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Let F ⊂ K be fields of characteristic 0, and let K�x� denote the ring of polynomi-
als with coefficients in K. Let p�x� =∑n

k=0 akx
k ∈ K�x�� an �= 0. For p ∈ K�x�\F�x�,

define DF�p�, the F deficit of p, to equal n − max�0 ≤ k ≤ n  ak /∈ F�. For
p ∈ F�x�, define DF�p� = n. Let p�x� = ∑n

k=0 akx
k and let q�x� = ∑m

j=0 bjx
j�

with an �= 0, bm �= 0, an� bm ∈ F , bj /∈ F for some j ≥ 1. Suppose that p ∈
K�x�, q ∈ K�x�\F�x�� p not constant. Our main result is that p ◦ q /∈ F�x� and
DF�p ◦ q� = DF�q�. With only the assumption that anbm ∈ F , we prove the inequal-
ity DF�p ◦ q� ≥ DF�q�. This inequality also holds if F and K are only rings. Similar
results are proven for fields of finite characteristic with the additional assumption
that the characteristic of the field does not divide the degree of p. Finally we extend
our results to polynomials in two variables and compositions of the form p�q�x� y��,
where p is a polynomial in one variable.  2002 Elsevier Science (USA)
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1. INTRODUCTION

Suppose that p and q are polynomials such that their composition, p ◦ q,
has all rational coefficients. Must the coefficients of p or q be all rational?
The idea for this paper actually started with the following more general ques-
tion. Let F ⊂ K be fields of characteristic 0, and let K�x� denote the ring
of polynomials with coefficients in K. Suppose that p and q are polynomials
in K�x�, and p ◦ q ∈ F�x�. Must p or q be in F�x�? The answer is yes (see
Theorem 7) if the leading coefficient and the constant term of q are each in
F . Theorem 7 follows easily from a more general result (Theorem 1) con-
cerning the F deficit, denoted byDF , of the composition of two polynomials.
DF is defined as follows: If p ∈ K�x�\F�x�, deg�p� = n, let xr be the largest
power of x with a coefficient not in F . We define the F deficit of p,DF�p�, to
be n− r. For p ∈ F�x�, define DF�p� = n. For example, if F = Q (rational
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numbers),K = R (real numbers), and p�x� = x5 − 5x3 +√
3x2 − x+ 1, then

DF�p� = 3. Now suppose that the leading coefficients of p and q are in F ,
and that some coefficient of q(other than the constant term) is not in F(so
that q /∈ F�x�). Our main result, Theorem 1, states that DF�p ◦ q� = DF�q�.
With the weaker assumption that only the product of the leading coefficients
of p and q is in F we prove the inequality DF�p ◦ q� ≥ DF�q� (see Theorem
4). It is interesting to note that if q ∈ F�x�, then we get the different equal-
ity DF�p ◦ q� = DF�p�DF�q�.

We also prove (Theorem 8) some results about the deficit of the iterates,
p�r�, of p, which require less assumptions than those of Theorem 1. In
particular, DF�p�r�� = DF�p� with only the assumption that the leading
coefficient of p is in F . This assumption is necessary in general as the
example p�x� = ix shows with F = R and K = C (complex numbers).

One can, of course, define the F deficit for any two sets F ⊂ K. While
Theorem 1 does not hold in general if F and K are not fields, we can
again prove the inequality DF�p ◦ q� ≥ DF�q� if F and K are rings (see
Theorem 12).

For fields of finite characteristic d, Theorem 1 follows under the additional
assumption that d does not divide deg�p�.

Finally we extend our results to polynomials in two variables(using a nat-
ural definition of DF in that case) and compositions of the form p�q�x� y��,
where p is a polynomial in one variable. Our proof easily extends to com-
positions of the form p�q�x1� � � � � xr��. However, the analog of Theorem 1
does not hold in general for compositions of the form p�q1�x� y�� q2�x� y��
(even when q1 = q2), where p is also a polynomial in two variables.

There are connections between some of the results in this paper and
earlier work of Horwitz in [1] and [2], where we asked questions such as:
If the composition of two power series, f and g, is even, must f or g be
even? One connection with this paper lies in the following fact: If F = R
and K = C, then F�x� is invariant under the linear operator L�f ��z� =
f̄ �z̄�. Of course, the even functions are invariant under the linear operator
L�f ��z� = f �−z�. Note that in each case L ◦ L = I. This connection does
not extend to fields F in general, however, since such an operator L may not
exist. The methods and results we use in this paper are somewhat similar
to those of [1] and [2], but there are some key differences. Also, we only
consider polynomials in this paper, since there is really no useful notion of
the F deficit for power series which are not polynomials.

2. MAIN RESULTS

Let F ⊂ K be sets, with F�x� equal to the set of all polynomials with
coefficients in F .
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Definition 1. Let p�x� = ∑n
k=0 akx

k ∈ K�x�� an �= 0. For p ∈ K�x�\
F�x�, define DF�p�, the F deficit of p, to equal n− max�0 ≤ k ≤ n  ak /∈
F�. For p ∈ F�x�, define DF�p� = n.

Note that DF�p� = n if and only if ak ∈ F ∀k ≥ 1 and DF�p� = 0 if and
only if an /∈ F .

Most of the results in this paper concern the case where F and K are
fields.

We shall need the following easily proven properties. For any fields
F ⊂ K

u ∈ F� v ∈ K\F ⇒ uv ∈ K\F�if u �= 0� and u+ v ∈ K\F (1)

and for fields of characteristic 0

v ∈ K\F ⇒ nv ∈ K\F for any n ∈ Z+� (2)

Assume for the rest of this section that F is a proper nonempty subfield
of K, which is a field of characteristic zero. Later in the paper we discuss
the case where K is a field of finite characteristic or just a ring.

The following result shows that, under suitable assumptions, q and p ◦ q
have the same F deficit.

Theorem 1. Suppose that p�x� = ∑n
k=0 akx

k ∈ K�x�� p not constant,
q�x� = ∑m

j=0 bjx
j ∈ K�x�\F�x� with an �= 0, bm �= 0, an� bm ∈ F , bj /∈ F for

some j ≥ 1. Then p ◦ q /∈ F�x� and DF�p ◦ q� = DF�q�.
Proof. Let d = DF�q� < m. Since bm ∈ F , d ≥ 1. By the definition

of DF� bm−d /∈ F , but bm−�d−1�� � � � � bm ∈ F . Also, since p is not constant,
n ≥ 1. We have

�p ◦ q��x� =
n∑
k=0

ak

(
m∑
j=0

bjx
j

)k
� (3)

Consider the coefficient of xmn−d in �p ◦ q��x�. Since mn − d > mn −
m = m�n− 1�, this coefficient will only arise from the summand above with
k = n, namely an�q�x��n, which equals

an

( ∑
i0+···+im=n

n!
�i0�! · · · �im�!

�b0�i0 · · ·
(
bmx

m
)im)� (4)

To get an exponent of mn − d in (4),
∑m
k=0 kik = mn − d. Along with∑m

k=0 ik = n this implies

mi0 + �m− 1�i1 + · · · + im−1 = d� (5)



492 alan horwitz

Note that since bj /∈ F for some j ≥ 1, d < m, which implies that m− �d +
1� ≥ 0. Now mi0 + �m− 1�i1 + · · · + �d + 1�im−�d+1� > d if some ij �= 0 for
0 ≤ j ≤ m− �d + 1�. That proves

ij = 0 for 0 ≤ j ≤ m− �d + 1�� (6)

By (5) and (6), dim−d + �d − 1�im−�d−1� + · · · + im−1 = d. Since bj ∈ F
for j ≥ m − �d − 1�, the only way to get a coefficient in (4) not in F is if
im−d �= 0, which implies that im−d = 1, im−d+1 = im−d+2 = · · · = im−1 = 0.
Also, from im−d + im−d+1 + · · · + im = n we have im = n − 1. Hence the
only way to obtain xmn−d in (4) using bm−d is n�bm−dxm−d�1�bmxm�n−1. Now
bm−dbn−1

m /∈ F(by (1)), and all of the other terms in (4) which contribute
to the coefficient of xmn−d involve bm−�d−1�� � � � � bm. Hence, by (1) and (2),
the coefficient of xmn−d in (4) is not in F , and it follows that p ◦ q /∈ F�x�.
Now we want to show that the coefficient of xr in (3) will lie in F if r >
mn − d. Write r = mn − d′, where d′ < d. Since mn − d′ > mn − d, this
coefficient will only arise in (3) with k = n. Arguing as above, to get an
exponent of mn− d′ in (4), it follows that ij = 0 for 0 ≤ j ≤ m− �d′ + 1�.
Since m − �d′ + 1� ≥ m − d, ij = 0 for 0 ≤ j ≤ m − d, which implies
that the coefficient of xr in (4) only involves bk with k > m − d. Since
bm−�d−1�� � � � � bm ∈ F , the coefficient of xr in (3) is also in F , and thus
DF�p ◦ q� = d.

If q ∈ K�x�/F�x� and b0 ∈ F , then bj /∈ F for some j ≥ 1� Theorem 4
then implies

Corollary 2. Suppose that p�x� = ∑n
k=0 akx

k ∈ K�x�, p not constant,
q�x� = ∑m

j=0 bjx
j ∈ K�x�\F�x�. Suppose that an �= 0, bm �= 0, an� bm� b0 ∈

F . Then p ◦ q /∈ F�x� and DF�p ◦ q� = DF�q�.
Example 1. Let F = Q�K = R, p�x� = x3 + 2x2 − √

2x + 1, q�x� =
x2 +√

3x+ 5. Then

p�q�x�� = x6 + 3
√

3x5 + 26x4 + 37
√

3x3 + �−
√

2 + 146�x2

+�95
√

3 −
√

2
√

3�x+ 176 − 5
√

2�

Hence DF�p ◦ q� = 1 = DF�q�.
Theorem 1 assumes that q /∈ F�x�. For q ∈ F�x� we have

Theorem 3. Suppose that p�x� = ∑n
k=0 akx

k ∈ K�x�, q�x� =∑m
j=0 bjx

j ∈ F�x�, with an �= 0, bm �= 0. Then DF�p ◦ q� = DF�p�DF�q�.
Proof. If p is constant, then p ◦ q is constant, and thus DF�p ◦ q� = 0 =

DF�p�DF�q�. So assume now that p is not constant.

Case 1: an ∈ F and p /∈ F�x�.
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Let d = DF�p� ⇒ d > 0� an−d /∈ F , and an−d+1� � � � � an ∈ F . Consider
the coefficient of xmn−md in �p ◦ q��x�. This coefficient will only arise in
(3) with k ≥ n − d. Since ak ∈ F for k > n − d, the only way to get a
coefficient not in F is with an−d�q�x��n−d = an−dbn−dm xmn−md + · · · . Since
an−dbn−dm /∈ F , the coefficient of xmn−md is not in F . It also follows easily that
if r > mn−md, then the coefficient of xr in (3) is in F . Thus DF�p ◦ q� =
mn− �mn−md� = md = DF�p�DF�q�.

Case 2: an /∈ F .
Then DF�p� = 0 and anbnm /∈ F ⇒ DF�p ◦ q� = 0 = DF�p�DF�q�.

Case 3: p ∈ F�x�.
Then DF�p ◦ q� = mn = DF�p�DF�q�.
Example 2. Let F = Q�K = R, p�x� = x4 −√

2x, and q�x� = x2 + 3x.
Then p�q�x�� = x8 + 12x7 + 54x6 + 108x5 + 81x4 −√

2x2 − 3
√

2x. Hence
DF�p ◦ q� = 6 = �3��2� = DF�p�DF�q�.
Remark 1. Theorem 3 implies that if q ∈ F�x�, then DF�p ◦ q� ≥ DF�q�.
Remark 2. Theorem 1 does not hold in general if an and/or bm are

not in F . For example, let F = Q, K = R, p�x� = √
2x3 + x2 − x + √

5,
q�x� = 3

√
2x2 +√

3x + 5. Then DF�p ◦ q� = 1 and DF�q� = 0, and thus
DF�p ◦ q� �= DF�q�. However, with the weaker assumption that anbm ∈ F ,
one can prove an inequality.

Theorem 4. Suppose that p�x� = ∑n
k=0 akx

k ∈ K�x�, p not constant,
q�x� =∑m

j=0 bjx
j ∈ K�x�, with an �= 0, bm �= 0, anbm ∈ F . Then DF�p ◦ q� ≥

DF�q�.
Proof. Case 1: q /∈ F�x� and bm ∈ F .
By (1), an ∈ F as well. If bj /∈ F for some j ≥ 1, then by Theorem 1,

DF�p ◦ q� = DF�q�. Now suppose that bj ∈ F for all j ≥ 1. It is not hard
to show that the coefficient of any power of x > m�n − 1� cannot involve
b0, and hence DF�p ◦ q� ≥ mn−m�n− 1� = m = DF�q�.

Case 2: q /∈ F�x� and bm /∈ F . Then DF�q� = 0 and the inequality
follows immediately.

Case 3: q ∈ F�x�. Then DF�p ◦ q� ≥ DF�q� by Theorem 3 (see the
remark following the proof).

Remark 3. Theorem 4 does not hold in general if anbm /∈ F . For exam-
ple, let F = Q�K = R, p�x� = √

2x3 + x2 − x+ 1, and q�x� = x2 +√
3x+

5. Then clearly DF�p ◦ q� = 0 while DF�q� = 1.

As an application of Theorem 1 we have the following result. Note that
we do not assume that the leading coefficient of p is in F .
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Proposition 5. Suppose that p�x� =∑n
k=0 akx

k ∈ K�x�, p not constant,
q�x� =∑m

j=0 bjx
j ∈ K�x�\F�x�, with an �= 0� bm �= 0, and bm ∈ F . If bj /∈ F

for some j ≥ 1, then p ◦ q /∈ F�x�.
Proof. If an /∈ F , then anbnm /∈ F , which implies that p ◦ q /∈ F�x� since

anb
n
m is the coefficient of xmn in p ◦ q. If an ∈ F , then p ◦ q /∈ F�x� by

Theorem 1.

Lemma 6. Suppose that q�x� = ∑m
j=0 bjx

j ∈ F�x� and p ◦ q ∈ F�x�,
p�x� =∑n

k=0 akx
k� an �= 0� bm �= 0� q not constant. Then p ∈ F�x�.

Proof. Note that DF�q� = m ≥ 1 > 0. Then by Theorem 3, DF�p� =
DF �p◦q�
DF �q� = mn

m
= n, and thus ak ∈ F for k ≥ 1. Since p ◦ q ∈ F�x�, p�q�0�� =∑n

k=0 akb
k
0 ∈ F . Since b0 ∈ F , this implies that a0 ∈ F . Hence p ∈ F�x�.

Now we answer the following question mentioned in the Introduction.
Suppose that p ◦ q ∈ F�x�. Must p or q be in F�x�?
Theorem 7. Suppose that p� q ∈ K�x� with p ◦ q ∈ F�x�, q�x� =∑m
j=0 bjx

j� an �= 0� bm �= 0� b0� bm ∈ F . Then p ∈ F�x� or q ∈ F�x�. In
addition, if p ◦ q is not constant, then p ∈ F�x� and q ∈ F�x�.
Proof. Suppose p ◦ q ∈ F�x�. If p ◦ q is constant, then p and/or q is

constant. If p�x� = c, then �p ◦ q��x� = c, which implies that c ∈ F and
hence p ∈ F�x�. If q�x� = c, then c ∈ F since b0 ∈ F and hence q ∈ F�x�.
Now suppose that p ◦ q is not constant. Then q is not constant. If q /∈ F�x�,
then bj /∈ F for some j ≥ 1. By Proposition 5, p ◦ q /∈ F�x�, a contradiction.
Hence q ∈ F�x�. Lemma 6 then shows that p ∈ F�x� as well.

Remark 4. Note that no restriction is needed on the leading coefficient
of p. However, some restriction on the leading coefficient and constant term
of q are needed in order for Theorem 7 to hold in general. Simple examples
are p�x� = x − c� q�x� = x + c or p�x� = �1/c�x� q�x� = cx, with c ∈ K,
c /∈ F .

Remark 5. Theorem 7 does not hold in general if F equals the com-
plement of a field. For example, if F = irrational numbers, let p�x� = x2,
q�x� = πx2 + x + π. Then neither p nor q has all irrational coefficients,
and the leading coefficient and constant term of q are irrational. However,
p�q�x�� = π2x4 + 2πx3 + �2π2 + 1�x2 + 2πx+ π2, which has all irrational
coefficients.

Remark 6. If S is any subset of K(not necessarily a subfield), we say
that S is a deficit set if Theorem 1 holds with F replaced by S throughout.
For example, if K = C = complex numbers, then it is not hard to show that
S = R ∪ I = set of all real or imaginary numbers is a deficit set. It would
be interesting to determine exactly what a deficit set must look like for a
given field K.
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2.1. Iterates

We now prove the analogs of Theorems 1, 4, and 7 when p = q. In this
case we require less assumptions. In particular, for the analog of Theorem
4, we require no assumptions whatsoever. Let p�r� denote the rth iterate
of p.

Theorem 8. Suppose that p�x� =∑n
k=0 akx

k ∈ K�x�\F�x�, with an �= 0,
an ∈ F . Then, for any positive integer r, p�r� /∈ F�x� and DF�p�r�� = DF�p�.
Proof. Note that if n = 0, then a0 ∈ F ⇒ p ∈ F�x�. Hence n ≥ 1. If

n = 1, then p�x� = a1x+ a0, a1 ∈ F� a0 /∈ F . It is not hard to show that

p�r��x� = �a1�rx+ a0

r−1∑
k=0

�a1�k�

Now a0
∑r−1
k=0�a1�k /∈ F since

∑r−1
k=0�a1�k ∈ F . Hence p�r��x� /∈ F�x� and

DF�p�r�� = 1 = DF�p�. Assume now that n ≥ 2. First we prove the theorem
for p ◦ p,

�p ◦ p��x� =
n∑
k=0

ak

(
n∑
j=0

ajx
j

)k
� (7)

If aj /∈ F for some j ≥ 1, then DF�p ◦ p� = DF�p� by Theorem 1 with
p = q. So suppose now that aj ∈ F for j ≥ 1 and a0 /∈ F . First let k = n in
(7) to get

an

( ∑
i0+···+in=n

n!
�i0�! · · · �in�!

�a0�i0 · · · �anxn�in
)
� (8)

It follows easily that the highest power of x in (8) involving a0 is
n�n− 1�, obtained by letting i0 = 1� ij = 0 for 2 ≤ j ≤ n− 1, in = n− 1. The
coefficient of xn�n−1� in (8) is na0a

n−1
n /∈ F by (1) and (2). The only other

way to obtain xn�n−1� is by letting k = n − 1 in (7) and letting in = n − 1
in an−1�

∑
i0+···+in=n−1

�n−1�!
�i0�!···�in�!�a0�i0 · · · �anxn�in�. This gives a coefficient of

xn�n−1�, which does not involve a0. Hence the coefficient of xn�n−1� in p ◦ p
equals na0a

n−1
n + c, where c ∈ F . By ( 1), na0a

n−1
n + c /∈ F . Finally, it is

not hard to show that any power of x in (7) greater than n�n− 1� cannot
involve a0. Thus DF�p ◦ p� = n2 − n�n − 1� = n = DF�p�. Now consider
p�r� = p�r−2� ◦ q, where r ≥ 3, and q = p ◦ p = ∑m

j=0 bjx
j , m = n2. Since

DF�p ◦ p� = DF�p� ≤ n, DF�p ◦ p� < n2 since n ≥ 2. Hence bj /∈ F for
some j ≥ 1. Since bm = an+1

n ∈ F and the leading coefficient of p�r−2� is also
in F�DF�p�r�� = DF�p�r−2� ◦ q� = DF�q��by Theorem 1� = DF�p ◦ p� =
DF�p�. It also follows that p�r� /∈ F�x� since DF�p�r�� = DF�p� ≤
n < n2.
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Remark 7. If f �x� = �x/ax − 1�, then f �f �x�� = x ∈ F�x� = ring of
formal power series in x. However, f /∈ F�x� if a /∈ F , which implies that
the first part of Theorem 8 fails in general for formal power series (we have
not defined DF�f � for f ∈ F�x�).

Remark 8. Theorem 8 is not simply a trivial application of Theorem 1
using induction on r, with q = p�r−1�. The reason is that one requires bj /∈ F
for some j ≥ 1 to apply Theorem 1.

Example 3. Let F = R�K = C, and p�x� = x3 + 4x2 − 3ix+ 2i. Then
p�p�x�� = x9 + 12x8 + �48 − 9i�x7 + �68 − 66i�x6 + �5 − 96i�x5 + �−8 +
72i�x4 + �132 − 56i�x3 + �−84 − 2i�x2 + �39 + 36i�x − 10 − 6i ⇒ DF�p ◦
p� = 2 = DF�p�.

We now prove an inequality which holds for all p in K�x�.
Theorem 9. Let p ∈ K�x�. Then DF�p�r�� ≥ DF�p�.
Proof. If p ∈ F�x�, then p�r� ∈ F�x�, which implies that DF�p�r�� = nr ≥

n = DF�p�. If p ∈ K�x�\F�x� and an ∈ F , then by Theorem 8, DF�p�r�� =
DF�p�. Finally, if an /∈ F , then DF�p� = 0 ≤ DF�p�r��.

We now prove the analog of Theorem 7 for iterates.

Theorem 10. Suppose that p∈K�x�, p�x�= ∑n
k=0 akx

k� an �= 0� an ∈F .
Assume also that p�r� ∈ F�x� for some positive integer r. Then p ∈ F�x�.
Proof. If p /∈ F�x�, then p�r� /∈ F�x� by Theorem 8.

Remark 9. Theorem 10 does not hold in general if an /∈ F . For a coun-
terexample, if there exists a ∈ F with a1/r /∈ F , then let p�x� = a1/rx.1

3. SEVERAL VARIABLES

As earlier, assume throughout that F is a proper nonempty subfield of K,
which is a field of characteristic zero. We now extend the definition of the
F deficit to polynomials in two variables. Write p�x� y� = ∑n

k=0 pk�x� y�,
where each pk is homogeneous of degree k�pn �= 0. If p ∈ K�x� y�\F�x� y�,
define DF�p� = n − max�k  pk /∈ F�x� y��. For p ∈ F�x� y�, define
DF�p� = n. Then Theorems 1 and 4, with similar assumptions, do not
hold in general for compositions of the form p�q�x�� q�x��, where q is a
polynomial in one variable and p is a polynomial in two variables. For
example, let F = R�K = C�p�x� y� = x2 − y2 + 1, and q�x� = x2 + ix.
Then p�q�x�� q�x�� = 1 and thus DF�p�q� q�� = 0 < 1 = DF�q�. Indeed,

1If F = algebraic numbers and K = real numbers, then such an a does not exist.
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Theorems 1 and 4 even fail for iterates of the form p�p�x� y�� p�x� y��.
For example, let F = Q�K = R, and p�x� y� = y2 − x2 + √

3x − √
5y.

Then p�p�x� y�� p�x� y�� = √
3y2 −√

3x2 + 3x−√
3
√

5y −√
5y2 +√

5x2 −√
5
√

3x+ 5y, which implies that DF�p�p�p�� = 0 < 1 = DF�p�.
However, we can prove similar theorems for compositions of the form

p�q�x� y��, where p is a polynomial in one variable.

Theorem 11. Suppose that p�x� = ∑n
k=0 akx

k ∈ K�x�� 0 �= an ∈ F ,
p not constant. Suppose that q ∈ K�x� y�\F�x� y�, q�x� y� = ∑m

j=0 qj�x� y�,
where each qj is homogeneous of degree j with 0 �= qm ∈ F�x� y�. If qj�x� y� /∈
F�x� y� for some j ≥ 1, then p ◦ q = p�q�x� y�� /∈ F�x� y� and DF�p ◦ q� =
DF�q�.

Proof. Our proof is very similar to the proof of Theorem 1, except that
we have to work with the homogeneous polynomials qj�x� y� instead of the
monomials xj . This only complicates things a little.

p�q�x� y�� =
n∑
k=0

ak

(
m∑
j=0

qj�x� y�
)k
� (9)

Let d = DF�q� < m. By the definition of DF , qm−d /∈ F�x� y�,
qm−�d−1�� � � � � qm ∈ F�x� y�. Also, p not constant ⇒ n ≥ 1 and qn ∈

F�x� y� ⇒ d > 0. Now �qj�x� y��k is homogeneous of degree jk, and k < n
implies that jk ≤ j�n− 1� ≤ m�n− 1� < mn− d. Hence a term of degree
mn− d can only arise in (9) if k = n, which gives

an�q�x� y��n =
(

m∑
j=0

qj�x� y�
)n

= an
( ∑
i0+···+im=n

n!
�i0�! · · · �im�!

�q0�i0 · · · �qm�im
)
� (10)

Note that m− d ≥ 1 ⇒ m− �d + 1� ≥ 0. Arguing exactly as in the proof
of Theorem 1, to get an exponent of mn− d in (10)

ij = 0 for 0 ≤ j ≤ m− �d + 1�� (11)

Thus the only way to get a coefficient in (10) not in F is if im−d �= 0,
which implies that im−d = 1, im−d+1 = im−d+2 = · · · = im−1 = 0. Also,
from im−d+ im−d+1 + · · · + im = n we have im = n− 1. (10) then becomes
nanqm−dqn−1

m , which we shall now show has at least one coefficient not
in F . Let g = qm−dqn−1

m , which is homogeneous of degree mn − d. Write
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qn−1
m �x� y� = ∑m�n−1�

k=0 ckx
kym�n−1�−k, qm−d�x� y� = ∑m−d

r=0 brx
rym−d−r . Note

that ck ∈ F for all k, while br /∈ F for some r. Let

M = max�r  0 ≤ r ≤ m− d� br /∈ F��
N = max�k  0 ≤ k ≤ m�n− 1�� ck �= 0��

Clearly M and N are well defined, bM /∈ F , and cN ∈ F . Consider the
coefficient of xM+Nymn−d−M−N in g. One way to obtain this coefficient
is �bMxMym−d−M��cNxNym�n−1�−N� = bMcNx

M+Nymn−d−M−N . There are
other ways to obtain this coefficient if N > 0 and M < m− d. Since ck = 0
for k > N , one must choose ckxkym�n−1�−k from qn−1

m with k < N and
brx

rym−d−r from qm−d with r > M , which all involve coefficients in F . Since
bMcN /∈ F , the coefficient of xM+Nymn−d−M−N in g is not in F . Thus the
coefficient of xM+Nymn−d−M−N in nanqm−dqn−1

m is not in F , which implies
that p�q�x� y�� /∈ F�x� y�.

Now write �p ◦ q��x� y� = ∑mn
l=0 hl�x� y�, where each hl is homogeneous

of degree l. Again, arguing exactly as in the proof of Theorem 1, since
qm−�d−1�� � � � � qm ∈ F�x� y�, it follows that hl ∈ F�x� y� for l > mn− d. This
implies that DF�p ◦ q� = mn− d.

Remark 10. Theorem 11 can be easily extended to compositions of the
form p�q�x1� � � � � xr��.

4. RINGS

Theorem 1 does not hold in general if F is just a ring. For example, if
F = Z, the ring of integers and K = Q, let p�x� = x2 + �2/3�x and q�x� =
6x2 + �3/2�x. Then a2� b2, and b0 are in Z, and p�q�x�� = 36x4 + 18x3 +
�25/4�x2 + x, which implies that 2 = DF�p ◦ q� �= DF�q� = 1. Theorem 4
also does not hold if F is a ring. However, if F ⊂ K, where F and K are
rings of finite or infinite characteristic, we can prove

Theorem 12. Suppose that p�x� = ∑n
k=0 akx

k ∈ K�x�, p not constant,
q�x� =∑m

j=0 bjx
j ∈ K�x�\F�x�, with an �= 0, bm �= 0, an� bm ∈ F , bj /∈ F for

some j ≥ 1. Then DF�p ◦ q� ≥ DF�q�.

Proof. Letting d = DF�q�, the proof follows exactly as in the proof
of Theorem 1, except that we cannot conclude that bm−dbm /∈ F if F is
only a ring. However, it does still follow that the coefficient of xr in (3)
will lie in F if r > mn − d. Hence, even if bm−dbm ∈ F , it follows that
DF�p ◦ q� ≥ d.
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5. FIELDS OF FINITE CHARACTERISTIC

Theorem 1 also does not hold in general if the field F has finite character-
istic. For example, suppose that K is a finite field of order 4; F = Z2 ⊂ K.
Let p�x� = x2 and let q�x� = x2 + 3x. Then p�q�x�� = x4 + �3 + 3�x3 +
�3 × 3�x2 = x4 + 2x2. Thus DF�q� = 1 while DF�p ◦ q� = 2. The problem
here is that the characteristic of K divides the degree of p. If we assume
that this does not happen, we have

Theorem 13. Let F ⊂ K be fields of characteristic t. Suppose that p�x� =∑n
k=0 akx

k ∈ K�x�, p not constant, q�x� = ∑m
j=0 bjx

j ∈ K�x�\F�x�, with
an �= 0, bm �= 0, an� bm ∈ F , bj /∈ F for some j ≥ 1. If t �n, then p ◦ q /∈ F�x�
and DF�p ◦ q� = DF�q�.
Proof. We need the fact that if r ∈ Z+ with r < t, then ru �= 0 for any

u ∈ K. This easily implies that nu �= 0 if t �n. It follows that if u /∈ F ,
then nu /∈ F if t �n. Hence, letting d = DF�q� and u = bm−dbm /∈ F
we have nbm−dbm /∈ F . Now the proof follows exactly as in the proof of
Theorem 1.

One can also prove versions of Theorems 4 and 7 for fields of finite
characteristic. Theorem 7 also requires the additional assumption that
t �n.

6. APPLICATIONS

The main theorems in this paper give information about the coefficients
of p ◦ q and the iterates of p. All of the examples we give here use F =
rationals, K = reals, though of course it is possible to construct examples
from other fields of characteristic 0, from finite fields, or from rings. For
example, let p�x� = x2 + c, where c is irrational. By Theorem 8, DF�p� =
2 ⇒ DF�p�r�� = 2 for any r ∈ Z+, which implies that the coefficient of
x2r−2 in p�r��x� is irrational, while the coefficient of x2r−1 in p�r��x� must
be rational.

Also, suppose that, given r�x� ∈ K�x�, one wants to determine if non-
linear polynomials p� q ∈ K�x� exist with r = p ◦ q. Given p or q as
well, Theorems 1 or 7 can sometimes be used to give a quick negative
answer. For example, let r�x� = x6 + ax5 + bx4 + · · · , where a is rational
and b is irrational, and q�x� = x3 + Bx2 + · · · , where B is irrational. If
r = p ◦ q, then the leading coefficient of p equals 1, and by Theorem 1,
DF�q� = DF�r� = 2. But DF�q� = 1 and thus no such p exists.

The applications given here are probably of limited value. It would be
nice to find other, perhaps more useful, applications of the theorems in this
paper.
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7. ENTIRE FUNCTIONS

The obvious extension of F�x� to the class of entire functions E is

SF =
{
f ∈ E  f �z� =

∞∑
k=0

akz
k� ak ∈ F ∀k

}
�

While there is no reasonable notion of DF�f � when f is not a polynomial,
one can attempt to extend Theorem 7 to E. The question then becomes:
Suppose that f �z� is entire and q�z� is a polynomial, with leading coefficient
and constant term in F . If f ◦ q ∈ SF , must f ∈ SF or q ∈ SF? The following
theorem gives a negative answer to this question for a large class of fields F .

Theorem 14. Let F be a subfield of C, with either F = R or π2 /∈ F . Then
there exist an entire function f �z� and a polynomial q�z� = a2z

2 + a1z + a0
such that:

(1) f /∈ SF and q /∈ SF
(2) a0 and a2 are both in F
(3) f ◦ q ∈ SF .

Proof. Case 1: F = R.
Let f �z� = cos�iπ√z + 2i� = cosh�π√z + 2i� and q�z� = z2 + 2�1 +

i�z. Since cos�√z� is an entire function, f ∈ E. Also, a0 and a2 are both
real and f �q�z�� = − cosh�π�z + 1�� ∈ SF . However, f ′�0� = �π/2�1 +
i�� sinh�π�1 + i�� = �π�i − 1�/4� sinhπ, which is not real. Hence f /∈ SF
and q /∈ SF , but f ◦ q ∈ SF .

Case 2: π2 /∈ F .
Let f �z� = cos�√z + π2� and q�z� = z2 + 2πz. Then f �q�z�� = − cos z

∈ SF . Now q /∈ SF since π /∈ F and f /∈ SF since f ′′�0� = 1/4π2 /∈ F .
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