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All groups considered are finite, y denotes a prime, and Irr(G) is the set of 
ordinary irreducible characters of G. For a p-block B of G, there is a 
conjugacy class of p-subgroups 11 of G that are calfed defect groups of B. If 
/f)/=p” and !Pl-p”, where P E Syl,(G), then p” -” j x( 1) whenever 
x E Irr(G)n B, and the height of x is the largest integer h such that 
P nr-d+* / ;y( 1). 

Brauer 1 I f conjectured that every K E Irr(G) f~ B has height 0 if and only 
if D is abelian. Brauer and Feit 121 proved the result if d< 2. and Reynolds 
114 1 proved the result when D 4 G. Fong 14 1 proved one direction for p- 
solvable G. Namely, if G is p-solvable and D is abelian, then each 
x 6 R fi Irr(G) has height 0. 

We prave the converse for solvable G. This extends the results of part i of 
this paper (Wolf {15\), where the converse direction is proven for solvable 
G, provided p >, 5 or that certain hypotheses are met when p < 3. To prove 

our results, we use a “reduction” theorem of Fong that allows us to assume 
that B I? frr(G) = Irr(G 1 a) for some CY E Irr(??,~(G)f (we note that 
Irr(G j a) = {x E Irr(G) / [x, a”] f O} and 1 , ] is the usual inner product of 
characters). Our main result is 
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Proof This is Corollary 5.2 below. 1 

Theorem A, with Fong’s reduction theorem, gives an affirmative answer to 
Brauer’s conjecture for solvable groups. 

THEOREM B. Let B be a p-block of a group G and let D be a defect 
group of B. Assume G/O,,(G) is solvable. If every x E B f? Irr(G) has height 
0, then D is abelian. 

Proof We argue by induction on 1 G : O,.(G)[. Since B is a p-block of the 
p-solvable group G, Lemma 1A of [ 5 1 shows that there exists a p-block b of 
a group M such that b and B have isomorphic defect groups. such that there 
is a height-preserving bijection from B n Irr(G) onto b n Irr(M), and such 
that either 

(4 Qp,(G) < M < G, or 

(b) MID,,(M) z G/O,,(G), b n Irr(M) = Irr(M / a) for some 
a E Irr(O,,(M)) and the defect groups of b are Sylow-subgroups of M. 

We may assume by the induction argument that B f? h-r(G) = Irr(G / 0) for 
some BE Irr(O,,(G)) and that the defect groups are Sylow-subgroups of G. 
The hypotheses imply that pk,y( 1) for all x E Irr(G 1 8). Theorem A implies 
that the Sylow-p-subgroups of G/O,.(G), and G are abelian. Thus D is 
abelian. 1 

A natural question to ask is whether Theorems A and B can be 
generalized. For example, is the derived length of a defect group bounded by 
the maximum character height of the block? The answer is affirmative for 
solvable G. 

THEOREM C. Assume that Nk G, that G/N is soh)able, and that 
o E Ii-r(N). Suppose that e is an integer and ~‘+~$@(l)/d(l)) for all 
x E Irr(G 1 4). Then the derived length d.l.(P/N) of a Sylow-p-subgroup P/N 
of G/N is at most 2e + 1. 

THEOREM D. Let D be a defect group of a p-block B of a group G and 
assume that G/O,.(G) is solvable. If e is a nonnegative integer and each 
,y E B n Irr(G) has height at most e. then d. l.(D) < 2e + 1. 

Theorem D follows from Theorem C in the same manner than Theorem B 
follows from Theorem A. Before proving Theorem C. we need Lemma I. 1. 
which is proved by Isaacs [ 11, Lemma 1.6 1 under the additional hypothesis 
that I,(B) = {x E Q / 0” = 0) equals Q. The noninvariant case follows from 
Isaacs’ result and an easy induction argument using Clifford’s theorem 
113, 6.111. 
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1.1. LEMMA. Assume N g Q, that Q/N is a p-group, and that e is a 
nonnegative integer. Zf6 E Irr(N) and p’+ ‘,j’(J(l)/8(l))for all x E Irr(Q 18). 
then d. l.(Q/N) < e + 1. 

Proof of Theorem C. We argue by induction on /G : NI. We may assume 
that OD,(G/N) = 1 and OP’(G/N) = G/N. Let K/N = 0,(G/N) and L/N = 
iO,,,(G/N). If L = G, then K = G and the result follows from Lemma 1. I. 
Let M/L be a chief factor of G, so that M/L is a nontrivial abelian p-group. 

Choose 4 E Irr(K 1 0) and an integer f such that ~‘1 (d(l)/@ 1)) and 
Pf+‘/iCuww)) f or any ,U E Irr(K/ 19). Then p’~“‘~(r(l)/#(l)) for any 
r E Irr(G ( 4). The induction argument yields that d.l.(P/K) < 2(e -f) + 1. 
and Lemma 1.1 yields that d.l.(K/N) <f + 1. Thus d. l.(P/N) < 2(e -f) + 
1 + f + 1 = 2e + 1 + (1 -f). Hence, we may assume that f = 0 and that 
K/N is abelian. Since K/N = ‘D,,(G/N) and ‘D,,(G/N) = 1. it follows by 
Lemma 1.2.3 of 181 that K/N = 11 G,,v(K/N). In particular. 
d. 1 .(P/N n M/N) = 2. 

Choose v E Irr(M ( 8) and a nonnegative integer g such that 
p” 1 (v( 1)/0( 1)) and p”’ ‘ii (p( 1)/0( 1)) for all ,!? E Irr(M 1 8). By Theorem A, 
g > 1. The induction argument yields that d. l.(PM/M) < 2(e - g) + 1. Since 
d.l.(P/NnM/N)=2 and g>l, we have that d.l.(P/N)<2(e-g)+ 
1+2=2e+l+2(1-g)<2e+l. u 

Theorem C extends one of the main results (Corollary 3.6) of Isaacs [ 1 1). 
In fact. Isaacs obtains the same bound when 19 is a “p-character” (i.e., 8( 1) is 
a power of p and the order of the linear character det(0) is a p-power). In 
particular, setting N = 1, Isaacs showed that derived length of a Sylow-p- 
subgroup of a solvable group G is bounded as a function of the “p-parts” of 
the degrees of the irreducible characters of G. 

The remainder of this paper is aimed at proving Theorem A. If p > 5. this 
theorem follows from Theorem 2.5 of Part 1 I15 ]. The proofs for p = 3 and 
p = 2 are in Sections 4 and 5. Sections 2 and 3 deal with a certain module 
action that arises in a minimal counterexample to Theorem A. Suppose that 
lM : M’( = p, that p)lM’I, and M is solvable. Assume that V is a faithful, 
irreducible ii(M)-module for a finite field F and that pji c ,,,(v)i for all 
z’ E V. This limits the structure of M. In Section 2, we show that M’ is cyclic 
or MZ SL(2, 3) if V is primitive. In Section 3, we look at the structure of M 
when V is imprimitive. Our results in Section 3 lean heavily on Huppert’s 
classification of doubly transitive solvable groups. 

2. PRIMITIVE MODULES 

The main purpose of this section is to characterize certain primitive 
module actions (Theorem 2.3). Lemma 2.1 follows from Theorem 15.16 
of 1131. 
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2.1. LEMMA. Let G be a Frobenius group with kernel N and complement 
H. Suppose that V is an Y[G]-module for a field T whose characteristic 
does not divide JNI. If,,(N) = 0, then dim(V) = 1 HJ dim(@,.(H)). 

Let E be elementary abelian of order 8. We may choose U < AU(E) such 
that U is nonabelian of order 21, and we let .I be the semidirect product ED: 
By applying Sylow’s theorem to Am(E) we may conclude that J is unique up 
to isomorphism. 

2.2. DEFINITION. Throughout this paper, we let J be the group defined 
above. 

2.3. THEOREM. Let G be a solvable group that acts faithfully and 
irreducibly on a vector space V over a finite field .iT. Assume that K 4 G, 
I G : Kl = P, P~IKI, and W”(G) = G. Suppose that p 1 Il‘,(x)l, for all .Y E V. 
If V,, is homogeneous for all N & G, then 

(i) K is cyclic; or 

(ii) K g Q8, / VI = 9, and p = 3. 

Proof: We will carry out the proof in a series of steps. We let 
P E Syl,(G). The hypotheses imply that K = G’ is the unique maximal 
normal subgroup of G. 

Step 1. V, is irreducible. 
Let V,, be an irreducible K-submodule of V and let 0 # x E V,,. The 

hypotheses imply that P, < CJx) for some P, E Syl,(G). Since K e G. we 
have that N,( V,,) > KP, = G and V, = V. 

Step 2. There is a unique maximal normal abelian subgroup .Z of G. 
Furthermore, Z is cyclic and Z = J(K). 

The hypotheses imply that K # 1 and that any normal abelian A <: G is in 
fact contained in K. Since V is a faithful homogeneous A-module, we have 
that A is cyclic (see Theorem 3.2.3 of [7]). Since Am(A) is abelian and 
K = G’, it follows that A < Z(K). This completes Step 2. 

Step 3. We may assume that K > Z. Otherwise the conclusion of the 
theorem is satisfied. 

Since v, is homogeneous for all Ng G, every normal abelian subgroup of 
G is cyclic (see Theorem 3.2.3 of [ 71). It is well known that this condition 
strictly limits the structure of G. The key step in [ 1.5, Part I, Theorem 3.3 1 
was Step 3 proving that V,T is homogeneous for all N 4 G. Steps 4, .5, and 6 
may be proved by repeating Steps 5-8, and 14 of [ 15, Part 1, Theorem 3.3 I. 
(Alternatively, they follow immediately from Step 2 above and Lemma 2.3, 
Corollary 2.4, and Lemma 2.5 of [ 161.) 
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Step 4. Let E/Z be a chief factor of G, let B = L,(E), and 
C = ‘II(;(E/Z). Then 

(i) E<K: 

(ii) E/Z is elementary abelian of order q’” for a prime q and 
integer n; 

(iii) 4llZl; 
(iv) BE = C < K and B n E = Z; 

(v) K/C is isomorphic to a subgroup of Sp(Zn, q); 

(vi) C = K if and only if / E/Z1 = 4. 

Step 5. There exist E = E, ,.... E,,, < G such that: 

(i) EJZ is a chief factor of G for each i; 

(ii) 1: (, .(/U/Z) = M/Z, where M = E, ... E,,,; and 

(iii) M/Z = E,/Z x ... x E,,,/Z. 

Step 6. Let W be an irreducible Z-submodule of V. Then 

(i) lZll(lW(-1);and 

(ii) ( V/ = / WI”’ f or some positive integers t and e with e’ = M : Z ~. 

Step 7. (i) p < 3; 

(ii) ISyl,(G)l INi dP)l 3 I VI; 
(iii) log(/ Sy$,(G)/) > ((4 - 1 )Pq) bd vi); and 
(iv) log(l Syl,(G)/) > log(/ V/)/2 if p = 3. 

We may assume that p < 3, since otherwise Theorem 3.3 of Part I 1 15 ) 
yields the desired result. Since 1: Jx) contains a Sylow-p-subgroup of G 
whenever x E V, part (ii) follows from the conjugacy part of Sylow’s 
theorem. Lemma 1.7 of Part 1 [ 15 ) applied to the action of EP on V yields 
that I;1 JP)( < / VI.‘, where j = (q + 1)/2q, and that /c ,.(P)i < 1 VI’ ’ if p # 2. 
Parts (iii) and (iv) then follow from part (ii). 

Step 8. Assume that 1 E/Z1 # 4. Then 

(i) If s is a prime divisor of I I (G/C)(. then s ( (q”’ - I); 

(ii) 1 # if (G/C) < K/C; 

(iii) II c,,Jf (G/C)) B I- (G/C): 
(iv) If 1 # S is a Sylow-subgroup of F(G/C) and if & s(P) = I, then 

dim(c,.I,,(P)) = 2n/p; 
(v) If Ii (G/C) is cyclic, then l:(G/C) = K/C and dim 

(r ,. ,(P)) = 2n/p. 
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Since E/Z is a chief factor of G, E/Z is an irreducible G/C-module. Let 
I# SE Syl,(F(G/C)) f or a prime s. Then S 4 G and c:,;,(S) = 1. Part (i) 
follows from counting orbits and part (iv) may be obtained by applying 
Lemma 2.1 to the action of SP on E/Z. For any solvable group X # 1, 
‘r(X) # 1, and F(X) contains its own centralizer. If II(G/C) 4 K/C, then 
It(G/C) = G/C as lDp’(G) = G. This implies that PC/C < Z(G/C) and 
C = K, contradicting Step 4. Parts (ii) and (iii) follow. 

For (v), assume that F(G/C) is cyclic, so that Aut(r(G/C)) is abelian. 
Then K/C = (G/C’) < G,,,.(‘F(G/C)) = IF(G/C) and thus K/C = f(G/C). 
Since OP’(G) = G and K/C is cyclic, C.,,.(P) = 1. Part (v) now follows from 
parts (ii) and (iv). 

Step 9. If q = 2 and 2 < n < 8, then 

(i) n = 6 and IK/CI < 2jh; or 

(ii) n = 8 and 7 j IK/Cl. 

Assume that q = 2 and 2 < n < 8. Then p = 3 by Step 7. By Step 4, K/C 
is isomorphic to a subgroup of Sp(2n, 2). Suppose that n = 7. Since 
ISp(14,2)1= 3’ * 5” . 7* ’ 11 . 13. 17. 31 . 43. 127. 2”, Step 8(i) implies 
that I I (G/C)/ ) 43 . 127. Then IF(G/C) is cyclic and Step 8(v) implies that 
3 1 14. Thus n # 7. Similarly, it can be shown that n is not 2 or 5. If n = 4, 
then 1 IL(G/C)I [.5* . 17 as S~(8,2)1=3’.5*.7.17.2’~. Since 
P Z$ ?I‘,([-(G/C)) by Step 8(iii), we must have that k(G/C) has a Sylow- 
subgroup S of order 25 such that S‘,y(P) = 1, whence Step 8(iv) yields a 
contradiction. Thus n is 3, 6, or 8. Assume that n = 3. Since /Sp(6. 2)l = 
3” 5 . 7 . 2’, Step 8 yields that IF(G/C)I = lK/Cl = 7 and G/C is 
nonabelian of order 21. The Frobenius group of order 21 is embedded in 
GL(3, 2) as the normalizer of a Sylow-7-subgroup, so that the natural and 
contragredient representations of GL(3, 2) give distinct irreducible represen- 
tations of G/C over GF(2). and these are the only faithful irreducible 
representation of G/C over GF(2). Thus E/Z is not an irreducible G/C- 
module and not a chief factor of G. Hence n = 6 or 8. 

Assume that n=6. Since /S~(12,2)/=3~.5~.7’. 11. 13. 17.31 .2’“, 
we must have /I’ (G/C)1 15’ . 7* . 13. Since E(G/C) > d K,,.(iF(c’/C) by 
Step 8, since IK/Cl / ISp(12, 2)/, and since Aut(lk(G/C)) is the direct product 
of the automorphism groups of the Sylow-subgroups of F(G/C); it follows 
that IK/Cl 15’. 7*. 13. 214 - 31 and IK/Cl< 2jh. We may assume that 
n = 8. 

Since /Sp(16,2)1= 3”. 54. 72. 11 . 13. 17*. 31 43. 127. 257. Zh4, 
lk(G/C)II 54 . 17* . 127. Then 7,jIAut(T)l if T is a Sylow-subgroup of 
1;~ (G/C). Since Ic(G/C) is nilpotent and C,,,.(iF(G/C)) ,< ‘F (G/C), we have 
that 7,jlG/C/. This completes Step 9. 
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Step 10. If n = 1, then q # 3. 
Otherwise, p = 2 by Step 7. Since p,jlKI and Sp(2, 3) is a (2, 3}-group, 

Step 8 ((i) and (ii)) yield a contradiction. 

Step 11. If p = 3, we may assume that 

(i) G involves J, and 

(ii) 7 ( 1 K/Ml. 

If 7,/IK/Ml, it follows via Step 5 that G does not involve J. And if G does 
not involve J, then Theorem 3.3 of Part I [ 15 ] yields that K z Q, and 
1 VI = 9, as desired. 

Step 12. (i) p = 2, 

(ii) rn = 1, and 

(iii) q” is 5, 7, 11, 32, 5’, 33 or 3J. 

By parts (iii) and (iv) of Step 7, we have that ISyl,,(G)I > 1 VI”, where s = i 
whenp=3 ands=(q-1)/2q2$whenp=2. 

Without loss of generality, we may choose an integer k such that 
0 < k < m and IE,/ZI = 4 if and only if i < k. For each i, / Ei/Z / = qt”l for a 
prime qi and integer ni. Let C, = K and define C; the centralizer in Ci ~, of 
Ej/Z (for 1 < i < m). By Step 4(v, vi), we have that Ci = K for i < k and that 
Cim ,/Ci is isomorphic to a subgroup of Sp(Zn,, qi). By Step 5, C,, = M. 
Since I Sp(2n. q)l < q’“‘+” and 1 Syl,(G)l < I K (, it follows that 

log(/ W,(G)I) < log(/ Z I) + 2k b(2) + \‘ i ‘-i;, (2nf + 3ni)10g(qO' 

By Step 6, I VI = I WI’F, where e* = /M : ZI. Thus the first paragraph of this 
step yields that 

log(lZI) + 2k lag(2) + j~~+,(2~j+3~i)10g(qi)~st (2" 1'1 ) 4:' log(l WI). 

i h1-I 

(1) 

By Steps 4(iii) and 6(i), qi < IZI < 1 WI for all i. Hence 

1,1 r,, 

1+2k+ \‘ (2nf + 3n,) > St. 2k . 1 1 qyg. 
i-k-i I i htl 

We will first assume that p = 2 and proceed to show that conclusions (ii) 
and (iii) of this step hold when p = 2. Since p)il K1, we have that k = 0 and 
that each qi is odd. Since s > 3, inequality II yields that 

1 + 2/2 + 31> 3’-‘, 
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where I = Cy=, ni. This last inequality yields that I < 4. If n, = n, = 2, then 
inequality II implies that 29 > qfqi/3. But then q, = q2 = 3 and inequality 1 
implies that 1 Z/ . 3** > 1 WI*‘, a contradiction since 3 1 / ZI and 
(Z/( (I I+‘( - 1). The case n, = nz = 2 cannot occur. To show that m = 1, we 
may assume that n, = 1, since I< 4. But then q, > 5 by Step 10, and now 
inequality II yields that 1 + 5 + 2(1- 1)’ + 3(1- 1) > 5 . 3’-*. Hence 1 # 4. 
If n, = 2, then inequality II implies that 1 + 5 + 14 > q1 q:/3 > q, q?, whence 
q,=5 and q2=3. Then /Z(j5 . 314 > 1 WlJ5 by inequality I. This is a 
contradiction, since 15 1 / ZI and / Z 1 < 1 WI. Thus n, = 1 and Step IO yields 
that 42 > 5. Inequality II implies that 11 + 2(1- 2)l + 3(1- 2) > 

’ q,q2 . 3’-? > 5* . 3 -’ ‘. Then I = 2 and q, = q2 = 5. Inequality I yields that 
(Z( 5’O > ( w(25/” and that 5’” > ( W(‘*‘“, a contradiction as ( IV/ > Il. Hence 
in= 1, if p = 2. Furthermore s=(q- 1)/2q and 1+2nz+3n> 
(q- l)q”-‘/2>3”P’ b y inequality II. This inequality and Step 10 imply 
that n < 4 and qn = 5, 7, 11, 3*, 5’, 3’. or 3”. This step is completed for 
p= 2. 

We may now assume that p = 3, 3,/i Kl, s = l/2. and 

I Syl,(G)l > I VI ‘.2. (111) 

If I= rYk+, nj, then 1 + 2k + 21* + 31> 2’kt’-” by inequality II and thus 
1 + 2(k + I)’ + 3(k + I) > 2’k+‘P’). This implies that k + I< 8. Assume that 
9 k+,=2. If n,=8, then m=l, C=E=M, and Step9 implies that 
7) (K/M/, contradicting Step 11. Thus n, # 8. Then Step 9 applied to E,/Z 
for i > k yields that nk+, = 6 and qi > 5 for all i > k + 1. Then inequality II 
yields that 81 + 2k + 2(1- 6)* + 3(1- 6) > 25’k . 5’Ph. Since If k < 8 and 
I> 6, we must have that I= 6 and k = 0, 1. Steps 4, 5, and 9 yield that M = 
C,(Ek e ,/Z) and that jK:/MI ,< 2j”. Then (Syl,(G)I < 2”“’ IZ/ < 2J8’ ” 1 WI. 
Since log(l VI) = 64 . 2’ . t log(W), inequality III yields that (48 + 2k) 
log(2) > (32 . 2’ - 1) lo& WI). I n either case (k = 0 or k = l), this 
inequality implies that 1 IV < 3, a contradiction as IZJ < 1 WI. Hence 
qk+,#2, and thusq,>5 for alli>k. 

Now inequality II yields that 1 + 2k + 21’ + 31> 2k ‘5’. As k + I< 8, the 
only solutions occur when I< 2. Since Ci = K for all i < k and since 
71;1 Sp(j, 5)1 for j = 2 or 4, it follows from Steps 4 and 5 that 7$1 K/Ml if 
each qi < 5. By Step 11, we may assume that I= rYh+, n, > 1 and that 
9 kil a 7. But then inequality II implies that 1 + 2k + 212 + 31> 
2kP’ . 7 . 5’-‘. This inequality has no solutions when I= 2. Thus I= 1 and 
inequality II yields that 6 + 2k > 2’-’ . qk+ , and thus qk+ , = 7 or 11, as 
k < 8. By Steps 4 and 5, E,/Z < iT(K/Z) for i < k and K/M is isomorphic to 
a subgroup of Sp(2, qh+ ,). But Sp(2, qk+ ,) does not involve the Frobenius 
group of order 56. Thus G does not involve J, contradicting Step I: 1. This 
completes Step 12. 
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Step 13. Conclusion. We have that m = 1, M=E,=E=C, 
IE/Zl = P, and K/E is isomorphic to a subgroup of Sp(2n, q). We also 
have that p = 2, 2,/IKl, and log(l VI) = tq” log(l WI). By Steps 6 and 7, we 
have that 

bz(/ W,,(G)/) > W ‘((4 - 1)/2) lad WI). (IV) 

Suppose that q” = 52. Since I Sp(4,5)1= 2’ . 3’ . 13 . 5’ and since p = 2, 
we have by Step 8 that 1 ti(G/E)I 1 32 . 13 and SC, ,J (G/E)) < IF(G/E). Then 
IK/E : I(G/E)II IAut F(G/E)I. S’ mce I K/El is odd and divides 1 Sp(4. 5)/, we 
have that IK/E( 3’. 13. Then ? lSyl,(G)I<lKl<3’. 13.5’.iZlc 
3’ . 13 . 5” / WI and inequality IV implies that 3’ . 13 . 5J > 1 WI” and 
I W( < 11. This is a contradiction, as q 1 (1 WI - 1) by Steps 4 and 6. Thus 
q” # 52. Similar arguments show that q” is not 3’ or 1 1. 

Suppose that q” = 5. Since Sp(2, 5) = 2’ f 3 . 5 and 2j Kl. Step 8 yields 
that It(G/E) = K/E is cyclic of order 3 and that I(, [(P) = 5. Then 
1 Sy12(G)I = /K : 1: K(P)I < 3 . 5 . 1 Z < 15 . 1 I&’ and inequality IV yields that 
1 WI< 15. Since 5 ((Z/ and /ZI (illP 1). we have that /WI= 11 and 
IZI = 5. But then 1 Sy12(G)I = 1 K : 8’: *(P)l < 3 . 5’. contradicting 
inequality IV. Thus q” # 5. Similarly. we may argue that 4” is not 7 or 3’. 
Thus q” = 3’ by Step 12. 

Since Sp(4, 3)/ = 2’ . 5 . 3’, it follows from Step 8 that 1 F(G/E)l = 
I K/El = 5 and (9‘&P)I = 32. Then I Syl,(G)I = j K : C,(P)1 < 5 . 3’ . IZI < 
5 . 3’ . 1 WI and inequality IV implies that 45 > i WI?‘. Thus t = 1, 1 WI = 4. 
and 1 ZI = 3. If P < ‘i: ,,(Z), then 1 Syl,(G)/ ,< 5 3’. contradicting 
inequality IV. Thus P $ #I: (,(Z) and Lemma 2.1 applied to ZP implies that 
ifr?,.(P)l =; VI”? Step 7 now implies that Sy12(G)I > 1 V(’ ’ = 4’ ‘. a 
contradiction as 1 Syl,(G)i = /K : #I K(P)I < 5 . 3”. The proof is complete. 1 

3. IMPRIMITIVE MODULES 

In Theorem 1 of (6 1, Gluck determines all solvable primitive permutation 
groups (G, Q) in which every A G R has a nontrivial stabilizer in G. In all 
cases, /R ( < 9. Lemma 3.1 is a consequence of this result. We let D,, denote 
the dihedral group of order 2n. 

3.1. LEMMA. Let G be a solvable primitive permutation group on a finite 
set Q. Suppose that p 1 1 Gl, but p’kl G(. Assume that whenever A g Q, then 
Stab,(A) = (x E G ( A” = A} contains a Sq’low-p-subgroup of G. Then 

(a) (.R/=3,p=2, and GgDD,; 

(b) (Ql=5,p=2, and GND,(,; or 

(c) /fli=S,p=3, and GgJ. 
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Proof: Let M be a minimal normal subgroup of G and let Z be the 
stabilizer in G of some GI E Q. A standard argument shows that MI= G, 
M n Z = 1, M = CG(M), and M acts regularly on 0. In particular, IMI = 1 B 1 
and Z contains a Sylow-p-subgroup of G. Since each d s Q has a nontrivial 
point stabilizer, since p ) 111 and p’)I G/; Theorem 1 of [ 6) yields that 

(i) Ial= and /Z/=2; 
(ii) /O/ = 4 and lZl= 3 or 6; 

(iii) Ifin/= and lZl=2; 
(iv) jQl = 7 and /Z) = 6; or 

(v) /O/=8 and lZ1=21; 

If IQ I = 7, then Z is cyclic since Z acts faithfully on M. In this case, each 
involution in G fixes 3 elements of Q, = (d cr fl ) ldJ = 3/. Since 
3 I SYMGI = 3 . 7 < ( : I= IQ, I$ some element of 0, is not fixed by an 
involution of G. Thus p # 2 and hence p = 3. But again we can show that 
there are elements of .Q3 not fixed by any elements of order 3, a 
contradiction. Thus (iv) does not hold. We may similarly argue that (0 ) # 4. 
Thus (i), (iii), or (v) holds. Since Z acts faithfully on M. G = MI, and 
IQ = M: the conclusion of this lemma easily follows. u 

Part (a) of Lemma 3.2 is standard. 

3.2. LEMMA. Assume that G is a solvable group that acts faithfuhl) and 
irreducibly on a vector space V over a field F. Suppose that C ,< G is 
maximal with respect to C b G and V,. is not homogeneous. Let V, ,.,,., V, be 
the homogeneous components of Vc. Then 

(a) G/C permutes the Vi faithfullJl and primitiveol. 
Assume further that p 11 G/C), that p’,/l G/Cl, and pi;1 G : t,(x)1 for all 

x E V. Then 

(b) n is 3, 5, or 8 and (resp.) p is 2, 2, or 3: 
(c) G/C is isomorphic (resp.) to D,, D,,, or J; 
(d) C,K,(V,) acts transitively on the nonidentity elements of V, for 

each i. 

Proof: Let M/C be a chief factor of G. Since V,\, is homogeneous, it 
follows from Clifford’s theorem that M/C transitively permutes the Vi. Since 
M/C is an abelian chief factor of G, we have that M/C acts regularly on the 
Vi and IM/CI = n. Let Z=N,(V,), so that MZ=G and MnZ=C. Let 
D/C = C,,,(M/C) > M/C and let B = D n Z& MI = G. Then B fixes each 
1’; and V, is not homogeneous. Then B = C and D = M and M/C is the 
unique minimal normal subgroup of G/C. Thus G/C acts faithfully on the 
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Vi. Since M/C is an abelian chief factor of G/C, 1 is a maximal subgroup of 
G. Thus G/C acts primitively on the Vi, proving (a). 

Let 0 # y E V, and 0 # z E V,. Some Sylow-p-subgroup P, of G 
centralizes y + z. Since G and P, permute the Vi, P, must leave the set 
(I’, , I’,} invariant. A similar argument shows that each A s (V, ,..., V,,} is 
stabilized by some Sylow-p-subgroup of G/C. Parts (b) and (c) now follow 
from Lemma 3.1. 

We next show that C acts transitively on the nonidentity elements of I’, . 
Let X, and x2 be distinct nonzero elements of I’, . let 0 # y E V, and 
0 # z E I’,. Assume that p = 3 and choose, for eachj, Pj E Syl,(G) such that 
Pj < C1,(xi + 4’ + z). Since each Sylow-3-subgroup of G/C fixes exactly two 
of the Vi, we may choose ti E G such tha; CP,i = C(t,,,) for each j and such 
that x,j! =y, yfj=z, and z’f=xi. Then x:1” =x2. Since each of the 28 Sylow- 
3-subgroups of G/C stabilizes exactly two A G ( I’, ,..., Vx} with IA / = 3. 
counting yields that { I’, , I’?, V,) is fixed by exactly one Sylow-3-subgroup 
of G/C. It follows that CP, = CP, and that t, t;’ E C. Thus C is transitive 
on v;’ if p = 3. A similar argument works for p = 2 (choose Pi E Sy12(G) 
that centralize x,~ + y). This completes the proof. 1 

We next mention a number theoretic result of Birkhoff and Vandiver (see 
Herstein [9, p. 3621). 

3.3. LEMMA. Let q be a prime and n a positive integer. There exists a 
prime p such that p / (9” - 1) but p does not divide q”’ - 1 for all 0 < m < n, 
unless q” = 26 or n = 2 and q is a Mersenne prime. 

Conclusion (d) in Lemma 3.2 puts some restrictions on the structures of C 
and G. Huppert ] lo] has classified the solvable groups H that act faithfully 
on a vector space V of order qn and transitively permute the nonidentity 
elements. Unless q” is one of six values, Huppert has shown that V may be 
identified with the additive group of GF(q”) in such a way that H is a 
subgroup of T(q”), the group of semilinear transformations (x+ axU 1 
a E GF(q”), u a field automorphism of GF(q”)} of V. In particular, H is 
metacyclic. 

3.4. LEMMA. Assume that H is a solvable group acting on a vector space 
V with 1 VI = q” and q = 2. 3. Assume that H acts transitively on V# and that 
q” # 32, 35. Further assume that (HI is odd if / VI = 2’. Then 

(i) H/l&(H) and IF(H) are cyclic, the order of H/IF(H) divides n; and 

(ii) there exists a prime p > n and Sylow-p-subgroup P of H such that 
P < F(H) = [[:u(P). 

Proof: Since H is a solvable group acting transitively on V# and since 
qn # 32, 34, 52, 72, 112, or 232, it follows from 110, Main Proposition], as 
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the semidirect product HI’ is a doubly transitive group, that V may be iden- 
tified with the additive group of GF(q”) in such a way that H< T(q”). We 
let S be the subgroup (x+ ax 1 a E GF(q”)} of T(q”), so that S is a cyclic 
normal subgroup of T(q”) with cyclic factor group of order n and / .!I= 
(q” - 1). We choose p as in Lemma 3.3 if qn # 2’ and let p = 7 if q” = 26. 
Since qp-’ c 1 (mod p), p > n. Thus T(q”) has a cyclic normal Sylow-p- 
subgroup P. Then P < S <D, where D is the centralizer of P in T(q”). If 
pt(q”’ - 1) for all 0 < m < n, then P is not centralized by any field 
automorphism of GF(q”) and then D = S. If q” = 64, then 1 T(q”)/SI = 6, 
p=7,andpj(2*-l).Inth’ is case, P is not centralized by an automorphism 
of GF(26) of order 3. In any case D/S is a 2-group and D = S if q” # 2’. 

We let F = Hf? S, so that F and H/F are cyclic. Since H acts transitively 
on P, since 1 S / = q” - 1, and since p,‘;n, we have that P < H n S = F. Then 
C,(P)=DnH=SnH=F, as either D=S or lHI is odd. But 
P E Syl,(F(H)) and IF(H) < CIl(P) <F < IF(H). Thus F = E(H), completing 
the proof. 1 

4. THE PRIME 3 

Here we prove Theorem A for the prime three. We first start with some 
known character theoretic results. Let N4 K, 4 E Irr(N), and 8 E Irr(K 14). 
The following are equivalent (Exercise 6.3 of [ 131): 

(i) 0,V=e$withe2=jK:Ni; 

(ii) Z,(d) = K and 6 vanishes on K - N; and 

(iii) Z,(Q) = K and B is the unique irreducible constituent of i”. 

In this situation, we say that 4 or 6’ is filly ramified with respect to K,lN. The 
following is immediate from Theorem 2.7 of Isaacs [ 12 1. 

4.1. THEOREM. Suppose that N 6 K, K/N is abelian, and I$ E Irr(N) with 
ZK(#) = K. Then there exists N < H < K such that each r E Irr(Hj#) e,xtends 
p and is fully ramified with respect to K/H. Furthermore if N, K 4 G, and 
ZG(#) = G, then H 4 G. 

In Theorem 4.1, H/N is the radical of a bilinear form defined on K/N. If i 
is faithful and linear, the bilinear form can be taken to be the usual 
commutator map and H = z(K). Lemma 4.2 is known. 

4.2. LEMMA. Suppose that N & K, K/N is abelian, and 8 E Irr(K) is fulb 
ramzj?ed with respect to K/N. Then 

(a) K/N g B x B for some abelian group B; and 
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(b) if KIN is an abelian p-group, if N, K 5! G, if l,(O) = G, if D/N = 
C,,,,JK/N), and if G/D is an abelian q-group for a prime q # p, then 
rank(G/D) < rank(KIN)/Z, (where the rank of an abelian p-group P is 
din-@ 1(P)>). 

Proof: Part (a) is Lemma 2 of [ 3 I. We prove (b) by induction on j K : Nl. 
Choose D < H < G, G/H cyclic, and C/N = C,,,,(H/D) # 1. Since C/N = 
c,,,,,(Q) for a Sylow-q-subgroup Q of H, Exercise 13.12 of [ 13 ] yields that B 
is fully ramified with respect to K/C. Then the irreducible constituent of 8, is 
fully ramified with respect to C/N, and so rank(C/N) > 2. Since C 6 H and 
H/D acts faithfully on K/C. induction yields that rank(K/C) > 2 rank(H/D). 

Fitting’s lemma, rank(K/N) = rank(C/N) + rank(K/C). 
itk(K/N) > 2 rank(H/D) + 2 > 2 rank(G/D). 

Thus 
1 

Lemma 4.3 is useful in Theorems 4.4 and 5.1. It is immediate from 
Theorem 13.31 and Exercise 13.10 of [ 131. 

4.3. LEMMA. Assume that N<KgG. N&G, (;K/Ni,,G/Kl)= I. and 
that G/K or K/N is solvable. Let ti E Irr(N) be invariant in G. Then 

(a) there exists o E Irr(K 14) invariant in G; and 

(b) o is unique if ‘1 h ,(S/N) = 1 for a complement SIN of K/N 
in GIN. 

If N 6 G and Q E Irr(N) extends to 2: E Irr(G), then 0 -+ ,& is a bijection 
from Irr(G/ N) onto Irr(G/q). A sufficient condition for 0 to extend to G is 
that I,;(@) = G and G/N has cyclic Sylow-subgroups. These known facts are 
summarized in Lemma 2.1 of part 1 j 15 1 and will often be used without 
reference. 

4.4. THEOREM. Suppose that Z is a normal (not necessarily central) 
subgroup of G, that G/Z is solvable, and that A E Irr(Z). rf‘ 3 i; (x( 1 )//i( 1 ))for 
all x 6 Irr(G//I), then G/Z has an abelian Sl’low3-subgroup. 

ProoJ The proof will be by induction on / G : Zl and will be done in a 
series of steps. 

Step 1. We may assume that there exist Z < N < K $ G such that 

(a) N/Z is a chief factor of G and Q ,!,(N/Z) = N/Z; 

(b) G/Z = lr;l”(G/Z); 

(c) N/Zisa3-group,IG:K(=3.K>N,and3klK:N1. 

IfZ<HnG and ifHEIrr(Hli). then 3)(8(1)/d(l)) and 3)@(1)/@(l)) 
for all x E Irr(G / t9). Induction implies that G/H and H/Z have abelian 
Sylow-3-subgroups. In particular, we may assume that 103~(G/Z) = 1 and 
rJs”(G/Z) = G/Z. We let N/Z = ~O~,(G/Z). so that Z < N g G. We must have 
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that Irr(N/Z) consists entirely of extensions of 1. Then each irreducible 
character of N/Z is linear. Thus N/Z is abelian and N < G. By Lemma 1.2.3 
of [8 ], N/Z = c‘,/,(N/Z). Let K be a maximal normal subgroup of G. so 
that / G : K 1 = 3 and K > N. Since K/Z has an abelian Sylow-3-subgroup and 
N/Z = C<;,,(N/Z), 34 1 K : Nl. 

We need just show that N/Z is a chief factor of G. We may choose 
Z < L < N such that N/L is a chief factor of G and C,,vj7(K/N) 6 L/Z. Since 
3 1 /K/NJ, we have that K/N does not centralize N/L. If Z < L, the induction 
argument yields that G/L has an abelian Sylow-3-subgroup. Since 
Q’(G/L) = G/L, we then have that G/N and hence K/N centralize N/L. a 
contradiction. This completes Step 1. 

Step 2. Let V= Irr(N/Z). Then V is an elementary abelian 3-group and 
a faithful irreducible G/N-module. 

Since N/Z is an elementary abelian 3-group, so is V. Since N/Z is abelian 
and since G/N acts faithfully on N/Z. G/N acts faithfully on V (see 
Theorem 6.32 of [ 131). By Exercise 2.7 of ] 131, the map A --t {A E VI 
A ,< ker(ll)} is a bijection from the set of subgroups of N/Z onto the set of 
subgroups of V. Since the map is G-invariant and N/Z is a chief factor of G. 
V is an irreducible G/N-module. 

Step 3. WC may assume that 

(a) 1,(n) = G: 

(b) 1 is linear and faithful and Z < Z(G); 

(c) 3,/]21: and 

(d) there is a unique G-invariant extension A* E Irr(N) of 2. Also 
l!:‘l,(N) < ker(/l*). 

Since ,u -+ ,u’ is a bijection from Irr(/,(d) / /I) onto Irr(G ) /2), we have that 
Z,(A) must contain a Sylow-3-subgroup of G and that 3k(,~(l)/A( 1)) for all 
,U E Irr(l,(n) / ;I). Hence we may assume that I,(A) = G. By applying a 
character triple isomorphism (see Chap. 1 1 of ( 13 1). we may assume that 2 
is linear. 

Since 3$~(1) for any v C Irr(N 12) by the hypotheses of this theorem and 
since N/Z is a 3-group, each q E Irr(N 12) extends /1. Since 3,j] KiNI and 
i *,,,(N/Z) = 1, it follows from Lemma 4.3 that there is a unique K-invariant 
extension 1” E Irr(N / A) of 1. The hypotheses imply that 3$/ G : I,(&)]. so 
that & is invariant in G. Since & is linear, there is a unique factorization 
/$,=A, . A*, where o(&)=]N:ker(1,)/ is a power of 3 and (o(/l,),3)== 1. We 
note that 1 = (A,), . (/2,), is also such a factorization of A. Since A,, is 
invariant in G, so are A1 and 1,. Since 3kiK/NI, 1, extends to K (see 
Corollary 6.27 of [ 13 1). Since a Sylow-3-subgroup of G/N is cyclic. it now 
follows that there is an extension b E Trr(G) of A?. Then x-p- ‘x is a 
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bijection from Irr(G / A) onto Irr(G 1 (A,),). It involves no loss of generality 
to assume that p = 1 and k = (A,),. We may also assume that A is faithful. 
Hence 3,/'jZl. Since k is linear, faithful, and invariant in G, Z < Z(G). This 
proves (a), (b), and (c). 

NOW N = Z X o,(N). We let A* be the unique extension /1* of A to N with 
‘O,(N) < ker(k*). Then Z,(A*) = G. By Lemma 4.3, A* is the unique K- 
invariant extension of A to N. This yields part (d). 

Step 4. For each p E V, we have that 31;/ G : Z&)1. 

The hypotheses imply that 31;lG : Z,(q)1 for all q E Irr(N! 1). Since 
b + /U* is a bijection from V onto Irr(N I /i) and since IJJ.*) = G”. we have 
that I,($) = I&U*) for each /3 E V and thus that 3 ,/I G : 1,(@)i for each 
p E V. This proves Step 4. 

Step 5. There exist C, L a G with N < C < L 6 K such that 

(a) G/C-J: 

(b) I’=V,@Vz@... @ I’,, where the I’, are irreducible C-modules 
and C/N, acts transitively on q for each i, where Ni = (! ((I’,): 

(c) G/C primitevely permutes the Vi; 

(d) 1 L/Cl = 8 and L/C acts regularly on the V,. 

First assume that K/N is cyclic or isomorphic to Q,. As 1 G : K 1 = 3, A.* 
extends to 4 E Irr(G) (see Lemma 2.1 and Corollary 2.3 of Part 1 [ 15 I). 
Since K/N = (G/N)’ > 1, there exists 6 E Irr(G/N) with 6( 1) = 3. But then 
3 I&( 1) and 64 E Irr(G / A), a contradiction. Hence K/N is not cyclic or 
isomorphic to Q,. By Steps 2 and 4, Theorem 2.3, and Lemma 3.2. there 
exists N < C g G such that (a), (b). and (c) are satisfied. We prove (d) by 
letting L/C be the minimal normal subgroup of G/C, and we note that L < K 
since K/Z = (G/Z)’ is the unique maximal normal subgroup of G/Z. 

Step 6. (a) Assume that N < iV& G, that 6’ E Irr(M 11) and that there 
exists M < M, &r,(O) with 1,(0)/M, nonabelian of order 21. Then 
71 IM, :M(; 

(b) if T/NE Syl,(C/N) is normal in G and if ,u E Irr(?‘j J.), then 
7) I G : I,;@u)l: 

(c) 1 V, 1 = 3” for an integer n 3 6. 

To prove (a), assume that 7)1lM, :Ml. Since lr,(O)/M,i = 21 and 
(21, (M,/MJ) = 1, it follows from Lemma 4.3 that there exists a E Irr(M, 10) 
with a invariant in 1,(e). But then a extends to 7 E Irr(r,;(@) / 8). Since 
1,(8)/M, is nonabelian of order 21, there exists 6 E Irr(Z,(B)/M,) with 
6( 1) = 3. Then 6~ E Irr(Z,(B) 1 0) and (6~)~ E Irr(G ( 0) s Irr(G 1 A), a 
contradiction as 3 / (8~)” (1). This proves (a). 
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To prove (b), assume that 7k/ G : Z&)1. Since 3kl G : Z,@)l, we have that 
LZ,@) = G and Z&)/L f? ZG@) is nonabelian of order 21. This contradicts 
part (a), as 7)1L : T(. 

We have an integer IZ such that ) Vi1 = 3” for each i. If n <: 6, then 
7t/Aut(V,)J and 7$1C/N,/. S ince G permutes the Ni and n Ni = N, we have 
that N/NE Syl,(C/N). Part (b) implies that 1* is not invariant in G, a 
contradiction. This completes Step 6. 

Step 7. Let S/N be the Fitting subgroup of C/N. Then 

(a) S/N and C/S are abelian: 

(b) S/S n Ni is cyclic and acts fixed-point-freely on Vi for each i (i.e.. 
~i’,~(u) = Sf? Ni for 1 # a E Vi); 

(cl each prime divisor of C/S divides n; and 

(d) there is a prime p. > n and a Sylow-p,-subgroup PO/N of C/N 
such that 1 # P,/N < S/N and ‘cl,,(P,/N) = S/N. 

Since C/N, acts transitively on 7 for each i (Step 5(b)) and since 
Vi1>3 ‘, it follows from Lemma 3.4 that if SJN, = E(C/N,), then we have 

that SJN, and C/Si are cyclic and 1 C/Sil 1 n. Since S,/N, a C/N, is cyclic 
and Vi is a faithful irreducible C/Ni-module, we have that S,/N, acts tixed- 
point-freely on Vi. To prove (a), (b), and (c), we need just show S .= n S,. 
Since n S,/N is a normal abelian subgroup of C/N, n Si < S. But SN, 4 C 
and SN,/N, is nilpotent. Hence S < Si for each i and S = n S;. 

To prove (d), we choose p,, as in Lemma 3.4 applied to C/N, acting on 
V, . Then p,, > n and poti C/S( by part (c). Let P,, be the Sylow-p,-subgroup 
of C/N. Then N,P,/N, is the Sylow-p,-subgroup of C/N, and thus 
C (’ \,(Po) = S,/N, by Lemma 3.4. Since P,,/Nb G/N, since n Si = S and G 
permutes the Si, we have that cI(-l,b(P,,) = S/N. 

Step 8. (a) If N < A 4 G with A ,< C and C/A ,< T(G/A), then C = A: 
and 

(b) if 1 # R/S is a Sylow-subgroup of C/S, then C/S = 1: (; ,(R/S). 

To prove (a), we may assume that 1 C/A 1 is prime. If (1 C/A /, / G/(71) = 1, 
then G/A = C/A x J, , where J, ; G/C 2 J, a contradiction as 
5”(G/N) = G/N. If 1 C/A / = 7, then L/A = C/A x B/A, where B/A & G/A 
has order 8. Then IG/BI = 3 . 72 and by Fitting’s lemma K/B = cc:hl,,(tO) x 

[K/B. t,], where t, E G/B has order 3. Then (t,) . [K/B, t,,] & G/B as 
mI~I(,H(t,,) # 1. This is a contradiction as O”‘(G/B) = G/B. We assume that 
1 C/A ) = 2. If L/A is abelian, we may apply Fitting’s lemma to write L/A = 
‘c m(GIL) x IL/A, G I and IQ,,,,4(G/L)l = 2. But then (G/A)/fL/A, G] has 
normal Hall-subgroups of order 2 and index 2, a contradiction. We must 
have that L/A is nonabelian. Since L/C is a chief factor of G, we must have 
that C/A = ,l(L/A), a contradiction as no class 2-group of order 16 has a 
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center of order 2 (which can easily be shown by Theorem 4.1). This 
proves (a). 

To prove (b), assume that 1 # R/S is a Sylow-subgroup of C/S and 
si .,,(R/S) > C/S. Then L/S < cc;;s (R/S) since L/C is the unique minimal 
normal subgroup of G/C. Since L transitively permutes the R n S, and 
fi Si = S, we have that S = R n Si for each i and R/S is cyclic. Then 
R/S < L(K/S) and. by part (a), K/S = pi: ,,!,s(R/S). 

Let G, = R\J,(V,). so that IG,/C = 21. Let D = $1 J V,), so that D< G, 
and D f’ C = N, . Consequently R n DS, = R f? (D n C) S, = R n N, S, = 
R f’s, = S. Thus the natural projection of G,/S onto G,/DS, carries R/S 
isomorphically onto RDSJDS, . Since G,/D is isomorphic to a subgroup of 
the semilinear group T(3”), it follows that any Sylow-3-subgroup of G, 
centralizes R(DS,)/DS, and hence must centralize R/S. This implies that 
R/S < ,’ (G/S). Part (a) then yields R = S, a contradiction. completing 
Step 8. 

Step 9. Suppose that F/N 4 G/N and F < S. If c c ,.(F/N) & C/N. then 
F/N is cyclic and F/N < ,dT(K/N). 

Let D/N = ‘c .,,.(F/N) and assume that D 4 C. Since L/C is the minimal 
normal subgroup of G/C, L < DC. Since L/C transitively permutes the Ni, 
DC transitively permutes the F n Ni. But C fixes each Ni and D centralizes 
F/N. Thus FnN,= ... = F n N,. Since n Ni = N, since Si/Ni is cyclic, 
and since F < S: we have that F/N is cyclic. Since Aut(F/N) is abelian, 
K/N = (G/N)’ < D/N. This completes Step 9. 

Step 10. Suppose that P/NE Syl,(C/N) for a prime p that does not 
divide 1 L/S(. Assume that N < W < P such that W/N is a chief factor of G. 
If 1 W/N/ > p’. then A* is fully ramified with respect to P/N. 

We let Wi = W n Ni for each i, let Wzi = W n Nz n N,. etc. Since 
W/Wig WNJN, is cyclic. since L/C permutes the Wi, and since 
1 W/N/ > p’, we have that W/N & i(L/N) and that W/N = [ WIN. L I. Since 
p i; / L/SI. we may write P/N = Q/N x Y/N via Fitting’s lemma where 
Y/N = #t,,,,(L) and Q/N = IPIN, L 1 > WIN. We let D/N = fJ,(Q/N) > WIN. 
Since S/Sri Ni is cyclic and 0 N, = N, we have that I < rank( W/N) < 
rank(D/N) = rank(Q/N) < rank(P/N) < 8. If W < D, then Dl WA G/W is 
cyclic and D/W < n((G/W)‘) = K/W. a contradiction as p$(L/S( and 
i: u,,,(L/S) = 1. Thus W/N = D/N = fi,(Q/N) is an irreducible G/S-module. 
It follows that Q/N is homocyclic and Ri ,(Q/N)/n,(Q/N) is an irreducible 
G/S-module of order 1 or 1 WI for each j. 

We may write N = Z x U where U = [UJ(N) (see Step 3). For a E Q/U. 
define 4, E Hom(Y/N, N/U) by 4,(~‘)= (~,a). Since N/U< i(Y/U). we 
have that oa is well defined. Thus a + @,, defines a l-l homomorphism from 

(Q/W/Q u,,.(Y/U) into Hom( Y/N, N/U). where multiplication in 
Hom(Y/N. N/U) is defined pointwise. Since Y/N and NfU are cyclic, so are 
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Hom( Y/N, N/U) and (Q/U)/@,,,,(Y/U). Since N/U < @uJI(Y/U), since 
[I ,,,.(Y/U) is G-invariant, and (Q/U)/C,,,,(Y/U) is cyclic, it follows from 
the last paragraph that c’,,,,(Y/U) = Q/U. Since Y/U < Z(P/U) and 
A* E Irr(N/U), there exists a P-invariant extension ,D E Irr( Y ) A *). 

By Theorem 4.1, there exists H 4 G such that N < H < P and that each 
y E Irr(H,+;l*) extends A* and is fully ramified with respect to P/H. If 
H = N, this step is complete. We may assume that H > N. Since any 
6 E Irr(P 1 A*) vanishes off H and since ,D E Irr(Y 1 A*) is P-invariant and 
linear, we must have that Y < H. Since W/N = O,(Q/N) is a chief factor of 
G. WY/Y is the unique minimal normal subgroup of G/Y contained in P/Y. 
To prove that W < H, we may assume that H = Y. By Lemma 4.2, P/Y z 
A x A for some abelian group A. Hence Q/N 2 P/Y has even rank and 
WIN = Q , (Q/N) h as even rank. We must then have that rank(fi,(P/Z)) = 
rank(W) = 8. Hence H = Y = N, a contradiction. Thus W < H. 

We have that each y E Irr(H 1 A*) extends A* and is fully ramified with 
respect to P/H. In particular, each such y is invariant in P. Since ( G,z : PI, 
/P : Nl) = 1, it follows from Lemma 4.3 that there exists ;I* E Irr(H 1 A*) 
invariant in G,, (note that G,, denotes the stabilizer in G of ( I’, , V, 1, so that 
G,JC is cyclic of order 6). Let t E G,,/N have order 3. We may assume 
that t permutes both (I’, , V,, V,) and { V,, V,, V,} non- trivially. 

We next show that there exist linear characters p E Irr(Wl,A*) and 
PO E Irr( W,, IA*) such that p extends PO, that 3)0@,,), and p,, is not invariant 
under any Sylow-3-subgroup of G,,/N (note W,2 2 G,,). Since W/W, is 
cyclic for each i and 1 WINI > 3’, we have that W,2345 has rank at least two. 
Letting Xi = W12345j for 6 < j < 8, we have that X,, X,, and X, are distinct 
and permuted nontrivially by t. Since G,,/C is cyclic of order 6, each 3- 
element of G,,/N permutes X,, X,, and X, nontrivially. Let 
7 E Irr( W,2345/Xh) be faithful. Then q is not invariant under any Sylow-3- 
subgroup of G,z. Let r E Irr( WI v). Then r is linear and N < ker(r). We let 
p = r . (y$) and let PO be the restriction of p to W,?. In particular, p and p,) 
are linear. Since 31;l.Z / WINI, we have that 31;0@,). If I?,) is the restriction of 
Y” to w,,.?,,, then p extends ~1’. Since y* is invariant in G. it follows that 
neither (vy,,) nor PO is invariant under a Sylow-3-subgroup of G,:!/N. We 
have shown what we stated at the beginning of this paragraph. 

Let o.i E Vi be nonprincipal characters for j = 1, 2 and let PO = (CL,. az. 1, 
1, 1, 1, 1, 1) E V = Irr(N/Z). Since W,, centralizes V, and V?, since PO is 
linear with @3,,) = 3, and since 3111 W,,/Nl, there is a unique extension 
p E Irr( W,21p,) such that 0(/3) = 3. Since p,V = (a,. a,, l,..,, 1) and W/Wi 
acts fixed-point-freely on Vi for each i by Step 5, it follows that 
~dP> = w,,. Thus ,!I” E Irr(W) and p” restricted to W,, is /3, + .. . + p,, 
where /3, ,..., /3, E Irr( W,,) are the distinct conjugates of /3. Since p”p E 
Irr( WI,?*) and Wh G, the hypotheses of the theorem imply that p”p is left 
invariant by some s E G/N of order 3. Since 3tl W/Nl, s must fix some 
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irreducible constituent of (p”p),, by Theorem 13.27 of ) 13 1. Since each 
irreducible constituent of (/?“P),~ has the form l*(a,, uz, l,..., 1) for nonprin- 
cipal ui (i= 1, 2), we have that s E G,,. Since IV,,4 G,,, s must fix an 
irreducible constituent of (/3”‘p) restricted to IV,, . by Theorem 13.27 of 1 13 I. 
It is easy to see that p”“p restricted to W,2 is j3,p0 + ... + /3,pu (e.g., see 
Exercise 5.3 of [ 131). Then s fixes pip, for some j. Since Pi and p,, are linear. 
o(j’,) = 3 and 3ijo@,), s must fix both pi and pn. This contradicts the last 
paragraph and completes this step. 

Step 11. We may assume that 7,/l C/S 1. 
Assume that 7 11 C/SI. By Step 7, n > 7 and PO > 8. Steps 7 and 9 yield 

that C,,,v(P,/N) = S/N and PO 4 / G/S 1. Then fl,(P,/N) is a faithful and 
completely reducible G/S-module. A Sylow-7-subgroup H/S of G/S is 
nonabelian by Step 8(b). Thus we may choose a chief factor WIN of G/N 
such that W < P, and H/bI,,( WIN) IS nonabelian. Thus rank( W/N) > 7 and 
Step 10 implies that /2* is fully ramified with respect to P,,/N. Since 
S/S n N; is cyclic for each i and n Nj = N, rank(P,/N) < 8. By Lemma 4.2, 
rank(H,/S) 6 4, where H, = H f’ C. In particular, rank(fi,(H,/S)) < 4. 

By Step 8(b), L/C is a 2-group acting faithfully on R,(H,/S). But L/C is 
the unique minimal normal subgroup of G/C. Hence we may find a chief 
factor H,/S of G/S such that Hz/S ,< fl,(H,/S) and that G/C acts faithfully 
on HJS. Since K/C is a Frobenius group of order 56, Lemma 2.1 yields 
that rank(H,/S) > 7, a contradiction. This completes Step 11. 

Step 12. Let T/NE Syl,(C/N). Then 

(a) T/N is cyclic: or 

(b) A* is fully ramified with respect to T/N. 

By Step 11. T< S. By Step 9, we may assume that II (, ,(T/N) < C/N. 
First assume that rl (;;,,(T/N) = C/N. W e may choose a chief factor W/N of 
G/N such that W/N < [TIN, L/Cl. S’ mce K/C acts faithfully on W/N and is 
a Frobenius group of order 56, it follows from Lemma 2.1 that 
rank( W/N) > 7. In this case, Step 10 implies (b) above. We may assume 
that I! ,,,,,(T/N) < C/N. 

For each i, we have that TN,/N, is the cyclic Sylow-7-subgroup of C/h’, 
and is contained in S,IN,. We let Di/Ni = ri c,,,.,(TN,/Ni) and set D = 
D,n . ..nD.. Then [D, TI < 0 Ni = N and it follows that D/N = 
c cl,2.(T/N) = C ..,.(T/N). Since TN,/N, is cyclic and 34 1 C/N 1, we have that 
1 C/D,1 < 2 for each i. Since D < C and L/C transitively permutes the D;. we 
have that 1 CjDil = 2 for each i. Also C/D and LID are 2-groups. If L/D is 
abelian, then DJD = ... = D,/D as L/C transitively permutes the Di. In this 
case D, = D and IC/Di = 2. But then C/D < Z(G/D), contradicting Step 8. 
Hence L/D is nonabelian. 
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Since L/D acts faithfully on T/N and (I L/D I,1 TINI) = 1, we have that 
a,( T/N) is a faithful and completely reducible L/D-module. We may write 
R,(T/N) = A/N x B/N where A/N and B/N are L/D-modules with (L/D)’ < 
:‘,‘,j,j(A/N) and such that (L/D)/C, ,,(Y) is nonabelian if 1 # Y is an 
irreducible L/D-submodule of B/N. Then B 4 G and N # B as L/D is 
nonabelian. We let W/N be a chief factor of G/N with W < B. In particular. 
(L/D)/B‘,,,( W/N) is nonabelian. 

Write W/N = Y, @ ... @ Yi where the Y, are homogeneous components of 
W/N viewed as an C/D module. Then j = 1 G : ZG(Y,)l. Assume that 
K < Z&Y,). Then L < ZG(Yi) for all i. Since all the L/c ,.(Y,) are isomorphic 
and since L/D is a subdirect product of the L/Q‘, (Y,), each L,%,.(Y,) is 
nonabelian. Since C/D is elementary abelian, we have that IC/c’,.(Y,)~ = 2. 
But c:c(Y,) and O(L/&,.( Y,)) are invariant in K. Thus C/t (X,) = 
i(L/I‘,.(Y,)). Hence LlI‘,.(Y,) has order 16, class 2, and a center of 
order 2, which is impossible (see. e.g.. Theorem 4.1). Hence K :& I,( Y,). 
Thus 7/j or 2lj. Since C < ZG(Y,). since j = 1 G : Z,(Y,)l and since G/C has 
no subgroup of index 2, 4, or 6: we have that j > 7. Hence rank(W/N) > 7 
and Step 10 gives the desired conclusion of this step. 

Step 13. Conclusion. Let T,/N E Syl,(G/N), so that 1 T, : Tl = 7. By 
Step 6(b). no p E Irr(TI 2) is invariant in T,. If /iy: is fully ramified with 
respect to T/N, then (A*)’ has a unique irreducible constituent 4. Since 
Z,(n*) = G. we must have ZG(4) = G, a contradiction. By Step 12, T/N is 
cyclic. Hence K/N = (G/N)’ < !c c.,,(T/N) and T,/N is abelian. If A*’ extends 
to y E Irr(T,), then yI E Irr(T 11) is invariant in T,. a contradiction. Thus 
T,/N is not cyclic and T,/N = T/N x TO/N with / T,,/NI = 7 and TO 4 C. We 
may assume that TO permutes the Vi with orbits { V, } and { V? ,..., V,}. Since 
1 TO/N1 = 7, we may choose 1 #pi E V, for 2 < i < 8 such that TO permutes 
the pi and T, < Z&f), where p = (1, pz . . . . . p,). Let Z = Z&3) = Z,;(.d “b). so 
that Z< G, = Z(;(V,). By Step 4, 31;lG : 11. Hence Z/Cn Z is nonabelian of 
order 21. Since T/N<h(L/N), we have that TAN, = ... = Tf\N,=N 
and thus T/N acts fixed-point-freely on each Vi by Step 7. Thus Z,(p) = 1 
and 7kl(Cn Z)/NI. This contradicts Step 6(a). The proof of the theorem is 
complete. 1 

5. THE PRIME Two 

Theorem 5.1 proves Theorem A when the prime concerned is 2. 

5.1. THEOREM. Suppose that Z is a normal (not necessaril~~ central) 
subgroup of G, that G/Z is solvable, and that 2 E b-r(Z). Zf 2% (x( l)/A( 1))for 
all x E Irr(G/A), then G/Z has an abelian Sylow-2-subgroup. 
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ProoJ: We argue by induction on /G : Z 1 and the proof will be in a series 
of steps. Steps l-9 are analogous to the corresponding Steps 1-9 of 
Theorem 4.4, and the almost identical proofs are omitted. 

Step 1. We may assume that there exist Z < N < K & G such that 

(a) N/Z is a chief factor of G and 11 .,(N/Z) = N/Z; 

(b) G/Z = s<.“‘(G/Z); and 

(c) N/Z is a 2-group, IG : KI = 2. and 21;1 KINI. 

Step 2. Let V= Irr(N/Z). Then V is an elementary abelian Z-group and 
a faithful irreducible G/N-module. 

Step 3. We may assume that 

(a) I,;(l) = G: 

(b) A is linear and faithful and Z < (G): 

(c) 2,jlZl; and 

(d) there is a unique G-invariant extension A* E Irr(N) of i,. 

Step 4. For each p E V, we have that 21;: G : I(; 

Step 5. There exists C a G with N < C < K such that 

(a) G/C g DIy, the dihedral group for 9 = 3 or 5; 

(b) I’= V, @ I’, @ ... @ V,, where the Vi are irreducible C-modules 
and C/N, acts transitively on v for each i. where N, = ! (-(V,); and 

(c) G/C primitively permutes the Vi. 

Step 6. Assume that N <M & G. that 0 E Irr(M 12). and that there is 
M < M, 4 Z,(O) with I,(B)/M, s D?,,. Then 9 1 lM, : hiil. 

Step 7. Let S/N be the Fitting subgroup of C/N. Then 

(a) S/N and C/N are abelian; 

(b) S/S f’ Ni is cyclic and acts fixed-point-freely on Vi for each i (i.e.. 
I? s(ui) = N, for 1 # cli E V,): 

each prime divisor of C/S divides II, where PI is defined by 
1 V, 1 !c!“: and 

(d) there is a prime pO > tz and Sylow-p,-subgroup P,,/N of C/N such 
that 1 f P,/N < S/N and C,.,,(P,,/N) = S/N. 

Step 8. If 1 # R/S is a Sylow-subgroup of C/S, then C/S = ‘, (; ,(R/S). 

Step 9. Suppose that F/N g GIN and F < S. If mi (; ,.(F/N) 4 C/N, then 
F/N is cyclic and F/N < T(KIN). 
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Step 10. Assume that P/NE Syl,(S/N) for a prime p that does not 
divide 1 G/S 1. Then A * is fully ramified with respect to P/N. 

Let D/N = [P/N, G/N]. S ince p,jJ G : PI, we have that G/D = P/L) x M/D 
for a Hall-P-subgroup M/D of G/D. Since O”‘(G/N) = G/N, we have that 
M = G and [P/N, GIN] = PIN. S ince P/N is abelian, Fitting’s lemma implies 
that c:,,,N(G/N) = 1. 

By Theorem 4.1, we may choose N < H < P with H 4 G such that each 
q E Irr(Hl A*) extends II* and is fully ramified with respect to .PIH. By 
Lemma 4.3, there is some 4 E Irr(H / A*) such that IJo) contains a Hall-p’- 
subgroup of G. Since # is fully ramified with respect to P/H, 4 is invariant in 
P and Z,(4) = G. The hypotheses imply that 2,/1G : Z,(v)1 for any 
v E Irr(H I/2*). Since 6 + Sg is a bijection from Irr(H/N) onto Irr(H 1 A*) 
and since I,(@) = G, we have that 2,/lG : Z,(S)1 for all 6 E Irr(H/N). If 
t E G/N is an involution and 6, E Irr(H/N) is inverted by t, then some 
involutions s E G/N fixes 6, and st inverts 6,. Since st E K and since 1 KINI 
and IIrr(H/N)I are odd, we have that 6, = I,,. Hence t inverts no nonprin 
cipal 2 E Irr(H/N) and G/N = D2’(GIN) acts trivially on Irr(H/N). But 
G/C,(H/N) acts faithfully on Irr(H/N) (see Theorem 6.32 of I13 I). Thus 
H/N < Z(G/N). Thus H = N by the first paragraph, and hence A* is fully 
ramified with respect to P/N. This completes Step 10. 

step 11. c=s. 
We may assume that C > S. Since / C/S1 is odd, n # 1, 2,4 by Step 7(c). 

Since p,, ( IS/, we have that p,, 1 /SJN,) and p,, 1 (2’ - 1). Since p. > n. 
p,,%lG/Cl. By Steps 7 and 9, po,/lG/SI and S/N = 1‘(;,,.(P,/N). Then 
O,(P,/N) is a faithful and completely reducible G/S-module. Since C > S. 
we have K/S is nonabelian by Step 8. We may choose an irreducible K/S- 
module Y < fi,(P,,/N) such that KINK,(Y) is nonabelian. Write Y = 
Y, @ ... @ Y, where the Yj are the distinct homogeneous components of Y 
viewed as a C/S-module and I = 1 or q. If I= 1, then C/#K:,.(Y) = C,K,.(Y,) < 
J(K/sf-,.(Y,)) as C/S is abelian. But then K/cv-(Y) is abelian. a 
contradiction. Thus I > q and rank(P,/N) > rank(Y) > q. But since S/S n Ni 
is cyclic, rank(P,/N) = q. Since pol;l G/SI, it follows from Step 10 and 
Lemma 4.2 that rank(P,/N) is even, a contradiction as 9 = 3, 5. We may 
assume that C = S. 

Step 12. Conclusion. Let X, = ( @, ,..., p,) / 1 #/3; E Vi for each i} and 
let p E X,. Since C = S, we have by Step 7 that C/N, acts fixed-point-freely 
on Vi for each i and thus I@) = N. Since G/C r D 
to a subgroup by D2@. 

By Steps 4 and 6 2, ly J&)/N is isolnovhic 
and I,@)/N = 

I,@ “PIIN 2 D,, . Hence IZG@)/NI = 2 and p ib fixed by exactly one Sylow- 
2-subgroup of G/N. Choose an involution t E GIN such that t E G,/N = 
NJ V,)/N. Then V, is the unique Vi fixed by t and t tixes exactly / :c , ,(t)” / 
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(2” _ 1)(4-l’/* elements of X,. Since /X0/ = (2” - 1)” and /I E X, is fixed by 
exactly one involution of G/N, we have that 

I Syl,(G/N)I Ic,-l(t)” 1 (2” ~ 1)‘4- I)” = (2” - 1)“. (VI 

Let P, = (1, P2,..., ,Z3,) with 1 #pi E Vi for 2 < i < q. Since C/N, is cyclic 
and acts fixed-point-freely on Vi and since n Nj = I. we have that 
Z&J/N = N, n . . . n N,/N is cyclic. But I,@,) < G,, so that Z,(J.*P,)/N = 
Z,(P,)/N has a cyclic normal subgroup of odd order and index 2. Hence 
l”Po extends to ZAP,)* The hypotheses imply that each x E 
IrW,@ *PO> I 1 *Bd h as odd degree. Thus 23;~( 1) for all ,u E Irr(Z,/3,)/N) 
and Z,@‘,)/N is cyclic. Thus /I,, is fixed by a unique involution of G/N. Let 
X, = ((,fI, ,..., p,) 1 pi E Vi and exactly one pi = 1 }. Each element of X, is fixed 
by exactly one involution and t fixes exactly (2” - l)‘ym ” ’ elements of X, . 
Thus 

ISyl,(G/N)I (2” - l)‘q ‘I ’ = q(2” - 1)” ‘. 

Equations (V) and (VI) yield that 

(VI) 

9 1’; , ,(t)#l = 2” - 1. 

In particular. t does not centralize V,. Since C/N, is cyclic, there is a 
dihedral group H(t) that is a subgroup of G,/N, such that H/N, acts fixed- 
point-freely on P’,. By Lemma 2.1, /c ,,,(t)i = 2”“. Thus q = 2”” + 1. We 
now have that q = 3, and n = 2 or that q = 5 and n = 4. 

Assume that q = 5 and n = 4. Let PO = (1, pz,..., B,) be as above. Since 
Z,(p,) ,< G,, we may choose p,, so that t E Zc@,)/N. We have that Z,;(P,,)/N 
is cyclic and t centralizes Z,@,,)/N = N1 n ... f’ N,, which is isomorphic to 
a factor group of C/N, centralized by t. But C/N, is cyclic of order 15 and 
the Sylow-5subgroup A/N, of C/N, is not centralized by t as AfN, acts 
irreducibly on V, and c r,,(t) is a nontrivial proper submodule of V,. Hence 
5)/N,n ... n N,l. It follows from Step 10 that the Sylow-3-subgroup F/N 
of SIN has even rank and thus rank(F/N) < 4. Since N, f’ ... n N, = N and 
G permutes the Ni, it is routine to see that F f’ N, n ... f’ Nc = N. Since S 
is a {3,5}-group, we have that N?n...nN,=N. If l#aiEV, for 
3 < i < 5, then Z,.(l. 1, a3, ala?) = N, n N, n N, is isomorphic to a factor 
group of C/N2 and is cyclic. We can now argue as in the last paragraph that 
each a E Xl = {(a, . . . . . a,) / exactly two ai = 1 } is fixed by a unique Sylow-2- 
subgroup of G/N. But t fixes 1 I I.,(t)#l 2 . (2” ~ 1) = 3 2 . 15 elements of 

X2 and /X,1 = 10. 15’. Thus 3. 2. 15 ISyl,(G/N)I = 10. 15’ and 
ISyl,(G/N)J = 3 . 5’. This contradicts Eq. (VI). Hence q = 3 and n = 2. 

We have that 1 Syl,(G/N)I = 3 * by Eq. (VI). Since 1 C/N, 1 = 3, C/N is an 
elementary abelian 3-group. Choose an involution s E GJN. Then st does 
not fix any Vi and the dihedral subgroup (s. I) of G/N has order 6 or 18. If 
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o(st) = 3, we may choose an CL = ((I,, a,, az) E V with 1 # ai E Vi such that 
(st) fixes a. This is a contradiction, as we have shown that Ic‘.i(a)l = 2. 
Thus the dihedral group (s, t) has order 18 and contains all 9 involutions of 
G/N, Since e”(G/N)= G/N, we have G/N = (s, t) and K/N is cyclic. Thus 
IL * extends to G. In particular, there is a G-invariant extension 
4 E Irr(C / A*). This contradicts Step 6. The proof of Theorem 5.1 is 
complete. I 

We next summarize results of Sections 4 and 5 and of Section 2 of part 1 
Il.5 ] to derive Theorem A. 

5.2. COROLLARY. Let Z be a normal (not necessarily central) subgroup 
of G. Assume that G/Z is solvable and that /1 E Irr(Z). If pJi&(l)/l(l)) for 
all x E Irr(G 1 ,I), then the Sylowp-subgroups of G/Z are abelian. 

Proof. Since pi;1 G : Z,(A)l, we may assume G = I,(L). By a character 
triple isomorphism (see Chap. 11 of [ 13 I), we may assume that J. is linear 
and pkx( 1) for all x E Irr(G / A). The result now follows from Theorems 4.4 
and 5.1 and from Theorem 2.5 of Part 1 [ 15 1. 

Our techniques can extend Corollary 5.2 to a set 71 of primes and to Hall- 
n-subgroups. If the hypothesis “pk (x( l)/l( I)) for all x E Irr(G 12)” is 
replaced by “k( I)/@( 1)) 1s a n’-number for all x E Irr(G / A).” then we may 
conclude that the Hall-n-subgroups of G/Z are abelian. We omit the proof. 
which is very similar to that of Theorem 4.4. 
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