - 2AZx(t)) dt + dmd@(t). 

Using again that the covariance matrix lEX(O)X*(O) = R(0) = (2X)-‘I depends only on the 

parameter A, we obtain that the distribution of Zx(0) depends only on A. Hence the distribution 

of the whole process Zx(t), t 2 0 does not depend on the parameter w. Obviously this implies 

the statement of the lemma. 

It should be remarked that the Laplace transform of s%(t) can be explicitly computed using 

the general result in Koncz [12], and it serves as a third proof of Lemma 2. One could also use 

Lemma 1 to find this Laplace transform as it is described in [3,13]. 

Now we are ready to investigate the maximum likelihood estimate. 

THEOREM 1. The maximum likelihood estimate of the parameter w is 

TX(t) &x(t) = - 
4 (9 ’ 

and 

r s%(t) (L;Ix (t) - w) f N(0, 1) for all t > 0. 

PROOF. Using the covariance matrix lEX(O)X*(O) = R(0) = (2X)-‘I we obtain that the Radon- 
Nikodym derivative has the form 

E(X) = ( ~)3’2exp { -iA2 1’ (X;(u) +X;(u) + X,"(u)) du - iw2s:(t) + wrx(t) 

-x x20 + 
2 ( l( ) X,2(0) + X,2(0) + X,2@) +X;(t) + x,“(t)) + gt>. 
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Consequently, the maximum likelihood estimate of the parameter w is Ljx (t) = rx(t)/s$(t). 

Let us consider now another 3-dimensional stationary AR process Y(t), t 2 0 given by 

-x 
W-C 

-w-i-c 

with the same Wiener process W(t), t 2 0, and arbitrary c E B. Then the measures lP’t,x and 
Pt,y are equvivalent and 

g(X) = exp { i(c” - 2cw)&(t) + mx(t)} . 

By the help of Lemma 1 and Lemma 2 we obtain 

E (exp {--c (vf(4 - w&(t))} 1 s%(t) = u”) = lE (exp { ic2s$(t)} 1 s:(t) = 02) 2 (a2) 
x 

122 =exp -u c . 
{ 1 2 

Consequently, 

E(exp{-cm(Sx(t)-w)} 1 &(t)=02) 

= lE exp ( {-z (TX(t) -w&(t))} 1 s%(t) = 02) = exp { ic2}. 

Hence we obtain 

Eexp{-cm(Gx(t)-w)} =exp{&2} 

for all c E IX, which proves the assertion. 

4. A 4-DIMENSIONAL AR PROCESS 

Consider the 4-dimensional stationary AR process X(t), t L 0 given by 

(%/)=(;/ z i ;) (~~~~)+(~~~) 

where W(t), t 2 0 is a standard 4-dimensional Wiener process, and X > 0, ~1, ~2, ~3 E ]w. 

Consider the statistics 

s%(t) = 
I 

o’ (X;(u) + X;(u) + X,2(u) + X:(u)) du 

r:‘(t) = J o1 (Xl(u) d&(u) - X2(u) dXl(u) + X4(u) dXs(u) - X3(u) dXd(U)) 

?-p(t) = J ' (Xl(u) dXz(u) - -G(u) d-Xl(u) + X2(u) dX4(u) - X4(u) dXg(u)) 
0 

TX (3)(t) = J’ (X,(u) dX4(u) - X4(u) dXl(u) + X3(u) dXz(u) - X2(u) dXs(u)) . 
0 

First we investigate the distribution of the statistic s%(t). 
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LEMMA 3. The distribution of s%(t) does not depend on the parameter w (it depends only on 

the parameter A). 

PROOF. The first method of the proof of Lemma 2 gives that for the conditional Laplace trans- 

form 

U(t, x1,52,53, ~4) = IE (ev {--Q&}] XI@> = 21, X2(0) = 22, X3(0) = 23, X4(0) = x4), 

we have 

u(t, z1,52,23,24) = 2) (t, x: + 5; + xi + 224) , 

where v is the solution of 

- =2Qfi+2(2-&%Y, 
dV 

a de2 de 

with v(O,z~,~~,zs,z4) = 1 for z~,Q,x~,x~ E R, which proves the assertion. Of course, the 

second method can also be applied, which shotis that even the distribution of the whole process 

X?(t) + Xi(t) + X:(t) + Xi(t), t 2 0 does not depend on the parameters ~1, ~2, ~3. 

Now we investigate the maximum likelihood estimate. 

THEOREM 2. The maximum likelihood estimates of the parameters ~1, ~2, w3 are 

j = 1,2,3, 

and 

j/G) (#0) - w14#(t) - wz,d&) - w3)) 2 n/(O,J) for all t > 0. 

PROOF. Using the covariance matrix lEX(O)X*(O) = R(0) = (2A)-‘I we obtain that the Radon- 

Nikodym derivative has the form 

z(X) = $exp{-i(A2+ w:: + w; +&s:(t) + w&)(t) + w&)(t) + w3T-jC3)(t) 

- ; (Xl”(O) +x;(o) +x,2(0) +X,2(0) +X,2(t) + X;(t) +X,2(t) + x,“(t)) + ,Xt) . 

Consequently the maximum likelihood estimates of the parameters I,+, w2, w3, are 

@(t) = r$‘(t)/sg(t), j = 1,2,3. 

Let US consider now another Cdimensional stationary AR process Y(t), t > 0 given by 

dK (t) 

i I( 

-A -w1+ Cl -w2 + cp 

dYz(t) Wl - Cl -A w3 - c3 

dYs(t) = w2 - c2 -w3 + c3 -A 
I:‘:::) (~~~~)+( Z) 

Wl - Cl 

d&(t) w3 - c3 w2 - c2 -w1+ Cl --A 

with the same Wiener process W(t), t 2 0, and arbitrary cl, c2,c3 E P. Then the measures pt,x 

and Pt,y are equvivalent and 

z(X) =exp{i(cT+ci+ c; - 2ClWl - 2czw2 - 2c3w&$(t) 

+cuy(t) + c2?y(t) + c3@(t)} . 

By the help of Lemma 1 and Lemma 3, we obtain 

lE (exp { -cl (r:‘(t) - wl&(t)) - c2 (7$)(t) - w,&(t)) 

-c3 ($‘(t) - w3&(t))} 1 s:(t) = g2) = exp { $02 (CT + c3 + c$} . 
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Finally, 

= exp 
{ 

f( CT +c; +c$) 
I 

for all cl, ~2, cg E W, which proves the assertion. 

REMARK 1. The 4-dimensional real-valued stationary autoregressive process X(t), t > 0 can be 

identified with the 2-dimensional complex-valued stationary process 

(r(t)? r](t)) = (Ii(t) + i52(tIr 771(t) + iv2(t)), t 2 0, 

given by the stochastic differential equation 

($) = (;;“+‘l;“,l :;I?$) 

where u(t) and v(t) are independent standard complex 

(;i:;z) + (i$) 7 

Wiener processes. 

REMARK 2. A similar result holds for the 4-dimensional stationary AR process with coefficient 

matrix 

Other 4dimensional stationary AR processes with one or two parameters of periodic type can 

be found, having structure different from the above mentioned examples, for which the suitably 

normalized maximum likelihood estimates of these parameters are exactly normally distributed. 
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