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       conductivity of electrolyte solution 
      dimensionless potential 

C        subscript, which denotes deposit surface 
U        subscript, which denotes outer boundary of unit cell 
I         subscript, which denotes side surfaces of unit cell and 
surface of spherical particle 

 
Various methods can be used for the template-based 

synthesis of nanoporous structures: the chemical 
polymerization, sol-gel deposition, chemical vapor deposition 
and also the electrochemical and electroless deposition and 
electrochemical dissolution [5]. 

The template-based electrochemical methods of synthesis 
of nanostructures and nanomaterials have several important 
advantages: a high extent of pore filling, a possibility to 
obtain the materials of various types, the absence of 
considerable internal stresses, easy control, a possibility to 
vary the physicochemical properties and composition of the 
deposit. For example, the electrochemical methods enable one 
to produce heterogeneous nanostructured materials for the 
electrochemical power sources, fuel cells, and catalyst for 
various purposes [6]. 

Solid templates of polycarbonate track membranes or 
nanoporous aluminum oxide with linear pores 50-200 nm in 
diameter and 10-50 μm in depth are used most commonly [7]. 
They are used to produce the 1D structures of various 
materials: the metal nanowire arrays [8], the nanowires of 
various metal compounds [9]. Using the developed 
technologies, the electrochemical deposition of metals, alloys, 
and various chemical compounds in the pores of these 
templates is performed in order to fabricate modern miniature 
devices of magnetic memory, optoelectronics, sensors, power 
sources, supercapacitors, catalysts, and various electronic 
devices. The deposition of iron, nickel, or cobalt for 
fabrication of unique one-dimensional magnetic structures 
and also copper, ZnO, Ag7Te4, Co-Sb, MnO2, Cu3Se2, Bi, Pt-
Pb, Fe-Pt, Ni-Pt, Co-Pt,  Si, LaMnO3+ , etc. are examples. 
Solis templates are also used to produce bimetal and 
composite nanowires, which exhibit unique properties. For 
example, the electrodeposition at an electrode potential 
varying with time is used to fabricate the nanowires consisting 
of alternating copper and cobalt layers, where the effect of 
giant magnetic resonance is observed [7]. This method is also 
used to produce the structures of core-shell type and 
segmented metal-polymer composites [10]. 

Among other template structures, the templates consisting 
of regularly arranged monodispersed spherical particles are of 
most interest. They are used to produce composite materials, 
photon crystals, the structures with highly developed surface, 
for example, metal foams, for modification of surface 
properties, etc. 

Colloidal crystals, which are formed by orderly arranged 
monodispersed spherical particles, are used as the templates 
for production of nano-ordered structures of metals, 
semiconductors, inorganic oxides, polymers, etc. [11]. In 
general case, the production of nano-ordered structures by 
using the colloidal crystal mask involves three stages: 

(1) self-assembling of mask on the substrate surface; 
(2) filling the pores between the template spherical 

particles; 
(3) removal of template by chemical or thermal etching. 

(In some cases, for example, in the production of photonic 
crystals, the template is not removed.) 

The 3D (multilayer) [12] and 2D (monolayer) [13] 
colloidal crystals are used as the masks. The MCC masks can 
be close-packed [14] or consist of regularly arranged non-
close-packed particles [15]. 

The electrochemical deposition through a colloidal crystal 
mask enables one to produce high-density metal deposits, 
which exhibit no considerable shrinkage when the template is 
removed [16]. In addition, the deposits of various metals with 
prescribed structure can be produced, and the thickness and 
properties of deposited layer can be controlled accurately 
[17]. The application of a layer of metal or alloy, which acts 
as a catalyst for a chemical reaction, is the most important 
application of the process. An example is the application of a 
layer of relatively expensive platinum catalyst with developed 
(rough) surface onto a plane substrate of inexpensive material, 
such as iron. 

To our knowledge, the electrodeposition through a 
colloidal crystal mask was investigated theoretically by the 
numerical simulation using the finite element method only in 
few works [18, 19]. 

In these papers the Laplace’s equation in a unit cell with 
triangular cross-section for the face-centered cubic colloidal 
crystal was solved numerically. The process of pore filling 
and the variation of the mass-transfer conditions with 
increasing deposit thickness were not considered. 

Here, we perform the numerical simulation of mass-
transfer processes during the metal electrodeposition through 
a MCC mask with regard for the variation of deposited layer 
thickness with the time. 

 

2. Statement of problem and basic equations 

Figure 1 gives a scheme of metal electrodeposition with 
the use of monolayer colloidal crystal mask. Taking into 
account the arrangement of particles in the mask, a unit cell 
with a regular hexagonal cross-section is used (Fig. 2a). A 
plane, which is far removed from the mask, so that the 
distribution of the current density over this plane can be 
considered as uniform, is taken to be the outer (upper) 
boundary of a unit cell. The surface of growing metal deposit 
is taken to be the lower boundary of unit cell. The unit cell 
can be replaced by the axisymmetric one with no considerable 
error (Fig. 2b).  

The Laplace equation for the electric field potential in the 
electrolyte solution (1) and the equation of deposit surface 
evolution (2) are used as the mathematical model: 
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may be used. The proposed scheme of modeling can be used 
to organize and optimize the processes of electrodeposition 
through the MCC mask. 
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