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Abstract 

This paper proposes a new model-based traffic state estimation framework using the LWR model formulated in vehicle number – 
space (Lagrangian – space) coordinates. This formulation inherits the numerical benefits and modelling flexibility from 
Lagrangian (vehicle number – time) models. Specifically, a variational formulation of the LWR model is selected as the 
underlying process model. Compared to the traditional conservation law approach in the same coordinate system, the current 
formulation entitles a simplified expression (no complex state updating originated from different traffic conditions), and provides 
more accurate numerical results in the prediction step of the data assimilation framework (exact solution to the continuous model 
when the fundamental diagram is bi-linear). More importantly, this formulation is particularly convenient for data assimilation, 
because in reality, the flow characteristics are mostly observed at fixed point (spatial fixed) or along vehicle trajectories (vehicle 
number fixed). These observations are located on cell boundaries of the Lagrangian-space grid, which makes any traffic state 
estimation method convenient with this approach. Its corresponding observation models are also defined to incorporate both 
spatial-fixed and moving observations. A Kalman filter framework is applied with the underlying traffic system model. 
Moreover, travel time can be directly derived from system estimates, and no state transformation is required compared to other 
estimation approaches. Model validation experiment based on a synthetic traffic network has demonstrated the feasibility of the 
proposed framework, and suggested promising extensions for future applications. 
© 2015 The Authors. Published by Elsevier B. V. 
Selection and peer-review under responsibility of Delft University of Technology. 

Keywords: Traffic state estimation; variational formulation; LWR model; Lagrangian-space coordinates; Kalman filter 

1. Introduction 

 
* Corresponding author. Tel.: +31-15-27-86304; fax: +31-15-27-379 

E-mail address: y.yuan@tudelft.nl 

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of Delft University of Technology

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82140604?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


83 Yufei Yuan et al.  /  Transportation Research Procedia   10  ( 2015 )  82 – 92 

Traffic state estimation (TSE) and short-term state forecasting are central components in dynamic traffic 
management and information applications. Generally model-based TSE relies on two components: a model-based 
component and a data assimilation algorithm. The model-based component consists of two parts: a) a dynamic 
traffic flow model to predict the evolution of the state variables; and b) a set of observation equations relating sensor 
observations to the system state. Thereafter, a data-assimilation technique is adopted to combine the model 
predictions with the sensor observations. For example, the Kalman filter (KF) (Herrera and Bayen (2010)) and it 
advanced relatives, such as Extended KF (Wang and Papageorgiou (2005)), Unscented KF (Ngoduy (2008)), 
Ensemble KF (Work et al. (2008)) have been widely applied in the field of traffic state estimation. 

The same traffic flow model can be formulated in three two-dimensional coordinate systems regarding space x, 
time t and vehicle number n. Laval and Leclercq (2013) have presented three equivalent variational formulations of 
the first-order traffic flow models, namely  model,  model,  model respectively, under the 
theory of Hamilton-Jacobi partial differential equations. Most of TSE applications are based on the traditional space-
time (Eulerian) formulation. Recent studies have shown that a first-order (LWR) traffic flow model can be 
formulated and solved more efficiently and accurately in vehicle number–time (Lagrangian) coordinates (Leclercq et 
al. (2007)). And its related Lagrangian formulation of state estimation enables more accurate and efficient 
application of data assimilation methods, due to the solution to the mode-switching problem (traffic information 
travels in one direction) and less non-linearity of the system model (Yuan et al. (2012)).  

Furthermore, Yang et al. (2015) have investigated the possibility for TSE in the vehicle number-space coordinate 
systems. Their formulation follows a traditional conservation law approach. The conservation law equation is 
discretized, and traffic pace is used as the state updating variable. Due to the retainment of spatial coordinates 
(preserve segment-based representation), traffic information still travels in both directions. This formulation still 
requires complex state updating matrix for various traffic conditions (upwind and downwind numerical schemes 
considering both downstream and upstream cells), which is the same as the Eulerian counterpart. The numerical 
benefit from Lagrangian models is not fully achieved. As argued in Yuan et al. (2012), small disturbance for state 
estimation around capacity point may result in corrections with the “wrong” sign (i.e., the estimator may infer 
congested traffic while in reality traffic is flowing freely). Alternatively, TSE relied on a variational (Hamilton-
Jacobi) formulation of traffic flow models is considered to be much simpler to compute and numerically more 
accurate under same conditions, compared with the conservation law approach. However, only a few studies have 
applied such formulations for state estimation purposes. As one of the few examples, Deng et al. (2013) extended 
Newell’s three-detector model (the aforementioned -model, Newell (1993)) for TSE. It provided a more flexible 
way to assimilate real-world heterogeneous data sources compared to the Eulerian conservation law approach.  

This paper proposes a novel mesoscopic model-based traffic state estimation framework using a variational 
formulation of the LWR model in vehicle number – space (Lagrangian-space) coordinates. This formulation can 
incorporate the numerical benefits and modelling flexibility of Lagrangian-time models. Specifically, the variational 
formulation of the LWR model is selected as the underlying process model. Compared to the traditional conservation 
law approach in the same coordinate system, the current formulation entitles a simplified expression (no complex 
state updating originated from different traffic conditions), and provides more accurate numerical results in the 
prediction step of the data assimilation framework (exact solution to the continuous model when the fundamental 
diagram is bi-linear). Its corresponding observation models are also included to incorporate both spatial-fixed and 
moving observations. A Kalman filter framework with the underlying model is proposed, and it will be validated on 
a synthetic network, namely a homogeneous corridor with boundary conditions. 

This paper is organized as follows. Section 2 presents the methodology of the proposed TSE framework, 
including underlying traffic flow model, corresponding observation models and the data assimilation technique. 
Section 3 illustrates the experimental setup. Loop and probe vehicle data are generated from a synthetic traffic 
network.  Different scenarios are defined to validate the framework under selected performance indicators. Section 4 
summarizes the simulation results. Conclusions and recommendations are drawn in Section 5.  

2. Methodology 

This section defines both the process model and observation models in the state estimation framework. Due to the 
linear formulation of the traffic system, a linear Kalman filter is used as the data assimilation technique.  
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2.1. General formulation of the LWR model in Lagrangian-space coordinates 

This section first presents a mesoscopic formulation of the LWR model as the process model in the estimation 
framework. The LWR model is formulated in vehicle platoon and space (n, x) coordinates, named as Lagrangian-
space coordinates throughout the paper. The term mesoscopic is in response to the two other counterparts, since the 
Lagrangian-time coordinates can apply in a microscopic simulation framework and the Eulerian coordinates can 
accommodate in a macroscopic one. The current mesoscopic formulation combines a vehicular description with 
macroscopic behavioral rules. It relaxes the temporal coordinate, and this entitles a transformation of a temporal 
progressing approach (e.g., in Eulerian or Lagrangian-time simulation framework) to an event-progressing approach 
(trigger event can be the change of time headway or pace, and/or a correction procedure based on an observation 
from fixed loops or probe vehicles).  

The formulation follows the principle of the Hamilton-Jacobi (HJ) theory, to find an expression of the LWR 
model in Lagrangian-space coordinates. Let h denote the time headway,  and  denote traffic flow and speed, and 

. In the Lagrangian-space coordinates (n, x), the LWR model can then be described by a hyperbolic 
equation:                    (1) 

Previous authors have proposed to apply variational theory in Eulerian coordinates (x, t) (Daganzo (2005)) and 
Lagrangian coordinates (n, t) (Leclercq et al. (2007)). Here, we transpose the demonstration in Lagrangian-space 
coordinates (n, x), following the same rationale in Leclercq et al. (2007). The problem can also be expressed in terms 
of    considering the “passage time” flux that crosses the boundary of the cell , specifically it is expressed as 
the Hamilton-Jacobi derived from the fundamental diagram: 

       (2) 
Here, the function 1/V represents the flux function of the problem. This model is also referred to as the -model.  

Here, we consider a triangular fundamental with three parameters: the free-flow speed , the maximum wave speed 
 and the jam density . It can be expressed by:  

              (3) 
We apply a variational formulation of the -model. The numerical solution to the Hamilton-Jacobi formulation, 

under the assumption of a CFL condition with an equality condition (namely, ) and a triangular 
fundamental relation, reads as follow: 

  (4) 
The complete demonstration can refer to Leclercq (2007), and Laval and Leclercq (2013). 
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Fig. 1. Numerical solutions in Lagrangian-space coordinates 

The formulation refers to as the so-called “lattice” implementation of the continuous -model. In this form, the 
coordinate system is discrete but with the continuous dependent variable (passage time: ) (Laval and Leclercq 
(2013)). Specifically, traffic flow on a freeway stretch is divided into vehicle platoons of size , and road stretch is 
discretized with spatial cells of length . The solution is illustrated by Fig. 1 (see arrow directions). This variational 
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form still preserves the segment-based representation as in the Eulerian counterpart. Unlike a traditional 
conservation law approach presented in Yang et al. (2015), there is no complex state evolution to account for 
different traffic conditions (information propagation directions), instead it always involves comparing only two 
uncorrelated terms.  

The variational formulation can provide more accurate results in the prediction step of the estimation framework 
(exact solution to the continuous model when the fundamental diagram is bi-linear). More importantly, it simplifies 
the formulation with only one expression to consider all different traffic conditions, which is beneficial for efficient 
data assimilation framework.  

2.2. Observation models in Lagrangian-space coordinates 

In Lagrangian-space coordinates, observation equations are defined to relate sensor observations with system 
states. The flow characteristics are mostly observed at fixed points (  fixed) or along vehicle trajectories (  fixed). 
These observations are located on cell boundaries of the mesoscopic grid. 

From empirical data, it is however difficult to address a particular observation (passage time) to a certain vehicle 
platoon (with index ) at a given location ( ), since the vehicle numbering in the numerical model is not traceable by 
loop detection systems or by probe vehicles. The index of vehicles that pass by loops or probe vehicles is unknown. 
If this information were known (e.g., the cumulative vehicle count (CVC) of a loop is available, the ID of a 
particular probe in the model is known), it would be a direct observation of the current estimated state.  

Normally from loop detection systems, aggregate flow (time headway obs) and speed (pace obs) information at a 
given time period (e.g., 60s) can be obtained. For floating car data (FCD), the updating location, speed sample and 
the relating time instant are available; or even travel time ( obs) of a particular probe vehicle is known. Also in the 
model, the states (passage time) of the leading platoon ( ) are estimated from the previous “platoon” step; the 
state of the current platoon at previous location ( ) can be estimated in advance in the current calculation 
horizon. With this information, we can derive observation models under the assumption of homogeneous conditions 
of a small space-vehicle platoon (or space-time) region. Here, it is assumed that direct observations of system states 
at the current estimation step can be obtained under the aforementioned assumptions. Four observation models with 
single data source are defined: 

(a)   (5) 

Here,  denotes the white noise terms in the observation model. obs can be obtained from the loop measurement 
at location x (or the adjacent location) and time . 

(b)    (6) 

In this observation equation, obs can be obtained from the loop measurement at location  (or the adjacent 
location) and time . Alternatively, it can be obtained from a probe vehicle report at location  and 
time  (or the adjacent spatio-temporal area) 

(c)   (7) 

Travel time can be obtained from a probe vehicle travelling from location  and time  (or the 
adjacent spatio-temporal area) to location . 

(d)         (8) 

If the CVC of a loop at location  is known, or a particular probe can be related to a vehicle-platoon  in the 
model, this observation equation applies. 

2.3. TSE based on Kalman filter 

Now we have defined both the process model and observation models. Generally for real applications, traffic flow 
models are not fully reliable (due to the misspecification of reality and errors in model parameters.) neither for the 
observations (which contain measurement errors). The essence of data assimilation techniques is to balance the 
weights on the model and observation, and to infer an optimal estimate of traffic states. Therefore, we need to 
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consider error terms in both process equations and observation equations. The traffic state estimation procedure is 
presented as follows and illustrated by Fig. 2. 

a. Initialize the states (vehicle passage time) at two boundaries “ ” and “ ”. That means that the CVCs at 
the entry of the link (e.g., provided by a loop) and the trajectory of the first vehicle (e.g., provided by a probe). 
Note that the states at boundaries do not necessarily have to be accurate.  

b. The model applies an explicit vehicle-platoon progressing approach. That means the states of the consecutive 
platoons (n =2, 3, 4, …) over the whole spatial dimension are updated according to the process model. The 
process and observation models are linearly formulated; therefore, standard linear KF (Kalman (1960)) can be 
applied to perform data assimilation. 

c. Prediction step: 
Process model to calculate prior system states:  

  (9) 
Here,  denotes the white noise terms in the process model. The model error covariance matrix needs to define. 
This discrete form allows a state-by-state evolution for a particular vehicle platoon. The red arrows in Fig. 2 
show the prediction step for a particular platoon ( ) at a specific location ( ).  

d. Correction step: 
In the correction step, observations are used to correct the prior state prediction. The Kalman gain ( ) is 
determined. And posterior states and error covariance matrix are updated. In Fig. 2, blue arrows indicate three 
possible ways of incorporating observations, corresponding to observation models (a), (b) and (c). 

e. End of one iteration. 

Let us recap the standard linear KF procedure. It consists of the prediction step and the correction step. Here the 
system state is expressed by passage time of a particular platoon  at a specific location : .  

 Prediction step: 

The KF model assumes the true state at step  is evolved from the state at step  according to a so-called 
prior state estimate: 

      (10) 
In the current linear formulated system model: , it is the state transition model which is applied to the 

previous state. k-1 is the control-input model which is applied to the control vector k-1. A prior for the error 
covariance is computed by: 

      (11) 
Here,  represents the covariance matrix associated with the Gaussian noise term  in the process model (16). 

 Correction step: 

The Kalman gain  determines the optimal weight put on both the model-predicted state and observation input. It 
is calculated on the basis of two error covariances: observation covariance and system state covariance. It reads: 

       (12) 

Here,  depicts the covariance matrix of the Gaussian noise term  in observation models (12-15). Then the 
posterior state estimate and posterior error covariance are given by: 

      (13) 
      (14) 

Here,  denotes the observation made at step ;  is the observation model which maps the true state (prior 
state estimate) into the observation. , because the observation here is directly related to the state.  
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Fig. 2. Illustration of the mesoscopic traffic state estimation concept in two coordinate systems. 

2.4. Advantages of the proposed state estimation formation 

The current mesoscopic formulation is based on the notions from the variational theory. It can incorporate the 
numerical benefits and modelling flexibility of Lagrangian-time models. Simultaneously, this formulation allows 
state distinction on both link class and vehicle class, combining a vehicular description with macroscopic behavioral 
rules. The state process model applies a lattice implementation of the Lagrangian-space model. It individually 
represents vehicles (platoons) but only tracks their states (passage times) at link/cell boundaries. Therefore, travel 
time can be easily derived from the model, which is convenient compared to other (e.g., Eulerian or Lagrangian) 
formulations of state estimation. This discrete model evolves state by state, with only one expression to consider all 
traffic conditions. Hence, it does not require memory and more flexible and time-efficient for data assimilation (no 
complex matrix inversion and multiplication). In addition, the selected triangular fundamental diagram allows the 
numerical solution to become exact to the continuous form in the HJ framework, whereas this is not the case in the 
traditional conservation law approach (see, Laval and Leclercq (2013), LeVeque (1992), Yang et al. (2015)).  

More importantly, this scheme is particularly convenient for state estimation, because in reality, the flow 
characteristics are mostly observed at fixed point (spatial fixed) or along vehicle trajectories (vehicle-number fixed). 
These observations are located on cell boundaries of the mesoscopic grid, which makes any traffic state estimation 
method convenient with this approach.  Meanwhile, the derived observation models allow incorporating any type of 
observations: a) observations with exact indexing of vehicles/probes, such as the current probe vehicle relates to 
which platoon in the estimation model and cumulative vehicle counts at a loop detector; b) observations with 
unknown indexing, such as aggregate loop data and general form of floating car data. 

This formulation can be easily coupled with any data assimilation techniques to perform state estimation. Due to 
the nature of the mesoscopic system model, the TSE might be not restricted to discretized mesoscopic  grids. 
If we know any two boundaries in the network and an observation at a certain location, we can generalize TSE for 
this specific location.  

3.  Experiment setup and model validation 

3.1.  Data and test network 

To validate the proposed state estimation framework, we perform a simulation study. A homogeneous corridor 
with boundary conditions is selected; it is a one-lane road stretch of 1000 m in length. Note that for validation 
purposes, the current network scale is sufficient to demonstrate the performance of the estimation framework. Traffic 
states on this corridor are various from free-flowing to highly congested traffic condition. Model verification is 
performed with respect to synthetic data generated by the Newell’s car-following model and the same traffic 
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conditions in the same road network. The logic is to let the Newell’s car following model, which is 
consistent/equivalent with the LWR model at a macroscopic scale, provide individual vehicle trajectories. Based on 
the ground-truth trajectories, we can emulate any type of observation data and define different scenarios to test the 
performance of the estimator.  

The total simulation time period is 1000 s. The fundamental diagram is bi-linear, with three parameters: the free-
flow speed , the maximum wave speed  and the jam density . For the 
numerical scheme, the size of platoon  is chosen as 1, and thus individual vehicle can be tracked. The CFL 
condition is satisfied as an equality, thus the spatial cell size becomes . The choice of the grid 
size depends on the trade-off between the numerical accuracy and computational cost. 

In the linear Kalman filter framework, all the error terms are assumed to be zero-mean Gaussian distributed. The 
error covariance matrices  and  relate to the uncertainty in process and observation models respectively. The 
Kalman gain depends on the ratio of error terms in these two matrices. Given a fixed , if the uncertainty in the 
observation model is small, then  tends to be small and thus the gain is large. That means the learning rate from 
observations is high, and vice versa. An appropriate combination of  and  is important for providing good 
estimates. A Monte-Carlo simulation technique can be used to obtain a proper combination. For the sake of brevity, 
the results of the combination ( : 5^2, : 2^2) leading to the highest performance in estimation are presented in this 
paper.   

3.2. Experimental scenarios 

Several scenarios have been performed to test validity of the model framework as well as the corresponding 
observation models with diverse detection resolutions.  

In practice, detectors are placed 500m by 60s apart on average, e.g., in the Netherlands. Under the current 
condition, the size of the network (1000m) and time span (1000s) allows only 2 detectors and 16 observation 
instants. Therefore, the setup of the observation (probably the prediction model) is adjusted to enable more 
observations. The virtual detectors are placed at every 100m (150m) and aggregate flows and speeds over 10s. The 
same logic applies to the FCD data. The enable more observations, the updating interval of FCD is set as 5s. Be 
aware of that, the extension of network scale would only increase computational cost but it gives no implication for 
estimation complexity.  

Five observation models are tested: three with exclusive data sources and two with mixture of data sources. We 
consider flow and speed measurements from loop detectors with varying spatial resolutions, and speeds from probe 
vehicles with varying penetration rates. In this case, we do not need to know the exact indexing of observers (at 
loops or from FCD) in the corresponding estimation model. Meanwhile, when two data sources are available for one 
estimation grid, probe vehicle data are assumed to be more reliable than aggregate loop data (which is the case in 
reality), and thus overrule the loop data. Three testing levels for each case allow testing performance regarding 
detection resolutions. Table 1 provides an overview of all the testing scenarios. 

Table 1. Experimental scenarios with five observation cases and three testing levels. 

Obs. Model 
(scenario) Data source Resolution (testing level) 

(spacing and/or penetration) 
No. runs  

(10 for each scenario) 

1 Loop flow 100m, 150m, 200m 30 

2 Loop speed 100m, 150m, 200m 30 

3 FCD speed 15%, 10%, 5% 30 

4 Loop flow  
FCD speed 150m&15%, 150m&10%, 200m&%5 30 

5 Loop speed 
FCD speed 150m&15%, 150m&10%, 200m&%5 30 

In addition, we performed a sensitivity analysis with respect to model input and observation input. Three types of 
sensitivity test scenarios were performed with the five observation models (testing level two). First, random errors 
(Gaussian noise) were added into observation inputs (loop aggregation data and probe vehicle data). Second, random 
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errors were put into initial (spatial) boundary conditions. Third, structural errors were introduced in fundamental 
relations, by defining different parameters compared to the ground truth data.  

In each of the testing scenarios, 10 simulation runs with different traffic patterns (different upstream and 
downstream boundaries of the homogeneous corridor) have been performed to account for stochastic effects.  

3.3. Performance indicator 

To assess different scenarios, performance criteria must be specified. The estimates from the state estimator are 
passage times of specific platoons at given locations (cell boundaries). To facilitate result comparison, first both 
these estimates and ground-truth trajectory data are transformed into system states (traffic density , traffic speed ) 
in equidistant spatio-temporal grids (20 m x 20 s) in Eulerian coordinates under Edie’s definition (Edie (1965)), and 
travel time  at selected locations (every 200 m in the corridor - starting at 100m). Then, the estimates (  – denote 
either  or ) are compared with the ground truth (reference ) data in terms of root mean square error ( ) and 
mean absolute percentage error ( ). Both error indicators can provide absolute and relative performance of 
estimation scenarios. They read: 

    (15)       (16) 
where  denotes the total number of estimates.  

4. Result and discussion 

4.1.  Quantitative result 

Table 2 and Table 3 present the error indicators of state estimation with different observation models. Clearly, 
state estimation accuracy increases with detection resolutions (from testing level 1 to 3).  

The TSE provides satisfactory results with loop-flow data (Obs1). The reason for that is twofold: (a) the most 
upstream loop detectors render a robust estimation of the flow demand on the link/cells (regarding demand time) and 
(b) the loops along the section gives a robust estimation of the supply/congested states (regarding supply time). The 
resulting traffic relies on the result of the competition between demand and supply; therefore, it is not surprising to 
obtain good performance with loop detectors only. In the current framework, traffic states are estimated at specific 
points of the section and then the model propagates demands in the downstream direction while supplies propagate 
upstream. It should be noted that if a loop detector were missing at the beginning (respectively the end) of the link, 
the flow demand (supply) would not be properly estimated and the performance of the TSE method upstream the 
first loop (downstream the last) detector of the section would be poor. In the current experimental setup, no exit 
detector of the section (at 1000m) is given, thus the estimation at the downstream boundary is not sufficient (as 
illustrated in Fig. 3). 

The TSE with loop-speed data (Obs2) provides comparable results as the first case and the reason is the similar to 
observation model 1. The upstream demand is still given by the boundary condition. It is supplemented by the 
internal loop-speed observations that give a robust estimation of the congested/supply states within the link. It is also 
noticed that for travel time estimation, observation model 2 outperforms all the other observation models in terms of 
relative errors (Table 3).  

The results with purely FCD (Obs3) are rather limited compared to Observation models 1 and 2. When loop 
detectors capture 100% of the flow passing over the loop, even with an optimistic rate of equipped vehicles (10%), 
FCD only provide one-off (isolated) position-speed measures with hazardous time-space coverage. Moreover, in 
presence of stop-and-go waves, FCD position-speed measures may not be representative of the average traffic state. 
Consequently, FCD alone cannot provide satisfactory traffic state estimation when a link presents saturated flows. 
The poor quality of the TSE is even more acute looking at the travel time estimation.  

The main weakness of loop data is not to be able to capture congestion downstream the detector location. To 
mitigate this shortcoming, the observation can be supplemented by other data. Probe data are natural contenders to 
complete the data provided by loop. They provide accurate position-speed measurement in real-time with uniform 
spatial coverage of the network. However, the penetration rate is generally low (<10% in reality) and cannot provide 
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an accurate estimation of the demand level. The main contribution of probe data is to provide information on (low) 
speeds that are directly related to supply. Two additional observation models (Obs4 and Obs5) are proposed, where 
FCD speed observations supplement loop-flow or loop-speed data. The rationale is that the loops give an accurate 
estimation of the demand-supply volumes along the link (with a good performance) and the FCD speed data 
judiciously complete the information by providing supplement supply information between detectors. The simulation 
results also demonstrate that the combination of two data sources provides better estimation results than loop data 
alone. Note that, travel time estimation with multiple data sources (except for the testing level 3) is not as stable as 
the estimation with single data sources. This might be caused by coarse data consistency from two sources. 

Overall, these results suggest that the current state estimation framework is valid and well performed with the 
related observation models. 

Table 2.  errors of scenarios with different observation models (Obs.) (Speed in m/s, density in veh/m and travel time in second). 

 Obs1 Obs2 Obs3 Obs4 Obs5 

Test level v k TT v k TT v k TT v k TT v k TT 

1 3.66 0.02 3.13 3.69 0.02 3.55 7.06 0.05 71.33 3.53 0.03 4.59 3.24 0.03 8.93 

2 3.72 0.02 3.41 3.87 0.03 6.00 7.77 0.06 79.33 3.64 0.03 6.11 3.41 0.03 8.31 

3 5.35 0.04 23.65 6.53 0.04 14.58 8.80 0.06 88.14 4.08 0.03 20.31 5.36 0.04 11.19 

Table 3.  errors of scenarios with different observation models (Obs.). 

 Obs1 Obs2 Obs3 Obs4 Obs5 

Test level v k TT v k TT v k TT v k TT v k TT 

1 48.61 16.76 3.86 51.28 11.21 1.82 193.35 31.24 22.76 41.45 30.61 4.61 36.62 28.59 3.85 

2 50.83 16.14 3.47 53.96 20.83 2.55 232.65 34.68 26.12 43.95 28.55 5.03 40.90 28.29 3.61 

3 101.76 26.82 12.97 153.58 18.83 4.39 288.24 37.63 29.63 56.56 30.19 12.71 79.19 17.81 3.69 

Table 4. Performance of the Lagrangian-space traffic state estimation with noise in observation and biased model inputs. Noise in Observations 
(Obs. a~b) : noise power 15~20 dBW. Noise in boundary conditions (Bnd. a~b): noise power 10~15 dBW. Noise in fundamental diagram: FD.a: 

,  and ; FD.b: ,  and . 

 Obs1 Obs2 Obs3 Obs4 Obs5 

Scenarios v k TT v k TT v k TT v k TT v k TT 

Benchmark 3.72 0.02 3.41 3.87 0.03 6.00 7.77 0.06 79.33 3.64 0.03 6.11 3.41 0.03 8.31 

Obs. a 4.03 0.03 6.75 3.99 0.03 7.99 7.33 0.05 70.22 3.82 0.03 8.09 3.56 0.03 10.28 

Obs. b 3.91 0.02 3.60 3.91 0.03 6.25 7.52 0.05 74.28 3.70 0.03 5.57 3.47 0.03 7.88 

Bnd. a 3.72 0.02 3.14 3.86 0.03 5.96 7.87 0.06 79.75 3.62 0.03 4.61 3.47 0.03 8.14 

Bnd. b 3.72 0.02 3.14 3.82 0.03 5.60 7.90 0.06 80.25 3.62 0.03 4.61 3.46 0.03 8.03 

FD. a 7.08 0.05 8.12 10.00 0.06 68.42 11.38 0.07 111.09 6.59 0.05 8.20 8.91 0.06 66.53 

FD. b 4.65 0.03 5.07 6.36 0.04 33.39 9.46 0.06 96.92 4.15 0.03 5.28 5.53 0.04 31.87 

Table 4 presents the results for the sensitivity study regarding noisy model input and observation input. The 
benchmark is based on the  error values of scenarios with testing level two from Table 2. Note that for 
simplicity, the  errors are not presented here but they can demonstrate similar conclusion. Three test 
categories with two testing variants are identified.  

The result indicates that state estimation with noisy observations (both from loop detectors and probe vehicles) 
and inaccurate initial boundary condition can still provide adequately good estimates. The error indications in two 
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cases are of the same magnitude. This suggests that the influence of the noise can be eliminated in the filtering 
procedure by appropriately defining error levels for the system model and observation data. 

The performance of the state estimation is unsatisfied with biased FD parameters. These parameters are used 
directly in the process model, and they also indirectly influence the observation model since the current observation 
depends on the state estimates from the previous (space or platoon) step. Therefore, the performance of the state 
estimation is quite sensitive to the quality of these relations. With biased model input, it is also noticed that the 
estimation with (both exclusive and inclusive) loop-flow observations could provide relatively stable estimation 
results compared with the estimation with speed observations. For operational purposes, observation model 4 might 
be a more robust solution to implement. In summary, data assimilation techniques can correct random errors 
(Gaussian white noise) but are sensitivity to biased inputs. 

4.2.  Qualitative analysis 

In the current state estimation framework, the process model evolves state by state, with only one expression to 
consider all traffic conditions. There involves no complex calculation of the process model in the data-assimilation 
(correction) step. For instance, there is only one observation for each state correction, resulting in scalar matrix 
inverse operation and multiplication (see equations (12)-(14)), which is not the case using a space-state form of a 
system model. This entitles an efficient procedure of data assimilation.  

Speed (or flow/density) contour plots can provide intuitive impression of the estimation performance. In all the 
scenarios (with different observations), the current state estimation approach succeeds to capture the typical traffic 
patterns (shockwave propagation) presented in the reference case (see Fig. 3). The starting and dissolving time of 
congestion from estimation are comparable to the ground truth. Furthermore, these plots can demonstrate the 
improvement of performance by observation data combination (Sce4 and Sce5 compared to Sce1, Sce2 and Sce3). 

The travel time is an output that can be easily calculated from mesoscopic results. Fig. 4 presents travel time 
along the corridor (at different locations) in the scenarios with observation model 5 under three testing levels. The 
results also indicate travel time estimates can approximate the ground truth values. This is another advantage of the 
current estimation framework compared to the formulation in other coordinate systems. Travel time estimates 
require no intermediate transformation from system state variables (e.g., from speed or density in Eulerian or 
Lagrangian counterparts). 

In summary, the proposed formulation of traffic state estimation can deliver adequately good results. The process 
model provides a time-efficient formulation at the prediction step; and the observation model well fits data 
measurements into the correction step.  

  
Fig. 3. Speed contour plots of scenarios with five different 
observation models 

Fig. 4. Travel time estimation in the scenario with observation model 5 
under three testing levels. 

5. Conclusion and further research 

This paper proposes a new mesoscopic traffic state estimation framework using a variational formulation of the 
LWR model in Lagrangian – space coordinates. The experimental study has demonstrated the feasibility of the 
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proposed framework. As a fundamental and informative indicator in transportation, travel time can be directly 
derived from the estimation framework. The proposed observation models have been tested and validated for TSE. 
Observation model 1 provides satisfactory results because the flow observation allows for the modelling of the 
demand-supply along link boundaries. Observation model 4 outperforms all the other models since it can 
additionally incorporate the benefits from FCD data and offer stable results when mode input contains calibration 
errors.  

There are several future research directions: (i) The current framework applies a continuous lattice 
implementation, alternatively the selection of spatial cell grid can be dependent on locations of interest and available 
observation positions to further increase computational efficiency. To be specific, in this paper we apply a grid 

, with  and . The first dimension   provides individual representation of vehicle, 
which is convenient for individual travel time estimation or for associating a DTA model to the LWR model (each 
vehicle follows its own route). The second dimension of the grid is . It is not necessary to divide the 
network into such small cells (that corresponds to the lower bound imposed by the CFL condition). According to the 
observation model, the necessary condition to be able to assimilate loop data is to have an inter-cell boundary at each 
loop location. Cell length could be increased without changing the results of the model. It can be convenient to 
choose a cell size  that corresponds to the distance between two consecutive loops. By doing this we can 
significantly improve the calculation time of the model while keeping the same results. This advantage has been 
discussed in Section 2.5 and the related validation remains as future work. (ii) The current framework only works for 
a homogeneous road stretch; further research may consider network discontinuity to extend the TSE framework at a 
network level. (iii) Future work is needed to include empirical dataset to test the performance of the method in 
reality. 

References 

Herrera, J.C. Bayen, A.M., 2010. Incorporation of Lagrangian measurements in freeway traffic state estimation. Transportation Research Part B: 
Methodological 44 (4), 460-481. 

Wang, Y. Papageorgiou, M., 2005. Real-time freeway traffic state estimation based on extended Kalman filter: A general approach. Transportation 
Research Part B: Methodological 39 (2), 141-167. 

Ngoduy, D., 2008. Applicable filtering framework for online multiclass freeway network estimation. Physica A: Statistical Mechanics and its 
Applications 387 (2/3), 599-616. 

Work, D., Tossavainen, O.-P., Blandin, S., Bayen, A., Iwuchukwu, T. Tracton, K., 2008. An ensemble Kalman filtering approach to highway 
traffic estimation using GPS enabled mobile devices. Proceedings of the 47th IEEE Conference on Decision and Control, Cancun, Mexico, 
2141-2147. 

Laval, J.A. Leclercq, L., 2013. The Hamilton-Jacobi partial differential equation and the three representations of traffic flow. Transportation 
Research Part B: Methodological 52, 17-30. 

Leclercq, L., Laval, J. Chevallier, E., 2007. The Lagrangian coordinates and what it means for first order traffic flow models. Proceedings of the 
17th International Symposium on Transportation and Traffic Theory, London, 735-753. 

Yuan, Y., Van Lint, J.W.C., Wilson, R.E., Van Wageningen-Kessels, F. Hoogendoorn, S.P., 2012. Real-Time Lagrangian Traffic State Estimator 
for Freeways. IEEE Transactions on Intelligent Transportation Systems 13 (1), 59-70. 

Yang, H., Jin, P.J., Ran, B. Yang, D., 2015. Freeway traffic state estimation based on the vehicle (lagrangian)-space traffic flow model: A 
Lagrangian Kalman filter approach. Proceedings of the Transportation Research Board 94th Annual meeting, Washintong, D.C. 

Deng, W., Lei, H. Zhou, X., 2013. Traffic state estimation and uncertainty quantification based on heterogeneous data sources: A three detector 
approach. Transportation Research Part B: Methodological 57, 132-157. 

Newell, G., 1993. A simplified theory of kinematic waves in highway traffic, Part I: General theory. Transportation Research Part B: 
Methodological 27B (4), 281-287. 

Daganzo, C.F., 2005. A variational formulation of kinematic waves: basic theory and complex boundary conditions. Transportation Research Part 
B: Methodological 39 (2), 187-196. 

Leclercq, L., 2007. Hybrid approaches to the solutions of the "Lighthill-Whitham-Richards" model. Transportation Research Part B: 
Methodological 41, 701-709. 

Kalman, R.E., 1960. A new approach to linear filtering and prediction problems. Journal of Basic Engineering 82 (1), 35-45. 
LeVeque, R.J., 1992. Numerical Methods for Conservation Laws. Basel : Boston : Berlin, Birkhäuser Basel. 
Edie, L., 1965. Discussion of traffic stream measurements and definitions. Proceedings of the 2nd International Symposium on Theory of Traffic 

Flow, Paris, France, 139–154. 
 
 


