
 Procedia Engineering   144  ( 2016 )  959 – 966 

Available online at www.sciencedirect.com

1877-7058 © 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the organizing committee of ICOVP 2015
doi: 10.1016/j.proeng.2016.05.123 

ScienceDirect

12th International Conference on Vibration Problems, ICOVP 2015

Vibrations of a composite beam under thermal and mechanical

loadings

Anna Warminskaa, Emil Manoachb, Jerzy Warminskic,∗
aDepartment of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Mechanical Engineering Faculty, Lublin University of

Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
bInstitute of Mechanics, Bulgarian Academy of Sciences, Bonchev Street, Block 4, Sofia 113, Bulgaria

cDepartment of Applied Mechanics, Mechanical Engineering Faculty, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland

Abstract

Dynamics of a composite beam subjected to thermal and mechanical loadings is presented in the paper. The extended Timoshenko

beam model takes into account shear and inertia of the cross-section and nonlinear longitudinal displacement caused by mechanical

and thermal loadings. It has been shown that thermal and mechanical fields are fully coupled and the heat pulse may change the

transient dynamics of the system. For the case of elevated temperature and a steady state problem the model is reduced to nonlinear

ordinary differential equations of motion. It has been shown that the elevated ambient temperature may drastically change its

response.
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1. Introduction

In a real environment, composite structures are subjected to varied dynamical and thermal conditions. The bases

of the thermoelasticity are presented in [1,2]. It has been clearly shown that in order to explain the dynamics of ther-

moelastic structures the mathematical models have to consider coupled thermo-mechanical fields [3,4]. Although the

temperature and elastic deformations are in fact coupled [3,4] for relatively thin structures it is acceptable to assume

that the temperature distribution is independent of the deformation or that the structure gets the elevated temperature

instantly. This approach is widely used in papers [5–7] to model the beam or plates dynamics under steady state

conditions. In [5,8] thermo-mechanical, geometrically nonlinear vibrations of beams are studied considering reduced

models of the structures and selected heat distributions. The authors found a very reach nonlinear dynamic behaviour

[8] of the system including, periodic, quasi-periodic and chaotic oscillations with a very important temperature influ-

ence. Furthermore, in papers [9,10] it is demonstrated that the varied ambient temperature may change the system
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response and the method of delamination detection may not work properly. The delamination may be masked by the

elevated temperature.

In this paper we study dynamics of a Timoshenkos beam model which is close to the two-dimensional theory

and is of practical importance for composite structures. The proposed model is nonlinear and accounts the shear

deformation, rotary inertia and furthermore, the geometrically nonlinear longitudinal displacements which are a source

of nonlinearity. This extended mathematical model of the Timoshenko beam has the form of four partial differential

equations. The full coupled problem is solved considering a heat impact and transient response of the structure. In

next step the problem is reduced to a steady state in order to check the influence of ambient temperature on steady

state oscillations.

2. Mathematical model

The model of the geometrically nonlinear version of the Timoshenko beam theory is used to describe the beam

motion. The equations describing the coupled thermo-elastic vibrations of beam with a rectangular cross-section and

the heat propagation can be expressed by the following equations [3,4]
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where χT =
∫ h/2
−h/2 T (x, z, t) zdz, γT =

h/2∫
−h/2

T (x, z, t)dz.

In above equations E is the Young modulus and G is the shear modulus and αT is the coefficient of thermal

expansion. F = bh is the area of the beam cross-section, I = bh3/12, l is the beam length, T (x, y, z) is current

temperature, T0 is the initial constant temperature, λT is the thermal conductivity and cp is the heat capacity per unit

volume, w(x, t) is the transverse displacement, ψ(x, t) is the rotation angle. c1 and c2 are damping coefficients which

are assumed to be proportional to the mass terms ρF and ρI, respectively. Coefficient k is the shear correction factor.

In the mathematical model it is accepted that longitudinal inertia effect can be neglected.

Assuming that the heat flow q(x, t) acts on the upper beam surface, and the lower surface and the edges of the beam

are subjected to convective heating (cooling) the boundary conditions for the equation describing the heat propagation

are:

∂T
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=
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(2)

where dt is the heat transfer characteristic. When dt is equal to zero the surface is heat isolated and, when dt tends to

infinity the temperature of the surface gets instantly value T0.

In the analysis we assume boundary conditions for:

• the clamped beam

u (0, t) = u (l, t) = w (0, t) = w (l, t) = 0 and
∂ψ (0, t)

∂x
=
∂ψ (l, t)

∂x
= 0 ,

• the simply supported beam

w (x, 0) = 0, ẇ (x, 0) = 0, ψ (x, 0) = 0, ψ̇ (x, 0) = 0, T (x, z, 0) = Te, x ∈ [0, l] , z ∈ [−h/2, h/2] ,
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and initial conditions defined as

w (x, 0) = 0, ẇ (x, 0) = 0, ψ (x, 0) = 0, ψ̇ (x, 0) = 0, T (x, z, 0) = Te, x ∈ [0, l] , z ∈ [−h/2, h/2] .

3. Governing equations

The dimensionless variables are used in the further analysis and model reduction. We introduce dimensionless

variables:

w̄ = w/l , ū = u/l , θ = (T − T0)/T0 , x̄ = x/l , z̄ = z/h , t̄ = tc/l , c2 = E/ρ .

Thus, transverse vibrations of the beam can be written in the following form:
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The approach proposed is based on the successive solution of the equations for the mechanical vibrations of the

beam and the heat transfer. The equation of the heat propagation is discretized by a finite difference method and

for the equations representing mechanical vibrations a modal coordinate transformation is applied. For details of the

applied algorithm one can refer to [3].

4. Numerical sulution of a coupled problem

A beam made of composite material is studied numerically in order to check the applied approaches and to estimate

the influence of the geometrical nonlinearities, temperature and mechanical loading parameters on the response of the

beam. Numerical calculations are performed for a clamped symmetric cross–ply laminated composite beam composed

of 20 layers [(0/90)10]S with physical data presented in Table 1.

For the case of the coupled thermo-mechanical vibrations of the beam the mechanical load is considered to be

uniformly distributed along the beam length and it acts according to the law p = p0sin(ωet) where ωe denotes the

excitation frequency. It is accepted that the frequency of excitation is equal to the first natural frequency of the beam,

i.e. ωe = ω1.

The heat pulse acting on the upper beam surface is supposed to be distributed along the beam length according to

the sinus rule and its amplitude follows rule:

q (x, t) =
{

q0 (1 − t/ t0) sin (πx/l) for 0 ≤ t ≤ t0
0 for t > t0

q (x, t) =
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q0 sin (πx/l) for 0 ≤ t ≤ t0
0 for t > t0

(5)
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Table 1. Physical parameters of the symmetric cross-ply laminated beam.

Physical parameter Value (unit)

Length l = 0.5 (m)

1 layer thickness hi = 0.25 (mm)

beam thickness h = 0.005 (mm)

Youngs moduli E1 = 56, E2 = 16 (GPa)

Effective Youngs modul Ee f = 41.92 (GPa)

Poissons ratio ν = 0.269 (−)

Coefficient of thermal expansion αT = 13.2 × 10−6 (K−1)

Heat capacity per unit volume cp = 2484000 (N/m2/K)

Thermal conductivity λT = 207 (N/s/K)

Mass density ρ = 2052 (kg/m3)

(a) (b)

dimensionless time

w
/l

Fig. 1. (a) Time history diagram of the response of the beam centre for different heat impacts; p = 0.1 × 105 N/m, ω̄e = 0.06, T̄duration = 18,

q = 5×104 kW/m2 - red colour, q = 1×104 kW/m2 - blue color, q = 0 - black colour. (b) The temperature propagation in time for two cases (upper

and lower surface of the beam centre). 1- q=5 × 104 kW/m2 - red colour, 2 - q=1 × 104 kW/m2 - blue colour.

The left and right edges of the clamped beams are heat insulated and at the lower surface of the beam its supposed a

convective heat exchange. Five layers along beam thickness are used to discretize the equation for the heat propagation

in z direction.

The time-history diagram of the response of the beam centre subjected to harmonic loading with p = 104 N/m
and ωe = 542.38 rad/s is shown in Fig. 1(a) (note that the first eigenfrequency of the beam is ω1 = 583.44 rad/s).

The beam is subjected to a very short pulse T duration = 18. The pulse in the considered case follows the low given

with Eqn. 5a. The response of unheated beam is plotted with black colour. As can be seen the heat pulse lead to an

essential increasing of the amplitude of the vibrations. Furthermore, due to the heat impact the beam buckles. It takes

10 times of the heat impacts duration the beam to return to regular vibrations due to the mechanical loading in the

case of q = 1 × 104 kW/m2 and more than 20 times T duration in case of q = 5 × 104 kW/m2.

The temperature propagation in time at two adjacent layers along the beam thickness: z = h/2 and z = h/4 is

shown in Fig. 1(b). In case q = 1 × 104 kW/m2 the temperatures at these layers equalize for t = 100 and for the case

q = 5 × 104 kW/m2 at t = 300.

The responses of the beam subjected to mechanical harmonic loading and three heat pulses with three different

durations are presented in Fig. 2(a). Additionally the response of the unheated beam is also plotted in this figure. It

is seen that for the selected value of q, the very short duration of the heat impact does not influence essentially the

response. The amplitude of the vibration increases during the heat impact but then the beam continues to vibrate as

an unheated beam. For the higher values of the duration, the elevated temperature manages to propagate along larger
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(a) (b)

Fig. 2. (a) Influence of the duration of the pulse heating; black colour no pulse heating, red colour T duration = 18, magenta T duration = 54, blue colour

- T duration = 150. q = 0.1 × 104 kW/m2. (b) Influence of the pulse shape of the thermal impact on the response; black color decreasing triangular

pulse (Eqn. 5a ), red color - isosceles triangular pulse (Eqn. 5b), blue color rectangular pulse (Eqn. 5c); T duration = 150, q = 0.1 × 104 kW/m2.

Fig. 3. Temperature distribution at t = 200 for decreasing triangular (a), isosceles triangular (b) and rectangular pulses (c).

parts of the beam and the amplitudes become larger, the beam buckles and return to the original equilibrium state after

longer time.

The shape of the heat pulse may influence the response of the beam as well (Fig. 2b). The areas which the heat

pulse formed in the case of pulse ( 5a) and ( 5b) are equal and, because of this, the responses of the beam in these two

cases are very similar. The pulse with rectangular shape according to Eqn.( 5c) forms a larger area and this naturally

leads to vibrations with larger amplitudes and longer time necessary for the beam to return to vibration around the

original unheated equilibrium state.

The distribution of the temperature field at particular moment of time for the same cases is shown in Fig. 3. The

usage of same colour scale for the three contour maps clearly shows that the pulse ( 5c) leads to higher temperatures

along bigger parts of the beam.

5. Steady state vibrations in elevated temperature

Assuming that the distribution of temperature along x and z axis is constant: θ(x, z) = const., we get: χΘ = 0,

γΘ = ΔT , where ΔT is a difference between the reference temperature and the current temperature. According to
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papers [5,8] inertia of the longitudinal displacement can be neglected and the model can be simplified to two partial

differential equations having the dimensionless form:
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Applying the Galerkin procedure the set of PDEs is reduced into ODEs. The vibration modes are taken from linear

eigenvalue problem which, in the studied case, is solved for a simply supported beam. Assuming solution in a series

of product of time and space dependent functions

w (x, t) =
Nf∑

n=1

wn(x)qn(t), ψ (x, t) =
N f∑

n=1

ψn(x)qn(t) (7)

next substituting Eqn. (7) into (6), multiplying each of equations by a proper mode, adding them by sides and inte-

grating over the beam length we get a set of nonlinear ODEs
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(9)

In the further analysis we take just one mode reduction therefore, in such a case we get one nonlinear ODE

q̈1 + 2ξ1ω1q̇1 + ω
2
1 q1 +C1,111q3

1 +CT
1 ΔTq1 = p1 sinωt . (10)

6. Efect of elevated temperature

Numerical calculations are performed for a symmetric cross-ply laminated composite beam composed of 20 layers

[(0/90)10]S with physical data presented in Table 1. Applying the procedure described in previous chapter we obtain

dimensionless coefficients of nonlinear equation (10)

C1,111 = 0.412607, CT
1 = −1.19911 × 10−5, ω1 = 0.0284864, ζ1 = 0.017552 (11)

Amplitude p1 and frequency ω of external load are varied in order to demonstrate essential nonlinear phenomena

around the first resonance zone.

The resonance curves corresponding to steady state solutions calculated for two different ambient temperatures

ΔT = 20 (black line) and ΔT = 50 (red line) are presented in Fig. 4. Mechanical loading is fixed as p1 = 2 × 10−6

and excitation frequency varied (the first dimensionless natural frequency equals ω = 0.0284864). We may notice

the nonlinear stiffening effect and that the elevated temperature has increased amplitudes and shifted the resonance

curve into the lower frequencies direction Fig. 4(a). Furthermore, the small peak on the resonance curve occurred for

very low frequencies. The effect of temperature for fixed frequency ω = 0.029 and varied amplitude p1 is presented

in Fig. 4(b). Again nonlinear phenomenon is observed by existence of multi-solution region with unstable branches

(dashed line). Again the increased temperature (red line) increases the amplitude of vibrations and also enlarges the

zone of triple solution. It is worth noting that above certain threshold about p1 = 1 × 10−4 the solution becomes

instable (dashed line).
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Fig. 4. (a) Resonance curves around the first natural frequency for excitation amplitude p1 = 2 × 10−6 and (b) response of the beam against

amplitude p1 and fixed excitation frequency ω = 0.029 (b) computed for ΔT = 20 - black line, ΔT = 50 - red line.
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Fig. 5. (a) Response of the beam against temperature and fixed mechanical excitation with amplitude p1 = 2 × 10−6 and frequency ω = 0.029; (b)

time histories for ΔT = 50 and various initial conditions

The influence of the beam response against the temperature, varied from about ΔT = −100 till ΔT = +150 is

presented in Fig. 5. The shape of the curve reminds a shape of a resonance curve with the essential difference that

the lower branch above temperature ΔT = 75 becomes unstable. The elevated temperature may increase vibration

amplitude or may transits the system from single solution to multi-solution zone. Such a case we can observe, for

example, if ΔT = 50 - we get three solutions, with two of them stable. Time histories of small amplitude (in blue) and

large amplitude (in back) vibrations are presented in Fig. 5(b).

The increased ambient temperature together with mechanical loading may change the beam dynamics drastically.

Such a scenario is presented in bifurcation diagram versus amplitude of excitation p1 and elevated temperature ΔT =
100. This diagram is obtained by direct numerical simulation of Eqn. (10) for seven various initial conditions. The

transient response above 500 periods has been rejected. We see that the response of the beam is complex with two

zones (black regions) in which oscillations have complex nature. This irregular dynamics and transition to it will be

discussed in a separate work.

7. Conclusions

The large amplitude vibrations of moderately thick beams subjected to mechanical load and thermal flow acting

for a short period on the upper surface of the structures are studied in this paper, considering the coupled thermo-

mechanical model. The case when the mechanically loaded beam is at elevated temperature, without considering

the heat propagation, is studied separately. The results obtained show that thermal loads may change significantly

the structures dynamic behavior because they introduce stresses due to thermal expansion. The obtained results from
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Fig. 6. Bifurcation diagram of the beam displacement against amplitude of periodic excitation p1 with fixed frequency ω = 0.029 and elevated

temperature ΔT = 100.

coupled thermomechanical equations are very different from the case when the structure is considered instantly heated.

Due to the in-plane forces introduced by the thermal terms in the equations, a beam can buckle and vibrate around a

new equilibrium state, changing dramatically beam response. The elevated temperature may transit the system from

stable to unstable zones or instead of single solution we can get multi solutions with small and large amplitudes.

These analyses are expected to have an application for improving the modeling of structures working in heavy envi-

ronment conditions in many high technological areas. They can be implemented in the structural design in aerospace

or civil engineering, machinery, high speed vehicles, etc.
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