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A strong correlation between oxidative stress (OS) and Rett syndrome (RTT), a rare neurodevelopmental disor-
der affecting females in the 95% of the cases, has been well documented although the source of OS and the effect
of a redox imbalance in this pathology has not been yet investigated. Using freshly isolated skin fibroblasts from
RTT patients and healthy subjects, we have demonstrated in RTT cells high levels of H2O2 and HNE protein ad-
ducts. These findings correlated with the constitutive activation of NADPH-oxidase (NOX) and that was
prevented by a NOX inhibitor and iron chelator pre-treatment, showing its direct involvement. In parallel, we
demonstrated an increase in mitochondrial oxidant production, altered mitochondrial biogenesis and impaired
proteasome activity in RTT samples. Further, we found that the key cellular defensive enzymes: glutathione per-
oxidase, superoxide dismutase and thioredoxin reductases activities were also significantly lower in RTT. Taken
all together, our findings suggest that the systemic OS levels in RTT can be a consequence of both: increased en-
dogenous oxidants as well as altered mitochondrial biogenesis with a decreased activity of defensive enzymes
that leads to posttranslational oxidant protein modification and a proteasome activity impairment.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Rett syndrome (RTT) (OMIM ID: 312750) is a severe neurological
disorder that affects almost exclusively females, with a frequency of ap-
proximately 1:10,000 live births. Patients affected by RTT typically ex-
hibit various neuropsychiatric features after 6–18 months [1] of
apparently normal neurodevelopment. Afterwards, they fall into devel-
opmental stagnation followed by rapid and sharp deterioration, featur-
ing loss of previously acquired speech, replacement of purposeful use of
the hands with incessant stereotypies, which are characteristic of the
syndrome. Mutations in the X-linked gene encoding the Methyl-CpG-
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binding protein 2 (MECP2) account for approximately 90% of cases
with typical RTT and are almost exclusively de novo. MeCP2, a key tran-
scriptional regulator, is critically involved in gene silencing through
methylation-dependent remodeling of chromatin structure.

Despite almost two decades of research into the functions and role of
MeCP2, surprisingly little is known about themechanisms leading from
MeCP2 deficiency to disease expression, with many questions left re-
garding the role ofMeCP2 in brain and,more in general, duringdevelop-
ment and in physiopathology [2]. Restoration of Mecp2 function in
astrocytes alone significantly improves the developmental outcome of
Mecp2-null mice [3], thus suggesting that RTT can be reversible upon
restoration of the Mecp2 function [4].

In the last few years, we have demonstrated a condition of systemic
oxidative stress in human patients with typical RTT as indicated by in-
creased levels of F2- and F3-isoprostanes (IsoPs) and F4-neuroprostanes
(NeuroPs), NPBI (Non Protein Bound Iron), and 4-hydroxy-2-nonenal
(HNE) protein adducts in the plasma of RTT patients. In particular, high
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levels of IsoPs andHNE,which aremajor lipid peroxidation products gen-
erated from membrane lipids by free radical reactions, are strongly asso-
ciated with the disease natural history, genotype-phenotype correlation,
clinical heterogeneity and severity of the disease [5–8].

Likewise, our recent work in RTT murine models suggests that the
presence of systemic oxidative stress (OS) precedes the onset of clinical
symptoms in RTT mouse model and can be rescued by MeCP2 gene re-
expression in the brain of the null mice [9]. Therefore, clinical and ex-
perimental evidence supports the concept that oxidative damage
plays a previously unrecognized key role in the pathogenesis of RTT/
MeCP2 deficiency.

Regardless, the molecular pathways linking the MeCP2 gene muta-
tion to the OS derangement remain to be explored and, in particular,
whether the nature of the increase OS present in RTT patients derives
from a corrupted defensive enzyme activation or an increased endoge-
nous production of oxidants, or both, needs still to be investigated.

In the present study, we attempt to investigate the possible mecha-
nistic pathways leading to the altered redox state associated to RTT.
Thanks to the use of primary fibroblasts isolated from patients skin bi-
opsies, we investigated the activation of a series of enzymes involved
with either the generation of O2

.− or H2O2 (NADPH oxidase, NOX) or in-
volved in cellular redox defense superoxide dismutase (SOD), glutathi-
one peroxidase (GPx) and catalase (CAT). In addition, as mitochondria
are a major cellular source of OS, we have analyzed its functional state
as well as the activity of the proteasome machinery. Our data showed
that RTT cells have an impaired defensive enzymeactivity, increased en-
dogenous oxidant production, altered bioenergetic parameters, and
compromised proteasome activity.

2. Methods

2.1. Study approval

A total of 15 female patientswith classical RTT syndrome (mean age:
20.3 ± 12.3), and 15 healthy female controls of comparable age (mean
age: 19.2±14.5) participated to the study. All thepatientswere consec-
utively admitted to the Child Neuropsychiatry Unit of the University
Hospital of Siena (Head: J.H.). Control skin biopsies were carried out
during routine health, or donations, while skin biopsies from RTT pa-
tients were obtained during the periodic clinical checks-up. The study
was approved by the Institutional Review Board of University Hospital,
AziendaOspedaliera Universitaria Senese (AOUS), Siena, Italy and all in-
formed consents were obtained in written form from either the parents
or the legal tutors of the enrolled patients. This procedure is approved
by the Institutional Review Board of University Hospital, Azienda
Ospedaliera Universitaria Senese (15/09/2014).

2.2. Human skin fibroblast cultures

Human skin fibroblasts were isolated from 3-mm skin punch biopsy
(n = 6 for RTT and n = 6 for controls) as previously described [32]. Fi-
broblasts were marked with Vimentin for authentication of cells and
tested for mycoplasma contamination (data not shown), before the ex-
perimental procedure.

Fibroblasts from passage 3 to 5 were used for the experiments. For
experiments with diphenyleneiodonium chloride (DPI, a general inhibi-
tor of flavoproteins including NOX) (Calbiochem, Mialno, Italy) or
Desferal (Iron chelator) (SigmaAldrich,Milan, Italy) the cellswere either
treatedwith orwithout DPI or Desferal (final concentration in culture 10
and 400 μM, respectively) dissolved in DMSO (final concentration in cul-
ture 0.01%), and incubated for 2 or 1 h at 37 °C, respectively.

2.3. Immunocytochemistry

Fibroblasts were grown on coverslips at a density of 5 × 104 cell/ml,
and then fixed in 4% paraformaldehyde in PBS for 30 min at 4 °C as
previously described [10]. After permeabilization the coverslips were
blocked in PBS (1% BSA) at room temperature for 1 h. Coverslips were
then incubated with primary and then with secondary antibodies. Nu-
clei were stained with 1 μg/ml DAPI (Molecular Probes) after removal
of secondary antibodies. Coverslips were examined by the Leica light
microscope equippedwith epifluorescence at 63×magnification. Nega-
tive controls for the immunostaining experiments were performed by
omitting primary antibodies. Images were acquired and analyzed with
LEICA CTR6500 HS-Integrated System Solution for Live Cell Imaging
and Analysis (Leica Microsystems—Germany).
2.4. HNE protein adducts determination

HNE protein adducts were measured by using an enzyme immuno-
assay OxiSelect HNE-His adduct kit (Cell biolabs, Inc.). The quantity of
HNE adduct in protein sampleswas determined by comparing its absor-
bance with that of a known HNE-BSA standard curve, according to the
manufacturer's instructions.
2.5. Assays for oxidants

H2O2 coming from cells into the medium was measured using
Amplex Red Hydrogen Peroxide/Peroxidase assay kit (Life Technolo-
gies). The quantity of H2O2was determined by comparing its absorbance
with that of a H2O2 standard curve according to the manufacturer's
instructions.

The fluorescence intensity of MitoSOX was measured in live cells
using Laser scanning confocal microscope analysis (LSCM) Leica TCS
SP8 microscope. Images were collected using a 60× objective to view
cells seeded onto fibronectin-coated glass-bottom dishes. The living
cells were incubated for 10 min with 2.5 μM MitoSOX probe, washed
with Hanks' buffered salt solution (20 mM Hepes, pH 7.4, 135 mM
NaCl, 5 mM KCl, 0.4 mM KH2PO4, 1 mM MgSO4, 0.1% w/v glucose,
1 mM CaCl2), and examined by LSCM. The red fluorescence intensity
of MitoSOX was analyzed by exciting the sample with a HeNe laser
543 (excitation wavelength of 543 nm). Acquisition, storage, and data
analysis were done using Leica software.
2.6. Western blot analysis

Total cell proteins were extracted in RIPA buffer containing prote-
ase and phosphatase inhibitor cocktails (Sigma-Aldrich Corp.) as de-
scribed before [10,11]. Briefly, 60 μg of boiled proteins were loaded
onto 10% sodium dodecyl sulfate-polyacrylamide electrophoresis
gels, then were electro-blotted onto nitrocellulose membranes and
blocked for 1 h in 5% milk. Membranes were incubated overnight at
4 °C with the primary antibody HNE (Millipore Corporation, Billerica,
MA, USA) and with horseradish peroxidase-conjugated secondary
antibody (BioRad, Milan, Italy). For protein involved in mitochondri-
al biogenesis, nitrocellulose membranes were treated with 5% (w/v)
fatty acid free dry milk in 500 mMNaCl, 20 mM Tris, 0.05% Tween 20
pH 7.4 (TTBS) for 4 h at 4 °C. As specified in the legends to figures,
membrane separate samples were incubated overnight at 4 °C with
primary antibodies directed against PGC1α (1:1000) (Millipore),
NRF1 (1:500) (Abcam), TFAM (1:500) (GeneTex), CREB (1:1000),
P-CREB (Ser 133) specific against its PKA phosphorylation site
(1:1000) (Santa Cruz Biotechnology), C-PKA (1:1000) (Santa Cruz
Biotechnology). The level of the specific immunoblotted proteins
was normalized by reprobing the blots with β-actin (Sigma) mono-
clonal antibodies. Proteins were detected by chemiluminescent Lite
Ablot reagent (Euroclone). All images of the bands were digitized
and the densitometry of the bands was performed using Quantity
One-4.4.1 imaging software (Bio-Rad Laboratories).
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2.7. Preparation of cell lysate for enzymatic assay

Confluent fibroblasts were washed, scrapped in PBS and centrifuged
at 800 rcf for 10 min. Pellet was re-suspended in cold lysis buffer
(50 mM Hepes, 150 mM NaCl, 1 mM Na3VO4, 100 μM NaF, 1%, 0.5 mM
EDTA, 1 mM PMSF and protease inhibitor cocktail from Sigma-Aldrich).
The suspension was then incubated at 4 °C for 30 min and centrifuged
at 10,000 g for 30 min. After centrifugation, the protein concentration
of the supernatant was measured by Bradford method [12].

2.8. NADPH oxidase (NOX) activity assay

Cell pellet was re-suspended in cold Krebs Buffer with 1 mM PMSF
and protease inhibitor cocktail (Sigma-Aldrich). The cellular debris
was then homogenated and centrifuged 10 min at 800 g. The superna-
tant obtained re-centrifuged at 4 °C, 1 h at 53,000 g with the resulting
pellet (membrane fractions) resuspended in Krebs buffer. Membranes
suspension (10 μg) was evaluated for NOX-enzyme activity in 200 μl
of Krebs buffer with 50 μM lucigenin, 100 μM NADPH. The chemilumi-
nescence was measured immediately and at 30 s intervals for 15 min.
Although lucigenin is not specific for O2

.−, the NOX inhibitor VAS2870
(Sigma) was used to demonstrate that the source of the oxidant in-
volved in lucigenin chemiluminescencewas aNOX [10,13]. NOXactivity
was expressed as RLU/min/mg protein [14,15].

2.9. Superoxide dismutase (SOD) polyacrylamide activity assay

MnSOD and CuSOD activity were assayed by active gel method ac-
cording to Weydert et al. [16]. The principle of this assay is based on
the ability of O2

.− to interact with nitroblue tetrazolium (NBT) reducing
the yellow tetrazoliumwithin the gel to a blue precipitate. Areas where
SOD is active develop a clear area (achromatic bands) competing with
NBT for the O2

.−. Cell Lysates (100 μg) were loaded and electrophoresed
on a 8% Tris–HCl gel in non-denaturing running buffer and electropho-
resed for 1 h at 35 mA. Gels were then rocked in nitroblue tetrazolium
(NBT) dye (50 mM phosphate buffer pH 7.8 with 1 mM EDTA,
0.25 mM NBT and 0.5 mM riboflavin) for 5 min protected from light
and then washed with deionized water. The gel was exposed to bright
fluorescent light until achromatic bands were clearly visible. Densitom-
etry was then performed on the achromatic bands using Pharos FX.

2.10. Glutathione reductase (GR) activity assay

GR activity was assayed according to the method of Smith and co-
workers [17] which is based on the ability of the enzyme to reduce ox-
idized glutathione GSSG to the reduced form (GSH) which, in turn, can
react with DTNB [5,5′-dithiobis(2-nitrobenzoic acid)]. Briefley, 10 μl of
cell lysatewere added to 240 μl reactionmix (100mMpotassiumbuffer,
pH 7.4 with 0.1 mM NADPH, 3 mM DTNB and 10 mM GSSG). The in-
crease in absorbance at 412 nmwas spectrophotometrically monitored
at 1-minute intervals over 10 min. GR activity was calculated using ex-
tinction coefficient 14,150 M−1 cm−1 and expressed as units per milli-
gram protein.

2.11. Glutathione peroxidase (Gpx) activity assay

Gpx was assayed by indirect spectrophotometric assay in accor-
dancewith themethod of Engel et al. [18]. This assay is based on the ox-
idation of GSH to GSSG coupled to the recycling of GSSG back to GSH
utilizing GR and NADPH. Ten microliters of cell lysate were added to
240 μl of reaction mix (50 mM Tris–HCl, pH 8.0, with 0.5 mM EDTA,
0.2 mM NADPH, 1 U/ml GR, 1 mM GSH, 1 mM NaN3 and 0.3 mM ter-
butilhydroperoxide). The decrease inNADPHabsorbancewasmeasured
at 340 nmat 10-seconds intervals over 5min. Gpx activity was calculat-
ed using extinction coefficient 6220 M−1 cm−1 and expressed as units
per milligram protein.
2.12. Thioredoxin reductase (TrxR) activity assay

The activity of TrxR was assayed by a colorimetric method adapted
from Holmgren and Bjornstedt [19] which is based on the reduction of
5,5′-dithio-bis(2-nitrobenzoate (DTNB) to 5′-thionitrobenzoic acid. In
brief, 10 μl of cell lysates were added to 210 μl of reaction mix
(100 mM phosphate buffer, pH 7.0 with 0.30 mM DTNB, 0.24 mM
NADPH, 10 mM EDTA) 50 mM Tris–HCl, pH 8.0, with 0.5 mM EDTA,
0.2 mM NADPH, 1 U/ml GR, 1 mM GSH, 1 mM NaN3 and 0.3 mM ter-
butilhydroperoxide). The reduction of DTNBwas spectrophotometrical-
ly monitored at 412 nm at 10-s intervals over 1 min. TrxR activity was
calculated using extinction coefficient 14,150M−1 cm−1 and expressed
as milliunits per milligram protein.

2.13. cAMP assay levels determination

Cell media was incubated with 1ml of 0.1 MHCl for 10min at 37 °C,
scraped and centrifuged at 1300 rcf for 10min at 4 °C. The supernatants
were used to determine cAMP concentration using a direct immunoas-
say kit (Assay Designs, Ann Arbor, Michigan,USA) as described by the
manufacturer. The cAMP level in the sample was normalized to the pro-
tein concentration and expressed as pmol/mg protein.

2.14. Bioenergetics profile

The Seahorse XF24 Extracellular Flux Analyzer (Seahorse Biosci-
ence) was used to generate the bioenergetic profiles of primary fibro-
blasts by simultaneous measure of OCR (oxygen consumption rates)
and ECAR (extracellular acidification rate) in real time as previously de-
scribed [20]. Briefly, fibroblasts derived from skin biopsies of RTT pa-
tients and age matched healthy controls were seeded on a Seahorse
XF-24 plate at a density of 60,000 cells per well and grown overnight
in DMEM (10% of FCS and 1% Pen-Strep) at 37 °C in presence of CO2.
The density resulted in confluent cultures, in which cell growth was
blocked by contact inhibition. After 24 h, cell medium was changed to
unbuffered DMEM (XF Assay Medium — Seahorse Biosciences) supple-
mented with 5 mM glucose and 1 mM sodium pyruvate, and incubated
1 h at 37 °C in absence of CO2. Medium and reagents were adjusted to
pH 7.4 on the day of the assay. After four baseline measurements of
OCR and ECAR levels, cells were challenged with sequential injections
of mitochondrial toxins: 0.5 μM oligomycin (ATP synthase inhibitor),
1 μM FCCP (mitochondrial respiration uncoupler), 0.5 μM rotenone
(complex I inhibitor), and 0.5 μM antimycin A (complex III inhibitor).

2.15. Mitochondrial potential determination

Mitochondrial potential was determined by Muse MitoPotential
assay Kit (Millipore, Corporation, Billerica, MA, USA). Briefly, cells
(5 × 105 cells/ml) were suspended in PBS. Then, 95 μl of Muse
Mitopotential working solution were added to the cells, then after
20 min at 37 °C, 5 μl of Muse 7ADD were added to the cell solution.
Cells were analyzed by using a Muse Cell Analyzer.

2.16. Proteasome activity assay

Fibroblast pellets were re-suspended in proteasome lysis buffer
(50 mM Tris, 5 mM MgCl2, 10% glycerol, 500 μM EDTA pH 8.0, 1 mM
DTT, 2 mM ATP) and an equal volume of glass beads (SIGMA). Cells
were vortex 4min and centrifuged 7min 5.000 rpm at+4 °C. Superna-
tant were transfer in new cold tube and centrifuged for 30 min at
13.000 rpm at +4 °C. Supernatant obtained was used for proteasome
assay using fluorescent-AMC peptides. Assays were carry out in 96-
wells plate in a total volume of 100 μl per well. Samples were pre-
incubate with or without proteasome inhibitor (50 μM MG132 from
R&D) 45 min at 37 °C (50 μl per wells). Chymotrypsin-like, trypsin-
like and caspase-like activity were measured in separate wells by
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adding 50 μl of substrate at each well; respectively 200 μM Suc-LLVY-
AMC; 200 μM Boc-LRR-AMC; 400 μM Z-LLE-AMC. Fluorescence were
read for 60 min at 10 min intervals at λecc = 360; λemm = 465, gain
60. Results were expressed as RFU/min/mg protein using angular coef-
ficient of interpolate line [21].

2.17. Statistical analysis

For all the variables tested, one-way analysis of variance (ANOVA) or
Mann–Whitney U test was used. Statistical significance was indicated
by a p-value b 0.05. Data were expressed as mean± S.D. from triplicate
determinations obtained in five separate experiments.

3. Results

3.1. Increased oxidative stress in RTT fibroblasts

As it is shown in Fig. 1, RTT fibroblasts evidenced a clear increase (2
fold) in H2O2 with respect to the control (Fig. 1A). It has been well
known that lipid peroxidation and the formation of highly reactive alde-
hydes such as HNE can be induced through Fenton chemistry that is de-
pendent upon iron and H2O2. Fig. 1B showed that RTT cells had a
significant increase in HNE (circa 3 fold) protein adducts respect to
the control fibroblasts. The increased oxidation of the fluorescent dye
Mitosox Red, which has been suggested to detect mainly mitochondrial
superoxide [22] is shown in RTT fibroblasts in Fig. 1C.

3.2. Increased NADPH oxidase (NOX) activity in RTT fibroblasts

Onepossible cellular source ofH2O2 is the activation of one ormore of
theNADPHoxidase (NOX) enzymes [23]. As shown in Fig. 2A, NOX activ-
ity was significantly increased in RTT compared to control fibroblasts.
Fig. 2B shows increased NOX activity correlated with translocation of
Fig. 1. High levels of oxidative stress are presented in RTT fibroblasts (A) RTT fibroblasts showe
peroxidase assay kit. Data are expressed in μM and are the averages of five different experime
adduct ELISA kit (Cell biolabs, inc.). Data are expressed in μg/ml per mg of proteins (averages o
means ± SD. Data were analyzed by Mann–Whitney U test. (C) RTT fibroblasts presented high
the cytoplasmic subunits associated with NOX2, p67phox and p47phox,
to plasma membrane. Furthermore, to confirm the involvement of NOX
in increased oxidant production, RTT fibroblasts were pre-treated with
DPI, a general inhibitor of flavoproteins includingNOX. DPI pretreatment
largely prevented the formation of HNE protein adducts as shown in
Fig. 2C. In addition, the pre-treatment with desferal, a well known iron
chelator, decreased HNE protein adducts formation (Fig. 2D).

3.3. Defensive enzyme activities in RTT fibroblasts

To understand the source and the mechanisms behind the increased
levels of oxidants in RTT patients, several enzymes that are involved in
protecting the cells from oxidative stress were analyzed in primary
skinfibroblasts. As shown in Fig. 3A, the activity levels of glutathioneper-
oxidases (Gpx), the enzymes catalyzing the glutathione-dependent re-
duction of lipid hydroperoxides to their corresponding alcohol and that
of H2O2 to water, were significantly lower in RTT cells than controls.
The same trendwas observed for glutathione reductase (Fig. 3B), the en-
zyme catalyzing reduction of glutathione disulfide (GSSG) to its reduced
formGSH. Superoxide dismutases (SOD) catalyze the dismutation of O2

.−

to H2O2 and as it is shown in Fig. 3C, RTT cells had a significant lower ac-
tivity of both mitochondrial manganese-containing SOD and cytosolic
copper- and zinc-containing SOD than respective controls. Also the activ-
ity of TrxR, which participates in thiol-dependent cellular reductive pro-
cesses including the reduction of H2O2, showed a significant decrease
activity in RTT fibroblasts (Fig. 3D).

3.4. Mitochondrial bioenergetic levels in RTT fibroblasts

Fibroblasts derived from RTT patients feature overall suppressed
bioenergetics as indicated by reduction of both basal and FCCP-
stimulated maximal respiration (Fig. 4A), which also implies dimin-
ished mitochondrial reserve capacity. Because the latter reflects the
d higher levels of H2O2 than controls measured by using Amplex red hydrogen peroxide/
nts (*p b 0.05 vs control). (B) HNE protein adduct levels measured by OxiSelect HNE-His
f five different experiments (*p b 0.05 vs control)). Values showed in the graph represent
er MitoSOX™ Red fluorescence dye than controls.



Fig. 2. Constitutive activation of NADPH oxidase 2 (NOX2) in RTT cells. The activity of NOXwas determined by luminescent assay (A) and by immunofluorescence, bymeasuring themem-
brane translocation of p67 and p47 (B). HNE protein adduct levels were reversed by dipheyleneiodonium Chloride (DPI) (C) and desferal (Iron chelator) (D) in RTT cells. Representative
Western blots of five independent experiments are shown on the left of the plot. Quantification of the HNE protein adducts bands is shown on the right panel. Data are expressed in ar-
bitrary units (*p b 0.05). Data were analyzed by Mann–Whitney U test.

Fig. 3. Alteration of specific enzymes activity involved in cellular redox balance in RTT fibroblasts. (A) GPx activity, (B) GR activity, (C) Cu, Zn-SOD (cytosolic form) and Mn-SOD (mito-
chondrial form), (D) TrxR. Values were expressed as U/mg proteins in RTT (n = 6) and control (n = 6) fibroblasts and represent means ± SD. Data were analyzed by Mann–Whitney
U test *, p b 0.05 vs. control. For SOD activity: *, p b 0.05 vs. control of cytosolic form; #, p b 0.05 vs control of mitochondrial form.
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Fig. 4. Bioenergetic profile in RTT fibroblasts. (A) Mitochondrial function is suppressed in patients, as indicated by decreased basal andmaximal respiration, as well as respiratory reserve
capacity. (B) Glycolysis induced medium acidification is decreased in patients, as indicated by lower ECAR in basal and oligomycin stimulated conditions. (C) Metabolic profile based on
comparison of OCR and ECAR shows that Rett fibroblasts are overall less energetic and positioned in the lower-left portion of the graph, and less responsive to stimulation with both
oligomycin (for ECAR) or FCCP (for OCR). Graphs show pooled data of seven independent replicates, on three different cell lines. (D) Fibroblasts were stainedwith theMuseMitopotential
kit and acquired on the Muse Cell Analyzer to order to measure the total depolarized cells.
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bioenergetic reservoir available to counteract cellular stress [24], our
findings indicate potential vulnerability of RTT fibroblasts. Also glycoly-
sis –whichwasmeasured as lactate dehydrogenasemediated acidifica-
tion of themediumupon conversion of pyruvate –was decreased in RTT
Fig. 5. Alteration of mitochondrial biogenesis in RTT fibroblasts. (A) RTT fibroblast levels of cA
cAMP level in the sample was normalized to the protein concentration and expressed as pmo
of CREB, PGC-1α, NRF1 and Tfam proteins. RepresentativeWestern blot of five experiments is s
loading was assessed by reprobing the blots with β-actin antibody. Data are expressed in arbit
cells (Fig. 4B), both in basal conditions and upon stimulation with the
mitochondrial ATP synthase inhibitor oligomycin. Overall, RTT fibro-
blasts feature a less energetic metabolic profile (i.e. both mitochondrial
respiration and glycolysis are decreased) and exhibit a reduced
MPmeasured by direct immunoassay kit (Assay Designs, Ann Arbor, Michigan, USA). The
l/mg protein (averages of five different experiments, *p b 0.05). (B) RTT fibroblasts levels
hown in the figure. Quantification of the protein bands is shown in the right panel. Protein
rary units (averages of five different experiments, *p b 0.05).
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response when respiration or glycolysis are stimulated respectively
with FCCP or oligomycin (Fig. 4C). These observations are substantiated
by mitochondrial potential measures, which indicate substantial depo-
larization in RTT patients' fibroblast, which display a 20% increase in
the number of depolarized cells (Fig. 4D).

3.5. Transcription factors of mitochondrial biogenesis in RTT fibroblasts

It has been reported that the cAMP level is altered in the mouse
model of RTT patients [25]. Several signal transduction pathways have
been implicated in the control mitochondrial biogenesis, among which
is the cAMP mediated signal transduction pathway, which results in
phosphorylation of CREB [26,27]. In RTT fibroblasts, we found a reduced
cAMP level (Fig. 5A) associatedwith a decrease of p-CREBwith respect to
the total CREB content. In agreement with the results described, PGC-1α
protein expression appeared to be down-regulated as well as a protein
level of PGC-1α downstream target gene, directly involved inmitochon-
drial biogenesis, nuclear respiratory factor 1 (NRF1). The mitochondrial
transcriptor factor (Tfam), whose expression is in turn primed by NRF1
[28], was found to be up-regulated in RTT (Fig. 5B).

3.6. Proteasome activity in RTT fibroblasts

During oxidative stress, cells rely primarily on proteasome-
mediated protein degradation for effective removal of oxidized or dam-
aged proteins. On the other hand,modified proteins cannot be efficient-
ly degraded because an overload of the proteasome machinery and
these modified proteins can induce noxious effect in the cells. As it is
shown in Fig. 6, the proteasomes of RTT fibroblasts showed a trend to-
ward a decrease in enzymatic activity, when compared to controls. In
particular, caspase- and chymotrypsin-like activities exhibited the larg-
est decrease (−58% and−62% respectively), whereas the reduction of
trypsin-like was less evident (18%).

4. Discussion

The principal objective of our study was to determine the possible
sources and the mechanisms that are behind the increased systemic oxi-
dative stress present in RTTpatients. Our studywas performed inprimary
skin fibroblasts isolated from RTT patients because this biological setup
constitutes one of the most reliable approaches to investigate molecular
and cellular mechanisms in genetic and neurological disorders [29]. Our
goal here was to extend our previous study in which oxidative stress
was detected in several RTTmodels [8,9]. As is well known, increased ox-
idative stress leads to lipid peroxidation and consequent productionof re-
active aldehydes, among which HNE is one of the most significant
physiologically. In general, the biochemical effects of HNE can be ex-
plained by its high reactivity toward amino acid thiol- (cysteine) and
amino-groups (histidine and lysine) that, either free or protein-bound,
Fig. 6. Proteasome activities in RTT fibroblasts. (A) Chymotrypsin-like (Suc-LLVY-AMC); (B) tryp
fluorescent labeled proteasome substrates, in control (n = 6) and RTT (n = 6) fibroblasts. Ac
control.
readily undergoes Michael addition. Therefore, HNE-mediated amino
acid modifications such as those observed in oxidative stress conditions
in RTT fibroblasts, may greatly alter protein activities. These alterations
may subsequently produce abnormal physiological cell functions. HNE
adduction contributes to the pool of damagedproteins that increases dur-
ing aging and in several pathological states [30]. Furthermore, impaired
protein clearance through the ubiquitin proteasome system dysfunction
and/or the overwhelming production of abnormal proteins plays an im-
portant role in the pathophysiology of disorders related to oxidative
stress, particularly in neuropathologies [31]. The presence of HNE has
been demonstrated also in human RTT patients, and animal and ex-vivo
models [8,9,32,33]. We have confirmed this in the present cell culture
study. HNE adduction of brain proteins has been implicated in the etiolo-
gy and/or progression of neurodegenerative disorders including
Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral
sclerosis (ALS) and multiple sclerosis (MS) [34,35]. In addition the re-
duced activation of the proteasome detected in RTT cells could contribute
to accumulate damaged proteins and affect cell functions.

The next question was to determine the possible source of oxidative
stress present in RTT, and also whether this altered redox status could
depend upon altered enzymatic activities. Therefore, we first examined
the activity of endogenous sources of O2

.− and H2O2 including the NOX
proteins. Plasma membrane NOXs, including NOX1 and NOX2, serve
the purpose of producing O2

.− and H2O2 in response to stimuli through
receptor-mediated signaling and therefore differ from mitochondrial
O2
.− production, which is a leak from the electron transport system

[36,37] and NOX4, which is a constitutively active intracellular NOX
that is regulated by its expression. Excessive amounts of oxidant pro-
duction can be detrimental, resulting in the oxidative stress that appears
to play an important role in numerous degenerative diseases [38,39]. In
our model we found a clearly increased activation of NOX in RTT cells
that ismost likely due toNOX2.We conclude this because the transloca-
tion of the cytosolic subunits p47phox and p67phox, whichmust associate
with NOX2 to activate its O2

.− production, also occurred. This suggests
that the increased oxidative stress may depend, at least in part, on
NOX2 activation. The O2

.− produced by NOX2 will rapidly dismutate to
form H2O2 and O2. Once produced, H2O2 can trigger lipid peroxidation
through the iron-catalyzed Fenton reaction as confirmed by the elevat-
ed HNE found in the RTT fibroblasts. In our study, DPI (a general inhib-
itor of NOX) added at the time of cell seeding attenuated HNE protein
adducts. Inhibition of HNE-adduct formation was also observed when
the iron chelator (desferal) was added at the time of cell seeding,
suggesting a role of NOX2-induced HNE adducts formation in RTT
fibroblasts.

Oxidative stress in RTT fibroblasts could be related not only to an in-
creased oxidant production, but also to the altered activity of enzymes
mostly involved in removing O2

.− and H2O2. We found that the activity
of both forms of intracellular SOD, Cu–Zn-SOD and Mn-SOD, as well as
GPx activity were lower in RTT fibroblasts compared to controls.
sin-like (Boc-LRR-AMC), Caspase-like (Z-LLE-AMC) proteasome activities measured using
tivity was express as RFU/min/μg protein and data were analyzed by t-test *, p b 0.05 vs.
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Peroxiredoxins also reduce H2O2 with five of the six isoforms in
mammalian cells using either of the two isoforms of thioredoxin (Trx)
[40]. Trx are proteins with critical thiols that form an intramolecular di-
sulfide in the peroxiredoxin catalyzed reduction of H2O2, similar to the
way GSSG is formed by GPxs. Oxidative stress also results in disulfides
forming in proteins. Trx is used in conjunction with protein disulfide
isomerase to reduce protein disulfides. The reduction of the disulfide
form of Trx also depends upon NADPH via thioredoxin reductase
(TrxR) activity [41]. Thus, the decreased activity of TrxR in RTT cells
compared to controls adds further understanding of how oxidative
stress occurs in RTT. Overall, these data confirm the relevance of mech-
anisms controlling thiol/disulfide equilibria in the pathogenesis RTT
and, in this respect, extend to neurodevelopmental disorders previous
findings obtained in chronic neurodegenerative diseases [42,43]. It
should be alsomentioned that in previouswork we have detected a de-
creased levels of GSH in RTT cells [44] and this can indirectly affect TrxR
by maintaining Trx in the reduced state during oxidative stress. Al-
though GSH does not directly interact with TrxR.

The most important parameter determining the biological impact of
the antioxidant enzymes is activity of the enzymes rather than their
mRNA or protein. Our results have clearly show that RTT cells have
lower activities of key defensive enzymes, SOD, GPx, G6PDH, and
TrxR, while the pro-oxidant enzymes NOX2 activity was increased.
The increased Mitosox fluorescence in RTT implied that mitochondrial
O2
. −production was also increased although the measurement may ac-

tually reflect the decreased Mn-SOD or other antioxidant enzymatic ac-
tivities as the specificity of Mitosox is questionable [45]. Mitochondria
generate O2

.− from different redox centers in the respiratory chain and
H2O2 from somemitochondrial enzymes as well [46]. The O2

.− is rapidly
dismutated byMn-SOD or reacts with NO to formONOO-. At low levels,
it is thought thatmitochondrial H2O2 plays a role in cell signaling, but, at
higher rates of H2O2 production, mitochondrial proteins become sus-
ceptible to damage. Mitochondria have a relatively high concentration
of both oxidizable lipids and abundant redox-active proteins that can
amplify oxidative damage [46,47].

The first supportive evidence for mitochondrial defects in RTT arose
from altered mitochondrial morphology. Electron microscopy of muscle
and frontal lobe biopsy tissues from individual patients revealed enlarged
and swollen mitochondria with electron-translucent appearance, irregu-
lar cristae, vacuolizations and granular inclusions [48]. Mitochondrial
dysfunction and its derived oxidative stress may contribute to RTT path-
ogenesis. Indeed, someRTT clinical signs such as hypotonia [49] andmyo-
cardial dysfunctions [50] correlate with mitochondrial dysfunctions and
oxidative stress. In muscle and frontal lobe biopsies of RTT patients [48,
51,52] and in cortex and hippocampus ofMeCP2−/ymice [53], morpho-
logical alterations of mitochondria have been found. Furthermore a
reduced NADH cytochrome c reductase, succinate cytochrome c reduc-
tase, and cytochrome c oxidase activity has been shown in muscle and
frontal cortex biopsies of RTT patients [54,55] as well as an alteration of
mitochondrial respiration efficiency [56]. Indeed, biochemical analyses
on muscle biopsy material confirmed reduced activities of NADH
cytochrome c reductase, succinate cytochrome c reductase and cyto-
chrome c oxidase, even in mitochondria of physiological appearance
[54]. These data correlate with a recent microarray analyses on RTT pa-
tient blood samples where we have noticed an up-regulation of several
mitochondria-related genes [57]. Specifically, themost significantly regu-
lated transcripts included those encoding for several subunits of mito-
chondrial respiratory chain complexes and thus linked directly to
mitochondrial ATP production and, indirectly, to potential oxidant gener-
ation. Overall, these elements are in full agreement with our findings
demonstrating altered bioenergetics profiles in RTT fibroblasts.

Our results also demonstrated the up-regulation of genes related to
protein degradation andubiquitination. This could also be a consequence
of oxidized protein and the presence of HNE protein adducts. It also
seems that RTT is accompanied by an increased metabolic demand and
hence intensified mitochondrial activity. The cAMP pathway has been
found to play also a central role in neurodevelopmental disorders and
neurodegenerative diseases such as autism, Alzheimer's, Parkinson's,
Huntington's disease and Down syndrome [25,27]. Recently a distur-
bance of the cAMP homeostasis has been proposed also in MeCP2−/y
mice [58], andmoreover, it has been shown that β2-Adrenergic receptor
agonist ameliorates phenotypes in a mouse model of RTT [59]. As cAMP
signaling has been shown to regulate OXPHOS activity and biogenesis
[28,60], we investigated cAMP-dependent mitochondrial biogenesis.
The results showed that reduced cAMP in RTT were associated with re-
duced protein expression of transcription factors of mitochondrial bio-
genesis. Interestingly, Tfam appears to be up-regulated in RTT. This
could be due to the reduced cAMP, as PKA-dependent phosphorylation
results in the inability of Tfam protein to bind DNA and leads to Tfam
degradation by Lon protease [61].

In summary, in RTT cells increasedmitochondrial andNOX2produc-
tion of oxidants accompanied by decreased antioxidant defenses and
impaired proteasome activity result in oxidative stress leading to dam-
age to cell constituents and pathology.
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