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Abstract

For many years the methods of choice for the numerical solution of sti� initial value problems and certain classes
of di�erential algebraic equations have been the well-known backward di�erentiation formulae (BDF). More recently,
however, new classes of formulae which can o�er some important advantages over BDF have emerged. In particular,
some recent large-scale independent comparisons have indicated that modi�ed extended backward di�erentiation formulae
(MEBDF) are particularly e�cient for general sti� initial value problems and for linearly implicit DAEs with index 63.
In the present paper we survey some of the more important theory associated with these formulae, discuss some of the
practical applications where they are particularly e�ective, e.g., in the solution of damped highly oscillatory problems,
and describe some signi�cant recent extensions to the applicability of MEBDF codes. c© 2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction

In the 1950s Curtiss and Hirschfelder [12] published one of the �rst papers which identi�ed
clearly the di�culties of solving sti� initial value problems of the form

y′ = f (x; y); y(x0) = y0; y ∈ Rs: (1)

Since that time a whole variety of methods have been proposed for the numerical solution of (1).
The fact that this class of problems has remained so challenging is not at all surprising given the fact
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that it is still not clear exactly what is meant by the term sti�ness. Although numerous attempts have
been made to give a rigorous de�nition of this concept, it is probably fair to say that none of these
de�nitions is entirely satisfactory. Indeed the authoritative book of Hairer and Wanner [18] deliber-
ately avoids trying to de�ne sti�ness and relies instead on an entirely pragmatic de�nition given in
[12]. What is clear, however, is that numerical methods for solving sti� initial value problems have to
satisfy much more stringent stability requirements than is the case for methods intended for nonsti�
problems. One of the �rst, and still one of the most important, stability requirements particularly for
linear multistep methods is that of A-stability which was proposed in [13]. However, the requirement
of A-stability puts a severe limitation on the choice of suitable linear multistep methods. This is artic-
ulated in the so-called Dahlquist second barrier which says, among other things, that the order of an
A-stable linear multistep method must be 62 and that an A-stable linear multistep method must be
implicit.
This pessimistic result has encouraged researchers to seek other classes of numerical methods for

solving sti� equations. For Runge–Kutta methods, for example, the situation regarding stability is
much more satisfactory. In fact, there exist A-stable Runge–Kutta methods of arbitrarily high order.
In particular, the s-stage Gauss Runge–Kutta methods have order 2s and are A-stable for all s.
However, as is well known, these fully implicit Runge–Kutta methods can be very expensive to
implement.
We are therefore faced with the classic dilemma that, generally speaking, linear multistep methods

are relatively cheap to implement but su�er severe degradation of stability as their order increases
while implicit Runge–Kutta methods can have excellent stability properties but tend to be expensive
to implement. Most attempts to ‘get around’ the Dahlquist barrier have involved either lessening
the requirement of A-stability to something which is less restrictive, but which is still appropriate
for some classes of sti� equations, or proposing a totally di�erent class of formulae. However, the
desirability of having methods which are A-stable is su�ciently well documented that it seems the
only way to achieve real e�ciency for general sti� problems is to consider formulae other than
linear multistep methods.
One very successful proposal in this direction was by Hairer and Wanner [18] who developed a

code Radau5 based on Radau Runge–Kutta formulae. We will return to this code at a later stage.
A second proposal that we wish to describe is to use what have become known as boundary value
methods. These methods are able to achieve excellent stability by using information at advanced step
points (also known in the literature as superfuture points). As with Runge–Kutta methods it is the
e�ciency of implementation of these methods rather than their stability which is the real challenge
and we will discuss this in the next section.

2. Boundary value methods

To introduce the general class of boundary value methods that we will be interested in we consider
again the linear multistep method

yn+k +
k−1∑
j=0

�ajyn+j = h �bkf(xn+k ; yn+k): (2)
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In the limit h= 0 this formula reduces to the linear recurrence relation

yn+k +
k−1∑
j=0

�ajyn+j = 0: (3)

Eq. (3) can be regarded as a linear multistep method ‘integrating forward’ with a step h = 0. It is
clear that the required solution of (3) is

yn = yn+1 = · · ·= yn+s = c: (4)

If, however, we appeal to the theory of linear recurrence relations it is well known that if we solve
(3) by direct forward recurrence starting with the initial conditions

yn+i = c; 06i6k − 1 (5)

in an attempt to compute the solution

yn+m = c; m¿k − 1; (6)

then this process is stable if and only if

(i) r = 1 is the root of largest modulus of

k∑
j=0

�ajrj = 0 (7)

and
(ii) all roots of (7) of unit modulus are distinct.

If these conditions are not satis�ed then forward recurrence is unstable. In the parlance of the
theory of linear recurrence relations, requirements (i) and (ii) simply impose the condition that
r = 1 is the dominant zero of (7) so that yn = c; for all n, is the dominant solution of (3). In
essence the theory tells us that only the dominant solution of (3) can be generated in a stable
manner by forward recurrence. However, conditions (i) and (ii) are precisely the conditions for
(2) to be zero-stable. Thus, an alternative way of looking at this is to realize that we have to
impose the condition of zero-stability on (2) precisely because we demand that we should solve
(2) by forward recurrence; that is we solve for yn+k from given values yn; yn+1; yn+2; : : : ; yn+k−1. If
we were to interpret (2) not as a prescription for yn+k but as an equation which, if satis�ed for
k = 0; 1; 2; : : : ; determines the sequence of approximations we are interested in then the relevant
question becomes how we solve the resulting simultaneous equations in a stable way without exces-
sive cost. If we were to solve (2) in a di�erent way then we would no longer need to impose the
condition of zero-stability and this in turn o�ers us the possibility of obtaining high order A-stable
formulae.
One possible alternative way of solving (3) is to rewrite it as a boundary value problem. (This

is the basis of some celebrated algorithms for �nding nondominant solutions of linear recurrence
relations [23,22,8,9].) To describe one variant of this approach we consider the third order, linear 2
step method:

yn+2 + 4yn+1 − 5yn = h(4fn+1 + 2fn): (8)
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It is well known that this formula does not satisfy the condition of zero-stability and so is unsuitable
for the solution of initial value problems. It was shown in [10] that if we apply (8) to the linear
scalar equation

dy
dx
= �y; � ∈ R (9)

to give

yn+2 + (4− 4�h)yn+1 − (5 + 2h�)yn = 0; (10)

then the required solution of (10) is subdominant for all h�. This fact suggests that, instead of solving
(10) by forward recurrence starting from two initial conditions on y which would be an unstable
process, we should instead generate the required solution using the boundary value formulation

y0 = y(x0);

yn+2 + 4yn+1 − 5yn = h(4fn+1 + 2fn); n= 0; 1; 2; : : : ; N − 2;
yN = 0

(11)

for some large N . Note, in particular, that this de�nes a tridiagonal system of linear algebraic
equations of size N +1 for the N +1 unknowns. It was shown in [10] that this formulation produces
an A-stable algorithm which has order 3. Theoretically, this approach is a very successful one due
to the high-order A-stability that we have achieved. In fact, we have used a linear multistep method
and achieved A-stability with order ¿ 2. However computationally this algorithm is not, in general,
satisfactory for solving initial value problems since it does not allow easy change of stepsize or
order and for large systems the storage requirement can be prohibitive. Even more important is
the problem that there may be a lack of convergence in the solution of the simultaneous nonlinear
algebraic equations. Ideally, what we need is a special kind of boundary value approach which shares
the improved stability obtained by (11) but which does allow variable stepsize and order. One of
the easiest ways of achieving this is to develop special classes of formulae to which a boundary
value approach can be applied.
An early attempt in this direction was in [9] where such a method was derived from a standard

Adams–Moulton formula. This early work has since been extended in several ways. In particular,
Brugnano and Trigiante [2] have developed a whole theory of boundary value methods suitable for
several important classes of initial value problems, such as sti� problems, Hamiltonian problems and
di�erential algebraic equations. However, a major di�erence is that we set up a ‘local’ boundary value
problem so that when computing yn+k the boundary condition is imposed at xn+k+1. The approach of
Brugnano and Trigiante can be regarded as a more conventional one where the boundary condition
is imposed at a large distance from the initial point. Their results are too extensive to quote here
and we refer the reader to [2].
In what follows, we will extend the approach suggested by (11) to formulae which are particularly

suitable for sti� problems. There are numerous ways in which this could be done and in the next
section we will describe one particular approach which is based on modi�ed extended backward
di�erentiation formulae and which has proved to be particularly e�cient for general sti� initial
value problems and di�erential algebraic equations.
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3. Modi�ed extended backward di�erentiation formulae

Modi�ed extended backward di�erentiation formulae (MEBDF) were originally proposed as a
class of formulae to which an e�cient variable order, variable step boundary value approach could
easily be applied. The precise form taken by the general k step MEBDF is

yn+k +
k−1∑
j=0

âjyn+j = h[b̂k+1fn+k+1 + b̂kfn+k]; (12)

where the coe�cients are chosen so that this formula has order k + 1. This order requirement
uniquely speci�es the coe�cients of (12). Starting from given data yn; yn+1; : : : ; yn+k−1, a predictor
is �rst used to predict yn+k+1, the derivative approximation y′

n+k+1 is then computed and �nally yn+k
is computed from yn; yn+1; : : : ; yn+k−1; y′

n+k+1. Of course, the accuracy and stability of this method is
critically dependent on the predictor used to compute yn+k+1 and in particular this predictor must be
of order at least k if the whole process is to be of order k + 1. A natural kth-order predictor is the
k-step BDF and this leads to the so-called EBDF algorithm
Stage 1: Use a standard BDF to compute �y n+k :

�yn+k +
k−1∑
j=0

�ajyn+j = h �bkf(xn+k ; �yn+k): (13)

Stage 2: Use a standard BDF to compute �y n+k+1:

�yn+k+1 + �ak−1 �yn+k +
k−2∑
j=0

�ajyn+j+1 = h �bkf(xn+k+1; �yn+k+1): (14)

Stage 3: Compute a corrected solution of order k + 1 at xn+k using

yn+k +
k−1∑
j=0

âjyn+j = h[b̂k+1 �fn+k+1 + b̂kfn+k]: (15)

Note that at each of these three stages a nonlinear set of equations must be solved in order that the
desired approximations can be computed. The boundary value nature of this approach can be seen
from Stage 3 where yn+k is computed from past values yn+i as well as from the future value �yn+k+1.
One of the main drawbacks of this approach is the need to compute and factorize the two iteration

matrices arising in the application of a modi�ed Newton iteration at each stage. To avoid this, the
EBDF approach described above can be modi�ed (to give the so-called MEBDF approach [5]) by
changing Stage 3 to
Stage 3∗:

yn+k +
k−1∑
j=0

âjyn+j = h[b̂k+1 �fn+k+1 + �bkfn+k + (b̂k − �bk) �fn+k]: (16)

Fortunately, this modi�cation not only improves the computational e�ciency of this approach, it
also improves its stability. The stability properties of the MEBDF together with the reasons for their
computational e�ciency are fully described in [6,18] and a code MEBDFDAE based on the MEBDF
approach is available from NETLIB and from the author’s web page. In particular, the MEBDF are
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A-stable for order up to 4 and A(�)-stable for order up to and including 9 and this is considerably
better than the stability achieved by BDF. In the next section we will consider one particular class
of problems for which this enhanced stability is particularly appropriate.

4. Damped sti� highly oscillatory problems

As was explained earlier, attempts to give a precise general mathematical de�nition of sti�ness
have been largely unsuccessful. However, some important insights into the concept of sti�ness can
be gained by considering a suitably restricted class of problems. Normally, the aim of considering
these problems has been to de�ne a new stability concept which is appropriate for dealing with
sti� problems rather than to de�ne sti�ness per se. Often these new de�nitions have evolved from
consideration of problems for which there is a contractivity property for the solutions and, for a
survey of this, the interested reader is referred to [3]. The most straightforward problem to analyse
for linear methods is the constant coe�cient equation

dy
dx
= Ay: (17)

A de�nition of sti�ness for this problem has been given, for example, in [21]. This de�nition is not
the whole story, however, because other quantities such as the initial conditions and the interval of
integration also need to be considered. However if we assume for the time being that all components
of the general solution of (17) are in the solution that we require, and that we are integrating over a
su�ciently long interval of x, then we can say something about the likely performance of standard
codes on (17). In particular if all the eigenvalues of A are real, or lie close to the real axis, then
we can expect codes based on BDF and MEBDF to normally perform well since they have linear
stability properties appropriate for dealing with such problems. However, if some of the eigenvalues
of A have relatively large imaginary part then we would expect BDF to perform rather poorly since
they are A-stable only up to order 2. In the case where there exist eigenvalues lying close to or on
the imaginary axis whose imaginary part is large in modulus then there are two distinct classes of
problems that we need to distinguish between rather carefully. The �rst is where the large eigenvalues
are purely imaginary so that there is no damping in the components of the solution corresponding
to these eigenvalues. In this case it is necessary to follow the oscillations exactly and we would
expect nonsti� methods to be more e�cient than (implicit) sti� methods for this problem. However
if the large eigenvalues lie close to the imaginary axis but not on it, so that the rapid oscillations
are damped, then it is only necessary to follow them for a short time and in this case highly stable
implicit methods normally perform very well. We can conveniently characterize highly oscillatory
problems of the form (17) as ones where the eigenvalues �j of A satisfy

�j = �j + i�j; (18)

where �j ¡ 0 for all j, max16j6n|�j| � min16j6n|�j| and |�j|�|�j| for at least one pair of eigenvalues
of large modulus. In their famous DETEST test set [15], Enright et al. devised a problem denoted
by B5 for which one component of the solution is of the form

exp(−10x)(A cos!x + B sin!x) where != 50: (19)
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This problem was specially designed to trap BDF-based methods (and succeeded in doing so!).
However, it is important to realize that the performance of BDF codes on these problems can be very
di�erent depending on which code is used. For example, when faced with sti� oscillatory problems,
LSODE [20] will often use high-order methods with small stepsizes rather than correctly reducing
the order to allow the possibility of large stepsize increases. However, the BDF code DASSL is
geared towards selecting lower order and this code will often reduce the order to 2 (so that A-stable
formulae are being selected) when faced with such problems [1]. We feel that this strategy of
DASSL of being biased towards lower order is an extremely important one and the incorporation
of this strategy into the MEBDF code MEBDFDAE has had a strong positive inuence on its
performance. This strategy is fully described in [11]. For a long time these sti� highly oscillatory
problems were regarded as being rather intractable mainly because of the relatively poor performance
of BDF. Indeed writing in 1984 Ga�ney [16] concluded that none of the currently available codes was
satisfactory for dealing with these problems. However, recently some excellent codes have become
available and this allows these problems to be solved very routinely. In particular, we mention the
codes MEBDFDAE, Radau5 and DESI [4] which all have excellent stability properties and can be
recommended for these problems. For a survey of the performance of these codes on the highly
oscillatory problem the reader is referred to [11].

5. Extensions to the MEBDF approach

In the particular formulation of MEBDF that was considered in Section 3 we set up the boundary
value approach using just one superfuture point. The main theoretical result that is indicated by
numerical experiment for this particular algorithm is that it is A-stable for order up to and including
4. It would, of course, be valuable to have a proof of this result. It is possible to develop this
approach in various directions. For example, we could use more super future points. In particular, it
is of interest to see what can be achieved by using two superfuture points. The natural way to de�ne
such an algorithm would be to have three predictor steps based on BDF as described in Section 3
and then to apply a corrector of the general form

yn+k +
k−1∑
j=0

âjyn+j = h[b̂k+2 �fn+k+2 + b̂k+1 �fn+k+1 + b̂kfn+k]: (20)

Here the coe�cients are chosen so that the corrector has order k+1 and this de�nes a one parameter
family of coe�cients for (20). The stability properties of this approach were investigated in detail
in [24]. He found that by using this approach it is possible to �nd A-stable formulae with order up
to and including 6. However, rather disappointingly, it is not possible to achieve this stability and
still retain the property that only one iteration matrix needs to be factorized. There is, however, a
very important theoretical result that comes out of this investigation. This concerns the conjecture
that a well-known result of Norsett and Wolfbrandt [25] for one-step methods carries over to the
multistep case. Basically, this conjecture is that the order p of an A-stable general linear method
whose characteristic function has s poles, all of which are real, satis�es p6s+ 1. Remarkably, the
order 6 MEBDF, with two advanced step points, has 4 real poles and p=6. This serves as a rather
surprising counterexample to this conjecture. For more details on this the reader is referred to [26].
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If we summarize what can be achieved in the way of stability using superfuture points we note that

(1) For linear multistep methods with no superfuture points we have that A-stability implies the
order is 62.

(2) With one superfuture point we have that A-stability implies the order is 64.
(3) With two superfuture points we have that A-stability implies the order is 66

It is tempting to conjecture that with k superfuture points we have that A-stability implies that the
order p satis�es p62k + 2. This would be an interesting and important result but, based on the
di�culty of �nding A-stable methods of order 6 with k = 2, we expect this conjecture to be false
although a proof of this is elusive.
Due to the fact that when using 2 superfuture points we need to factorize two iteration matrices in

order to obtain A-stability with order 6 it seems unlikely that the ‘two superfuture points’ approach
will be competitive with the standard MEBDF for the solution of general sti� problems. It may
however have a role to play in the highly oscillatory case where high accuracy is requested. However
for parallel implementation the situation is quite di�erent. There are many ways in which the MEBDF
approach can be parallelized and, in particular, in a parallel environment the need to factorize two
iteration matrices is no longer a problem. One possible way of deriving a parallel MEBDF code was
investigated in [24]. He developed an approach whereby all predicted solutions can be computed
simultaneously and he showed that there is a signi�cant gain in e�ciency using this approach.
A di�erent and rather ingenious method of parallelization was proposed in [27]. He modi�ed the
EBDF approach with two superfuture points to obtain new classes of formulae which are immediately
parallelizable. His results indicate that he is able to achieve signi�cant speed ups using this approach
and it seems likely that this will be one of the most e�ective of all parallel algorithms for the solution
of general sti� initial value problems.
The second extension we wish to consider in this section is where extra derivative terms are

introduced. We illustrate this by considering the one-step case which is of order 2. Here the standard
MEBDF is replaced by the three stages:
Stage 1:

�y n+1 = yn + h[�f(xn+1; �y n+1) + (1− �)f(xn; yn)]: (21)

Stage 2:

�y n+2 = �y n+1 + h[�f(xn+2; �y n+2) + (1− �)f(xn+1; �y n+1)]: (22)

Stage 3:

yn+1 = yn + h[(c − 1
2 )f(xn+2; �y n+2) + (

3
2 − 2c − �)f(xn+1; �y n+1)

+ �f(xn+1; yn+1) + cf(xn; yn)]:

Note that the standard MEBDF is of this form with �=1, c=0. Applying these three stages to the
standard scalar test equation y′ = �y we obtain an expression of the form

yn+1
yn

= R(q); q= �h: (23)

In order to get the correct asymptotic behaviour, that is

lim
q→−∞ R(q) = 0; (24)
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we require

(c − 1
2 )(1− �)2 − ( 32 − 2c − �)(1− �)�+ c� 2 = 0: (25)

This de�nes c in terms of � and leaves � as a free parameter to improve the accuracy and=or stability
of the method. In general, for a k-step formulation, we will again have two free parameters, one of
which will be used to give the correct asymptotic behaviour and the other will be used to improve
stability. Research is at present in progress to see by how much this approach improves stability
and, in particular, whether it is possible to obtain A-stability with k=4. However as k increases the
situation becomes very complicated since there are many ways in which the extra derivative terms
can be added. What is really needed is some theory linking the order and stability of these methods
to the step number k.

6. Di�erential algebraic equations

One of the important properties of MEBDF is that, in common with BDF, they can be extended
to the solution of di�erential algebraic equations in a straightforward way. The extension to linearly
implicit DAEs is the most natural and we consider this �rst of all. Many important classes of
di�erential algebraic equations can be written in the linearly implicit form

M
dy
dx
= f(x; y); (26)

where the coe�cient matrix M is singular. In particular, the constrained system

dy
dx
= F(x; y; z); 0 = g(y; z) (27)

can be rewritten as(
1 0
0 0

)(
y′

z′

)
=

(
F(x; y; z)
g(y; z)

)
; (28)

which is of the form (26). The MEBDF approach described in the previous sections is very straight-
forward to extend for (26), from ODEs to linearly implicit DAEs. This can be done simply by using
the algorithm of Section 3 and being careful to arrange the computation so that we never call for
the inverse of the singular matrix M . The one-step MEBDF, for example, would be expressed in a
completely analogous way to the one-step BDF as

M (yn+1 − yn) = h(− 1
2f(xn+2; yn+2) +

3
2f(xn+1; yn+1)): (29)

An important concept when dealing with DAEs is that of the index. Perhaps the most widely used
de�nitions are of di�erentiation index and perturbation index. In particular, the di�erentiation index
is i, if i is the minimum number of analytic di�erentiations that need to be performed on the system
to allow an explicit ODE to be extracted. For more on this important concept the reader is referred
to [18, p. 445]. The major change from the ODE case is the way in which the errors (i.e., both the
local truncation error and the error in the Newton iteration) are controlled. Following the approach
described in [19], the error E that we control when using a steplength h is de�ned as

E = ErrorIndex1 + hErrorIndex2 + h2 ErrorIndex3: (30)
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Here we use the obvious notation that, for example, ErrorIndex1 is the error in the index 1 variables
[19, p. 124]. As explained in [19] this approach is needed essentially to deal with the near singularity
(for small h) of the iteration matrix. Numerical results presented on the author’s web page [7] indicate
the good performance of MEBDFDAE on a variety of linearly implicit test problems of indices 1–3
and this has recently been con�rmed by some extensive independent comparisons [14].
It would perhaps be valuable to extend the MEBDF approach to more general equations such as

the fully implicit equation

F(x; y; y′) = 0: (31)

This problem could be solved by rewriting (31) in the linearly implicit form

y′ = z; F(x; y; z) = 0; (32)

but at the cost of increasing the size and more importantly the index of the system since one more
analytic di�erentiation now has to be performed to allow an explicit ODE to be extracted.
Another problem we may wish to deal with directly is

C(y)
dy
dx
= g(y); (33)

where C(y) is singular. This can be rewritten in the form (28) where the left-hand side of this
equation remains the same and the right-hand side is now

f(x; y) =
(

z
C(y)z − g(y)

)
;

providing that the matrix C(y) satis�es some rather general conditions [18, p. 445]. One way of
dealing with (33) is by adding extra variables so making it again of the form (26). If the linear
algebra is carried out in a careful way [18, p. 576] then the computational e�ort is increased
by relatively little. However, users may not be prepared to change their problems to �t into a
more restrictive framework and a more satisfactory approach may be to develop MEBDFDAE to
deal directly with these more general equations. The necessary theory to allow this is relatively
straightforward to develop and MEBDF codes for the direct solution of (33) and (31) are now
available on the author’s web page.
A second major problem concerning MEBDF follows from the well-known phenomenon of order

reduction. There are at present no theoretical results concerning the order of MEBDF when applied
to DAEs. However, the numerical results that have been obtained are highly suggestive. This leads
us to make the following conjecture:
A (p−1)th step MEBDF when applied to a DAE of index i has order p+1−i. The MEBDF code

is implemented on the assumption that this is indeed the correct behaviour and it is a serious gap
in the theory that we do not have a proof of this result. Finally, we note that this order reduction
is particularly serious when dealing with damped highly oscillatory problems of index 3 in the
case where it is not required to follow the oscillations. If our conjecture is correct, and the order is
indeed reduced by 2, then we in e�ect have A-stability only up to order 2. In this case the extensions
described in the previous section where either two superfuture points are used or possibly where
extra derivatives are used will be potentially very important.
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7. Numerical results

In this section we will present some numerical results to illustrate the performance of the code
MEBDFDAE. The drivers used to obtain these results are available on the web page of the author [7].
The example we consider is that of a simple constrained mechanical system, namely the pendulum.
This is a particularly nice example since it is straightforward to derive systems of indices 1, 2 and 3
which describe the equations of motion. In what follows, we will consider the equations of motion
of a point mass, m, at the end of a massless rod of length 1 oscillating under the inuence of gravity
g in the cartesian coordinates (p; q). The �rst four equations of motion are

p′ = u;

q′ = v;

mu′ =−p�;
mv′ =−q�− g:

(34)

Here u and v are velocities and � is the rod tension. The �fth equation which completes index 3
formulation is

0 = p2 + q2 − l2: (35)

To obtain index 2 formulation we di�erentiate constraint (35) to obtain

0 = pu+ qv: (36)

Eqs. (34)–(36) give index 2 formulation. If we di�erentiate (36) again we obtain

0 = m(u2 + v2)− qg− l2�: (37)

Eqs. (34) together with (37) give index 1 formulation. We note that, starting from the original index
3 formulation, there are several ways of rewriting the constraint to reduce the index. In particular,
the process of di�erentiating the constraint may result in the original constraint not being satis�ed.
This ‘drift o� ’ phenomenon is described for example in [18, p. 468; 19, p. 7]. In an attempt to avoid
this problem Gear et al. [17] proposed adding in the original constraint via a Lagrange multiplier
which vanishes on the exact solution. Thus, index 2 reformulation of index 2 problem (34)–(36)
proposed in [17] is

p′ = u− p�;
q′ = v− q�;
mu′ =−p�;
mv′ =−q�− g;
0 = p2 + q2 − l2;
0 = pu+ qv:

(38)

In Table 1 we present the results for (34), (35); (34), (36); and (34), (37). We normalize the
equations by taking m= g= l= 1. The initial conditions are

p(0) = v(0) = �(0) = 1; q(0) = u(0) = 0 (39)
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Table 1
MEBDF results for index 1 pendulum problem

Tol Fn Jac Steps Time Figs 3 2 1

10−2 18 4 13 0.01 2.78 0.3d−3 0.6d−3 0.5d−2
10−3 23 5 16 0.01 3.89 0.1d−3 0.2d−3 0.2d−3
10−4 30 4 21 0.02 5.49 0.8d−5 0.5d−5 0.4d−5
10−5 43 5 27 0.03 6.31 0.1d−6 0.1d−6 0.3d−6
10−6 51 7 34 0.04 7.70 0.1d−7 0.5d−8 0.3d−7
10−7 77 11 53 0.06 8.30 0.5d−8 0.5d−8 0.1d−8
10−8 86 10 61 0.06 8.88 0.1d−10 0.4d−9 0.4d−8
10−9 119 12 77 0.10 10.25 0.1d−10 0.6d−10 0.3d−10

Table 2
MEBDF results for index 2 pendulum problem

Tol Fn Jac Steps Time Figs 3 2 1

10−2 18 4 13 0.02 2.42 0.3d−2 0.1d−3 0.8d−2
10−3 23 4 16 0.02 3.29 0.9d−4 0.9d−3 0.1d−2
10−4 31 4 21 0.02 4.54 0.1d−6 0.2d−5 0.3d−4
10−5 52 4 28 0.03 5.10 0.1d−5 0.2d−5 0.3d−4
10−6 60 6 39 0.04 5.93 0.4d−7 0.8d−7 0.3d−5
10−7 69 8 45 0.05 7.50 0.6d−8 0.1d−8 0.8d−7
10−8 117 11 68 0.08 8.40 0.8d−10 0.2d−9 0.9d−8
10−9 138 15 84 0.10 9.41 0.2d−10 0.3d−10 0.1d−8

and the range of integration is [0,1]. The results given in Table 1 should be largely self-explanatory.
In particular, Tol is the speci�ed local tolerance, Fn is the number of function evaluations, Jac is
the number of Jacobian evaluations, Steps is the number of integration steps, Time is the time in
seconds taken on an IBM RS6000 and Figs is the number of correct �gures at x=1. Under columns
3, 2, 1 we also give the amounts by which the constraints (35), (36), (37), which are index 3, index
2 and index 1, respectively, are not satis�ed at x = 1. We see from Table 1 that the code performs
well for all three problems. As the index is increased the code obtains less accuracy, as would be
expected, but is still satisfactory (see Tables 2 and 3).

8. Conclusions

These results back up the claims made in this paper regarding the promise of MEBDF. In par-
ticular, it is clear that the MEBDF have better theoretical properties than the BDF methods. The
MEBDF are also excellently suited to sti� oscillatory ODEs. The results presented in [7,14], partic-
ularly on the FEKETE problem, indicate that MEBDF perform well on some di�cult DAE systems
although there are still some gaps in the theory which have been highlighted in this paper and which
need to be �lled in. However, the BDF codes and Radau5 are powerful codes in their own right. In
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Table 3
MEBDF results for index 3 pendulum problem

Tol Fn Jac Steps Time Figs 3 2 1

10−2 15 3 9 0.01 1.85 0.5d−3 0.1d−2 0.4d−1
10−3 25 4 14 0.01 2.23 0.2d−2 0.4d−4 0.2d−1
10−4 52 5 25 0.03 2.73 0.1d−4 0.5d−4 0.5d−2
10−5 99 12 38 0.05 3.67 0.8d−9 0.5d−5 0.7d−3
10−6 73 9 41 0.04 4.57 0.2d−8 0.1d−6 0.5d−4
10−7 100 9 55 0.06 5.01 0.1d−7 0.4d−6 0.3d−4
10−8 130 14 81 0.08 6.42 0.3d−9 0.1d−6 0.1d−4
10−9 154 15 96 0.11 6.78 0.1d−10 0.3d−8 0.4d−6

particular, BDF codes are often well suited to large ODE=DAE systems and it remains to be seen
how competitive MEBDFDAE is compared to BDF on such problems.
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