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Abstract

Temine, N.M., Asymptotic inversion of the incomplete beta function, Journal of Computational and Applied
Mathematics 41 (1992) 145-157.

The normalized incomplete beta function I,(a, b) is inverted for large values of the parameters a and b. That
is, x-solutions of the equation

LGa,b)=p, pel0,1],

are considered, especially for large values of a and b. The approximations are obtained by using uniform
asymptotic expansions of the incomplete beta function, in which an error function or an incomplete gamma
function is the dominant term. The inversion problem is started by inverting this dominant term. Further
terms in the expansion are cbtained by using standard perturbation methods, which were recently introduced
in a paper describing a mcthod for asymptotic inversion of the incomplete gamma functions. Numerical results

indicate that for obtaining an accuracy of four correct digits the asymptotic method can already be used for
a+b>=5.

Keywords: Incomplete beta function; inversion of beta distribution; asymptotic expansion.

1. Introduction

The incomplete beta function is defined by

I(a b)=—1—-——fxt“_l(l—t)b-ldt a>0, b>0 (1.1)
x ’ B(a, b) 0 ’ - ’ 3 1.
where B(a, b) is Euler’s (complete) beta function
I T I'(a)I'(b) 1
B(a, b) fot (1-1)"""de T@th) " (1.2)
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We consider the following inversion problem. Let p €[0, 1] be given. We are interested in the
x-value that sclves the equation

I.(a, b)=p, (1.3)

where a and b are fixed positive numbers. We are especially interested in solving (1.3) for large
values of a and b.

This problem is of great importance in probability theory and mathematical statistics. The
incomplete beta function is a standard probability function, with as special cases the (negative)
binomial distribution, Student’s distribution, and the F (variance-ratio) distribution. Several
approaches are available in the (statistical) literature, where often a first approximation of x,
based on asymptotic estimates, is constructed, but this first approximation is not always
reliable. Higher approximations may be obtained by numerical inversion techniques, which
require evaluation of the incomplete beta function. This may be rather time consuming,
especially when a and b are large.

In the present method we also use an asymptotic result. The approximation is quite accurate,
especially when the paramcters a and b are large. It follows from numerical results, however,
that a three-term asymptotic expansion already gives an accuracy of four significant digits for
a +b =5, uniformly with respect to p €]0, 1].

The method of this paper is used earlier in [4] for the asymptotic inversion of the incomplete
gamma functions. The present problem is more difficult, of course, since now two large
parameters are considered. In fact we consider three asympiotic representations of the
incomplete beta function with a + b — o, valid in the following cases:

(i) a =b + B, where B stays fixed;

{ii) a/b and b/a are bounded away from zero;

(iii) at least one of the parameters a, b is large.

In the first two cases both parameters are large, in the third case we allow one parameter to
be fixed or substantially smaller than the other one. In the first two cases the underlying beta
distribution can be approximated by a normal (Gaussian) distribution, and we use an error
function as main approximant. In the third case the distribution may be quite skew, and we
consider an approximation in terms of the gamma distribution, with an incomplete gamma

function as main approximant. It is possible to restrict ourselves to a > b, since we have the
relation

I(a,b)=1—-1I,_(b, a) (1.4)

This relation is used in the third case, where the only condition is that the sum a + b should be
large.

2. The nearly symmetric case

We write b =a + B, where B is fixed. We obtain from (1.1),

,,( —t)Pdr

Ix(a,a+B)—-B( 2, +ﬁ)f [4[(1 '—W
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We transform this to a standard form with a Gaussian character by writing

—12=m[4r(1-1)], 0<r<1, sign({)=sign(t—3),

2.1
—in?=m[4x(1-x)], 0<x<1, sign(n)=sign(x—%). .
Therefore
4-¢ L. (1=-0)f dt
I(a,a+B)=——-[ e %7 —7d¢.
(a, a+B) B(a,a+[3)f_we t(1—1t) d{

We can write ¢ as function of {:
1 —exp(— 342
=%[1-_t\/1—exp(—%§2)]=% 1+{\f g(z ) ) (2:2)

where the second square root is nonnegative for real values of the argument. The same relation
holds for x as function of 7. It easily follows that

1 dt_ 4
t(l-1)ydZ 1-2t°

and that the following standard form (in the sense of [2]) can be obtained:

I(a,a+B)= ‘/ Za_-rr fjwe”‘z/zf({)d{, (2.3)

f(§) = P(a)d($), (24)

with

where

1 I(a+3B) I'(a+38+3) ~ . 172
dj(a)—T; I'(a) T@+p) o(¢)=[2(1-1)] \[l—exp(—%{z) :

(2.5)
This form of ®(«) is obtained by using the duplication formula of the gamma function:
v [(2z) =2%"'T'(2)I(z + 3).

From the asymptotic expansion of the ratio of gamma functions (see, for instance, [1, formula
6.1.47]), we obtain

a)~cotcat +c,a i, ao o, (2.6)
where
co=1, ¢ =3(-2B*+2B-1), ;= (4B +8p% =167+ 4B +1).

The function ¢(¢) is analytic in a strip containing R; the singularities nearesi to the origin
occur at + 2y exp( + +im). The first coefficients of the Taylor expansion

d’(§)=d0+d1§+d2§2+d3§3+ (2.7)
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do=1, dy=-318V2, d,=§(2B>-2B+1), dy=—5BV2(B*-3B+2),
d,= 34— 24B° + 328 - 128 + 1),
ds= —BVZ (B* — 108> + 2582 — 208 + 4).
From results in [2] it follows that the standard form (2.3) can be written in the form
I(a, a+p)=teric(—n/la) - R (n), (2.8)

where 7 is defined in (2.1), and erfc is the error function defined by
tez=— [Te-dr
erfc z = = j; e .

We try to solve (1.3) with the above representation of the incomplete beta function. First we
soive (1.3) in terms of 7; afterwards, we determine x from the inverse relation of the second
line in (2.1) (that is, (2.2) with ¢, ¢ replaced by x, n, respectively). When a is large, we consider
the error function in the equation

I(a, a+B)=jeric(~ny3a) —R,(n) =p (29)

as the dominant term, and a first approximation 7, oi 7 is defined by the solution of the
equation

Lerfe{ —ng3a ) =p. (2.10)
The exact solution of (1.3) (in terms of 7) is written as

n=7npt+e, (2.11)
and we try to determine e. It appears that we can expand this quantity in the form

€ € &

~N— S, .
€ i (2.12)

as a — x. The coefficients €, can be expressed in terms of 1, and B.
From (2.3), (2.9) and (2.10) we obtain

dp a R dp [@a
—_— =] - a—an3/2 = —an? /2
dn, 2% © ’ dn 2w f(m)e ’ (2.13)
where f is given in (2.4). Upon dividing, we obtain
dn -
f('fl)"‘— = ed(n"=m3)/2_

dn,
Substitution of (2.11) gives the differential equation

f(no +¢)

de
1+ _ =eae(1m+e/2)'
dn,

We write 7 in place of n,; that is, we try to find € as function of 7 that satisfies (see also (2.4))

é(n +€)P(a)

dE — paé(n+e/2)
1+ a’; =e . (2.14)
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When we have obtained e from this equation (or an approximation), we use it in (2.11) to
obtain the final value 7.

The first coefficient €, of (2.12) is obtained by comparing dominant terms in (2.14). Since
®(a)=1+&(a"'), we obtain

1
€ = ;lntb(n)- (2.15)
This quantity is analytic (as a function of 7) on R; ¢t7n) is positive on R, and ¢(0) = 1. Using
(2.7) we obtain for small values of 7,
€= —3BV2 +4(1-2B)n — BV2n* — 5zm° — amBV2 0t + -+ -.
Further terms ¢; can be obtained by using more terms in (2.6) and by expanding
d(n +e€)=¢(n) +ed'(n) + 3e%¢"(n) + -+,

in which (2.12) is substituted to obtain an expansion in powers of a~'. In this way we find

1
€= W(Zqﬁe{ +2¢'e, + 2¢,0 — Pel), (2.16)

1
€= gog (8063 +8d'cic + Beide] +8d'e, +4¢7e] +8erd'e,
n

+8c,¢ — 8de€, — ddesn’ — dde,nel — del). (2.17)

The derivatives ¢’, €, etc., are with respect to 7, and all functions are evaluated at 7. For
small values of n we can use the Taylor series

€2 = HBVZ (36 — 2) + (2082 ~ 128 + 1)n + 55BVZ (208 — 1)’
+ 0w (1682 + 308 — 15)1° + s958V2 (218 + 32)7*
+ saeo(— 328 + 63)0° — mmmBV2 (1208 + 17)n° + - -+,
€3 = B2 (— 7587 + 80B — 16) + 535 ( — 108087 + 8688 — 908 — 45)n
+ 552 BVZ (— 119082 + 84 + 373)n?
+ soan ( — 224083 — 250882 + 21008 — 165)n> + - - -

3. The general error function case

Let us write

a=rsin?0, b=rcos’d, 0<0<im.

Then (1.1) can be written as
1

00 (3.1)

I (a, b)=

X hd
f er[sin*t‘) In ¢ +cos20 In(1—1))
0

t(1-1)"
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We consider r as a large parameter, and 8 bounded away from 0 and 1. The maximum of the
exponential function occurs at ¢=sin’6. Hence, the following transformation brings the
exponential part of the integrand into a Gaussian form:

1-1¢
cos’9’
where the sign of { equals the sign of ¢ — sin’0. The same transformation holds for x — 7 if ¢
and ¢ are replaced with x and 7, respectively. From (3.2) we obtain,

t
— 3% =sin’0In pesery + cos?0 In (3.2)

d¢  sin0 -t

—{— =

de  t(1-1)°
and we can write (3.1) in the standard form (cf. (2.3), (2.4))
T .
=) — ~rg2/2
I(a, b) ‘/ ol GG [TILT (3.3)
with
F(§) =2(r)é(¢), (34)
where
O(r) Ir'*(r) {sin 0 cos 3
. (r) - I—-*(a)r*(b) > ‘b({) - t-—sin20 . ( '5)
The function I *(z) is the slowly varying part of the Euler gamma function. That is,
z
r= =] ' aZy—=z
(2)=\ 5z ez (2), 2>0, (3.6)
with
x 1 €
r* ~ '—1 " -n ~ -n [
(D~ T (00" ey~ L™ 2o (37)

The first few y, are

- __1 -
Yo=1L n=-1%  v:=m V3= sism-
The analogue of the expansion (2.6) is now in terms of the large parameter r:

D(r)~co+crt+e,r?+ e, roo,

where
. sin°6 cos?0 ~ 1 (sin®0 cos26 — 1)°
Cq =1, C, = ) . = " >
0 ' T 3sin’29 © 18sin*20
139(sin®@ cos®d — cos®d — sin®@) + 15 sin*0 cos*6
c3=—
? 810sin°®26

The first coefficients of the Taylor expansion

d()=dy+d{+d, P +d 3+ - (3.8)
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are
41 p 2 o120 J sin*0 + cos*d + 1
= , = —=zCO , = "

0 ! 3 2 6sin226

To solve (1.3) for large values of r, we use the method of the previous section. We write as in
(2.8),

I(a, b) = § erfc(—nyf3r) — R (m), (3.9)

where the relation between x and 7 follows from (3.2). A first approximation 7, follows from
the equation

%erfc(—-'qo‘/%_) =p, (3-10)
and the terms ¢; in the expansion
€, €& €

e~ — +—
r r2 r

+-.-

are the same as in (2.15)-(2.17), but with ¢, c,, ¢, of the present section. For small values of 7
we can expand

252—-1 Ss*—-5s2-1 46s% — 69s* + 2152 + 1

1T T3 36522 1T 16205°¢° K
—25%2—-625%+ 3158+ 335+ 7 s
- 64805°c* K
8855 — 5252 — 115s% + 4650 — 175* + 25
+ 174 + o,
90720s°c>
5256 —78s* + 1252 +7 252 —370s®+ 1855 + 183s* -7
2=~ 40553 * 25025%c° K
7765% + 10240s° — 1352558 — 533 + 541050 — 1835s* 5
- 2041205°¢° K
3747s% + 1507152 — 158215% + 45588s% — 4521350 — 33725* — 1579 3
* 209952055 KR
37045° — 926058 + 668656 — 7695* — 125952 + 449
= 1020605°¢
750479512 — 1515575 — 7274695 +22399325® — 22514375 + 1400525* + 63149
- 209952005°¢° K
7297545 —787555% — 255413952 + 1468795° — 1602610s® + 319518350 + 1052225° +29233
* 367416005°c’ n
boee

where s =sin 0, ¢ = cos 6.
The functions €, are now considered as functions of 7, (instead of ), and we write
€, € €&
~pt—+ S+ =+
=M™ Tz ™ s
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a
(=%
=
o
o
&
P
-
K
§:
e
23
(=%
o

This approximation is substitut
obtain ¢, or, equivalently, x.

4. The incomplete gamma function case

In this section we consider the asymptotic condition that the sum a -+ b should be large. We
concentrate on the case a > b. In the other case we can solve (1.3) by using (1.4). From [3,
formula (9.16)] it follows that we can write

I(a. b)=Q(b, na) + R, 4(n), (4.1)
where 7 is given by a mapping x — 7, which is defined by

n—plry +A(p)= —Inx—pin(l —x), 4.2)
and

b

p=—, Ap)=Q1+p)inQ1+p)-p. (4.3)

O is the incomplete gamma function defined by
1 x a—-1 ,—t

O(a- Z)=r_(aifz t*~Ye~'dt, a>0. (4.4)
Corresponding points in the mapping are

x=0en+x, x=ﬁ1—‘u<—>n=y, x=1len=0.

From (4.2) it follows that
dx 7n-p x(1-x)
dn o (+p)-1
In [3] an asymptotic expansion of R, ,(n) in (4.1) is derived, which holds for a — o, uniformly

with respect to x €[0, 1] and b €[0, ).

We obtain the solution of (1.3) for large values of a, by first determining 7,, the solution of
the reduced equation

(b, nea) =p. (4.6)

This involves an inversion of the incomplete gamma function, which problem is considered in
[4], especially for large values of b. As in the previous sections, the exact solution of (1.3) is
written as 1 = 1, + €, and we expand € as in (2.12). We have (cf. (2.13)),

(4.5)

dp a® dp 1 dx

e"("’lu"‘ll'l"’h)) —_ = -
dn B(a, b)x(1—x) dn

dny  mol(b)

a[~n+plng—A(p)]

2
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Upon dividing these equations and using (4.5), we obtain

dp 17
n)—-= ——ea['ﬂ"'lu_ﬂln(’?/ﬂn)], 4.7
fn g = o (47)
with f(n) = ¢(n)®(a), and
n—nu 1 Ir'*(a+b)

é(n) = ®(a) =

1-x(1+p) 1+’ r+@a) °’

where I'* is introduced in (3.6). By writing n = 1 + €, and writing 7 in place of 1, (for the
time being), (4.7) can be written as

d
d(n + e)¢(a)(l + ﬁ) = edlemmindt+e/m], (4.8)

The analogue of the expansion (2.6) has coefficients

n p? (432 +432p + 13942)

=1 o=-—-, c¢=—7, c
0 To(+p) P 28814+ 51840(1 + p)*
The analogue of (2.7) reads
d(n) =do+dy(n —p) +dy(n—p) + -,
with coefficients
w+2 1 8w +9w?—-9w —8

dy=1,

b

=\ dy=——, d
4 3(w+1)w 27 12w2 3 540w(w + 1)’
15w* — 68w? — 182w? — 68w + 15

¢ 12960w*(w + 1)* ’
32wS + 265w* + 253w — 253w? — 265w — 32
T 90720w3(w + 1)° ’
where
w=y\l+pu. (4.9)
Substituting
PR R S (4.10)
a a a

into (4.8), we find the first coefficient

_ Ing(n)
1w/’
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a regular function at 0 = u, as follows from the expansion of ¢(7) at this point. The next terms
are

€2 Tgmiy —p) (2T’ + 20’ + 20,0m° ~ duel ~ 2e161),

1
6n%n — )

€ (—3d%*n* - 6¢,0°0° — 6% n* + 61°c,d° + 6,7y’

—3¢"%e2n® - 3c2¢’n* + 32’0 + 6n'd' %€, + 2peind?
—6€,0°n°pe; — Yeidn’ud’ — b€, d*n’uc, + beid>nu
—12¢'e m°d + pld’e; + 6n'e;d* + 3nucid® — 6m°uc,d?
+3n%ue’d? — 6n’pesd® + 6¢,m°d'd + 6€in’d’'D
+3n'd"del — 3n’nd"del + 3n’nd’el),
where the derivatives are with respect to 7. For small values of |n — | we can expand
(w+2)(w-1) w+9Iw2+2lw+5
‘= 3w 36w3(w+1) (n=n)
w* — 13w? + 69w? + 167w + 46
- 1620(w + 1)°w’
Tw’ + 21w* + 70w> + 26w? — 93w — 31
- 6480(w + 1)°w*
75wS + 202w + 188w+ — 888w> — 1345w? + IISM;' + 138

272160(w + 1)*w?
(28w* + 131w> + 402w? + 581w + 208)(w — 1)
1620(w + 1)w3
35w® —154w° — 623w* — 1636w> — 2082: -~ - 3514w — 925
- 12960(w + 1)'w® (n=e)

2
(n—n)

(n —n)

(n—n)'+-,

€r=

2132w’ +7915w® + 16821w° +35066w* +87490w> + 141183w? + 95993w + 21640
- 816480w>(w +1)° Tk
1i053w® +53308w” + 117010w° + 163924w° + 116188w* — 258428w> — 677042w? — 481940w — 105497
B 14696640(w + 1)*w®

2

X(n-p)+ -,
€3 = — (3592w + 8375w — 1323w° ~ 29198w* — 89578w> — 154413w?
~116063w — 29632)(w — 1)] /[816480w"(w + 1)’]
— (442043w° + 2054169w + 3803094w” + 3470754w® + 2141568w>
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—2393568w* — 19904934w> — 34714674w?
—23128299w — 5253353) /[146966400w°(w + 1)°| (n — )

— (116932 + 819281w° + 2378172w® + 4341330w” + 6806004w*
+10622748wS + 18739500w* + 30651894w? + 30869976w?
+15431867w + 2919016) /[146966400(w + 1)*w”|(n — p)* + - -+,

where w is given by (4.9).
Considering the functions ¢; as functions of 7,, we obtain using (4.10),
€ €, €

1
1)~1)0+—;+;l—2+ 3‘l-"',

a

which is substituted in the left-hand side of (4.2). Solving for x, we finally obtain the desired
approximation of the solution of (1.3).

In this section, the functions @(a), ¢(7), € have expansions with coefficients c;, d;, ¢, in
which the parameter u = b/a may assume any value in [0, ). This aspect demonstrates the
uniform character (with respect to u) of the present approach. In Section 2 large values of 8
are not allowed, and in Section 3 the value of 8 should be bounded away from 0 and %'n-. Of
course, the transformations and expansions of this section are more complicated than those in
the previous sections. Moreover, to start the inversion procedure, first (4.6) including an
incomplete gamma function should be solved, whereas in the foregoing cases only an error
function has to be inverted. See (2.10) and (3.9).

5. Numerical aspects

In numerical applications one needs the inversion of the mappings given in (2.1), (3.2) and
(4.2). Only (2.1) can be inverted directly, as shown in (2.2). For small values of |{ | we have

t=3+ V20— HV23+ 25205+ -

The inversion of (4.2) can be based on that of (3.2), with other parameters. We give some
details on the inversion of (3.2).
For small values of | ¢ | we have

5 . 262172 13s*— 1352 +1 3+465‘5—69s4+21s2+1 -
t=s*+sc{+35(1—-2s°)5*+ T /4 7705702 14 ,

where s = sin 8, ¢ = cos 8. For larger values of ||, with { <0, we rewrite (3.2) in the form
— 1% +5%Ins’+cinc?

t(1-t)"=u, a=cot’d, u=exp . ,

and for small values of u we expand
3a(3a+1) . 4a(da+1)(d4a+2) ,
u + u
3! 4!
5a(5a+ 1)(Sa +2)(5a+3
Seat o oatd

t=u-+au-+
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Table 5.1
Relative errors | I (a, a+ B)— pl|/p for a=10 and several values of p and B; the asymptotic inversion is based on
the method of Section 2

p B=0 B=1 B=2 B=3
107 74-107° 74-107° 53-1073 23-1072
0.1 90-1077 75-107° 40-107¢ 271073
03 48-1077 34-10°° 30-107¢ 21-10°3
0.5 211077 27-107¢ 23-107¢ 16-1073
0.7 21-1077 26-10°° 1.7-107¢ 1.1-1073
09 37-10°° 47-10"¢ 81-10°° 53-107¢
0.9999 91-107* 91-107¢ 9.1-107¢ 92-107*
Table 5.2

Relaiive errors | [ (a, b)— pl/p for r=a+b=10 and several values of p and sin’d=a/r; the asymptotic
inversion is based on the method of Section 3

P sin’0 = 0.5 sin’9 = 0.4 sin’0 =03 sin%0 = 0.2
i3 54-107% 1.1-1073 21-1073 39-1073
0.1 14-10°° 14-107° 34-10°3 23-1073
0.3 29-1077 1.1-10"° 36-10°° 1.2-107*
05 1.5-1077 79-10°¢ 25-1073 95-1073
0.7 12-1077 50-10°¢ 1.5-10°° 6.0-10°°
09 37-10°° 53-107° 9.1-107° 7.0-1073
0.9599 91-10~* 91-107* 91-10~* 91-107%
Table 5.3

Relative errors | I,(a, b)— pl/p for a =10 and several values of p and u = b /a; the asymptotic inversion is based
on the method of Section 4

p 2=0.1 n=05 n=20 #=10

H 6.8-107° 12-10°* 17-107* 13-107¢
0.1 1.2-10°° 27-1077 34-1077 36-107°
03 18-10°° 91-1077 63-10"7 54-107°
95 6.6-107" 20-1077 6.6-10~7 22-1077
0.7 1.7-1077 3.6-1077 13-10°° 42-10°°
0.9 20-1077 1.2-1077 30-1077 6.3-1077
0.9999 13-1077 1.8-10°8 1.7-10°8 1.9-1078

A similar approach is possible for positive values of £, giving an expansion for ¢ near unity. The
approximations optained in this way may be used for starting a Newton—Raphson method for
obtaining more accurate values of .

We have tested the inversion process of the incomplete beta function for several values of
the parameters. We describe the testing for the method of Section 2. After obtaining the first
approximation 7, by inverting (2.10), we computed the values of €, €,, €;, defined in
(2.15)-(2.17) (with 7 replaced with n,). The coefficient e, is included only when 7, is small
enough for using the Taylor series given in Section 2. Next, (2.11) gives the final approximation
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of 7, which is used in the second line in (2.1), to obtain the approximation of x. Finally we
verified (1.3) by computing the incomplete beta function with this value x. We used the
continued fraction given in [1. formula 26.5.8].

In Tables 5.1-5.3 we show the relative errors |(I (a, b) —p)/p|, where x is obtained by the
asymptotic inversion methods of Sections 2—4. As is expected, it follows that the larger values
of B give less accuracy in the results in Table 5.1. The same holds for smaller values of 6 in
Table 5.2. From Table 5.3 it follows that the results are not influenced by large or small values
of w. This shows the uniform character of the method of Section 4. In fact, this method can be
used in extreme situations: the ratio a /b may be very small and very large, and p may assume
values quite close to zero or to unity.
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