View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Elsevier - Publisher Connector

JOURNAL OF ALGEBRA 87, 222-246 (1984)

Defect Groups and Character Heights in
Blocks of Solvable Groups. I

Davip GLuck

Department of Mathematics, University of Wisconsin-Madison.
Madison, Wisconsin 53706

AND

THoMAS R. WoLF

Department of Mathematics, University of Wisconsin—Milwaukee,
Milwaukee, Wisconsin 53201

Convnunicated by Walter Feir

Received August 11, 1982

[. INTRODUCTION

All groups considered are finite, p denotes a prime, and Irr{G) is the set of
ordinary irreducible characters of G. For a p-block B8 of G, there is a
conjugacy class of p-subgroups D of G that are called defect groups of B. If
ID|=p* and |P|=p™, where P& Syl (G). then p” “|x(1) whenever
2 € Irr(G)N B, and the height of y is the largest integer A4 such that
pnz~11+h 1X(1)

Brauer |1] conjectured that every x € Irr(G) M B has height 0 if and only
if D is abelian. Brauer and Feit [2] proved the result if d < 2, and Reynolds
|14] proved the result when D& G. Fong |4] proved one direction for p-
solvable . Namely, if G is p-solvable and D is abelian. then each
x € BN Irr(G) has height 0.

We prove the converse for solvable G. This extends the results of part | of
this paper (Wolf [151]), where the converse direction is proven for solvable
G, provided p > 5 or that certain hypotheses are met when p < 3. To prove
our results, we use a “reduction”™ theorem of Fong that allows us to assume
that BN Ir(G)=Trr(Gla) for some «€ Irr{(Q,(G)) (we notc that
Irr(Gla)={y € Irr(G)| [x.a”] # 0} and | , | is the usual inner product of
characters). Our main result is

THEOREM A. Suppose that N & G, that G/N is solvable. that ¢ € Irr(N),
and that pk(x(1)/¢(1)) for all x € rt(Gl@). Then the Sylow-p-subgroups of
G/N are abelian.
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Proof. This is Corollary 5.2 below. [

Theorem A, with Fong’s reduction theorem, gives an affirmative answer to
Brauer’s conjecture for solvable groups.

THEOREM B. Let B be a p-block of a group G and let D be a defect
group of B. Assume G/Q,.(G) is solvable. If every y € B M Irr(G) has height
0, then D is abelian.

Proof. We argue by induction on |G: O, .(G)|. Since B is a p-block of the
p-solvable group G, Lemma 1A of [5] shows that there exists a p-block b of
a group M such that b and B have isomorphic defect groups, such that there
is a height-preserving bijection from B M Irr(G) onto b M Irr(M), and such
that either

(a) 0V, (G)<M<G, or

(b) M/0,(M)=G/O,(G), bNIrr(M)=1Irr(M|a) for some
a € Irr(0,,(M)) and the defect groups of b are Sylow-subgroups of M.

We may assume by the induction argument that B M Irr(G) = Irr(G | 6) for
some # € Irr(0,.(G)) and that the defect groups are Sylow-subgroups of G.
The hypotheses imply that p} (1) for all y € Irr(G | 8). Theorem A implies
that the Sylow-p-subgroups of G/U (G), and G are abelian. Thus D is
abelian. [}

A natural question to ask is whether Theorems A and B can be
generalized. For example, is the derived length of a defect group bounded by
the maximum character height of the block? The answer is affirmative for
solvable G.

THEOREM C. Assume that N2 G, that G/N is solvable, and that
¢ € Irr(N). Suppose that e is an integer and p*'}(x(1)/¢(1)) for all
x € Irr(G | ). Then the derived length d.1.(P/N) of a Sylow-p-subgroup P/N
of G/N is at most 2e + 1.

THEOREM D. Let D be a defect group of a p-block B of a group G and
assume that G/0,.(G) is solvable. If e is a nonnegative integer and each
x € BN Irr(G) has height at most e, then d.1.(D) < 2e + 1.

Theorem D follows from Theorem C in the same manner than Theorem B
follows from Theorem A. Before proving Theorem C, we need Lemma 1.1,
which is proved by Isaacs [11, Lemma 1.6] under the additional hypothesis
that 1,(0) = {x € Q| 8" =60} equals Q. The noninvariant case follows from
Isaacs’ result and an easy induction argument using Clifford’s theorem
[13, 6.11].
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1.1. LEMMA. Assume N2 Q, that Q/N is a p-group, and that e is a
nonnegative integer. If 6 € Irt(N) and p°* 'y (x(1)/6(1)) for all x € Irr(Q | 6).
then d.1.(Q/N) < e+ 1.

Proof of Theorem C. We argue by induction on |G : N|. We may assume
that 0,(G/N)=1 and O”(G/N)=G/N. Let K/N=0,(G/N) and L/N =
0,p(G/N). If L =G, then K =G and the result follows from Lemma 1.1.
Let M/L be a chief factor of G, so that M/L is a nontrivial abelian p-group.

Choose ¢ €EIrr(K|4) and an integer / such that p’|(¢(1)/6(1)) and
p’* "y (u(1)/6(1)) for any p € Irr(K|#). Then p¢ /"' f(z(1)/(1)) for any
€ Irr(G| ¢). The induction argument yields that d.1.(P/K) < 2(e — /) + 1.
and Lemma 1.1 yields that d.1.(K/N) < f+ 1. Thus d.1.(P/N) < 2(e — S} +
1+ f+1=2e+ 1+ (1—/f). Hence, we may assume that =0 and that
K/N is abelian. Since K/N=70 (G/N) and U, (G/N)= 1. it follows by
Lemma 1.2.3  of [8] that K/N=0C,,(K/N). In particular.
d.L(P/INNM/N)=2.

Choose n&€Irr(M|60) and a nonnegative integer g such that
pf | (n(1)/6(1)) and p** 'y (6(1)/6(1)) for all § € Irr(M | 6). By Theorem A,
g > 1. The induction argument yields that d.1.(PM/M) < 2(e — g) + 1. Since
d1L(PINNM/N)=2 and g>1, we have that d.1.(P/N)<2(e— g)+
I+2=2e+1+2(1—g)<2+1. 1§

Theorem C extends one of the main results (Corollary 3.6) of Isaacs [11].
In fact, [saacs obtains the same bound when # is a “p-character” (i.e., (1) is
a power of p and the order of the linear character det(f) is a p-power). In
particular, setting N = 1, Isaacs showed that derived length of a Sylow-p-
subgroup of a solvable group G is bounded as a function of the “p-parts™ of
the degrees of the irreducible characters of G.

The remainder of this paper is aimed at proving Theorem A. If p > 5, this
theorem follows from Theorem 2.5 of Part 1 [15]. The proofs for p = 3 and
p =2 are in Sections 4 and 5. Sections 2 and 3 deal with a certain module
action that arises in a minimal counterexample to Theorem A. Suppose that
|M :M'| = p, that p}|M’|, and M is solvable. Assume that V is a faithful.
irreducible . # (M)-module for a finite field . # and that p}|C,,(v) for all
v € V. This limits the structure of M. In Section 2. we show that M’ is cyclic
or M =~ SL(2, 3) if V' is primitive. In Section 3, we look at the structure of M
when V' is imprimitive. Our results in Section 3 lean heavily on Huppert’s
classification of doubly transitive solvable groups.

2. PrRIMITIVE MODULES

The main purpose of this section is to characterize certain primitive
module actions (Theorem 2.3). Lemma 2.1 follows from Theorem 15.16
of [13].
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2.1. LEMMA. Let G be a Frobenius group with kernel N and complement
H. Suppose that V is an .7 |G|-module for a field . # whose characteristic
does not divide |N|. If C,(N)=0, then dim(V)=|H|dim(C,(H)).

Let E be elementary abelian of order 8. We may choose U < Aut(£) such
that U is nonabelian of order 21, and we let J be the semidirect product EU.
By applying Sylow’s theorem to Aut(E) we may conclude that J is unique up
to isomorphism.

2.2. DEFINITION. Throughout this paper, we let J be the group defined
above.

2.3. THEOREM. Let G be a solvable group that acts faithfully and
irreducibly on a vector space V over a finite field 7. Assume that K 46,
|G : K|=p, py|K|, and O”'(G) = G. Suppose that p ‘ [Co{x)l, for all xe V.
If V. is homogeneous for all N2 G, then

(i) K is cyclic; or
(i) K=Q4, |V|=9,and p=3.

Proof. We will carry out the proof in a series of steps. We let
P €8Syl (G). The hypotheses imply that K= G’ is the unique maximal
normal subgroup of G.

Step 1.V, is irreducible.

Let V, be an irreducible K-submodule of ¥ and let 0# x & V. The
hypotheses imply that P, < C.(x) for some P, € Syl (G). Since KAG, we
have that N,(V,) > KP,=G and V,=V.

Step 2. There is a unique maximal normal abelian subgroup Z of G.
Furthermore, Z is cyclic and Z = Z(K).

The hypotheses imply that K # 1 and that any normal abelian 4 < G is in
fact contained in K. Since V is a faithful homogeneous A-module, we have
that 4 is cyclic (see Theorem 3.2.3 of [7]). Since Aut(4) is abelian and
K =G, it follows that 4 £ Z(K). This completes Step 2.

Step 3. We may assume that K > Z. Otherwise the conclusion of the
theorem is satisfied.

Since ¥, is homogeneous for all N & G, every normal abelian subgroup of
G is cyclic (see Theorem 3.2.3 of [7]). It is well known that this condition
strictly limits the structure of G. The key step in |15, Part |, Theorem 3.3|
was Step 3 proving that ¥, is homogeneous for all N2 G. Steps 4. 5, and 6
may be proved by repeating Steps 5-8, and 14 of |15, Part 1, Theorem 3.3].
(Alternatively, they follow immediately from Step 2 above and Lemma 2.3,
Corollary 2.4, and Lemma 2.5 of [16].)
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Step 4. Let E/Z be a chief factor of G, let B=C,E), and

C=C4(E/Z). Then

(i) E<K:

(i) E/Z is elementary abelian of order ¢*" for a prime ¢ and
integer n:

(i) q|z];

(iv) BE=C<Kand BNE=12Z;

(v) K/C is isomorphic to a subgroup of Sp(2n, q):

(vi) C=K if and only if |E/Z| = 4.

Step 5. There exist E=E,.... E,, < G such that:

(i) E,/Z is a chief factor of G for each i:
(i) ©gM/Z)y=M/Z, where M =E --- E, . and

m

Step 6. Let W be an irreducible Z-submodule of V. Then
() Z][ (W]~ 1) and
(ii) |V|=|W|" for some positive integers 7 and e with e’ = .M : Z|.

Step 7. (1) p<3;
(it} [Syl,(G) [T (P2 V]
(iif) log(ISyl,(G)) > ((q — 1)/2q) log(| ¥): and
(iv) log(|Syl,(G)) > log(1V])/2 if p=3.

We may assume that p < 3, since otherwise Theorem 3.3 of Part 1 |15]
yields the desired result. Since T (x) contains a Sylow-p-subgroup of G
whenever x € V, part (ii) follows from the conjugacy part of Sylow’s
theorem. Lemma 1.7 of Part | [15] applied to the action of EP on V yields
that |T,(P) < |V, where j= (g + 1)/2q, and that |C(P)| < |V|"* if p# 2.
Parts (iii) and (iv) then follow from part (ii).

Step 8. Assume that |E/Z]|# 4. Then

(i) If s is a prime divisor of |t (G/C). then s|(g™" — 1);
(i) 1= (G/C)KK/C;
(iii) T e(MG/C)) < H(G/C)
(iv) If 1S is a Sylow-subgroup of (G/C) and if C¢(P)=1, then
dim(C . ,(P)) = 2n/p;
(v) If [(G/C) is cyclic, then [(G/C)=K/C and dim
(Cpz(P)) = 2n/p.
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Since E/Z is a chief factor of G, E/Z is an irreducible G/C-module. Let
L # S € Syl(F(G/C)) for a prime s. Then S& G and C,,(S) = 1. Part (i)
follows from counting orbits and part (iv) may be obtained by applying
Lemma 2.1 to the action of SP on E/Z. For any solvable group X =+ 1,
F(X)# 1, and F(X) contains its own centralizer. If F(G/C) <€ K/C, then
HG/C)=G/C as O”(G)=G. This implies that PC/C < Z(G/C) and
C = K, contradicting Step 4. Parts (ii) and (iii) follow.

For (v), assume that F(G/C) is cyclic, so that Aut(F(G/C)) is abelian.
Then K/C=(G/C")<Cq,o(F(G/C))=F(G/C) and thus K/C = (G/C).
Since 07'(G)= G and K/C is cyclic, C,(P) = 1. Part (v) now follows from
parts (ii) and (iv). '

Step 9. If g=2 and 2 < n 8, then
(i) n=6and |K/C|<2%; or
(i) n=8and 7/} |K/C|.

Assume that ¢ =2 and 2 < n < 8. Then p =3 by Step 7. By Step 4, K/C
is isomorphic to a subgroup of Sp(2m,2). Suppose that n=7. Since
ISp(14,2)|=3%-5".72.11.13-17-31-43.127-2*, Step 8(i) implies
that |ﬂ"(G/C)H43- 127. Then F(G/C) is cyclic and Step 8(v) implies that
3| 14. Thus n # 7. Similarly, it can be shown that n is not 2 or 5. If n =4,
then ML(G/C)HSZ- 17 as  [Sp(8,2))=3"-57-7-17-2".  Since
P LT ,(F(G/C)) by Step 8(iii), we must have that F(G/C) has a Sylow-
subgroup S of order 25 such that € (P)=1, whence Step 8(iv) yields a
contradiction. Thus » is 3, 6, or 8. Assume that n = 3. Since |Sp(6,2)/ =
3*.5.7.2° Step 8 yields that |F(G/C)|=|K/C|=7 and G/C is
nonabelian of order 21. The Frobenius group of order 21 is embedded in
GL(3,2) as the normalizer of a Sylow-7-subgroup, so that the natural and
contragredient representations of GL(3, 2) give distinct irreducible represen-
tations of G/C over GF(2), and these are the only faithful irreducible
representation of G/C over GF(2). Thus E/Z is not an irreducible G/C-
module and not a chief factor of G. Hence n =6 or 8.

Assume that n = 6. Since [Sp(12,2)|=3%-5"-7".11-13.17-31.2%,
we must have |I(G/C)|5%-7%-13. Since F(G/C)> Ty o(F(G/C) by
Step 8. since |K/C| l [Sp(12, 2)], and since Aut(-(G/C)) is the direct product
of the automorphism groups of the Sylow-subgroups of F(G/C); it follows
that [K/C||5%-7%.13-2" .31 and |K/C|<2%. We may assume that
n=_8.

Since  |Sp(16,2)=3".5%.77.11-13.17%-31-43.127-257.2%,
F(G/C)|| 5% - 17> - 127. Then 7f|Aut(T)| if T is a Sylow-subgroup of
I-(G/C). Since F(G/C) is nilpotent and C,.(F(G/C)) < F(G/C), we have
that 7}|G/C|. This completes Step 9.
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Step 10. If n=1, then g # 3.
Otherwise, p =2 by Step 7. Since p}|K| and Sp(2,3) is a {2, 3}-group,
Step 8 ((i) and (ii)) yield a contradiction.

Step 11. If p=3, we may assume that

(i) G involves J, and
(i) 7[|K/M|.

If 7}|K/M|, it follows via Step 5 that G does not involve J. And if G does
not involve J, then Theorem 3.3 of Part | [15] yields that K~ Q, and
|V =9, as desired.

Step 12. (1) p=2,
(it) m=1, and
(iii) g¢"is 5, 7. 11, 3% 5%, 3% or 3%,

By parts (iii) and (iv) of Step 7, we have that |Syl (G)| > |V
when p=3 and s = (¢ — 1)/2g > { when p = 2.

Without loss of generality, we may choose an integer k such that
0<k<mand |E/Z|=4 if and only if i < k. For each i, |E,/Z| = q;" for a
prime ¢q; and integer n,. Let C, = K and define C; the centralizer in C, | of
E/Z (for 1 i< m). By Step 4(v, vi), we have that C, = K for i  k and that
C,_,/C; is isomorphic to a subgroup of Sp(2n;,q;). By Step 5, C, =M.
Since |Sp(2n. ) < ¢*""* " and |Syl,(G)| < |K]|, it follows that

S, where s = §

log(ISy1,(G)) < log(|Z]) + 2k log(2) + Y (21 + 3n,) log(q,).
i k41
By Step 6, | V| =|W|", where e’ =M : Z|. Thus the first paragraph of this
step yields that

m

1 a2) tog(W).

log(|Z|) + 2k log(2) + N (2n} + 3n,) log(g;) > st (Zk
i~k+1 \ [
(I

By Steps 4(iii) and 6(i), ¢; <|Z| < |W]| for all i. Hence

I+2k+ N @nf+3n)>st-2% | gt (I1)

i—k+1 Pokt1

We will first assume that p = 2 and proceed to show that conclusions (ii)
and (iii) of this step hold when p = 2. Since p¥|K|, we have that Xk =0 and
that each g, is odd. Since s > 5, inequality II yields that

14277 +30> 30
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where /=37 | n,. This last inequality yields that /< 4. If n, =n, =2, then
inequality II implies that 29 > ¢}g¢3/3. But then ¢, = g, = 3 and inequality I
implies that |Z|-3">|W|”, a contradiction since 3||Z| and
(ZH (|W]—1). The case n, = n, =2 cannot occur. To show that m = 1, we
may assume that #, = 1, since /< 4. But then g, > 5 by Step 10, and now
inequality II yields that 14+ 54 2(/— 1)* +3(I~ 1) > 5 - 3/7* Hence [+ 4.
If n, = 2, then inequality II implies that 1 + 5 + 14 > g,45/3 > q,q,, whence
g, =5 and ¢,=3. Then |Z|5°.3" > |W|"” by inequality I. This is a
contradiction, since 15 | {Z| and |Z| < |W|. Thus n,=1 and Step 10 yields
that ¢,>5. Inequality I implies that 11 +2(/~2)*+3(/—2)>
q,9,-3"'>5%.3""" Then /=2 and q,=gq, = 5. Inequality I yields that
|Z| 5" > |W|*" and that 5'° > [W[**”, a contradiction as | W] > I1. Hence
m=1, if p=2. Furthermore s=(g—1)/2¢g and 1+ 2n*+3n>
(g—1)g"~'/2>3""" by inequality II. This inequality and Step 10 imply
that n <4 and ¢" =35, 7, 11, 3% 5% 3°, or 3% This step is completed for
p=2.
We may now assume that p =3, 3}|K|, s=1/2, and

|SYL(G) > | V] (I11)

If =", n, then 1 + 2k + 2I* + 31> 2%+~ Y by inequality 1I and thus
1+ 2(k +D* 4+ 3(k+ 1) > 2%+~ 1 This implies that k 4+ [/ < 8. Assume that
i1 =2 If n, =8, then m=1, C=E=M, and Step 9 implies that
7}|K/M|, contradicting Step 11. Thus n, # 8. Then Step 9 applied to E,/Z
for i > k yields that n, ., =6 and ¢, > S for all i > k + 1. Then inequality II
yields that 81 + 2k +2(/ — 6)* + 3(I —6) > 2°*¥ . 575 Since / + k <8 and
{ > 6, we must have that /=6 and k =0, 1. Steps 4, 5, and 9 yield that M =
Ce(Ey . /Z) and that |[K/M| < 2% Then [Syl(G)[ < 2**¥% | Z| < 2*** % |w|.
Since log(|V|)=64-2%.¢ log(W), inequality II yields that (48 + 2k)
log(2) > (32-2¥— 1) log(|W|). In either case (k=0 or k=1), this
inequality implies that |W|< 3, a contradiction as |Z]<|W| Hence
Gi.17 2, and thus g; > 5 for all i > k.

Now inequality II yields that 1 + 2k + 2/* + 3/ > 2% '5'. As k + [ <8, the
only solutions occur when /< 2. Since C,=K for all ik and since
741Sp(/j, 5) for j=2 or 4, it follows from Steps 4 and 5 that 7}|K/M| if
each ¢; 5. By Step 11, we may assume that /=37, ,#,> 1 and that
Gisy > 7. But then inequality II implies that 1+ 2k+4 2% +3/>
2k=1.7.5'71 This inequality has no solutions when /= 2. Thus /=1 and
inequality II yields that 6 + 2k >2*"'.q,., and thus ¢q,,,=7 or 11, as
k< 8. By Steps 4 and 5, E,/Z < Z(K/Z) for i < k and K/M is isomorphic to
a subgroup of Sp(2, g;,,). But Sp(2, ¢,,,) does not involve the Frobenius
group of order 56. Thus G does not involve J, contradicting Step 1. This
completes Step 12.
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Step 13. Conclusion. We have that m=1, M=E =FE=C,
|E/Z|=q*", and K/E is isomorphic to a subgroup of Sp(2n,q). We also
have that p=2, 2}|K/|, and log(| V|) = tg" log(| W|). By Steps 6 and 7, we
have that

log(ISyL,(G)) > 19"~ (g — 1)/2) log(I W). (Iv)

Suppose that ¢" = 5°. Since |Sp(4,5)|=2"-3"-13-5" and since p = 2,
we have by Step 8 that |F(G/E)| ‘ 37 .13 and C (1 (G/E)) < F(G/E). Then
|K/E : T(G/E)i| |Aut(F(G/E)|. Since |K/E| is odd and divides |Sp(4., 5)|, we
have that |K/E|ﬁ 3. 13. Then |[SyL(G)<|K|<3%-13-5%.(Z|<
32.13.5%.|W| and inequality IV implies that 3°.13.5*>|W/|° and
|W| < 11. This is a contradiction, as ¢ | ({W|—1) by Steps 4 and 6. Thus
q" + 5°. Similar arguments show that g" is not 3* or 11.

Suppose that ¢g" = 5. Since Sp(2,5)=2".3-5 and 2}|K|. Step 8 yields
that H(G/E)=K/E is cyclic of order 3 and that €, ,(P)=35. Then
ISyL(G) =K :C(PN<<3-5-1Z1 < 15| W]| and inequality IV yields that
| W| < 15. Since S‘IZ\ and |Z||({W]|— 1), we have that |W|=11 and
|Z|=5. But then [SyL(G)=I|K:T,(P)<3-5°  contradicting
inequality 1V. Thus g" s 5. Similarly, we may argue that ¢" is not 7 or 3",
Thus ¢" = 3% by Step 12.

Since |Sp(4,3)|=27-5-3% it follows from Step 8 that |F(G/E) =
|K/E|=5 and |C,,(P) =3 Then |Syl,(G)|=|K:C(P) <53 |Z|<
5-3%.|W| and inequality IV implies that 45 > |W|*. Thus t = 1, |W| =4,
and |Z|=3. If P<LC.(Z). then |Syl,(G)<S5-3" contradicting
inequality 1V. Thus P T ,(Z) and Lemma 2.1 applied to ZP implies that
|C(P)=1{V]'". Step 7 now implies that [Syl,(G)>|V|'"?=4"" a
contradiction as |Syl,(G)| =K : T (P) <5 - 3". The proof is complete. 1

3. IMPRIMITIVE MODULES

In Theorem 1 of |6], Gluck determines all solvable primitive permutation
groups (G, 2) in which every 4 < £ has a nontrivial stabilizer in G. In all
cases, |2 < 9. Lemma 3.1 is a consequence of this result. We let D,, denote
the dihedral group of order 2n.

3.1. LEMMmA. Let G be a solvable primitive permutation group on a finite
set 2. Suppose that p ’ |G|, but p’¥|G|. Assume that whenever A < Q. then
Stabg(4) = {x € G| 4" = A} contains a Sylow-p-subgroup of G. Then

@) |2|=3,p=2,and G=Dg;
(b) |R2|=5p=2,and G=D,,; or
(c) |R{=8,p=3,and G=J.



DEFECT GROUPS AND CHARACTER HEIGHTS 231

Proof. Let M be a minimal normal subgroup of G and let I be the
stabilizer in G of some a € £2. A standard argument shows that MI =G,
MNI=1,M=C,iM), and M acts regularly on £2. In particular, |M|=|Q|
and I contains a Sylow-p-subgroup of G. Since each 4 € £ has a nontrivial
point stabilizer, since p I || and p*}|G|; Theorem 1 of [6] yields that

(i) |£2]=3and|l|=2;

(ii) |R2|=4and |I|=3or 6;

(i) |2|=5and|I|=2;

(iv) |2]|=7and |I|=6;0r

(v) |R2|=8and|I|=21;
If |2| =7, then [ is cyclic since I acts faithfully on M. In this case, each
involution in G fixes 3 elements of Q,={4<N ‘ ld4]=3}. Since
3|SyL(G) =3 -7<(])=|R2,|, some element of £, is not fixed by an
involution of G. Thus p # 2 and hence p = 3. But again we can show that
there are elements of 2; not fixed by any elements of order 3, a
contradiction. Thus (iv) does not hold. We may similarly argue that | 2] # 4.

Thus (i), (iii), or (v) holds. Since [ acts faithfully on M, G =MI, and
|2| = M; the conclusion of this lemma easily follows. 1

Part (a) of Lemma 3.2 is standard.

3.2. LEMMA. Assume that G is a solvable group that acts faithfully and
irreducibly on a vector space V over a field 7. Suppose that C <G is
maximal with respect to C2 G and V. is not homogeneous. Let V..., V, be
the homogeneous components of V.. Then

(a) G/C permutes the V, faithfully and primitively.

Assume further that p||G/C|, that p*}|G/C|, and p}|G : C(x)
XE V. Then

Sor all

(b) nis 3,5 or8and(resp.)pis 2, 2, or3;
(¢c) G/C is isomorphic (resp.) to Dy, D,qy, or J;

(d) C/C.(V;) acts transitively on the nonidentity elements of V, for
each 1.

Proof. Let M/C be a chief factor of G. Since V,, is homogeneous, it
follows from Clifford’s theorem that M/C transitively permutes the V. Since
M/C is an abelian chief factor of G, we have that M/C acts regularly on the
V. and |M/C|=n. Let I=N,(V,)., so that MI=G and MNI=C. Let
D/C=C4(M/C)>M/C and let B=DNI2MI=G. Then B fixes each
V', and V, is not homogeneous. Then B=C and D=M and M/C is the

unique minimal normal subgroup of G/C. Thus G/C acts faithfully on the
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V. Since M/C is an abelian chief factor of G/C, I is a maximal subgroup of
G. Thus G/C acts primitively on the ¥V, proving (a).

Let O£y€V, and O0#z& V,. Some Sylow-p-subgroup P, of G
centralizes y + z. Since G and P, permute the V;, P, must leave the set
{V,, V,} invariant. A similar argument shows that each 4 < {V,..., V} is
stabilized by some Sylow-p-subgroup of G/C. Parts (b) and (c) now follow
from Lemma 3.1.

We next show that C acts transitively on the nonidentity elements of V.
Let x, and x, be distinct nonzero elements of V, let 0+ y€ V, and
0+ z€ V,. Assume that p = 3 and choose, for each j, P; € Syl;(G) such that
P; < Cs(x; + y + z). Since each Sylow-3-subgroup of G/C fixes exactly two
of the V;, we may choose {; € G such that CP; = C(t; ) for each j and such
that x; Y=y, yli=z, and z Yi=x,. Then x7! —x2 Since each of the 28 Sylow-
3- subgroups of G/C stablllzes exactly two A< {V,....V} with |4|=3,
counting yields that {},, V,, V,} is fixed by exactly one Sylow-3-subgroup
of G/C. It follows that CP, = CP, and that ¢,¢; ' € C. Thus C is transitive
on Vf if p=3. A similar argument works for p =2 (choose P; € Syl,(G)
that centralize x; + y). This completes the proof. |}

We next mention a number theoretic result of Birkhoff and Vandiver (see
Herstein [9, p. 362]).

3.3. LEMMA. Let q be a prime and n a positive integer. There exists a
prime p such that p|(q" — 1) but p does not divide q" — 1 for all 0 <m < n,
unless q" = 2% or n=2 and q is a Mersenne prime.

Conclusion (d) in Lemma 3.2 puts some restrictions on the structures of C
and G. Huppert |10] has classified the solvable groups H that act faithfully
on a vector space V of order g" and transitively permute the nonidentity
elements. Unless g” is one of six values, Huppert has shown that V" may be
identified with the additive group of GF(g") in such a way that H is a
subgroup of T(g"), the group of semilinear transformations {x— ax?|
a € GF(q"), o a field automorphism of GF(g")} of V. In particular, H is
metacyclic.

3.4, LEMMA. Assume that H is a solvable group acting on a vector space
V with |V|=q" and q = 2, 3. Assume that H acts transitively on V* and that
q" # 3%, 3*. Further assume that |H| is odd if |V|=2°. Then

(1) H/F(H) and F(H) are cyclic, the order of H/IF(H) divides n; and
(ii) there exists a prime p > n and Sylow-p-subgroup P of H such that
PLHH)Y=CL((P).

Proof. Since H is a solvable group acting transitively on V* and since
g"+ 3% 3% 52, 7%, 117% or 237 it follows from [10, Main Proposition|, as
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the semidirect product HV is a doubly transitive group, that } may be iden-
tified with the additive group of GF(g") in such a way that H < T(¢"). We
let S be the subgroup {x— ax|a € GF(g")} of T(q"), so that § is a cyclic
normal subgroup of T(g") with cyclic factor group of order n and |S|=
(g" — 1). We choose p as in Lemma 3.3 if g" % 2° and let p= 17 if ¢" = 2°.
Since ¢ '=1 (mod p), p > n. Thus T(¢") has a cyclic normal Sylow-p-
subgroup P. Then P < S < D, where D is the centralizer of P in T(g"). If
pk(@"—1) for all O<m<n, then P is not centralized by any field
automorphism of GF(q") and then D= S. If ¢" = 64, then |T(q")/S|=6,
p=171,and pf(2° — 1). In this case, P is not centralized by an automorphism
of GF(2°) of order 3. In any case D/S is a 2-group and D = S if ¢" # 2°.

We let F= HN S, so that F and H/F are cyclic. Since H acts transitively
on V*, since | S| =4¢" — 1, and since p}n, we have that P HMN § = F. Then
Cy(Py=DNH=SNH=F, as either D=8 or |H| is odd. But
P € Syl (F(H)) and F(H) < C,(P) < F < F(H). Thus F = F(H), completing
the proof. 1§

4, THE PRIME 3

Here we prove Theorem A for the prime three. We first start with some
known character theoretic results. Let N2 K, ¢ € Irr(N), and 6 € Irr(K |4).
The following are equivalent (Exercise 6.3 of [13]):

(i) Oy=ep with e’ =|K : N|;
(ii) Ix(¢)=K and & vanishes on K — N; and
(iii) 7.(¢)=K and @ is the unique irreducible constituent of ¢*.

In this situation, we say that ¢ or 8 is fully ramified with respect to K/N. The
following is immediate from Theorem 2.7 of Isaacs [12].

4.1. THEOREM. Suppose that N2 K, K/N is abelian, and ¢ € Irr(N) with
1,(¢) = K. Then there exists N < H < K such that each t € Irr(H|¢) extends
¢ and is fully ramified with respect to K/H. Furthermore if N, K 4G, and
1,(0) =G, then HA G.

In Theorem 4.1, H/N is the radical of a bilinear form defined on K/N. If ¢
is faithful and linear, the bilinear form can be taken to be the usual
commutator map and H = Z(K). Lemma 4.2 is known.

4.2. LEMMA. Suppose that N2 K, K/N is abelian, and 8 € Irr(K) is fully
ramified with respect to K/N. Then

(a) K/N=B X B for some abelian group B; and



234 GLUCK AND WOLF

(b) if K/N is an abelian p-group, if N, K <1 G, if I,(8) =G, if D/N =
ConK/N), and if G/D is an abelian q-group for a prime q+ p, then
rank(G/D) < rank(K/N)/2, (where the rank of an abelian p-group P is
dim(2,(P))).

Proof. Part (a) is Lemma 2 of [3]. We prove (b) by induction on |K : N|.
Choose D H < G, G/H cyclic, and C/N =Cy,(H/D)+ 1. Since C/N =
Cx,n(Q) for a Sylow-g-subgroup Q of H, Exercise 13.12 of [13] yields that #
is fully ramified with respect to K/C. Then the irreducible constituent of 8, is
fully ramified with respect to C/N, and so rank(C/N) > 2. Since C & H and
H/D acts faithfully on K/C. induction yields that rank(K/C) > 2 rank(H/D).
By  Fitting’s lemma, rank(K/N)=rank(C/N)+ rank(K/C).  Thus
rank(K/N) > 2 rank(H/D) + 2 > 2 rank(G/D). |

Lemma 4.3 is useful in Theorems 4.4 and 5.1. It is immediate from
Theorem 13.31 and Exercise 13.10 of [13].

4.3. LEMMA. Assume that N K2 G N2 G, (K/N},,G/K|)= 1. and

that G/K or K/N is solvable. Let ¢ € Irt(N) be invariant in G. Then
(a) there exists o € Irr(K |¢) invariant in G and
(b) o is unique if . (S/NY=1 for a complement S/N of K/N
in G/N.
If N2 G and ¢ € Irr(N) extends to x € Irr(G), then ff— fy is a bijection
from Irr(G|{N) onto Irr(G|¢). A sufficient condition for ¢ to extend to G is
that /.(¢) = G and G/N has cyclic Sylow-subgroups. These known facts are

summarized in Lemma 2.1 of part 1 |[15] and will often be used without
reference.

4.4. THEOREM. Suppose that Z is a normal (not necessarily central)
subgroup of G, that G/Z is solvable, and that A € Trr(Z). If 3} (x(1)/A(1)) for
all x € Irr(G|A), then G/Z has an abelian Sylow-3-subgroup.

Proof. The proof will be by induction on |G : Z| and will be done in a
series of steps.

Step 1. We may assume that there exist Z< N K 4 G such that
(a) N/Z is a chief factor of G and T ,(N/Z)= N/Z:;
(b) G/Z=0"(G/Z);
(¢) N/Zis a 3-group, |G:K!=3. K >N, and 3}|K:N|
If Z< HAG and if 6 € Irr(H | A). then 34(6(1)/A(1)) and 3} (x(1)/6(1))
for all y € Irr(G | #). Induction implies that G/H and H/Z have abelian

Sylow-3-subgroups. In particular, we may assume that 0,(G/Z)=1 and
0Y(G/Z)=G/Z. We let NJZ =T(G/Z). so that Z < N4 G. We must have
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that Irr(N/Z) consists entirely of extensions of A. Then each irreducible
character of N/Z is linear. Thus N/Z is abelian and N < G. By Lemma 1.2.3
of (8|, NJZ=C,,(N/Z). Let K be a maximal normal subgroup of G, so
that |G : K| =3 and K > N. Since K/Z has an abelian Sylow-3-subgroup and
N/Z =T, (N/Z), 3f|K : NI,

We need just show that N/Z is a chief factor of G. We may choose
Z < L < N such that N/L is a chief factor of G and C, ,(K/N)< L/Z. Since
3}|K/N|, we have that K/N does not centralize N/L. If Z < L, the induction
argument yields that G/L has an abelian Sylow-3-subgroup. Since
0*G/L) = G/L, we then have that G/N and hence K/N centralize N/L. a
contradiction. This completes Step 1.

Step 2. Let V=1Irr(N/Z). Then V is an elementary abelian 3-group and
a faithful irreducible G/N-module.

Since N/Z is an elementary abelian 3-group, so is V. Since N/Z is abelian
and since G/N acts faithfully on N/Z. G/N acts faithfully on V' (see
Theorem 6.32 of [13]). By Exercise 2.7 of |13], the map A > {i€ V|
A < ker(d)} is a bijection from the set of subgroups of N/Z onto the set of
subgroups of V. Since the map is G-invariant and N/Z is a chief factor of G.
V' is an irreducible G/N-module.

Step 3. Wc may assume that

(a) I,(A)=0:
(b) A is linear and faithful and Z < Z(G):
(¢c) 34|Z|: and

(d) there is a unique G-invariant extension A* € Irr(N) of 4. Also
D, (N) < ker(A*).

Since y— 4% is a bijection from Irr(/.(4)| 1) onto Irr(G | 1), we have that
I,(4) must contain a Sylow-3-subgroup of G and that 3} {(u(1)/A(1)) for all
u€lrr(l;(1)|4). Hence we may assume that /;(4)=G. By applying a
character triple isomorphism (see Chap. 11 of |13]). we may assume that 4
is linear.

Since 3/#(l) for any n € Irr(NV | 4) by the hypotheses of this theorem and
since N/Z is a 3-group, each n € Irr(N | A) extends A. Since 3/|K/N| and
CUxn(N/Z)y=1, it follows from Lemma 4.3 that there is a unique K-invariant
extension A, € Irr(N | A) of A. The hypotheses imply that 34|G : I;(4,)], so
that 4, is invariant in G. Since A, is linear, there is a unique factorization
Ay =4, 4,, where o(4,) =|N:ker(4,)| is a power of 3 and (0o(4,), 3)=1. We
note that A=(4,),+ (4,), is also such a factorization of A. Since 4, is
invariant in G, so are 4, and A,. Since 3}|K/N|, 4, extends to K (see
Corollary 6.27 of [13]). Since a Sylow-3-subgroup of G/N is cyclic. it now
follows that there is an extension & Irr(G) of A,. Then y =8 'y is a

SRI&T L6
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bijection from Irr(G | 1) onto Irr(G | (4,),). It involves no loss of generality
to assume that f=1 and A = (1,),. We may also assume that A is faithful.
Hence 3}|Z|. Since 4 is linear, faithful, and invariant in G, Z < Z(G). This
proves (a), (b), and (c).

Now N = Z X O;(N). We let 1* be the unique extension A* of 1 to N with
Oy(N)<ker(A*). Then I;(A*)=G. By Lemma 4.3, A* is the unique K-
invariant extension of A to N. This yields part (d).

Step 4. For each & V, we have that 341G : 1,(f).

The hypotheses imply that 3}|G:/.(n) for all n & Irr(N|A). Since
B — BA* is a bijection from V onto Irr(N | 1) and since /,(A1*) = G*, we have
that 7,(f8) = I;(BA*) for each f € V and thus that 3f|G :1,(8) for each
fB € V. This proves Step 4.

Step 5. There exist C, L 2 G with N < C < L <K such that

(a) G/C=J;
(b) V=V,®V,® -+ ®V,, where the V, are irreducible C-modules

{

and C/N, acts transitively on V7 for each i, where N, =T (V)
(c) G/C primitevely permutes the V;;
(d) |L/C|=8 and L/C acts regularly on the V,.

First assume that K/N is cyclic or isomorphic to Q,. As |G : K| =3, 4%
extends to ¢ € Irr(G) (see Lemma 2.1 and Corollary 2.3 of Part 1 [15]).
Since K/N = (G/N)’ > 1, there exists d € Irr(G/N) with §(1)= 3. But then
310¢(1) and 6¢ € Irr(G | 4), a contradiction. Hence K/N is not cyclic or
isomorphic to Q. By Steps 2 and 4, Theorem 2.3, and Lemma 3.2, there
exists N < C& G such that (a), (b), and (c) are satisfied. We prove (d) by
letting L/C be the minimal normal subgroup of G/C, and we note that L <K
since K/Z = (G/Z)’ is the unique maximal normal subgroup of G/Z.

Step 6. (a) Assume that N ML G, that € Irr(M | 1) and that there
exists MM, 21.(0) with [,(6)/M, nonabelian of order 21. Then
|1M, M|

(b) if T/N &€ Syl,(C/N) is normal in G and if u € Irr(T|4), then
7\ |G ()
{c) [V,]=3"for an integer n > 6.

To prove (a), assume that 74|M,: M| Since |[;(6)/M, =21 and
(21.|M,/M}|) = 1, it follows from Lemma 4.3 that there exists a € Irr(M, | §)
with o invariant in /;(6). But then a extends to 5 € Irr(/,(f)|6). Since
1,(0)/M, is nonabelian of order 21, there exists & € Irr{I.(6)/M,) with
6(1)y=3. Then dnelir( (0|0 and () Elr(G|HSr(GlA), a
contradiction as 3| (dn)¢ (1). This proves (a).
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To prove (b), assume that 7}|G : I;(u)|. Since 3f|G : I,(u), we have that
Llg(u)=G and I (u)/L M 1;(u) is nonabelian of order 21. This contradicts
part (a), as 74|L : T.

We have an integer n such that |V,]=3" for each i. If n <6, then
7f|Aut(V,)| and 7/|C/N,|. Since G permutes the N, and () N, = N, we have
that N/N & Syl,(C/N). Part (b) implies that A* is not invariant in G, a
contradiction. This completes Step 6.

Step 7. Let S/N be the Fitting subgroup of C/N. Then

(a) S/N and C/S are abelian;

(b) S§/SNMN;is cyclic and acts fixed-point-freely on ¥, for each i (i.e.,
Cay=SNN,for1£acV,);

{c) each prime divisor of C/S divides n; and

(d) there is a prime p, > n and a Sylow-p,subgroup P,/N of C/N
such that 1 # Py/N < S/N and C.,\(P,/N)=S/N.

Since C/N; acts transitively on V7 for each i (Step 5(b)) and since
V| > 3° it follows from Lemma 3.4 that if S;/N, = F(C/N,), then we have
that §;/N; and C/S,; are cyclic and |C/S,||n. Since S,/N, A C/N, is cyclic
and V; is a faithful irreducible C/N,-module, we have that S,/N, acts fixed-
point-freely on ¥;. To prove (a), (b), and (c), we need just show S=() S,.
Since () S;/N is a normal abelian subgroup of C/N, () ;< S. But SN, & C
and SN;/N;, is nilpotent. Hence S < S, for each i and S =1 §,.

To prove (d), we choose p, as in Lemma 3.4 applied to C/N, acting on
V. Then py, > n and p,t|C/S| by part (c). Let P, be the Sylow-p,-subgroup
of C/N. Then N P, /N, is the Sylow-p,-subgroup of C/N, and thus
T v, (Po) = S,/N, by Lemma 3.4. Since P,/N2 G/N, since () ;=S and G
permutes the §;, we have that C, (P,) = S/N.

Step 8. (a) If N<AL G with 4 <C and C/4 < 7(G/A), then C=A:
and

(b) if 1+ R/S is a Sylow-subgroup of C/S, then C/S =T ((R/S).

To prove (a), we may assume that [C/A4] is prime. If (|/C/4],|G/C]|) = 1,
then G/A=C/4 XJ,, where J, =2G/C=J, a contradiction as
0Y(G/N)=G/N. If |C/A| =1, then L/A = C/A X B/A, where B/4 2 G/A
has order 8. Then |G/B|=3-7° and by Fitting’s lemma K/B = C, ,(t,) X
|K/B.t,|, where t,€ G/B has order 3. Then (t,)-|K/B,1,|2 G/B as
Ckm(ty) # 1. This is a contradiction as O (G/B) = G/B. We assume that
|C/A]=2.1f L/A is abelian, we may apply Fitting’s lemma to write /4 =
T (G/LYX [L/A, G| and |C,,(G/L) = 2. But then (G/4)/|L/A, G| has
normal Hall-subgroups of order 2 and index 2, a contradiction. We must
have that L/A4 is nonabelian. Since L/C is a chief factor of G, we must have
that C/4 = Z(L/A4), a contradiction as no class 2-group of order 16 has a
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center of order 2 (which can easily be shown by Theorem 4.1). This
proves (a).

To prove (b), assume that 1+# R/S is a Sylow-subgroup of C/S and
Cs(R/S)> C/S. Then L/S < Cy;,s(R/S) since L/C is the unique minimal
normal subgroup of G/C. Since L transitively permutes the RN S, and
(1S;=S5. we have that S=RMNS, for each i/ and R/S is cyclic. Then
R/S < 7(K/S) and, by part (a), K/S=10,((R/S).

Let G, =Ng(V,), so that |G,/C|=21. Let D=C,(V,), so that D < G,
and DN C=N,. Consequently RNDS, =RNDNC)S,=RMNN,S, =
RM S, =S. Thus the natural projection of G,/S onto G,/DS, carries R/S
isomorphically onto RDS /DS, . Since G /D is isomorphic to a subgroup of
the semilinear group 7(3"), it follows that any Sylow-3-subgroup of G,
centralizes R(DS,)/DS, and hence must centralize R/S. This implies that
R/S < 7(G/S). Part (a) then yields R =S, a contradiction, completing
Step 8.

Step 9. Suppose that F/N2& G/N and F<S. If T, (F/N)<{ C/N. then
F/N is cyclic and F/N < Z(K/N).

Let D/N =, (F/N) and assume that D § C. Since L/C is the minimal
normal subgroup of G/C, L £ DC. Since L/C transitively permutes the N,,
DC transitively permutes the F Y N,. But C fixes each N, and D centralizes
F/N. Thus FAN,=-.-=FNN,. Since () N;=N, since S,/N, is cyclic,
and since F < S; we have that F/N is cyclic. Since Aut(F/N) is abelian,
K/N = (G/N)' < D/N. This completes Step 9.

Step 10. Suppose that P/N € Syl (C/N) for a prime p that does not
divide |L/S|. Assume that N { W P such that W/N is a chief factor of G.
If [W/N|> p’, then A% is fully ramified with respect to P/N.

We let W,=WNN, for each i, let W,,=WMNN,NN,, etc. Since
W/W,~ WN/N; is cyclic, since L/C permutes the W, and since
\W/N\|> p’. we have that W/N £ 7(L/N) and that W/N = |W/N. L|. Since
p 4 |L/S|. we may write P/N=Q/N X Y/N via Fitting’s lemma where
Y/N =10, (L) and Q/N = |P/N.L| > W/N. We let D/N = 2,(Q/N) > W/N.
Since S/SM N, is cyclic and (Y N; =N, we have that 7 rank(W/N)<
rank(D/N) = rank(Q/N) < rank(P/N) < 8. If W < D, then D/W L G/W is
cyclic and D/W L 7((G/W)')=K/W. a contradiction as pf|L/S| and
ConL/S)y=1. Thus W/N = D/N=0Q,(Q/N) is an irreducible G/S-module.
It follows that Q/N is homocyclic and 2, (Q/N)/22{(Q/N) is an irreducible
G/S-module of order 1| or | W] for each j.

We may write N =2Z X U where U = U,(N) (see Step 3). For a€ Q/U.
define ¢, € Hom(Y/N, N/U) by ¢,(»)= |y a|. Since N/ULZ(Y/U), we
have that ¢, is well defined. Thus a — ¢, defines a 1-1 homomorphism from
(Q/U)/Cy, (Y/U) into  Hom(Y/N,N/U), where multiplication in
Hom(Y/N, N/U) is defined pointwise. Since Y/N and N/U are cyclic, so are
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Hom(Y/N,N/U) and (Q/U)/C,,(Y/U). Since N/ULC,, (Y/U), since
Co,{Y/U) is G-invariant, and (Q/U)/C,,(Y/U) is cyclic, it follows from
the last paragraph that C,, (Y/U)=Q/U. Since Y/U<LZ(P/U) and
A* € Irr(N/U), there exists a P-invariant extension u € Irr(Y | A%).

By Theorem 4.1, there exists H <1 G such that N < H < P and that each
yE€ Irr(HyA*) extends A* and is fully ramified with respect to P/H. If
H =N, this step is complete. We may assume that H > N. Since any
0 € Irr(P| A*) vanishes off H and since 4 € Irr(Y | 4*) is P-invariant and
linear, we must have that Y < H. Since W/N =0 ,(Q/N) is a chief factor of
G, WY/Y is the unique minimal normal subgroup of G/Y contained in P/Y.
To prove that W < H, we may assume that H =Y. By Lemma 4.2, P/Y =
A X A for some abelian group 4. Hence Q/N = P/Y has even rank and
W/N = Q,(Q/N) has even rank. We must then have that rank(2,(P/Z)) =
rank(W) = 8. Hence H = Y = N, a contradiction. Thus W < H.

We have that each y & Irr(H|A*) extends A* and is fully ramified with
respect to P/H. In particular, each such y is invariant in P. Since (G, : P,
IP:N|)=1, it follows from Lemma 4.3 that there exists y* € Irr(H |4%)
invariant in G, (note that G, denotes the stabilizer in G of {V/|, V,}, so that
G,,/C is cyclic of order 6). Let t € G,,/N have order 3. We may assume
that ¢ permutes both {V,, V,, V,} and {V, V., V',} non-trivially.

We next show that there exist linear characters p & Irr(W|4A*) and
po € Irr(W,]4%) such that p extends p,, that 34o(p,), and p,, is not invariant
under any Sylow-3-subgroup of G,,/N (note W, ,2& G,,). Since W/W, is
cyclic for each i and |W/N| > 37, we have that W ,,,, has rank at least two.
Letting X; = W,,,,; for 6 < j < 8, we have that X, X,, and X, are distinct
and permuted nontrivially by ¢ Since G,,/C is cyclic of order 6, each 3-
element of G,,/N permutes X,, X,, and X, nontrivially. Let
n € Irr(W 345/ X,) be faithful. Then # is not invariant under any Sylow-3-
subgroup of G,,. Let v € Irr(W|#n). Then t is linear and N  ker(r). We let
p=r1-(y%) and let p, be the restriction of p to W,,. In particular, p and p,
are linear. Since 3| Z| | W/N|, we have that 3}Jo(p,). If y, is the restriction of
y* to W, ,14¢, then p extends ny. Since y* is invariant in G, it follows that
neither (ny,) nor p, is invariant under a Sylow-3-subgroup of G,,/N. We
have shown what we stated at the beginning of this paragraph.

Let a; € V; be nonprincipal characters for j= 1,2 and let f, = (a,, «,, 1,
1, 1, 1, 1, )€ V=1Irr(N/Z). Since W, centralizes V', and V,, since f§, is
linear with o(#,)= 3, and since 3}|W,,/N|, there is a unique extension
f e Irr(W,|8,) such that o(f)=3. Since f,=(a,,,, l,... 1) and W/W,
acts fixed-point-freely on V¥, for each i/ by Step 5, it follows that
1,(8)=W,,. Thus % € Irr(W) and B" restricted to W, is f, + --- + B,
where f,,.... 5, € Irr(W,,) are the distinct conjugates of f. Since f”p¢€
Irr(W|4*) and W2 G, the hypotheses of the theorem imply that %) is left
invariant by some s & G/N of order 3. Since 3}|W/N|. s must fix some
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irreducible constituent of (8%p), by Theorem 13.27 of |13]. Since each
irreducible constituent of ("), has the form 1*(a,, 5,, 1...., 1) for nonprin-
cipal o, (i=1,2), we have that s € G,,. Since W,,£ G,,, s must fix an
irreducible constituent of (8% p) restricted to W,,, by Theorem 13.27 of |13].
It is easy to see that f"p restricted to W, is f,p,+ - + f,p, (e.g., see
Exercise 5.3 of [13]). Then s fixes §;p, for some j. Since f8; and p,, are linear,
o(f;)=3 and 3}o(p,), s must fix both §, and p,. This contradicts the last
paragraph and completes this step.

Step 11. We may assume that 7}|C/S/|.

Assume that 7||C/S|. By Step 7. n > 7 and p, > 8. Steps 7 and 9 yield
that T \(Po/N)=S/N and p,s|G/S|. Then 2,(P,/N) is a faithful and
completely reducible G/S-module. A Sylow-7-subgroup H/S of G/S is
nonabelian by Step 8(b). Thus we may choose a chief factor W/N of G/N
such that W P, and H/C, (W/N) is nonabelian. Thus rank(W/N)> 7 and
Step 10 implies that A* is fully ramified with respect to P,/N. Since
S/S M N, is cyclic for each i and () N; = N, rank(P,/N) < 8. By Lemma 4.2,
rank(H,/S) < 4, where H = HMN C. In particular, rank(R2,(H,/S)) < 4.

By Step 8(b), L/C is a 2-group acting faithfully on 2,(H,/S). But L/C is
the unique minimal normal subgroup of G/C. Hence we may find a chief
factor H,/S of G/S such that H,/S < 2,(H,/S) and that G/C acts faithfully
on H,/S. Since K/C is a Frobenius group of order 56, Lemma 2.1 yields
that rank(H,/S) > 7, a contradiction. This completes Step 11.

Step 12. Let T/N € Syl,(C/N). Then

(a) T/N is cyclic; or
(b) A* is fully ramified with respect to T/N.

By Step 11, T<S. By Step 9, we may assume that _, (7T/N) < C/N.
First assume that C;,(T/N)= C/N. We may choose a chief factor W/N of
G/N such that W/N < |T/N, L/C|. Since K/C acts faithfully on W/N and is
a Frobenius group of order 56, it follows from Lemma 2.1 that
rank(W/N)> 7. In this case, Step 10 implies (b) above. We may assume
that T (T/N) < C/N.

For each i, we have that TN/N, is the cyclic Sylow-7-subgroup of C/N,;
and is contained in S,/N,. We let D/N,=C \(TN/N;) and set D=
D, Dy. Then |D,TI<{VN,=N and it follows that D/N=
Ce(T/NY =T (T/N). Since TN;/N, is cyclic and 3}|C/N|, we have that
|C/D,} <2 for each i, Since D < C and L/C transitively permutes the D;. we
have that |C/D;| = 2 for each i. Also C/D and L/D are 2-groups. If L/D is
abelian, then D,/D = --- = D,/D as L/C transitively permutes the D;. In this
case D, =D and |C/D|=2. But then C/D < Z(G/D), contradicting Step 8.
Hence L/D is nonabelian.
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Since L/D acts faithfully on 7/N and (|L/D|,|T/N|)= 1, we have that
Q.(T/N) is a faithful and completely reducible L/D-module. We may write
Q2 (T/N)y=A/N x B/N where A/N and B/N are L/D-modules with (L/D)’ <
C,p(A4/N) and such that (L/D)/C, ,(Y) is nonabelian if 1% Y is an
irreducible L/D-submodule of B/N. Then B&G and N+ B as L/D is
nonabelian. We let W/N be a chief factor of G/N with W < B. In particular,
(L/D)/C,,,(W/N) is nonabelian.

Write W/N=Y,@® --- ® Y, where the Y, are homogeneous components of
W/N viewed as an C/D module. Then j=|G:I,(Y,). Assume that
K <1.(Y,). Then L < I,(Y,) for all i. Since all the L/C.(Y;) are isomorphic
and since L/D is a subdirect product of the L/C (Y,), each L/C (Y}) is
nonabelian. Since C/D is elementary abelian, we have that |C/C.(Y,) = 2.
But CT.(Y,) and Z(L/C.(Y,)) are invariant in K. Thus C/((X,)=
T(L/CAY))). Hence L/C.(Y,) has order 16, class 2, and a center of
order 2, which is impossible (see., e.g.. Theorem 4.1). Hence K L 7,(Y)).
Thus 7|/ or 2|j. Since C < 1.(Y,), since j=|G : I.(Y,) and since G/C has
no subgroup of index 2, 4, or 6; we have that j > 7. Hence rank(W/N) > 7
and Step 10 gives the desired conclusion of this step.

Step 13. Conclusion. Let T,/N & Syl,(G/N), so that |T,:T|=7. By
Step 6(b), no x4 € Irr(T| 1) is invariant in T,. If A* is fully ramified with
respect to T/N, then (A*)" has a unique irreducible constituent ¢. Since
I,(A*)=G, we must have I.(¢)=G, a contradiction. By Step 2. T/N is
cyclic. Hence K/N = (G/N)' < U, (T/N) and T,/N is abelian, If 1* extends
to y € Irr(7,), then y, € Irr(T| 4) is invariant in T, a contradiction. Thus
T,/N is not cyclic and T,/N = T/N X T,/N with |T,/N|=7 and T, £ C. We
may assume that T, permutes the V; with orbits {V,|} and {V,....,F,}. Since
|T,/N{=17, we may choose | # 5, & V, for 2 < i< 8 such that T, permutes

the f; and T, < I;(#), where f=(1,f,....Bs). Let I=1,0)=1.(A*%B). so
that 1 < G, =1,(V,). By Step 4, 3}4|G :I|. Hence I/C NI is nonabelian of
order 21. Since T/N< Z(L/N), we have that TNN, = =TN N, =N

and thus T/N acts fixed-point-freely on each V; by Step 7. Thus /,(§) =1
and 74|[(CMI)/N|. This contradicts Step 6(a). The proof of the theorem is
complete. N

5. THE PRIME Two

Theorem 5.1 proves Theorem A when the prime concerned is 2.

5.1. THEOREM. Suppose that Z is a normal (not necessarily central)
subgroup of G, that G/Z is solvable, and that A € Irr(Z). If 2} (x(1)/A(1)) for
all y € Irc(G|A), then G/Z has an abelian Sylow-2-subgroup.
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Proof. We argue by induction on |G : Z | and the proof will be in a series
of steps. Steps 1-9 are analogous to the corresponding Steps 1-9 of
Theorem 4.4, and the almost identical proofs are omitted.

Step 1. We may assume that there exist Z < N < K2 G such that
(a) N/Z is a chief factor of G and { ,,(N/Z)=N/Z,
(b) G/Z=1717(G/Z); and
(c) N/Zisa2-group, |G:K|=2.and 2}|K/N|.

Step 2. Let V=1Irr(N/Z). Then V is an elementary abelian 2-group and
a faithful irreducible G/N-module.

Step 3. We may assume that
(a)y I,(4)=0G:
(b) A is linear and faithful and Z < 7(G);
(¢) 24|Z|; and

(d) there is a unique G-invariant extension A* € Irr(N) of 4.

Step 4. For each f € V, we have that 24{G : [,(f)].

Step 5. There exists C 2 G with N < C < K such that

(a) G/C=D,,.
(b) V=V, @V,® - ®V,, where the V; are irreducible C-modules
and C/N, acts transitively on V7 for each i, where N, = T (V,); and

the dihedral group for g =3 or 5;

(c) G/C primitively permutes the V..

Step 6. Assume that N< M A G, that §€ Irr(M | A), and that there is
M <M, 2 1,(0) with 1,(8)/M, = D,,. Then q||M, : M|.

Step 7. Let S/N be the Fitting subgroup of C/N. Then

(a) S/N and C/N are abelian;
(b) S/SNM N, is cyclic and acts fixed-point-freely on V, for each i (i.e.,
Cyla)=N for 1 #£a,€ V)
(c) each prime divisor of C/S divides n, where n is defined by
|V, =2" and
(d) there is a prime p, > n and Sylow-p,-subgroup P,/N of C/N such
that 1 # P,/N < §/N and C_ \(P,/N)=S/N.
Step 8. If 1 = R/S is a Sylow-subgroup of C/S, then C/S =T ((R/S).
Step 9. Suppose that F/N& G/N and F < S. If C,,,(F/N) £ C/N. then
F/N is cyclic and F/N < Z(K/N).
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Step 10. Assume that P/N € Syl (S/N) for a prime p that does not
divide |G/S|. Then A* is fully ramified with respect to P/N.

Let D/N = |P/N, G/N]. Since pt|G : P|, we have that G/D = P/D Xx M/D
for a Hall-p’-subgroup M/D of G/D. Since O*(G/N)= G/N, we have that
M =G and |P/N, G/N| = P/N. Since P/N is abelian, Fitting’s lemma implies
that C, (G/N)= 1.

By Theorem 4.1, we may choose N < H < P with H2 G such that each
n € Irr(H| %) extends A* and is fully ramified with respect to P/H. By
Lemma 4.3, there is some ¢ € Irr(H | 4¥) such that /,(¢) contains a Hall-p’-
subgroup of G. Since ¢ is fully ramified with respect to P/H, ¢ is invariant in
P and I,(¢)=0G. The hypotheses imply that 2}|G:/.(n) for any
n € Irr(H | A*). Since d— d¢ is a bijection from Irr(H/N) onto Irr(H|1*)
and since I;(¢) =G, we have that 2f|G:1.(d)| for all é € Irr(H/N). If
1 € G/N is an involution and J, € Irr(H/N) is inverted by ¢, then some
involutions s € G/N fixes J, and st inverts J,. Since st € K and since |K/N|
and |Irr(H/N)| are odd, we have that 4, = 1,,. Hence f inverts no nonprin-
cipal A € Irr(H/N) and G/N=07(G/N) acts trivially on Irr(H/N). But
G/C,(H/N) acts faithfully on Irr(H/N) (see Theorem 6.32 of |13]). Thus
H/N £ Z(G/N). Thus H =N by the first paragraph, and hence A* is fully
ramified with respect to P/N. This completes Step 10.

Step 11. C=S.

We may assume that C > S. Since |C/S| is odd, n# 1, 2, 4 by Step 7(c).
Since pOHS[, we have that pOHS,-/N,-I and p,|(2"—1). Since p, > n,
Ppo¥|G/C|. By Steps 7 and 9, p,4/G/S| and S/N=C; \(P,/N). Then
02,(Py/N) is a faithful and completely reducible G/S-module. Since C > S.
we have K/S is nonabelian by Step 8. We may choose an irreducible K/S-
module Y < Q,(P,/N) such that K/C.(Y) is nonabelian. Write Y =
Y, @ .- @Y, where the Y, are the distinct homogeneous components of ¥
viewed as a C/S-module and /=1 or g. If /=1, then C/C(Y) = C/C.(Y,) <
(K/T(Y,)) as C/S 1is abelian. But then K/C,(Y) is abelian, a
contradiction. Thus /> g and rank(P,/N) > rank(Y) > g. But since S/S NN,
is cyclic, rank(P,/N)=gq. Since py,t|G/S|, it follows from Step 10 and
Lemma 4.2 that rank(P,/N) is even, a contradiction as ¢ =3,5. We may
assume that C = S.

Step 12. Conclusion. Let X, ={(8,,....5,)|1# B, €V, for each i} and
let 5 € X,. Since C = S, we have by Step 7 that C/N; acts fixed-point-freely
on V, for each i and thus 7.(8) = N. Since G/C = D,,, I ,(8)/N is isomorphic
to a subgroup by D,,. By Steps 4 and 6, 2] [1,(8)/N| and I {)/N =
1,(A*B)/N £ D,,. Hence |I,(f)/N|= 2 and § is fixed by exactly one Sylow-
2-subgroup of G/N. Choose an involution ¢ € G/N such that t&€ G,/N=
Ng(V)/N. Then V, is the unique V, fixed by ¢ and ¢ fixes exactly [T, (¢)*]
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(2" — 1)~ V"* elements of X,. Since | X,| = (2" — 1)“ and f € X, is fixed by
exactly one involution of G/N, we have that

ISYL(G/N) Ty ()% | 2" — 1) P2 = (2" = 1)°. (V)

Let B, = (1, B,.....,8,) with 1 # . €V, for 2<i<q. Since C/N; is cyclic
and acts fixed-point-freely on ¥, and since () N,=1. we have that
I(Bo)/N=N,N .- N, /N is cyclic. But I,(8,) < G,, so that I;(A*8,)/N =
I1:(8,)/N has a cyclic normal subgroup of odd order and index 2. Hence
A*B, extends to I (f,). The hypotheses imply that each y&
Irr(I;(A*B,) | A*B,) has odd degree. Thus 2ju(1) for all u € Irr(/,(8,)/N)
and 1;(B,)/N is cyclic. Thus f, is fixed by a unique involution of G/N. Let
X, = {(B,, B,) | B; € V; and exactly one 8, = 1}. Each element of X, is fixed
by exactly one involution and ¢ fixes exactly (2" — 1)~ "2 elements of X,.
Thus

[SYL(G/N) (2" — 1) "2 =gq(2" — 1)*"". (VD)
Equations (V) and (VI) yield that
g0, (0f]=2" - L.

In particular, ¢ does not centralize V,. Since C/N, is cyclic, there is a
dihedral group H{t) that is a subgroup of G,/N, such that H/N, acts fixed-
point-freely on ¥,. By Lemma 2.1, |C,. (1)]=2""7 Thus ¢=2"" 4 1. We
now have that g =3, and n=2 or that g=35 and n=4.

Assume that ¢ =35 and n=4. Let §,= (1, f;.... f;) be as above. Since
1:(8) < G,, we may choose f§, so that ¢ € I.(8,)/N. We have that I.(f,)/N
is cyclic and ¢ centralizes I.(8,)/N =N, --- M N,, which is isomorphic to
a factor group of C/N, centralized by . But C/N, is cyclic of order 15 and
the Sylow-5-subgroup 4/N, of C/N, is not centralized by ¢ as A/N, acts
irreducibly on ¥, and C, (1) is a nontrivial proper submodule of V/,. Hence
SN,V --- NN Tt follows from Step 10 that the Sylow-3-subgroup F/N
of §/N has even rank and thus rank(F/N) < 4. Since N, --- N, = N and
G permutes the N,, it is routine to see that FON, N .-- M N, = N. Since §
is a {3,5}-group, we have that N, ---NN.=N. If l#qa, €V, for
3iLS, then 1.(1, 1, ay, aya) =N, NN, NN, is isomorphic to a factor
group of C/N, and is cyclic. We can now argue as in the last paragraph that
each ¢ € X, = {(a,,..., &) | exactly two «; = 1} is fixed by a unique Sylow-2-
subgroup of G/N. But  fixes [T, ()*[-2- (2" — 1)=3-2- 15 elements of
X, and |X,|=10-15° Thus 3.2-15(Syl,(G/N)=10-15" and
|Syl,(G/N)| =3 - 5°. This contradicts Eq. (VI). Hence ¢ =3 and n=2.

We have that |Syl,(G/N)| =3 by Eq. (VI). Since |C/N,| =3, C/N is an
elementary abelian 3-group. Choose an involution s € G,/N. Then st does
not fix any V,; and the dihedral subgroup {s. ) of G/N has order 6 or 18. If
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o(st) = 3, we may choose an a = («a,. a,, ¢;) € V with 1 # a, € V; such that
(st) fixes a. This is a contradiction, as we have shown that |C () = 2.
Thus the dihedral group (s, t) has order 18 and contains all 9 involutions of
G/N. Since ©*'(G/N)=G/N, we have G/N = (s, t) and K/N is cyclic. Thus
A* extends to G. In particular, there is a G-invariant extension
¢ € Irr(C|A*). This contradicts Step 6. The proof of Theorem 5.1 is
complete. 1

We next summarize results of Sections 4 and 5 and of Section 2 of part 1
|15] to derive Theorem A.

5.2. COROLLARY. Let Z be a normal (not necessarily central) subgroup
of G. Assume that G/Z is solvable and that A € Irre(Z). If pt (x(1)/4(1)) for
all y € Irr(G | &), then the Sylow-p-subgroups of G/Z are abelian.

Proof. Since pt|G :1,(4), we may assume G =I,(1). By a character
triple isomorphism (see Chap. 11 of [13]), we may assume that i is linear
and pfx(1) for all y € Irr(G | 4). The result now follows from Theorems 4.4
and 5.1 and from Theorem 2.5 of Part 1 [15].

Our techniques can extend Corollary 5.2 to a set 7 of primes and to Hall-
n-subgroups. If the hypothesis “pf(x(1)/A(1)) for all ¥ € Irr(G|A)" is
replaced by “(x(1)/6(1)) is a n’-number for all y € Irr(G | 4),” then we may
conclude that the Hall-n-subgroups of G/Z are abelian. We omit the proof,
which is very similar to that of Theorem 4.4.
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