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y distributed among birds, but only scarcely characterized on the molecular level.
The VP4-, VP6-, VP7- and NSP5-encoding sequences of eight group A rotaviruses from chickens and turkeys
determined here indicate a low degree of sequence similarity with mammalian rotaviruses. An NSP6-
encoding region was missing in all chicken isolates except for isolate Ch2. Four novel genotypes (P[30], P[31],
G22 and H8) were assigned by the Rotavirus Classification Working Group. Generally, chicken and turkey
isolates clustered into separate branches of phylogenetic trees. However, chicken isolate Ch2 consistently
clustered together with turkey isolates. Chicken isolate 06V0661G1 has a VP4-encoding sequence of
unknown origin, but possesses VP6, VP7 and NSP5 genotypes typical for chicken isolates. These results might
indicate interspecies transmission and reassortment among avian group A rotaviruses under field conditions.
PCR protocols enabling amplification of avian and mammalian group A rotaviruses were developed for use in
further epidemiological studies.

© 2009 Elsevier Inc. All rights reserved.
Introduction

Rotaviruses are the leading cause of viral gastroenteritis in young
children worldwide.

In developing countries, rotavirus infections cause estimated
460,000 deaths per year (Parashar et al., 2003), mainly due to
dehydration. Currently, the wide use of novel rotavirus vaccines
containing live attenuated rotavirus strains has been promoted
(Ruiz-Palacios et al., 2006; Vesikari et al., 2006; Vesikari et al.,
2007), however, their efficacy against a broad variety of field strains in
developing countries is yet to be determined.

Rotaviruses are non-enveloped icosahedral particles containing a
genome of 11 segments of double-stranded (ds) RNA (Estes and
Kapikian, 2007; Ramig et al., 2005). Each segment of RNA encodes one
viral protein, however, segment 11 codes for the non-structural
protein (NSP) 5 and NSP6 using different open reading frames. The
viral particle is formed by three layers of viral structural proteins (VP),
with VP2 forming the core, VP6 the inner layer with group and
subgroup-specific epitopes, and VP7 and VP4 forming the outer shell
which contains the serotype-specific epitopes. VP1 and VP3 are minor
structural components of the core. VP4 defines the P (protease-
sensitive) types and VP7 the G (glycoprotein) types (Estes and
Kapikian, 2007; Gorziglia et al., 1990). Recently, a novel classification
system based on the nucleotide sequences of all rotavirus genome
).
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segments has been suggested (Matthijnssens et al., 2008a) enabling a
comprehensive characterization of rotavirus strains, which also takes
into account possible reassortment events.

Rotaviruses are widespread in several animal species too. Group A
rotaviruses are important etiological agents of diarrhoea in calves and
piglets (Aich et al., 2007; van derHeide et al., 2005). There is increasing
evidence that transmission of rotaviruses from animals to humans
occurs and that it significantly contributes to genetic variability of
human rotaviruses (Cook et al., 2004; Müller and Johne, 2007;
Palombo, 2002). Using complete genome sequence analysis, direct
transmission of a lapine rotavirus to humans was demonstrated
(Matthijnssens et al., 2006). A common origin of human Wa-like
strains with porcine rotaviruses and human DS1-like strains with
bovine rotaviruses was proposed based on phylogenetic relationships
between rotavirus strains isolated from these three different species
(Matthijnssens et al., 2008a). In addition, several analyses show that
some human rotaviruses contain genome segments of animal
rotaviruses, which have been acquired by reassortment (Ghosh et al.,
2007; Khamrin et al., 2006; Mascarenhas et al., 2007; Nguyen et al.,
2007; Rahman et al., 2007; Matthijnssens et al., 2008c).

Despite a great variety of rotaviruses detected in avian species
(McNulty et al., 1980; Otto et al., 2006; Otto et al., 2007), data on
genome sequences and interspecies transmission of these viruses are
scarce. Rotaviruses of groups A, D, F and G have been detected in
different avian species, but their causative role for diarrhoea and a
chronic disease designated as runting and stunting syndrome in
chickens or turkeys is not completely understood (Day et al., 2007;
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Fig. 1. Genome profiles of group A rotavirus isolates from chickens (Ch-158G3, Ch-
358F3, Ch-2G3, Ch-27G6, Ch-661G1, Ch2), turkeys (Tu-1E10, Tu-2E10) and cattle (Bo-
UK) after polyacrylamide gel electrophoresis (PAGE) of their genomic RNA. The banding
pattern of the RNA is indicated beside the picture. A preparation of non-infected MA-
104 cells is show at the right.
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McNulty, 2003; Otto et al., 2006). Infections with rotaviruses from
different groups might explain the highly variable clinical signs.

For a long time, the full-length genome sequence of the pigeon
group A isolate PO-13 (genotype G7P[17]) was the only one available
for an avian rotavirus (Ito et al., 2001). Recently, the complete genome
sequence of chicken rotavirus 02V0002G3 (Ch-2G3, genotype G19P
[30]) has been additionally determined (Trojnar et al., 2009). Some
additional partial sequences are available, e.g. for the chicken strains
Ch1 and Ch2 (genotypes G19 and G7, respectively) and the turkey
strains Ty1 and Ty3 (genotypes G17 and G7, respectively), which had
been originally isolated in Northern Ireland in 1979 (McNulty et al.,
1979). Although a close relationship to other isolates from chicken or
pigeon is evident, these sequences are too fragmentary for assignment
of genotypes for most of the other genome segments. In general, the
available sequences indicate that the avian group A rotaviruses are
only distantly related to mammalian rotaviruses. Also, the electro-
pheric migration pattern of the genome segments of avian group A
rotaviruses (5:1:3:2) is different from that of the mammalian viruses
(4:2:3:2) although reactivity of monoclonal antibodies with VP6
indicate a common classification into group A (Minamoto et al., 1993).
Interestingly, transmission of PO-13 to mice has been successfully
demonstrated, which resulted in clinical disease under experimental
conditions (Mori et al., 2001). Also, a group A rotavirus with a high
degree of sequence similarity to avian rotaviruses has been isolated
from a calf with diarrhoea indicating that rotavirus transmission
between avian and mammalian hosts occurs under field conditions
(Brüssow et al., 1992; Rohwedder et al., 1995).

To gain insight into the relationships between avian group A
rotaviruses and to assess their ability for interspecies transmission, a
more detailed genome analysis of eight avian isolates was undertaken
here. The genes encoding the capsid proteins VP4, VP6 and VP7 were
selected for analysis due to their importance as major antigenic
determinants. The NSP5 gene has been included in full-length
sequence analyses due to its marked low sequence similarity between
PO-13 and the mammalian rotaviruses. Based on these sequences,
degenerate primers for the detection of the VP4-, VP6-, VP7- and
NSP5-encoding gene segments of mammalian and avian group A
rotaviruses were developed, which may be useful in further
epidemiological studies.

Results

Virus isolation and determination of electropherotypes

A cytopathic effect in MA-104 cells appeared between passages 3
and 5, characterized by granular cells and cells detached from the
monolayer. The bands obtained by PAGE of the dsRNA prepared from
cell culture supernatant are relatively weak with some background
staining which most probably reflect the lower titres of the avian
isolates (Fig. 1). However, all isolates showed a migration pattern of
5:1:3:2 which is typical for avian group A rotaviruses and which is in
contrast to most mammalian group A rotaviruses showing a 4:2:3:2
pattern. Two electropherotypes of the avian isolates are evident, with
one electropherotype (isolates Tu-1E10, Tu-2E10 and Ch2) showing
separated segments 10 and 11 and the other electropherotype
showing a close migration of both segments (all other avian isolates).

Sequence analysis

Coding sequences for VP4, VP6, VP7 and NSP5 of the six chicken
isolates and two turkey isolates, which were not available at the
GenBank database (Supplemental Data 2), were amplified by RT-PCR,
cloned and sequenced. Despite the use of a range of degenerate primer
pairs, only the first 1596 nucleotides of the VP4 gene of isolates Ch2,
Tu-1E10 and Tu-2E10 could be determined, thus each sequence lacked
approximately 300 nucleotides from the 3′-end of this gene. In all
other cases the entire coding regions were determined. The sequences
were aligned to full-length (and some partial) avian rotavirus
sequences available in the GenBank database as well as to selected
sequences of mammalian group A rotaviruses. Human group C
rotavirus was included in the analysis as an outgroup sequence.
Alignments were performed based on nucleotides (nt) or on amino
acid (aa) sequences, however, the latter generally resulted in a more
robust grouping of the sequences as determined by bootstrap analysis
and by the use of different alignment algorithms.

Generally, the phylogenetic trees established on the basis of the
alignments show that for all genes the avian isolates (together with
the avian-like bovine isolate 993-83) and mammalian isolates cluster
in separate branches (Fig. 2). However, both sequence groups are
more closely related to each other than to the group C rotavirus
confirming the assignment of the analyzed avian rotaviruses to group
A. Within the avian branch, two phylogenetic clusters can be
distinguished for most of the analyzed genes; however, a high degree
of heterogenicity is evident for the VP7-encoding sequences.
Generally, the isolates from chickens are grouped into one phyloge-
netic cluster and those from turkeys or pigeons (or from cattle in the
case of the avian-like isolate 993-83) are grouped into the other.
However, all of the available sequences from the chicken isolate Ch2
are most closely related to those of turkeys, which may indicate an
interspecies transmission of the virus from turkeys to chickens. The
sequences encoding VP6, VP7 and NSP5 of the chicken isolate Ch-
661G1 cluster together with sequences derived from chicken isolates.
However, its VP4-encoding sequence did not cluster together with the
sequences of other chicken, turkey or pigeon isolates, thus suggesting
a reassortment event between a chicken virus and another avian virus
of unknown source. Genotyping of the investigated avian strains is
described in the next paragraphs in more detail; an overview on their
genotype constellations is presented in Table 1.

VP4

The VP4 aa sequences of avian rotaviruses reveal aa identities of
56.6% to 62.7% with the VP4 of mammalian group A rotaviruses. Based
on the guidelines for rotavirus classification (Matthijnssens et al.,
2008b), which uses an 80% nt sequence identity cut-off to distinguish
between different P-genotypes, the chicken isolates Ch-7G6, Ch-2G3,
Ch-158G3, Ch-358F3, which only show identities up to 77.1%
compared to other strains, should belong to a new P-genotype. The
sequences were sent to the RCWG and P[30] was assigned. Isolate Ch-
661G1 has up to 76.2% nt sequence identity to the other avian strains
and has therefore been classified into a novel genotype P[31].
Comparing these findings to the traditional classification scheme
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with an 89% aa sequence identity cut-off (Estes and Kapikian, 2007;
Gorziglia et al., 1990), the same genotype grouping is evident as the
isolate Ch-661G1 and the above mentioned chicken strains show only
up to 82.9% and 85.1% aa sequence identity, respectively, to other
strains. The isolates Tu-1E10, Tu-2E10 and Ch2 aremost closely related
to PO-13 (genotype P[17]). However, a final classification was not
possible for these strains because only partial sequenceswere available
and the calculated identities (up to 78.5%)were too low for assignment
to a known genotype according to the guidelines for classification of
partial sequences as describedbyMatthijnssens et al. (2008b). Because
of the short lengths of the available VP4-encoding sequences of Ty1,
Ty3 and Ch1, P-genotypes could not be assigned for these isolates.

All avian rotavirus VP4 full-length sequences consist of 770 amino
acids; this is slightly shorter than the mammalian counterparts (772
to 776 amino acids) included in the analysis. A detailed comparison of
avian and mammalian rotavirus sequences indicated conserved aa
residues at most positions (Arg 231, Arg/Lys 247, Lys 259, Arg 467,
Arg/Lys 582, aa numbering according to SA-11) known to be
important for trypsin-induced activation of VP4 (Crawford et al.,
2001; Gilbert and Greenberg,1998). However, arginine at position 241
was only found in mammalian rotaviruses, but not in the avian
isolates. The α2β1 integrin binding sequence Asp-Gly-Glu (aa
positions 308 to 310 in SA-11) (Graham et al., 2006) was found to
be strictly conserved in all strains. Two VP4 domains involved in
membrane association and permeation by the rhesus rotavirus
(Golantsova et al., 2004) are largely conserved in the avian rotavirus
isolates, whereas most of the aa positions identified in sialic acid-
binding of rhesus rotavirus (Dormitzer et al., 2002) aremutated in the
avian VP4 sequences (aa 101, aa 146, aa 155, aa 187, aa 190).

VP6

The VP6 gene (Fig. 2B) is the most conserved gene among those
analyzed in this study, with 69.8% to 74.9% aa sequence identity be-
tween avian andmammalian sequences. All of the isolates analyzed in
this study cluster together with known avian rotavirus sequences: the
isolates Ch-2G3 (Elschner et al., 2005), Ch-27G6, Ch-158G3, Ch-358F3,
and Ch-661G1 belong to genotype I11 (Matthijnssens et al., 2008a)
together with Ch1, and the isolates Tu-1E10, Tu-2E10 and Ch2 belong
to genotype I4 (Matthijnssens et al., 2008a) together with PO-13.

VP6 has a length of 397 amino acids in all avian and mammalian
rotavirus isolates analyzed. Amino acid differences between avian and
mammalian rotavirus VP6 sequences are scattered over the whole
sequence without obvious accumulation at specific regions. The
histidine residue at position 153 involved in zinc binding (Erk et al.,
2003; Mathieu et al., 2001) is strictly conserved in all isolates. The
regions identified to be responsible for binding of VP2 (Charpilienne
et al., 2002) are strictly conserved (aa 63 to 76) or contain only
conservative aa substitutions (aa 31 to 38) between avian and
mammalian isolates. Among the immunodominant T-cell epitopes of
human rotavirus VP6 identified in mice, one epitope (aa 289 to 302;
Choi et al., 2000) seems to be largely conserved with 11 identical
amino acids out of 14, whereas the other epitope (aa 242 to 259;
McNeal et al., 2007) has only 10 identical amino acids out of 18.

VP7

Avian and mammalian rotavirus VP7 genes show aa sequence
identities of 56.4% to 62.6% while a high degree of sequence
heterogenicity (66.1% to 99.4% aa sequence identity) is evident within
the avian branch. Matthijnssens et al. calculated a cut-off of 80% nt
sequence identity for the definition of genotypes and classified Ch2
(Nishikawa et al., 1991) and Ty3 as genotype G7, Ty1 as genotype G17,
PO-13 as genotype G18 and Ch1 as genotype G19 (Matthijnssens et al.,
2008a). As the chicken isolates Ch-27G6, Ch-158G3, Ch-358F3, Ch-
661G1 and Ch-2G3 show high nt sequence identities of 94.8% to 95.1%
compared to Ch1, they should be classified as G19 according to the
genotyping guidelines (Matthijnssens et al., 2008b). Since the VP7
genes of the turkey isolates Tu-1E10 and Tu-2E10 have only up to 79.7%
nt sequence identities compared to other rotavirus sequences (just
below the 80% cut-off value for VP7), they might belong to a new
genotype, which was verified by RCWG, and a new genotype G22 was
assigned. This classification is also supported by using the cut-off of
89% aa sequence identity of the traditional classification scheme (Estes
and Kapikian, 2007; Gorziglia et al., 1990), as Tu-1E10 and Tu-2E10
have only up to 84.2% aa sequence identity to other avian sequences.

The highest degree of heterogenicity between the VP7 sequences
of avian andmammalian rotaviruses is found in the amino terminal 50
amino acids. All avian isolates have an insertion of three amino acids
in this region leading to a total length of 329 aa compared to 326 aa in
most mammalian VP7 sequences. The αVβ3 integrin binding site at
positions 161 to 169 (Zarate et al., 2004) (aa numbering according to
SA-11) is largely conserved, however, Asn161 is exchanged for Tyr in
all avian isolates and Pro167 is exchanged for Glu in themajority of the
avian sequences. The αXβ2 integrin binding site Gly-Pro-Arg, present
in most mammalian isolates (Graham et al., 2003) is not found within
the avian VP7 sequences.

NSP5/NSP6

The avian NSP5 sequences show only low aa sequence identities
(48.7%–53.3%)with those of themammalian rotaviruses. Also, the two
phylogenetic clusters within the avian branch are well separated from
each other (67.9%–70.3% aa sequence identity). Using a cut-off of 91%
nt sequence identity for definition of genotypes (Matthijnssens et al.,
2008a), the isolates Tu-1E10, Tu-2E10 and Ch2 have to be grouped
together with PO-13 into genotype H4. The NSP5 sequences of the
isolates Ch-27G6, Ch-158G3, Ch-358F3, Ch-661G1 and Ch-2G3 are
placed into a novel genotypeH8, aswas verified by the RCWG, due to nt
sequence identities of only 71.1% to 73.2% to the other avian sequences.

A detailed analysis of the sequences shows significant differences
in the lengths of the NSP5 sequences between the different
phylogenetic clusters due to deletions or insertions of different size
within the 3′-end of this gene (Fig. 3B). This leads to a length of 208 aa,
218 aa and 197–200 aa for the NSP5 derived from chickens, turkeys
(additionally including PO-13 and Ch2) and mammals, respectively
(Fig. 3A). Out of four serine residues previously shown to be
phosphorylated in the mammalian rotavirus NSP5 by casein kinase
II (Eichwald et al., 2002), only the serine at a position corresponding
to serine 153 in SA-11 is also conserved in avian sequences. Highly
conserved sequences are found at aa positions 57 to 69 including
serine 67, which is involved in hyperphosphorylation (Eichwald et al.,
2004), and at the carboxy-terminus, which is essential for dimeriza-
tion of NSP5 (Torres-Vega et al., 2000).

For the chicken isolates Ch-27G6, Ch-158G3, Ch-358F3, Ch-661G1
and Ch-2G3, no open reading frame (ORF) for NSP6 is evident (Fig.
3A). Although the region carrying the initiation codon for this protein
is also highly conserved in these isolates, six stop codons are present
within this reading frame resulting in the first interruption of
translation after aa position 21. Also, no other ORF with a coding
capacity for more than 28 aa and starting with the codon AUG is
present in these sequences. The NSP6 protein of the other avian
isolates has only 39.6% to 45.8% aa sequence identity to mammalian
rotavirus NSP6. Conserved aa sequences are mainly found in the
amino-terminal half of the sequences, and between aa positions 60 to
65, whereas the carboxy-terminal sequences are highly divergent
between these two groups.

Development of a consensus primer RT-PCR

RT-PCR protocols were established based on the avian rotavirus
sequences determined here and on selected mammalian rotavirus
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sequences (listed in Supplemental Data 2) to enable amplification of
parts of genome segments encoding VP4, VP6, VP7 and NSP5 of a
broad range of group A rotavirus isolates originating from humans,
animals and avian species. The protocols were applied to tissue culture
supernatants of the six chicken isolates and the two turkey isolates as
well as to the pigeon strain PO-13, the porcine strain OSU, the bovine
strain UK, the simian strain SA-11, and the human strain Wa. After
electrophoresis, amplicons of the expected length were detected in
each case (Fig. 4). Differences in the intensity of the bands were
mainly detected for genome segment 4, which probably reflects the
high degree of sequence variation within this gene. 16 randomly
selected bands derived from the four assays were analyzed by direct
Fig. 2. Phylogenetic analysis of the sequences of amino acid positions 1 to 677 of VP4 (A), o
isolates and selected mammalian group A rotavirus strains. The human group C rotavirus st
performed with 1000 bootstrap simulations using the MegAlign module of DNASTAR softw
units. The animal species fromwhich an individual isolate originated is indicated by the first
porcine, Mo — monkey, and Hu — human. The genotype is indicated in brackets. The seque
isolate Ch2 and the open arrow indicates the chicken isolate Ch-661G1.
sequencing, which indicated that in each case the PCR products had
the expected rotavirus sequence.

Discussion

The genetic variability of human rotaviruses is maintained by
several mechanisms including (i) point mutations, (ii) genomic
reassortment and (iii) genome rearrangements, thus leading to
considerable diversity (Estes and Kapikian, 2007; Müller and Johne,
2007). Animal rotaviruses may contribute to this variability by direct
transmission to humans (DeGrazia et al., 2007; Matthijnssens et al.,
2006), or by reassortment events creating human rotaviruses which
r the entire amino acid sequences of VP6 (B), VP7 (C) and NSP5 (D) of avian rotavirus
rain Bristol (Hu-rota C) was included as an outgroup sequence. Clustal W analysis was
are package (Lasergene, Madison, USA). The trees are scaled in amino acid substitution
two letters of its designation: Ch— chicken, Tu— turkey, Pi— pigeon, Bo— bovine, Po—

nces generated in this study are marked in bold, the small arrow indicates the chicken
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contain only parts of an animal rotavirus genome (Iturriza-Gómara
et al., 2002; Khamrin et al., 2006; Mascarenhas et al., 2007;
Matthijnssens et al., 2008c). Whereas mammalian rotaviruses are
known to be transmitted to humans, the role of avian rotaviruses is
still unknown. One of the major drawbacks for assessment of their
contribution to human rotavirus variability is the lack of sequence
data for avian rotaviruses which would enable tracing of these viruses
and detection of their genome fragments in human samples.

In our analysis of the sequences derived from chicken and turkey
rotaviruseswe identifieddifferent types of avian rotaviruseswith regard
to their hosts and the genotype constellation (Table 1). At least two
distinct avian phylogenetic clusters are evident (indicated with green
and blue color in Table 1), which preferentially infect different avian
hosts. The finding that the sequences of the chicken isolate Ch2
generally cluster with genotypes derived from turkeys may therefore
indicate an origin of this virus from turkeys and subsequent transmis-
sion to chicken. Against this background, it may also be speculated that
the close relationship between pigeon strain PO-13 and turkey strains
indicate interspecies transmission between pigeons and turkeys.
Generally, a high degree of sequence heterogenicity was found
between the avian isolates, which may significantly contribute to
genetic variability of rotaviruses by providing a reservoir of novel
genotypes, especially for the antigenic determinants VP4 and VP7. The
chicken strain Ch-661G1 has a VP4-allele which has only low
similarities to the other avian rotavirus VP4 sequences. As it is most
closely related to the pigeon-derived sequence of strain PO-13, it is
likely that it originated from an unknown avian host. As all of the other
analyzed segment sequences clearly clustered within that of chicken
strains, a reassortment event is highly likely from an exchange of the
VP4-encoding segment only. Under experimental conditions, reassor-
tants have been generated between pigeon strain PO-13 and turkey
strain Ty3 (Mori et al., 2003) as well as between turkey strain Ty-1 and
simian RRV rotaviruses (Kool et al., 1992).

Comparison of the avian rotavirus sequences to their mammalian
counterparts showed that both groups are only distantly related to
each other and that the sequences were consistently well separated in
the phylogenetic trees constructed for VP4, VP6, VP7 and NSP5. It has
been shown for the chicken isolate Ch-2G3 that this grouping is also



Table 1
Comparative presentation of genotype constellations for VP7, VP4, VP6 and NSP5 of avian rotaviruses

Green and dark blue color indicates the genotypes of chicken strain Ch-2G3 and pigeon strain PO-13, respectively. Other genotypes are marked with additional colors.
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evident for the seven remaining genome segments (Trojnar et al.,
2009). All avian rotavirus isolates analyzed here showed an RNA
electrophoretic pattern of 5:1:3:2 characteristic of avian group A
rotaviruses, which is in contrast to the characteristic migration pattern
4:2:3:2 of mammalian group A rotaviruses. Also, a number of amino
acid sequences conserved in mammalian rotavirus proteins have been
found to be mutated in the avian rotaviruses. Most of the chicken
strains lack an ORF for expression of NSP6, which is present in most of
the mammalian rotavirus isolates, however, with some exceptions
(Gorziglia et al., 1989; Kojima et al., 1996). NSP6 has been shown to
interactwith RNA and the viral non-structural proteinNSP5 (Rainsford
and McCrae, 2007; Torres-Vega et al., 2000). The absence of an ORF
encoding NSP6 in the chicken isolates substantiates the assumption
that this is not an essential gene of group A rotaviruses. Taking all of
these findings together, it may be concluded that transmission of
rotaviruses between birds andmammals is unlikely due to themarked
genetic and antigenic differences of the viruses of these groups.
However, experimental transmission of pigeon rotavirus PO-13 tomice
Fig. 3. Comparison of the structure of genome segment 15 of avian and mammalian rotaviru
NSP5 and NSP6. (B) Alignment of the carboxyterminal NSP5 amino acid sequences of nine av
in Fig. 2. The consensus shows the amino acid positions which are conserved in all sequenc
has been successfully demonstrated (Mori et al., 2001), and a rotavirus
with a high degree of sequence similarity to avian rotaviruses has been
isolated from a calf (Brüssow et al., 1992). Also, a mammalian-like
rotavirus has been isolated from chickens (Wani et al., 2003).

To our knowledge, avian rotaviruses have not been detected in
humans and avian rotavirus sequences have as yet not been found in
human rotavirus isolates. This might indicate that infection of
humans with avian rotaviruses does not occur, however, it may
also reflect an insensitivity of the detection methods used for human
rotaviruses with respect to the detection of avian rotaviruses. Only
very few protocols are available for specific detection of avian
rotaviruses (Day et al., 2007; Pantin-Jackwood et al., 2007). Based on
the sequences determined here, we have developed PCR assays
capable of detecting a wide range of human, mammalian and avian
group A rotaviruses, and which could be useful in further
epidemiological studies. Taking into account the widespread use of
chickens for food production and the high incidence of rotavirus
infections in this animal species (Day et al., 2007; Otto et al., 2007;
ses. (A) Schematic presentation of the localization of the open reading frames encoding
ian and six mammalian rotavirus isolates. The abbreviation of the isolates is the same as
es.



Fig. 4. Detection of genome segments encoding VP4 (A), VP6 (B), VP7 (C) and NSP5 (D) of avian and mammalian rotavirus isolates by consensus primer RT-PCR. PCR products were
separated on ethidium bromide-stained 1.5% agarose gels. M:molecular massmarkers, with sizes indicated between the pictures. RNAwas isolated from tissue culture supernatant of
MA-104 cells infectedwith isolates Ch-2G3 (lane 1), Ch-158G3 (lane 2), Ch-358F3 (lane 3), Ch-27G6 (lane 4), Ch-661G1 (lane 5), Ch2 (lane 6), Tu-1E10 (lane 7), Tu-2E10 (lane 8), Pi-
PO-13 (lane 9), Po-OSU (lane 10), Bo-UK (lane 11), Mo-SA11 (lane 12), Hu-Wa (lane 13), or from uninfected MA-104 cells (−). The abbreviation of the isolates is the same as in Fig. 2.

Table 2
Origin of avian rotavirus isolates analyzed in the study

Designation Abbreviation Species Clinical signs Geographical
region

Year of
isolation

Ch2a Ch2 Chicken Diarrhoea Northern Ireland 1979
02V0002G3 Ch-2G3 Chicken RSSb Lower Saxony

(Germany)
2002

03V0001E10 Tu-1E10 Turkey Diarrhoea Saxony-Anhalt
(Germany)

2003

03V0002E10 Tu-2E10 Turkey Diarrhoea Saxony-Anhalt
(Germany)

2003

03V0158G3 Ch-158G3 Chicken RSSb Lower Saxony
(Germany)

2003

03V0358F3 Ch-358F3 Chicken RSSb Lower Saxony
(Germany)

2003

04V0027G6 Ch-27G6 Chicken RSSb Bavaria (Germany) 2004
06V0661G1 Ch-661G1 Chicken No clinical

signs
Bavaria (Germany) 2006

a According to McNulty et al. (1979).
b RSS — Runting and Stunting Syndrome.
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Pantin-Jackwood et al., 2007), a relatively high exposure of humans
with avian rotaviruses would be expected.

Materials and methods

Rotavirus strains

The chicken group A rotavirus Ch2 (G7P[?]), isolated in 1979 in
Northern Ireland (McNulty et al., 1979), was kindly provided by H.M.
Hafez (Institute of Poultry Diseases, Free University Berlin, Germany).
The pigeon group A rotavirus PO-13 (G18P[17]) and the mammalian
group A rotaviruses from pig (strain OSU, G5P[7]), cattle (strain UK,
G6P[5]), monkey (strain SA-11, G3P[2]), and human (strain Wa, G1P
[8]) used in the study were obtained fromH.-J. Streckert (Dr. Streckert
Diagnostika, Witten, Germany).

Samples

Intestinal contents were obtained from five chickens and two
turkeys from flocks in Northern Germany between 2002 and 2006.
Details of designation and origin of strains as well as clinical
symptoms observed in the host species are presented in Table 2. The
samples were suspended at 1:5 (v:v) in phosphate-buffered saline pH
7.4 (PBS), homogenized for 30 s in an ultrasonic water bath at level 4
(UST 20, K.-W. Meinhardt Ultraschalltechnik, Leipzig, Germany) and
then clarified at 2700 ×g for 10 min. The supernatants were collected
and stored at −20 °C.

Virus isolation

The samples were selected on the basis of RNA pattern observed in
polyacrylamide gel electrophoresis (PAGE). The supernatants were
treated with gentamicin solution (Sigma, Taufkirchen, Germany) at a
final concentration of 50 μg/ml, and incubated for 60 min at room
temperature. Prior to infection of MA-104 cells (Rhesus monkey
kidney cells, No. 142, Friedrich-Loeffler-Institute, Collection of Cell
Lines in Veterinary Medicine, Isle of Riems, Germany), the viral
inoculum was activated by addition of trypsin (Serva, Heidelberg,
Germany) to a final concentration of 0.4 u/ml for 60 min at 37 °C.
Confluent monolayers of MA-104 cells were washed with PBS and
pretreated with diethylaminoethyl (DEAE)-dextran solution (40 mg/
l) in Dulbecco's Modified Eagle's Medium (DMEM, Sigma) for 30 min
at 37 °C. After removal of the DEAE-dextran solution, the suspensions
were inoculated on the cells at 37° for 1 h. The inocula were replaced
with DMEM containing 0.04 u/ml trypsin and 50 µg/ml gentamycin
and incubated at 37 °C in a humidified air atmosphere with 5% CO2 for
1–5 days. Up to 10 passages were performed, depending on the
appearance of a cytopathic effect. All isolates were clone-purified by
end-point dilution. Briefly, fourfold log2-dilution series of virus
suspensions were inoculated into 96-well plates (Nunc, Karlsruhe,



Table 3
Degenerate primers used for detection of genome segments encoding VP4, VP6, VP7 and NSP5 of avian and mammalian group A rotaviruses

Designation Gene/segment Binding positiona Sequenceb Product size⁎

Rota-Seg4-s VP4/Segm.4 766–788 5′-TCTAARACATCATTNTGGAARGA-3′ 312 bp
Rota-Seg4-as VP4/Segm.4 1057–1078 5′-GCTTGTGAATCRTCCCARTAATC-3′
Rota-Seg6-s VP6/Segm.6 317–338 5′-GTAATGGAATWGCDCCNCAATC-3′ 777 bp
Rota-Seg6-as VP6/Segm.6 1072–1094 5′-ATACCTGSWGGAAAWACTGGTCC-3′
Rota-Seg9-s VP7/Segm.9 600–621 5′-CTAATAARTGGATWKCNATGGG-3′ 342 bp
Rota-Seg9-as VP7/Segm.9 920–942 5′-ACTTGCCACCAYYTYTTCCAATT-3′
Rota-Seg11-s NSP5/Segm.11 108–128 5′-TTCAGGWAAATCTRTTRGTAG-3′ 170 bp
Rota-Seg11-as NSP5/Segm.11 257–278 5′-TTTGCRTTTGWYTTAACTGCAT-3′

a Corresponding to nucleotide numbering of avian rotavirus PO-13.
b D=A+G+T, N=A+C+G+T, R=A+G, S=C+G, W=A+T, Y=C+T.
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Germany) with monolayer of cells. After incubation for 4 days at 37 °C
in a 5% CO2–air atmosphere, the virus was harvested by scratching of
cells from individual wells of the highest dilution, in which only one
rotavirus-positive plaque was observed. The harvested virus suspen-
sion was titrated in a second and third cloning procedure.

RNA-PAGE

RNA was extracted from virus-containing cell cultures and
suspensions of intestinal contents using QIAamp Viral RNA Mini Kit
(Qiagen, Hilden, Germany) according to the instructions of the
manufacturer. The samples were analyzed for their RNA pattern
using PAGE and silver staining as described previously (Otto et al.,
1999). Gels were dried in a GelAirDryer (Bio-Rad Laboratories,
Munich, Germany) and scanned on a GS-700 Imaging Densitometer
(Bio-Rad Laboratories).

RT-PCR and sequencing

RNA was extracted from 140 μl cell culture supernatant using the
QIAamp Viral RNA Mini Kit (Qiagen) and a total volume of 60 μl was
eluted. After addition of 6 μl dimethylsulfoxide, the double-stranded
RNAwas denaturated by heating at 95 °C for 3min followed by cooling
on ice. RT-PCR was performed with 5 μl of the RNA preparation using
the QIAGEN LongRange 2Step RT-PCR Kit (Qiagen) with reaction
conditions as recommended by the supplier. Primer sequences for the
amplification of the coding regions for VP4, VP6, VP7 and NSP5 were
selected by alignment of the 5′ termini and 3′ termini of the open
reading frames of known avian group A rotaviruses. If no specific PCR
product could be detected by use of these primers, additional primer
sequences with binding sites in conserved regions of avian and
mammalian rotavirus sequences were constructed and used for
amplification of parts of the genome segments (primers listed in
Supplemental Data 1). Reverse transcription was performed in a 20 μl
reaction at 42 °C for 90 min. PCR was subsequently performed in a
2720 Thermal Cycler (Applied Biosystems, Foster City, USA) using 5 μl
of cDNA in 50 μl reactions and 93 °C for 3 min, 35 cycles of 93 °C for
30 s, 56 °C for 30 s and 68 °C for 5 min, and a final incubation at 68 °C
for 7min. The PCR products were cloned using the TOPO TA cloning kit
for sequencing (Invitrogen, Leek, The Netherlands) and subsequently
sequenced using M13 Forward and M13 Reverse primers (Invitrogen)
in an ABI 3730 DNA Analyzer (Applied Biosystems).

Sequence analysis

The entire coding regions were assembled from the sequences
using the SeqBuilder module of the DNASTAR software package
(Lasergene, Madison, USA) and submitted to the GenBank database
with accession numbers EU486956–EU486985. The sequences encod-
ing VP4 (EU486956), VP7 (EU486971) and NSP5 (EU486978) of
chicken isolate Ch-2G3 determined here are identical with that
determined by Trojnar et al. (2009), however, in the latter case the
non-coding ends of the genome segments are included (accession
numbers FJ169856, FJ169861 and FJ16986). Sequence alignments and
construction of phylogenetic trees were performed using the MegA-
lign module of the above mentioned software package. Three human
strains of different phylogenetic origin (AU-1, DS-1 and Wa) and
strains isolated from monkey, pig, cattle and pigeon, as well as
available chicken and turkey strains have been included in phyloge-
netic analysis (accession numbers shown in the Supplemental Data 2).
The CLUSTAL W method was used with the PAM250 residue weight
table (Thompson et al., 1994) in alignments, and bootstrap analysis of
phylogenetic trees was performed with 1000 trials and 111 random
seeds. The assignment of novel genotypes was approved by the
Rotavirus Classification Working Group (RCWG) as described by
Matthijnssens et al. (2008b).

Consensus primer RT-PCR

Primers were constructed with binding sites at highly conserved
regions of avian andmammalian group A rotavirus genomes (Table 3).
RT-PCR was performed with 5 μl RNA, prepared and denaturated as
above, using the QIAGEN OneStep RT-PCR Kit (Qiagen) in 25 μl
reactions with 50 pmol of each primer and other components as
recommended by the supplier. Cycling conditions in a 2720 Thermal
Cycler (Applied Biosystems) were as follows: 42 °C for 60 min, 95 °C
for 15 min, 40 cycles each with 94 °C for 1 min, 56 °C for 1 min and
74 °C for 1 min, and a final incubation at 74 °C for 7 min. PCR products
were visualized by electrophoresis on ethidium bromide-stained 1.5%
agarose gels. Selected bands of the expected length (Table 3) were
purified using the QIAquick Gel Extraction Kit (Qiagen) and sequenced
using the PCR primers as above.
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