Compositions of Polynomials with Coefficients in a Given Field

Alan Horwitz
Pennsylvania State University, 25 Yearsley Mill Road, Media, Pennsylvania 19063

Submitted by Bruce C. Berndt

Received January 24, 2001

Let $F \subset K$ be fields of characteristic 0 , and let $K[x]$ denote the ring of polynomials with coefficients in K. Let $p(x)=\sum_{k=0}^{n} a_{k} x^{k} \in K[x], a_{n} \neq 0$. For $p \in K[x] \backslash F[x]$, define $D_{F}(p)$, the F deficit of p, to equal $n-\max \left\{0 \leq k \leq n: a_{k} \notin F\right\}$. For $p \in F[x]$, define $D_{F}(p)=n$. Let $p(x)=\sum_{k=0}^{n} a_{k} x^{k}$ and let $q(x)=\sum_{j=0}^{m} b_{j} x^{j}$, with $a_{n} \neq 0, b_{m} \neq 0, a_{n}, b_{m} \in F, b_{j} \notin F$ for some $j \geq 1$. Suppose that $p \in$ $K[x], q \in K[x] \backslash F[x], p$ not constant. Our main result is that $p \circ q \notin F[x]$ and $D_{F}(p \circ q)=D_{F}(q)$. With only the assumption that $a_{n} b_{m} \in F$, we prove the inequality $D_{F}(p \circ q) \geq D_{F}(q)$. This inequality also holds if F and K are only rings. Similar results are proven for fields of finite characteristic with the additional assumption that the characteristic of the field does not divide the degree of p. Finally we extend our results to polynomials in two variables and compositions of the form $p(q(x, y))$, where p is a polynomial in one variable. © 2002 Elsevier Science (USA)

Key Words: polynomial; field; composition; iterate.

1. INTRODUCTION

Suppose that p and q are polynomials such that their composition, $p \circ q$, has all rational coefficients. Must the coefficients of p or q be all rational? The idea for this paper actually started with the following more general question. Let $F \subset K$ be fields of characteristic 0 , and let $K[x]$ denote the ring of polynomials with coefficients in K. Suppose that p and q are polynomials in $K[x]$, and $p \circ q \in F[x]$. Must p or q be in $F[x]$? The answer is yes (see Theorem 7) if the leading coefficient and the constant term of q are each in F. Theorem 7 follows easily from a more general result (Theorem 1) concerning the F deficit, denoted by D_{F}, of the composition of two polynomials. D_{F} is defined as follows: If $p \in K[x] \backslash F[x], \operatorname{deg}(p)=n$, let x^{r} be the largest power of x with a coefficient not in F. We define the F deficit of $p, D_{F}(p)$, to be $n-r$. For $p \in F[x]$, define $D_{F}(p)=n$. For example, if $F=Q$ (rational
numbers), $K=R$ (real numbers), and $p(x)=x^{5}-5 x^{3}+\sqrt{3} x^{2}-x+1$, then $D_{F}(p)=3$. Now suppose that the leading coefficients of p and q are in F, and that some coefficient of q (other than the constant term) is not in F (so that $q \notin F[x])$. Our main result, Theorem 1, states that $D_{F}(p \circ q)=D_{F}(q)$. With the weaker assumption that only the product of the leading coefficients of p and q is in F we prove the inequality $D_{F}(p \circ q) \geq D_{F}(q)$ (see Theorem 4). It is interesting to note that if $q \in F[x]$, then we get the different equality $D_{F}(p \circ q)=D_{F}(p) D_{F}(q)$.

We also prove (Theorem 8) some results about the deficit of the iterates, $p^{[r]}$, of p, which require less assumptions than those of Theorem 1. In particular, $D_{F}\left(p^{[r]}\right)=D_{F}(p)$ with only the assumption that the leading coefficient of p is in F. This assumption is necessary in general as the example $p(x)=i x$ shows with $F=R$ and $K=C$ (complex numbers).

One can, of course, define the F deficit for any two sets $F \subset K$. While Theorem 1 does not hold in general if F and K are not fields, we can again prove the inequality $D_{F}(p \circ q) \geq D_{F}(q)$ if F and K are rings (see Theorem 12).

For fields of finite characteristic d, Theorem 1 follows under the additional assumption that d does not divide $\operatorname{deg}(p)$.

Finally we extend our results to polynomials in two variables(using a natural definition of D_{F} in that case) and compositions of the form $p(q(x, y))$, where p is a polynomial in one variable. Our proof easily extends to compositions of the form $p\left(q\left(x_{1}, \ldots, x_{r}\right)\right)$. However, the analog of Theorem 1 does not hold in general for compositions of the form $p\left(q_{1}(x, y), q_{2}(x, y)\right)$ (even when $q_{1}=q_{2}$), where p is also a polynomial in two variables.
There are connections between some of the results in this paper and earlier work of Horwitz in [1] and [2], where we asked questions such as: If the composition of two power series, f and g, is even, must f or g be even? One connection with this paper lies in the following fact: If $F=R$ and $K=C$, then $F[x]$ is invariant under the linear operator $L(f)(z)=$ $\bar{f}(\bar{z})$. Of course, the even functions are invariant under the linear operator $L(f)(z)=f(-z)$. Note that in each case $L \circ L=I$. This connection does not extend to fields F in general, however, since such an operator L may not exist. The methods and results we use in this paper are somewhat similar to those of [1] and [2], but there are some key differences. Also, we only consider polynomials in this paper, since there is really no useful notion of the F deficit for power series which are not polynomials.

2. MAIN RESULTS

Let $F \subset K$ be sets, with $F[x]$ equal to the set of all polynomials with coefficients in F.

Definition 1. Let $p(x)=\sum_{k=0}^{n} a_{k} x^{k} \in K[x], a_{n} \neq 0$. For $p \in K[x] \backslash$ $F[x]$, define $D_{F}(p)$, the F deficit of p, to equal $n-\max \left\{0 \leq k \leq n: a_{k} \notin\right.$ $F\}$. For $p \in F[x]$, define $D_{F}(p)=n$.

Note that $D_{F}(p)=n$ if and only if $a_{k} \in F \forall k \geq 1$ and $D_{F}(p)=0$ if and only if $a_{n} \notin F$.

Most of the results in this paper concern the case where F and K are fields.

We shall need the following easily proven properties. For any fields $F \subset K$

$$
\begin{equation*}
u \in F, v \in K \backslash F \Rightarrow u v \in K \backslash F(\text { if } u \neq 0) \text { and } u+v \in K \backslash F \tag{1}
\end{equation*}
$$

and for fields of characteristic 0

$$
\begin{equation*}
v \in K \backslash F \Rightarrow n v \in K \backslash F \text { for any } n \in Z_{+} . \tag{2}
\end{equation*}
$$

Assume for the rest of this section that F is a proper nonempty subfield of K, which is a field of characteristic zero. Later in the paper we discuss the case where K is a field of finite characteristic or just a ring.

The following result shows that, under suitable assumptions, q and $p \circ q$ have the same F deficit.

Theorem 1. Suppose that $p(x)=\sum_{k=0}^{n} a_{k} x^{k} \in K[x], p$ not constant, $q(x)=\sum_{j=0}^{m} b_{j} x^{j} \in K[x] \backslash F[x]$ with $a_{n} \neq 0, b_{m} \neq 0, a_{n}, b_{m} \in F, b_{j} \notin F$ for some $j \geq 1$. Then $p \circ q \notin F[x]$ and $D_{F}(p \circ q)=D_{F}(q)$.

Proof. Let $d=D_{F}(q)<m$. Since $b_{m} \in F, d \geq 1$. By the definition of $D_{F}, b_{m-d} \notin F$, but $b_{m-(d-1)}, \ldots, b_{m} \in F$. Also, since p is not constant, $n \geq 1$. We have

$$
\begin{equation*}
(p \circ q)(x)=\sum_{k=0}^{n} a_{k}\left(\sum_{j=0}^{m} b_{j} x^{j}\right)^{k} . \tag{3}
\end{equation*}
$$

Consider the coefficient of $x^{m n-d}$ in $(p \circ q)(x)$. Since $m n-d>m n-$ $m=m(n-1)$, this coefficient will only arise from the summand above with $k=n$, namely $a_{n}(q(x))^{n}$, which equals

$$
\begin{equation*}
a_{n}\left(\sum_{i_{0}+\cdots+i_{m}=n} \frac{n!}{\left(i_{0}\right)!\cdots\left(i_{m}\right)!}\left(b_{0}\right)^{i_{0}} \cdots\left(b_{m} x^{m}\right)^{i_{m}}\right) . \tag{4}
\end{equation*}
$$

To get an exponent of $m n-d$ in (4), $\sum_{k=0}^{m} k i_{k}=m n-d$. Along with $\sum_{k=0}^{m} i_{k}=n$ this implies

$$
\begin{equation*}
m i_{0}+(m-1) i_{1}+\cdots+i_{m-1}=d \tag{5}
\end{equation*}
$$

Note that since $b_{j} \notin F$ for some $j \geq 1, d<m$, which implies that $m-(d+$ $1) \geq 0$. Now $m i_{0}+(m-1) i_{1}+\cdots+(d+1) i_{m-(d+1)}>d$ if some $i_{j} \neq 0$ for $0 \leq j \leq m-(d+1)$. That proves

$$
\begin{equation*}
i_{j}=0 \text { for } 0 \leq j \leq m-(d+1) \tag{6}
\end{equation*}
$$

By (5) and (6), $d i_{m-d}+(d-1) i_{m-(d-1)}+\cdots+i_{m-1}=d$. Since $b_{j} \in F$ for $j \geq m-(d-1)$, the only way to get a coefficient in (4) not in F is if $i_{m-d} \neq 0$, which implies that $i_{m-d}=1, i_{m-d+1}=i_{m-d+2}=\cdots=i_{m-1}=0$. Also, from $i_{m-d}+i_{m-d+1}+\cdots+i_{m}=n$ we have $i_{m}=n-1$. Hence the only way to obtain $x^{m n-d}$ in (4) using b_{m-d} is $n\left(b_{m-d} x^{m-d}\right)^{1}\left(b_{m} x^{m}\right)^{n-1}$. Now $b_{m-d} b_{m}^{n-1} \notin F$ (by (1)), and all of the other terms in (4) which contribute to the coefficient of $x^{m n-d}$ involve $b_{m-(d-1)}, \ldots, b_{m}$. Hence, by (1) and (2), the coefficient of $x^{m n-d}$ in (4) is not in F, and it follows that $p \circ q \notin F[x]$. Now we want to show that the coefficient of x^{r} in (3) will lie in F if $r>$ $m n-d$. Write $r=m n-d^{\prime}$, where $d^{\prime}<d$. Since $m n-d^{\prime}>m n-d$, this coefficient will only arise in (3) with $k=n$. Arguing as above, to get an exponent of $m n-d^{\prime}$ in (4), it follows that $i_{j}=0$ for $0 \leq j \leq m-\left(d^{\prime}+1\right)$. Since $m-\left(d^{\prime}+1\right) \geq m-d, i_{j}=0$ for $0 \leq j \leq m-d$, which implies that the coefficient of x^{r} in (4) only involves b_{k} with $k>m-d$. Since $b_{m-(d-1)}, \ldots, b_{m} \in F$, the coefficient of x^{r} in (3) is also in F, and thus $D_{F}(p \circ q)=d$.

If $q \in K[x] / F[x]$ and $b_{0} \in F$, then $b_{j} \notin F$ for some $j \geq 1$. Theorem 4 then implies

Corollary 2. Suppose that $p(x)=\sum_{k=0}^{n} a_{k} x^{k} \in K[x]$, p not constant, $q(x)=\sum_{j=0}^{m} b_{j} x^{j} \in K[x] \backslash F[x]$. Suppose that $a_{n} \neq 0, b_{m} \neq 0, a_{n}, b_{m}, b_{0} \in$ F. Then $p \circ q \notin F[x]$ and $D_{F}(p \circ q)=D_{F}(q)$.

Example 1. Let $F=Q, K=R, p(x)=x^{3}+2 x^{2}-\sqrt{2} x+1, q(x)=$ $x^{2}+\sqrt{3} x+5$. Then

$$
\begin{aligned}
p(q(x))= & x^{6}+3 \sqrt{3} x^{5}+26 x^{4}+37 \sqrt{3} x^{3}+(-\sqrt{2}+146) x^{2} \\
& +(95 \sqrt{3}-\sqrt{2} \sqrt{3}) x+176-5 \sqrt{2}
\end{aligned}
$$

Hence $D_{F}(p \circ q)=1=D_{F}(q)$.
Theorem 1 assumes that $q \notin F[x]$. For $q \in F[x]$ we have
THEOREM 3. Suppose that $p(x)=\sum_{k=0}^{n} a_{k} x^{k} \in K[x], q(x)=$ $\sum_{j=0}^{m} b_{j} x^{j} \in F[x]$, with $a_{n} \neq 0, b_{m} \neq 0$. Then $D_{F}(p \circ q)=D_{F}(p) D_{F}(q)$.

Proof. If p is constant, then $p \circ q$ is constant, and thus $D_{F}(p \circ q)=0=$ $D_{F}(p) D_{F}(q)$. So assume now that p is not constant.

Case 1: $\quad a_{n} \in F$ and $p \notin F[x]$.

Let $d=D_{F}(p) \Rightarrow d>0, a_{n-d} \notin F$, and $a_{n-d+1}, \ldots, a_{n} \in F$. Consider the coefficient of $x^{m n-m d}$ in $(p \circ q)(x)$. This coefficient will only arise in (3) with $k \geq n-d$. Since $a_{k} \in F$ for $k>n-d$, the only way to get a coefficient not in F is with $a_{n-d}(q(x))^{n-d}=a_{n-d} b_{m}^{n-d} x^{m n-m d}+\cdots$. Since $a_{n-d} b_{m}^{n-d} \notin F$, the coefficient of $x^{m n-m d}$ is not in F. It also follows easily that if $r>m n-m d$, then the coefficient of x^{r} in (3) is in F. Thus $D_{F}(p \circ q)=$ $m n-(m n-m d)=m d=D_{F}(p) D_{F}(q)$.

Case 2: $\quad a_{n} \notin F$.
Then $D_{F}(p)=0$ and $a_{n} b_{m}^{n} \notin F \Rightarrow D_{F}(p \circ q)=0=D_{F}(p) D_{F}(q)$.
Case 3: $\quad p \in F[x]$.
Then $D_{F}(p \circ q)=m n=D_{F}(p) D_{F}(q)$.
Example 2. Let $F=Q, K=R, p(x)=x^{4}-\sqrt{2} x$, and $q(x)=x^{2}+3 x$. Then $p(q(x))=x^{8}+12 x^{7}+54 x^{6}+108 x^{5}+81 x^{4}-\sqrt{2} x^{2}-3 \sqrt{2} x$. Hence $D_{F}(p \circ q)=6=(3)(2)=D_{F}(p) D_{F}(q)$.

Remark 1. Theorem 3 implies that if $q \in F[x]$, then $D_{F}(p \circ q) \geq D_{F}(q)$.
Remark 2. Theorem 1 does not hold in general if a_{n} and/or b_{m} are not in F. For example, let $F=Q, K=R, p(x)=\sqrt{2} x^{3}+x^{2}-x+\sqrt{5}$, $q(x)=3 \sqrt{2} x^{2}+\sqrt{3} x+5$. Then $D_{F}(p \circ q)=1$ and $D_{F}(q)=0$, and thus $D_{F}(p \circ q) \neq D_{F}(q)$. However, with the weaker assumption that $a_{n} b_{m} \in F$, one can prove an inequality.

Theorem 4. Suppose that $p(x)=\sum_{k=0}^{n} a_{k} x^{k} \in K[x], p$ not constant, $q(x)=\sum_{j=0}^{m} b_{j} x^{j} \in K[x]$, with $a_{n} \neq 0, b_{m} \neq 0, a_{n} b_{m} \in F$. Then $D_{F}(p \circ q) \geq$ $D_{F}(q)$.

Proof. Case 1: $\quad q \notin F[x]$ and $b_{m} \in F$.
By (1), $a_{n} \in F$ as well. If $b_{j} \notin F$ for some $j \geq 1$, then by Theorem 1 , $D_{F}(p \circ q)=D_{F}(q)$. Now suppose that $b_{j} \in F$ for all $j \geq 1$. It is not hard to show that the coefficient of any power of $x>m(n-1)$ cannot involve b_{0}, and hence $D_{F}(p \circ q) \geq m n-m(n-1)=m=D_{F}(q)$.

Case 2: $\quad q \notin F[x]$ and $b_{m} \notin F$. Then $D_{F}(q)=0$ and the inequality follows immediately.

Case 3: $q \in F[x]$. Then $D_{F}(p \circ q) \geq D_{F}(q)$ by Theorem 3 (see the remark following the proof).

Remark 3. Theorem 4 does not hold in general if $a_{n} b_{m} \notin F$. For example, let $F=Q, K=R, p(x)=\sqrt{2} x^{3}+x^{2}-x+1$, and $q(x)=x^{2}+\sqrt{3} x+$ 5. Then clearly $D_{F}(p \circ q)=0$ while $D_{F}(q)=1$.

As an application of Theorem 1 we have the following result. Note that we do not assume that the leading coefficient of p is in F.

Proposition 5. Suppose that $p(x)=\sum_{k=0}^{n} a_{k} x^{k} \in K[x]$, p not constant, $q(x)=\sum_{j=0}^{m} b_{j} x^{j} \in K[x] \backslash F[x]$, with $a_{n} \neq 0, b_{m} \neq 0$, and $b_{m} \in F$. If $b_{j} \notin F$ for some $j \geq 1$, then $p \circ q \notin F[x]$.

Proof. If $a_{n} \notin F$, then $a_{n} b_{m}^{n} \notin F$, which implies that $p \circ q \notin F[x]$ since $a_{n} b_{m}^{n}$ is the coefficient of $x^{m n}$ in $p \circ q$. If $a_{n} \in F$, then $p \circ q \notin F[x]$ by Theorem 1.

Lemma 6. Suppose that $q(x)=\sum_{j=0}^{m} b_{j} x^{j} \in F[x]$ and $p \circ q \in F[x]$, $p(x)=\sum_{k=0}^{n} a_{k} x^{k}, a_{n} \neq 0, b_{m} \neq 0, q$ not constant. Then $p \in F[x]$.
Proof. Note that $D_{F}(q)=m \geq 1>0$. Then by Theorem 3, $D_{F}(p)=$ $\frac{D_{F}(p \circ q)}{D_{F}(q)}=\frac{m n}{m}=n$, and thus $a_{k} \in F$ for $k \geq 1$. Since $p \circ q \in F[x], p(q(0))=$ $\sum_{k=0}^{n} a_{k} b_{0}^{k} \in F$. Since $b_{0} \in F$, this implies that $a_{0} \in F$. Hence $p \in F[x]$.

Now we answer the following question mentioned in the Introduction. Suppose that $p \circ q \in F[x]$. Must p or q be in $F[x]$?

Theorem 7. Suppose that $p, q \in K[x]$ with $p \circ q \in F[x], q(x)=$ $\sum_{j=0}^{m} b_{j} x^{j}, a_{n} \neq 0, b_{m} \neq 0, b_{0}, b_{m} \in F$. Then $p \in F[x]$ or $q \in F[x]$. In addition, if $p \circ q$ is not constant, then $p \in F[x]$ and $q \in F[x]$.

Proof. Suppose $p \circ q \in F[x]$. If $p \circ q$ is constant, then p and/or q is constant. If $p(x)=c$, then $(p \circ q)(x)=c$, which implies that $c \in F$ and hence $p \in F[x]$. If $q(x)=c$, then $c \in F$ since $b_{0} \in F$ and hence $q \in F[x]$. Now suppose that $p \circ q$ is not constant. Then q is not constant. If $q \notin F[x]$, then $b_{j} \notin F$ for some $j \geq 1$. By Proposition 5, $p \circ q \notin F[x]$, a contradiction. Hence $q \in F[x]$. Lemma 6 then shows that $p \in F[x]$ as well.

Remark 4. Note that no restriction is needed on the leading coefficient of p. However, some restriction on the leading coefficient and constant term of q are needed in order for Theorem 7 to hold in general. Simple examples are $p(x)=x-c, q(x)=x+c$ or $p(x)=(1 / c) x, q(x)=c x$, with $c \in K$, $c \notin F$.

Remark 5. Theorem 7 does not hold in general if F equals the complement of a field. For example, if $F=$ irrational numbers, let $p(x)=x^{2}$, $q(x)=\pi x^{2}+x+\pi$. Then neither p nor q has all irrational coefficients, and the leading coefficient and constant term of q are irrational. However, $p(q(x))=\pi^{2} x^{4}+2 \pi x^{3}+\left(2 \pi^{2}+1\right) x^{2}+2 \pi x+\pi^{2}$, which has all irrational coefficients.

Remark 6. If S is any subset of K (not necessarily a subfield), we say that S is a deficit set if Theorem 1 holds with F replaced by S throughout. For example, if $K=C=$ complex numbers, then it is not hard to show that $S=R \cup I=$ set of all real or imaginary numbers is a deficit set. It would be interesting to determine exactly what a deficit set must look like for a given field K.

2.1. Iterates

We now prove the analogs of Theorems 1,4 , and 7 when $p=q$. In this case we require less assumptions. In particular, for the analog of Theorem 4 , we require no assumptions whatsoever. Let $p^{[r]}$ denote the r th iterate of p.

Theorem 8. Suppose that $p(x)=\sum_{k=0}^{n} a_{k} x^{k} \in K[x] \backslash F[x]$, with $a_{n} \neq 0$, $a_{n} \in F$. Then, for any positive integer $r, p^{[r]} \notin F[x]$ and $D_{F}\left(p^{[r]}\right)=D_{F}(p)$.
Proof. Note that if $n=0$, then $a_{0} \in F \Rightarrow p \in F[x]$. Hence $n \geq 1$. If $n=1$, then $p(x)=a_{1} x+a_{0}, a_{1} \in F, a_{0} \notin F$. It is not hard to show that

$$
p^{[r]}(x)=\left(a_{1}\right)^{r} x+a_{0} \sum_{k=0}^{r-1}\left(a_{1}\right)^{k} .
$$

Now $a_{0} \sum_{k=0}^{r-1}\left(a_{1}\right)^{k} \notin F$ since $\sum_{k=0}^{r-1}\left(a_{1}\right)^{k} \in F$. Hence $p^{[r]}(x) \notin F[x]$ and $D_{F}\left(p^{[r]}\right)=1=D_{F}(p)$. Assume now that $n \geq 2$. First we prove the theorem for $p \circ p$,

$$
\begin{equation*}
(p \circ p)(x)=\sum_{k=0}^{n} a_{k}\left(\sum_{j=0}^{n} a_{j} x^{j}\right)^{k} . \tag{7}
\end{equation*}
$$

If $a_{j} \notin F$ for some $j \geq 1$, then $D_{F}(p \circ p)=D_{F}(p)$ by Theorem 1 with $p=q$. So suppose now that $a_{j} \in F$ for $j \geq 1$ and $a_{0} \notin F$. First let $k=n$ in (7) to get

$$
\begin{equation*}
a_{n}\left(\sum_{i_{0}+\cdots+i_{n}=n} \frac{n!}{\left(i_{0}\right)!\cdots\left(i_{n}\right)!}\left(a_{0}\right)^{i_{0}} \cdots\left(a_{n} x^{n}\right)^{i_{n}}\right) . \tag{8}
\end{equation*}
$$

It follows easily that the highest power of x in (8) involving a_{0} is $n(n-1)$, obtained by letting $i_{0}=1, i_{j}=0$ for $2 \leq j \leq n-1, i_{n}=n-1$. The coefficient of $x^{n(n-1)}$ in (8) is $n a_{0} a_{n}^{n-1} \notin F$ by (1) and (2). The only other way to obtain $x^{n(n-1)}$ is by letting $k=n-1$ in (7) and letting $i_{n}=n-1$ in $a_{n-1}\left(\sum_{i_{0}+\cdots+i_{n}=n-1} \frac{(n-1)!}{\left(i_{0}\right)!\cdots\left(i_{n}\right)!}\left(a_{0}\right)^{i_{0}} \cdots\left(a_{n} x^{n}\right)^{i_{n}}\right)$. This gives a coefficient of $x^{n(n-1)}$, which does not involve a_{0}. Hence the coefficient of $x^{n(n-1)}$ in $p \circ p$ equals $n a_{0} a_{n}^{n-1}+c$, where $c \in F$. By (1), $n a_{0} a_{n}^{n-1}+c \notin F$. Finally, it is not hard to show that any power of x in (7) greater than $n(n-1)$ cannot involve a_{0}. Thus $D_{F}(p \circ p)=n^{2}-n(n-1)=n=D_{F}(p)$. Now consider $p^{[r]}=p^{[r-2]} \circ q$, where $r \geq 3$, and $q=p \circ p=\sum_{j=0}^{m} b_{j} x^{j}, m=n^{2}$. Since $D_{F}(p \circ p)=D_{F}(p) \leq n, D_{F}(p \circ p)<n^{2}$ since $n \geq 2$. Hence $b_{j} \notin F$ for some $j \geq 1$. Since $b_{m}=a_{n}^{n+1} \in F$ and the leading coefficient of $p^{[r-2]}$ is also in $F, D_{F}\left(p^{[r]}\right)=D_{F}\left(p^{[r-2]} \circ q\right)=D_{F}(q)($ by Theorem 1$)=D_{F}(p \circ p)=$ $D_{F}(p)$. It also follows that $p^{[r]} \notin F[x]$ since $D_{F}\left(p^{[r]}\right)=D_{F}(p) \leq$ $n<n^{2}$.

Remark 7. If $f(x)=(x / a x-1)$, then $f(f(x))=x \in F(x)=$ ring of formal power series in x. However, $f \notin F(x)$ if $a \notin F$, which implies that the first part of Theorem 8 fails in general for formal power series (we have not defined $D_{F}(f)$ for $f \in F(x)$).

Remark 8. Theorem 8 is not simply a trivial application of Theorem 1 using induction on r, with $q=p^{[r-1]}$. The reason is that one requires $b_{j} \notin F$ for some $j \geq 1$ to apply Theorem 1.

Example 3. Let $F=R, K=C$, and $p(x)=x^{3}+4 x^{2}-3 i x+2 i$. Then $p(p(x))=x^{9}+12 x^{8}+(48-9 i) x^{7}+(68-66 i) x^{6}+(5-96 i) x^{5}+(-8+$ $72 i) x^{4}+(132-56 i) x^{3}+(-84-2 i) x^{2}+(39+36 i) x-10-6 i \Rightarrow D_{F}(p \circ$ $p)=2=D_{F}(p)$.

We now prove an inequality which holds for all p in $K[x]$.
Theorem 9. Let $p \in K[x]$. Then $D_{F}\left(p^{[r]}\right) \geq D_{F}(p)$.
Proof. If $p \in F[x]$, then $p^{[r]} \in F[x]$, which implies that $D_{F}\left(p^{[r]}\right)=n^{r} \geq$ $n=D_{F}(p)$. If $p \in K[x] \backslash F[x]$ and $a_{n} \in F$, then by Theorem $8, D_{F}\left(p^{[r]}\right)=$ $D_{F}(p)$. Finally, if $a_{n} \notin F$, then $D_{F}(p)=0 \leq D_{F}\left(p^{[r]}\right)$.

We now prove the analog of Theorem 7 for iterates.
Theorem 10. Suppose that $p \in K[x], p(x)=\sum_{k=0}^{n} a_{k} x^{k}, a_{n} \neq 0, a_{n} \in F$. Assume also that $p^{[r]} \in F[x]$ for some positive integer r. Then $p \in F[x]$.

Proof. If $p \notin F[x]$, then $p^{[r]} \notin F[x]$ by Theorem 8.
Remark 9. Theorem 10 does not hold in general if $a_{n} \notin F$. For a counterexample, if there exists $a \in F$ with $a^{1 / r} \notin F$, then let $p(x)=a^{1 / r} x .{ }^{1}$

3. SEVERAL VARIABLES

As earlier, assume throughout that F is a proper nonempty subfield of K, which is a field of characteristic zero. We now extend the definition of the F deficit to polynomials in two variables. Write $p(x, y)=\sum_{k=0}^{n} p_{k}(x, y)$, where each p_{k} is homogeneous of degree $k, p_{n} \neq 0$. If $p \in K[x, y] \backslash F[x, y]$, define $D_{F}(p)=n-\max \left\{k: p_{k} \notin F[x, y]\right\}$. For $p \in F[x, y]$, define $D_{F}(p)=n$. Then Theorems 1 and 4, with similar assumptions, do not hold in general for compositions of the form $p(q(x), q(x))$, where q is a polynomial in one variable and p is a polynomial in two variables. For example, let $F=R, K=C, p(x, y)=x^{2}-y^{2}+1$, and $q(x)=x^{2}+i x$. Then $p(q(x), q(x))=1$ and thus $D_{F}(p(q, q))=0<1=D_{F}(q)$. Indeed,

[^0]Theorems 1 and 4 even fail for iterates of the form $p(p(x, y), p(x, y))$. For example, let $F=Q, K=R$, and $p(x, y)=y^{2}-x^{2}+\sqrt{3} x-\sqrt{5} y$. Then $p(p(x, y), p(x, y))=\sqrt{3} y^{2}-\sqrt{3} x^{2}+3 x-\sqrt{3} \sqrt{5} y-\sqrt{5} y^{2}+\sqrt{5} x^{2}-$ $\sqrt{5} \sqrt{3} x+5 y$, which implies that $D_{F}(p(p, p))=0<1=D_{F}(p)$.

However, we can prove similar theorems for compositions of the form $p(q(x, y))$, where p is a polynomial in one variable.

Theorem 11. Suppose that $p(x)=\sum_{k=0}^{n} a_{k} x^{k} \in K[x], 0 \neq a_{n} \in F$, p not constant. Suppose that $q \in K[x, y] \backslash F[x, y], q(x, y)=\sum_{j=0}^{m} q_{j}(x, y)$, where each q_{j} is homogeneous of degree j with $0 \neq q_{m} \in F[x, y]$. If $q_{j}(x, y) \notin$ $F[x, y]$ for some $j \geq 1$, then $p \circ q=p(q(x, y)) \notin F[x, y]$ and $D_{F}(p \circ q)=$ $D_{F}(q)$.

Proof. Our proof is very similar to the proof of Theorem 1, except that we have to work with the homogeneous polynomials $q_{j}(x, y)$ instead of the monomials x^{j}. This only complicates things a little.

$$
\begin{equation*}
p(q(x, y))=\sum_{k=0}^{n} a_{k}\left(\sum_{j=0}^{m} q_{j}(x, y)\right)^{k} . \tag{9}
\end{equation*}
$$

Let $d=D_{F}(q)<m$. By the definition of $D_{F}, q_{m-d} \notin F[x, y]$,
$q_{m-(d-1)}, \ldots, q_{m} \in F[x, y]$. Also, p not constant $\Rightarrow n \geq 1$ and $q_{n} \in$ $F[x, y] \Rightarrow d>0$. Now $\left(q_{j}(x, y)\right)^{k}$ is homogeneous of degree $j k$, and $k<n$ implies that $j k \leq j(n-1) \leq m(n-1)<m n-d$. Hence a term of degree $m n-d$ can only arise in (9) if $k=n$, which gives

$$
\begin{align*}
a_{n}(q(x, y))^{n} & =\left(\sum_{j=0}^{m} q_{j}(x, y)\right)^{n} \\
& =a_{n}\left(\sum_{i_{0}+\cdots+i_{m}=n} \frac{n!}{\left(i_{0}\right)!\cdots\left(i_{m}\right)!}\left(q_{0}\right)^{i_{0}} \cdots\left(q_{m}\right)^{i_{m}}\right) . \tag{10}
\end{align*}
$$

Note that $m-d \geq 1 \Rightarrow m-(d+1) \geq 0$. Arguing exactly as in the proof of Theorem 1, to get an exponent of $m n-d$ in (10)

$$
\begin{equation*}
i_{j}=0 \text { for } 0 \leq j \leq m-(d+1) . \tag{11}
\end{equation*}
$$

Thus the only way to get a coefficient in (10) not in F is if $i_{m-d} \neq 0$, which implies that $i_{m-d}=1, i_{m-d+1}=i_{m-d+2}=\cdots=i_{m-1}=0$. Also, from $i_{m-d}+i_{m-d+1}+\cdots+i_{m}=n$ we have $i_{m}=n-1$. (10) then becomes $n a_{n} q_{m-d} q_{m}^{n-1}$, which we shall now show has at least one coefficient not in F. Let $g=q_{m-d} q_{m}^{n-1}$, which is homogeneous of degree $m n-d$. Write
$q_{m}^{n-1}(x, y)=\sum_{k=0}^{m(n-1)} c_{k} x^{k} y^{m(n-1)-k}, q_{m-d}(x, y)=\sum_{r=0}^{m-d} b_{r} x^{r} y^{m-d-r}$. Note that $c_{k} \in F$ for all k, while $b_{r} \notin F$ for some r. Let

$$
\begin{aligned}
M & =\max \left\{r: 0 \leq r \leq m-d, b_{r} \notin F\right\}, \\
N & =\max \left\{k: 0 \leq k \leq m(n-1), c_{k} \neq 0\right\} .
\end{aligned}
$$

Clearly M and N are well defined, $b_{M} \notin F$, and $c_{N} \in F$. Consider the coefficient of $x^{M+N} y^{m n-d-M-N}$ in g. One way to obtain this coefficient is $\left(b_{M} x^{M} y^{m-d-M}\right)\left(c_{N} x^{N} y^{m(n-1)-N}\right)=b_{M} c_{N} x^{M+N} y^{m n-d-M-N}$. There are other ways to obtain this coefficient if $N>0$ and $M<m-d$. Since $c_{k}=0$ for $k>N$, one must choose $c_{k} x^{k} y^{m(n-1)-k}$ from q_{m}^{n-1} with $k<N$ and $b_{r} x^{r} y^{m-d-r}$ from q_{m-d} with $r>M$, which all involve coefficients in F. Since $b_{M} c_{N} \notin F$, the coefficient of $x^{M+N} y^{m n-d-M-N}$ in g is not in F. Thus the coefficient of $x^{M+N} y^{m n-d-M-N}$ in $n a_{n} q_{m-d} q_{m}^{n-1}$ is not in F, which implies that $p(q(x, y)) \notin F[x, y]$.

Now write $(p \circ q)(x, y)=\sum_{l=0}^{m n} h_{l}(x, y)$, where each h_{l} is homogeneous of degree l. Again, arguing exactly as in the proof of Theorem 1, since $q_{m-(d-1)}, \ldots, q_{m} \in F[x, y]$, it follows that $h_{l} \in F[x, y]$ for $l>m n-d$. This implies that $D_{F}(p \circ q)=m n-d$.

Remark 10. Theorem 11 can be easily extended to compositions of the form $p\left(q\left(x_{1}, \ldots, x_{r}\right)\right)$.

4. RINGS

Theorem 1 does not hold in general if F is just a ring. For example, if $F=Z$, the ring of integers and $K=Q$, let $p(x)=x^{2}+(2 / 3) x$ and $q(x)=$ $6 x^{2}+(3 / 2) x$. Then a_{2}, b_{2}, and b_{0} are in Z, and $p(q(x))=36 x^{4}+18 x^{3}+$ $(25 / 4) x^{2}+x$, which implies that $2=D_{F}(p \circ q) \neq D_{F}(q)=1$. Theorem 4 also does not hold if F is a ring. However, if $F \subset K$, where F and K are rings of finite or infinite characteristic, we can prove

Theorem 12. Suppose that $p(x)=\sum_{k=0}^{n} a_{k} x^{k} \in K[x]$, p not constant, $q(x)=\sum_{j=0}^{m} b_{j} x^{j} \in K[x] \backslash F[x]$, with $a_{n} \neq 0, b_{m} \neq 0, a_{n}, b_{m} \in F, b_{j} \notin F$ for some $j \geq 1$. Then $D_{F}(p \circ q) \geq D_{F}(q)$.

Proof. Letting $d=D_{F}(q)$, the proof follows exactly as in the proof of Theorem 1, except that we cannot conclude that $b_{m-d} b_{m} \notin F$ if F is only a ring. However, it does still follow that the coefficient of x^{r} in (3) will lie in F if $r>m n-d$. Hence, even if $b_{m-d} b_{m} \in F$, it follows that $D_{F}(p \circ q) \geq d$.

5. FIELDS OF FINITE CHARACTERISTIC

Theorem 1 also does not hold in general if the field F has finite characteristic. For example, suppose that K is a finite field of order $4 ; F=Z_{2} \subset K$. Let $p(x)=x^{2}$ and let $q(x)=x^{2}+3 x$. Then $p(q(x))=x^{4}+(3+3) x^{3}+$ $(3 \times 3) x^{2}=x^{4}+2 x^{2}$. Thus $D_{F}(q)=1$ while $D_{F}(p \circ q)=2$. The problem here is that the characteristic of K divides the degree of p. If we assume that this does not happen, we have

Theorem 13. Let $F \subset K$ be fields of characteristic t. Suppose that $p(x)=$ $\sum_{k=0}^{n} a_{k} x^{k} \in K[x], p$ not constant, $q(x)=\sum_{j=0}^{m} b_{j} x^{j} \in K[x] \backslash F[x]$, with $a_{n} \neq 0, b_{m} \neq 0, a_{n}, b_{m} \in F, b_{j} \notin F$ for some $j \geq 1$. If $t \nmid n$, then $p \circ q \notin F[x]$ and $D_{F}(p \circ q)=D_{F}(q)$.

Proof. We need the fact that if $r \in Z_{+}$with $r<t$, then $r u \neq 0$ for any $u \in K$. This easily implies that $n u \neq 0$ if $t \nmid n$. It follows that if $u \notin F$, then $n u \notin F$ if $t \nmid n$. Hence, letting $d=D_{F}(q)$ and $u=b_{m-d} b_{m} \notin F$ we have $n b_{m-d} b_{m} \notin F$. Now the proof follows exactly as in the proof of Theorem 1.

One can also prove versions of Theorems 4 and 7 for fields of finite characteristic. Theorem 7 also requires the additional assumption that $t \nmid n$.

6. APPLICATIONS

The main theorems in this paper give information about the coefficients of $p \circ q$ and the iterates of p. All of the examples we give here use $F=$ rationals, $K=$ reals, though of course it is possible to construct examples from other fields of characteristic 0 , from finite fields, or from rings. For example, let $p(x)=x^{2}+c$, where c is irrational. By Theorem $8, D_{F}(p)=$ $2 \Rightarrow D_{F}\left(p^{[r]}\right)=2$ for any $r \in Z_{+}$, which implies that the coefficient of $x^{2^{r}-2}$ in $p^{[r]}(x)$ is irrational, while the coefficient of $x^{2^{r}-1}$ in $p^{[r]}(x)$ must be rational.

Also, suppose that, given $r(x) \in K[x]$, one wants to determine if nonlinear polynomials $p, q \in K[x]$ exist with $r=p \circ q$. Given p or q as well, Theorems 1 or 7 can sometimes be used to give a quick negative answer. For example, let $r(x)=x^{6}+a x^{5}+b x^{4}+\cdots$, where a is rational and b is irrational, and $q(x)=x^{3}+B x^{2}+\cdots$, where B is irrational. If $r=p \circ q$, then the leading coefficient of p equals 1 , and by Theorem 1 , $D_{F}(q)=D_{F}(r)=2$. But $D_{F}(q)=1$ and thus no such p exists.

The applications given here are probably of limited value. It would be nice to find other, perhaps more useful, applications of the theorems in this paper.

7. ENTIRE FUNCTIONS

The obvious extension of $F[x]$ to the class of entire functions E is

$$
S_{F}=\left\{f \in E: f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}, a_{k} \in F \forall k\right\} .
$$

While there is no reasonable notion of $D_{F}(f)$ when f is not a polynomial, one can attempt to extend Theorem 7 to E. The question then becomes: Suppose that $f(z)$ is entire and $q(z)$ is a polynomial, with leading coefficient and constant term in F. If $f \circ q \in S_{F}$, must $f \in S_{F}$ or $q \in S_{F}$? The following theorem gives a negative answer to this question for a large class of fields F.
Theorem 14. Let F be a subfield of C, with either $F=R$ or $\pi^{2} \notin F$. Then there exist an entire function $f(z)$ and a polynomial $q(z)=a_{2} z^{2}+a_{1} z+a_{0}$ such that:
(1) $f \notin S_{F}$ and $q \notin S_{F}$
(2) a_{0} and a_{2} are both in F
(3) $f \circ q \in S_{F}$.

Proof. Case 1: $F=R$.
Let $f(z)=\cos (i \pi \sqrt{z+2 i})=\cosh (\pi \sqrt{z+2 i})$ and $q(z)=z^{2}+2(1+$ $i) z$. Since $\cos (\sqrt{z})$ is an entire function, $f \in E$. Also, a_{0} and a_{2} are both real and $f(q(z))=-\cosh (\pi(z+1)) \in S_{F}$. However, $f^{\prime}(0)=(\pi / 2(1+$ $i)) \sinh (\pi(1+i))=(\pi(i-1) / 4) \sinh \pi$, which is not real. Hence $f \notin S_{F}$ and $q \notin S_{F}$, but $f \circ q \in S_{F}$.

Case 2: $\quad \pi^{2} \notin F$.
Let $f(z)=\cos \left(\sqrt{z+\pi^{2}}\right)$ and $q(z)=z^{2}+2 \pi z$. Then $f(q(z))=-\cos z$ $\in S_{F}$. Now $q \notin S_{F}$ since $\pi \notin F$ and $f \notin S_{F}$ since $f^{\prime \prime}(0)=1 / 4 \pi^{2} \notin F$.

ACKNOWLEDGMENT

We thank the referee for suggesting the notion of the F deficit and its use in strengthening the original version of Theorem 1.

REFERENCES

1. Alan L. Horwitz, Even compositions of entire functions and related matters, J. Austral. Math. Soc. Ser. A 63 (1997), 225-237.
2. Alan L. Horwitz and Lee A. Rubel, When is the composition of two power series even?, J. Austral. Math. Soc. Ser. A 56 (1994), 415-420.

[^0]: ${ }^{1}$ If $F=$ algebraic numbers and $K=$ real numbers, then such an a does not exist.

