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a b s t r a c t

Three new cut sets are introduced from the view points of neighborhood and Q -
neighborhood in fuzzy topology and their properties are discussed. By the use of these
cut sets, new decomposition theorems, new representation theorems, new extension
principles and new fuzzy linear mappings are obtained. Then inner project of fuzzy
relations, generalized extension principle and new composition rule of fuzzy relations are
given. In the end, we present axiomatic descriptions for different cut sets and show the
three most intrinsic properties for each cut set.
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1. Introduction

Let X be a set and F (X) = {A|A : X → [0, 1] is a mapping}. For A ∈ F (X) and λ ∈ [0, 1], Aλ = {x|x ∈ X, A(x) ≥ λ} and
Aλ = {x|x ∈ X, A(x) > λ} are called λ-cut set and λ-strong cut set of fuzzy set A respectively [1]. The concept of cut sets
plays an important role in fuzzy topology [2], fuzzy algebra [3,4], fuzzy measure [5–7] and fuzzy reasoning [8,9]. In fuzzy
topology, a fuzzy point xλ is said to be contained in a fuzzy set A or to belong to A, denoted by xλ ∈ A, iff A(x) ≥ λ. From
the point of neighborhood, λ-cut set Aλ of A satisfies: Aλ = {x|x ∈ X, xλ ∈ A}. Prof. Luo has even introduced the concept of
strong neighborhood [10]. According to his view point, a fuzzy point xλ (0 < λ < 1) is said to strongly belong to A, denoted
by xλ∈A, iff A(x) > λ. λ-strong cut set Aλ of A satisfies: Aλ = {x|x ∈ X, xλ∈A}.
It is well known that Q -neighborhood plays an important role in fuzzy topology. According to [11], a fuzzy point xλ is

said to be (strong) quasi-coincident with A, denoted by xλ∈qA, iff λ+ A(x) > λ. Thus, a fuzzy point xλ and a fuzzy set A have
the following relations:
(1) xλ belongs to A, denoted by xλ ∈ A, iff A(x) ≥ λ;
xλ strongly belongs to A, denoted by xλ∈A, iff A(x) > λ;
(2) xλ is strong quasi-coincident with A, denoted by xλ∈qA, iff λ+ A(x) > 1;
xλ is quasi-coincident with A, denoted by xλ ∈q A, iff λ+ A(x) ≥ 1;
(3) xλ does not strongly belong to A, denoted by xλ∈A, iff A(x) ≤ λ;
xλ does not belong to A, denoted by xλ∈A, iff A(x) < λ;
(4) xλ is not strong quasi-coincidentwith A, denoted by xλ ∈q A, iffλ+A(x) ≤ 1; xλ is not quasi-coincidentwith A, denoted

by xλ∈qA, iff λ+ A(x) < 1;
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Based on the relations as above, we can define three new kinds of cut sets of fuzzy sets A.
(i) Aλ = {x|x ∈ X, xλ ∈ A} and Aλ = {x|x ∈ X, xλ∈A} are called λ-upper cut set and λ-strong upper cut set of fuzzy set A

respectively.
(ii) Aλ = {x|x ∈ X, xλ∈A} = {x|x ∈ X, A(x) ≤ λ} and Aλ = {x|x ∈ X, xλ∈A} = {x|x ∈ X, A(x) < λ} are called λ-lower cut

set and λ-strong lower cut set of fuzzy set A respectively.
(iii) A[λ] = {x|x ∈ X, xλ ∈q A} = {x|x ∈ X, λ + A(x) ≥ 1} and A[λ] = {x|x ∈ X, xλ∈qA} = {x|x ∈ X, λ + A(x) > 1} are

called λ-lower Q -cut set and λ-strong lower Q -cut set of fuzzy set A respectively.
(iv) A[λ] = {x|x ∈ X, xλ ∈q A} = {x|x ∈ X, λ + A(x) ≤ 1} and A[λ] = {x|x ∈ X, xλ∈qA} = {x|x ∈ X, λ + A(x) < 1} are

called λ-upper Q -cut set and λ-strong upper Q -cut set of fuzzy set A respectively.
In this paper,we shall discuss some properties of these cut sets in Section 2, and give new decomposition theorems,

new representation theorems and new extension principles (in Sections 3–5 respectively). In Section 6, we shall explain
extension principles by using theories of category. New fuzzy linear mappings are obtained in Section 7. In Section 8, we
shall give the definition of inner project of fuzzy relation, generalized extension principle and new composition rule of fuzzy
relations. In Section 9, we present axiomatic descriptions for different cut sets and show the three most intrinsic properties
for each cut set.

2. Properties of cut set

Let A, At(t ∈ T ), B ∈ F (X) = {C |C : X → [0, 1] is a mapping}, λ, λ1, λ2, αt ∈ I = [0, 1], (t ∈ T ) and
a =

∨
t∈T αt , b =

∧
t∈T αt . Then the following properties are clear.

Property 2.1. (1) (A
⋃
B)λ = Aλ

⋃
Bλ, (A

⋃
B)λ = Aλ

⋃
Bλ, (A

⋂
B)λ = Aλ

⋂
Bλ, (A

⋂
B)λ = Aλ

⋂
Bλ;

(2) λ1 < λ2 ⇒ Aλ1 ⊇ Aλ2 , Aλ1 ⊇ Aλ2 , Aλ1 ⊇ Aλ1 , Aλ1 ⊇ Aλ2;
(3) (

⋃
t∈T A

t)λ ⊇
⋃
t∈T A

t
λ, (
⋃
t∈T A

t)λ =
⋃
t∈T A

t
λ, (
⋂
t∈T A

t)λ =
⋂
t∈T A

t
λ, (
⋂
t∈T A

t)λ ⊆
⋂
t∈T A

t
λ;

(4) (Ac)λ = (A1−λ)c, (Ac)λ = (A1−λ)c;
(5) Aa =

⋂
t∈T Aαt , Ab ⊇

⋃
t∈T Aαt , Aa ⊆

⋂
t∈T Aαt , Ab =

⋃
t∈T Aαt .

Property 2.2. (1) (A
⋃
B)λ = Aλ

⋂
Bλ, (A

⋃
B)λ = Aλ

⋂
Bλ, (A

⋂
B)λ = Aλ

⋃
Bλ, (A

⋂
B)λ = Aλ

⋃
Bλ;

(2) λ1 < λ2 ⇒ Aλ1 ⊆ Aλ2 , Aλ1 ⊆ Aλ2 , Aλ1 ⊇ Aλ1 , Aλ1 ⊆ Aλ2 ;
(3) (

⋃
t∈T At)

λ
=
⋂
t∈T A

λ
t , (
⋃
t∈T At)

λ
⊆
⋂
t∈T A

λ
t , (
⋂
t∈T At)

λ
⊇
⋃
t∈T A

λ
t , (
⋂
t∈T At)

λ
=
⋃
t∈T A

λ
t ;

(4) (Ac)λ = (A1−λ)c, (Ac)λ = (A1−λ)c;
(5) Aa ⊇

⋃
t∈T A

αt , Ab =
⋂
t∈T A

αt , Aa =
⋃
t∈T A

αt , Ab ⊆
⋂
t∈T A

αt .

Property 2.3. (1) (A
⋃
B)[λ] = A[λ]

⋃
B[λ], (A

⋃
B)[λ] = A[λ]

⋃
B[λ], (A

⋂
B)[λ] = A[λ]

⋂
B[λ], (A

⋂
B)[λ] = A[λ]

⋂
B[λ];

(2) λ1 < λ2 ⇒ A[λ1] ⊆ A[λ2], A[λ1] ⊆ A[λ2], A[λ1] ⊆ A[λ2], A[λ1] ⊆ A[λ2];
(3) (

⋃
t∈T A

t)[λ] ⊇
⋃
t∈T A

t
[λ], (

⋃
t∈T A

t)[λ] =
⋃
t∈T A

t
[λ], (

⋂
t∈T A

t)[λ] =
⋂
t∈T A

t
[λ], (

⋂
t∈T A

t)[λ] ⊆
⋂
t∈T A

t
[λ];

(4) (Ac)[λ] = (A[1−λ])c, (Ac)[λ] = (A[1−λ])c;
(5) A[a] ⊇

⋃
t∈T A[αt ], A[b] =

⋂
t∈T A[αt ], A[a] =

⋃
t∈T A[αt ], A[b] ⊆

⋂
t∈T A[αt ].

Property 2.4. (1) (A
⋃
B)[λ] = A[λ]

⋂
B[λ], (A

⋃
B)[λ] = A[λ]

⋂
B[λ], (A

⋂
B)[λ] = A[λ]

⋃
B[λ], (A

⋂
B)[λ] = A[λ]

⋃
B[λ];

(2) λ1 < λ2 ⇒ A[λ1] ⊇ A[λ2], A[λ1] ⊇ A[λ2], A[λ1] ⊇ A[λ1], A[λ1] ⊇ A[λ2];
(3) (

⋃
t∈T At)

[λ]
=
⋂
t∈T A

[λ]
t , (

⋃
t∈T At)

[λ]
⊆
⋂
t∈T A

[λ]

t , (
⋂
t∈T At)

[λ]
⊇
⋃
t∈T A

[λ]
t , (

⋂
t∈T At)

[λ]
=
⋃
t∈T A

[λ]

t ,

(4) (Ac)[λ] = (A[1−λ])c, (Ac)[λ] = (A[1−λ])c;
(5) A[a] =

⋂
t∈T A

[αt ], A[a] ⊆
⋂
t∈T A

[αt ], A[b] ⊇
⋃
t∈T A

[αt ], A[b] =
⋃
t∈T A

[αt ].

3. Decomposition theorems

Let P (X) be power set of set X and I = [0, 1]. For λ ∈ I and B ∈ P (X), we define λB, λ · B, λ ◦ B, λ � B as fuzzy subsets
of X respectively and

(λB)(x) =
{
λ, if x ∈ B
0, if x∈B , (λ · B)(x) =

{
λ, if x ∈ B
1, if x∈B

(λ ◦ B)(x) =
{
1, if x ∈ B
λ, if x∈B , (λ � B)(x) =

{
0, if x ∈ B
λ, if x∈B.

Clearly, we have the following decomposition theorem:

Theorem 3.1. (1) A =
⋃
λ∈I λAλ, A =

⋂
λ∈I λ ◦ Aλ, A

c
=
⋂
λ∈I λ

c
· Aλ, Ac =

⋃
λ∈I λ

c
� Aλ;

(2) A =
⋃
λ∈I λAλ, A =

⋂
λ∈I λ ◦ Aλ, A

c
=
⋂
λ∈I λ

c
· Aλ, Ac =

⋃
λ∈I λ

c
� Aλ;
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(3) Let H : I → P (X) satisfying Aλ ⊆ H(λ) ⊆ Aλ for any λ ∈ I . Then
(i) A =

⋃
λ∈I λH(λ), A =

⋂
λ∈I λ ◦ H(λ), A

c
=
⋂
λ∈I λ

c
· H(λ), Ac =

⋃
λ∈I λ

c
� H(λ);

(ii) λ1 < λ2 ⇒ H(λ1) ⊇ H(λ2);
(iii) Aλ =

⋂
α<λ H(α), Aλ =

⋃
α>λ H(α).

Theorem 3.2. (1) A =
⋂
λ∈I λ · A

λ, A =
⋃
λ∈I λ � A

λ, Ac =
⋃
λ∈I λ

cAλ, Ac =
⋂
λ∈I λ

c
◦ Aλ;

(2) A =
⋂
λ∈I λ · A

λ, A =
⋃
λ∈I λ � A

λ, Ac =
⋃
λ∈I λ

cAλ, Ac =
⋂
λ∈I λ

c
◦ Aλ;

(3) Let H : I → P (X) satisfying Aλ ⊆ H(λ) ⊆ Aλ for any λ ∈ I . Then
(i) A =

⋂
λ∈I λ · H(λ), A =

⋃
λ∈I λ � H(λ), A

c
=
⋃
λ∈I λ

cH(λ), Ac =
⋂
λ∈I λ

c
◦ H(λ);

(ii) λ1 < λ2 ⇒ H(λ1) ⊆ H(λ2);
(iii) Aλ =

⋂
α>λ H(α), A

λ
=
⋃
α<λ H(α).

Theorem 3.3. (1) A =
⋃
λ∈I λ

cA[λ], A =
⋂
λ∈I λ

c
◦ A[λ], Ac =

⋂
λ∈I λ · A[λ], A

c
=
⋃
λ∈I λ � A[λ];

(2) A =
⋃
λ∈I λ

cA[λ], A =
⋂
λ∈I λ

c
◦ A[λ], Ac =

⋂
λ∈I λ · A[λ], A

c
=
⋃
λ∈I λ � A[λ];

(3) Let H : I → P (X) satisfying A[λ] ⊆ H(λ) ⊆ A[λ] for any λ ∈ I . Then
(i) A =

⋃
λ∈I λ

cH(λ), A =
⋂
λ∈I λ

c
◦ H(λ), Ac =

⋂
λ∈I λ · H(λ), A

c
=
⋃
λ∈I λ � H(λ);

(ii) λ1 < λ2 ⇒ H(λ1) ⊆ H(λ2);
(iii) A[λ] =

⋂
α>λ H(α), A[λ] =

⋃
α<λ H(α).

Theorem 3.4. (1) A =
⋂
λ∈I λ

c
· A[λ], A =

⋃
λ∈I λ

c
� A[λ], Ac =

⋃
λ∈I λA

[λ], Ac =
⋂
λ∈I λ ◦ A

[λ]
;

(2) A =
⋂
λ∈I λ

c
· A[λ], A =

⋃
λ∈I λ

c
� A[λ], Ac =

⋃
λ∈I λA

[λ], Ac =
⋂
λ∈I λ ◦ A

[λ]
;

(3) Let H : I → P (X) satisfying A[λ] ⊆ H(λ) ⊆ A[λ] for any λ ∈ I . Then
(i) A =

⋂
λ∈I λ

c
· H(λ), A =

⋃
λ∈I λ

c
� H(λ), Ac =

⋃
λ∈I λH(λ), A

c
=
⋂
λ∈I λ ◦ H(λ);

(ii) λ1 < λ2 ⇒ H(λ1) ⊇ H(λ2);
(iii) A[λ] =

⋂
α<λ H(α), A

[λ]
=
⋃
α>λ H(α).

4. Representation theorems

Definition 4.1 ([10,12]). Let mapping H : I → P (X) satisfy: λ1 < λ2 ⇒ H(λ1) ⊇ H(λ2). Then H is called a set embedding
over X .
For example, H(λ) = Aλ (H(λ) = Aλ,H(λ) = A[λ],H(λ) = A[λ] respectively) is a set embedding over X .

LetU(X) be a set of all set embedding over X . InU(X), we define:⋃
γ∈Γ

Hγ :

(⋃
γ∈Γ

Hγ

)
(λ) =

⋃
γ∈Γ

Hγ (λ),

⋂
γ∈Γ

Hγ :

(⋂
γ∈Γ

Hγ

)
(λ) =

⋂
γ∈Γ

Hγ (λ),

Hc : Hc(λ) = (H(1− λ))c .

Then (U(X),
⋃
,
⋂
, c) is a De Morgan lattice.

Let H ∈ U(X) and T1(H) =
⋃
λ∈I λH(λ), T2(H) =

⋂
λ∈I λ ◦ H(λ), T3(H) =

⋂
λ∈I λ

c
· H(λ), T4(H) =

⋃
λ∈I λ

c
� H(λ).

Theorem 4.1. From above Ti : U(X)→ F (X),H 7→ Ti(H) (i = 1, 2), we have

(1) (Ti(H))α ⊆ H(α) ⊆ (Ti(H))α for any α ∈ I;
(2) Ti(

⋃
γ∈Γ Hγ ) =

⋃
γ∈Γ Ti(Hγ ), Ti(

⋂
γ∈Γ Hγ ) =

⋂
γ∈Γ Ti(Hγ ), Ti(H

c) = (Ti(H))c .

Proof. When i = 1, please see [10].
When i = 2, T2(H) =

⋂
λ∈I λ ◦ H(λ), then T2(H)(x) =

∧
{λ|x∈H(λ)} for any x ∈ X . Then

x ∈ H(α) ⇒ x ∈ H(λ) for any λ ≤ α ⇒ (x∈H(λ) ⇒ λ > α) ⇒ T2(H)(x) ≥ α ⇒ x ∈ (T2(H))α . It follows that
H(α) ⊆ (T2(H))α .
On the other hand, x∈H(α)⇒ T2(H)(x) =

∧
{λ|x∈H(λ)} ≤ α ⇒ x∈ (T2(H))α . It follows that (T2(H))α ⊆ H(α).

Therefore (T2(H))α ⊆ H(α) ⊆ (T2(H))α .
(2) Please see [10]. �

Theorem 4.2. For above Ti : U(X)→ F (X),H 7→ Ti(H) (i = 3, 4), we have

(1) (Ti(H))[α] ⊆ H(α) ⊆ (Ti(H))[α] for any α ∈ I;
(2) Ti(

⋃
γ∈Γ Hγ ) =

⋂
γ∈Γ Ti(Hγ ), Ti(

⋂
γ∈Γ Hγ ) =

⋃
γ∈Γ Ti(Hγ ), Ti(H

c) = (Ti(H))c .
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Proof. When i = 3, T3(H) =
⋂
λ∈I λ

c
· H(λ), then T3(H)(x) =

∧
{λc |x ∈ H(λ)} for any x ∈ X . Then

(1) x ∈ H(α)⇒ T3(H)(x) ≤ αc = 1− α ⇒ α + T3(H)(x) ≤ 1⇒ x ∈ (T3(H))[α]. It follows that H(α) ⊆ (T3(H))[α] .
On the other hand, x∈H(α) ⇒ x∈H(λ) for any λ ≥ α ⇒ (x ∈ H(λ) ⇒ λ < α) ⇒ (x ∈ H(λ) ⇒ λc > αc) ⇒

T3(H)(x) ≥ αc ⇒ α + T3(H)(x) ≥ 1⇒ x∈ (T3(H))[α]. It follows that (T3(H))[α] ⊆ H(α).
Therefore (T3(H))[α] ⊆ H(α) ⊆ (T3(H))[α].

(2) By
(
T3(
⋃
γ∈Γ Hγ )

)[λ]
=
⋃
α>λ(

⋃
γ∈Γ Hγ )(α) =

⋃
α>λ

⋃
γ∈Γ Hγ (α) =

⋃
γ∈Γ

⋃
α>λ Hγ (α) =

⋃
γ∈Γ

(
T3(Hγ )

)[λ]
=(⋂

γ∈Γ T3(Hγ )
)[λ]
, we have T3(

⋃
γ∈Γ Hγ ) =

⋂
γ∈Γ T3(Hγ ).

By
(
T3(
⋂
γ∈Γ Hγ )

)[λ]
=
⋂
α<λ(

⋂
γ∈Γ Hγ )(α) =

⋂
α<λ

⋂
γ∈Γ Hγ (α) =

⋂
γ∈Γ

⋂
α<λ Hγ (α) =

⋂
γ∈Γ

(
T3(Hγ )

)[λ]
=(⋃

γ∈Γ T3(Hγ )
)[λ]
, we have T3(

⋂
γ∈Γ Hγ ) =

⋃
γ∈Γ T3(Hγ ).

By (T3(Hc))[λ] =
⋃
α>λ H

c(α) =
⋃
α>λ(H(1−α))

c
=
(⋂

1−α<1−λ H(1− α)
)c
=
(
(T3(H))[1−λ]

)c
= (T3(H)c)[λ], we have

T3(Hc) = T3(H)c .
The proof of i = 4 is similar. �

Definition 4.2. Let mapping H : I → P (X) satisfy: λ1 < λ2 ⇒ H(λ1) ⊆ H(λ2). Then H is called an order set embedding
over X .
For example, H(λ) = Aλ (H(λ) = Aλ,H(λ) = A[λ],H(λ) = A[λ] respectively) is an order set embedding over X .
Let V(X) be a set of all order set embedding over X . In V(X), we define:⋃

γ∈Γ

Hγ :

(⋃
γ∈Γ

Hγ

)
(λ) =

⋂
γ∈Γ

Hγ (λ),

⋂
γ∈Γ

Hγ :

(⋂
γ∈Γ

Hγ

)
(λ) =

⋃
γ∈Γ

Hγ (λ),

Hc : Hc(λ) = (H(1− λ))c .

Then (V(X),
⋃
,
⋂
, c) is a De Morgan lattice.

Let H ∈ V(X) and T5(H) =
⋂
λ∈I λ · H(λ), T6(H) =

⋃
λ∈I λ � H(λ), T7(H) =

⋃
λ∈I λ

cH(λ), T8(H) =
⋂
λ∈I λ

c
◦ H(λ).

Theorem 4.3. From above Ti : V(X)→ F (X),H 7→ Ti(H) (i = 5, 6), we have

(1) (Ti(H))α ⊆ H(α) ⊆ (Ti(H))α for any α ∈ I;
(2) Ti(

⋃
γ∈Γ Hγ ) =

⋃
γ∈Γ Ti(Hγ ), Ti(

⋂
γ∈Γ Hγ ) =

⋂
γ∈Γ Ti(Hγ ), Ti(H

c) = (Ti(H))c .

Proof. When i = 5, T5(H) =
⋂
λ∈I λ · H(λ), then T5(H)(x) =

∧
{λ|x ∈ H(λ)} for any x ∈ X . Then

(1) x∈H(α) ⇒ x∈H(λ) for any λ ≤ α ⇒ (x ∈ H(λ) ⇒ λ > α) ⇒ T5(H)(x) ≥ α ⇒ x∈ (T5(H))α . It follows that
H(α) ⊇ (T5(H))α .
On the other hand, x ∈ H(α)⇒ T5(H)(x) =

∧
{λ|x ∈ H(λ)} ≤ α ⇒ x ∈ (T5(H))α . It follows that (T5(H))α ⊇ H(α).

Therefore (T5(H))α ⊆ H(α) ⊆ (T5(H))α .

(2) By
(
T5(
⋃
γ∈Γ Hγ )

)λ
=
⋂
α>λ(

⋃
γ∈Γ Hγ )(α) =

⋂
α>λ

⋂
γ∈Γ Hγ (α) =

⋂
γ∈Γ

⋂
α>λ Hγ (α) =

⋂
γ∈Γ

(
T5(Hγ )

)λ
=(⋃

γ∈Γ T5(Hγ )
)λ
, we have T5(

⋃
γ∈Γ Hγ ) =

⋃
γ∈Γ T5(Hγ ).

By
(
T5(
⋂
γ∈Γ Hγ )

)λ
=
⋃
α<λ(

⋂
γ∈Γ Hγ )(α) =

⋃
α<λ

⋃
γ∈Γ Hγ (α) =

⋃
γ∈Γ

⋃
α<λ Hγ (α) =

⋃
γ∈Γ

(
T5(Hγ )

)λ
=(⋂

γ∈Γ T5(Hγ )
)λ
, we have T5(

⋂
γ∈Γ Hγ ) =

⋂
γ∈Γ T5(Hγ ).

By (T5(Hc))λ =
⋃
α<λ H

c(α) =
⋃
α<λ (H(1− α))

c
=
(⋂

1−α>1−λ H(1− α)
)c
=
(
(T5(H))1−λ

)c
= (T5(H)c)λ, we have

T5(Hc) = T5(H)c .
The proof of i = 6 is similar. �

Theorem 4.4. Let Ti : V(X)→ F (X),H 7→ Ti(H) (i = 7, 8), we have

(1) (Ti(H))[α] ⊆ H(α) ⊆ (Ti(H))[α] for any α ∈ I;
(2) Ti(

⋃
γ∈Γ Hγ ) =

⋂
γ∈Γ Ti(Hγ ), Ti(

⋂
γ∈Γ Hγ ) =

⋃
γ∈Γ Ti(Hγ ), Ti(H

c) = (Ti(H))c .



X.-h. Yuan et al. / Computers and Mathematics with Applications 57 (2009) 691–701 695

Proof. When i = 7, T7(H) =
⋃
λ∈I λ

cH(λ), then T7(H)(x) =
∨
{λc |x ∈ H(λ)} for any x ∈ X . Then

(1) x ∈ H(α)⇒ T7(H)(x) ≥ αc = 1− α ⇒ α + T7(H)(x) ≥ 1⇒ x ∈ (T7(H))[α]. It follows that H(α) ⊆ (T7(H))[α] .
On the other hand, x∈H(α) ⇒ x∈H(λ) for any λ ≤ α ⇒ (x ∈ H(λ) ⇒ λ > α) ⇒ (x ∈ H(λ) ⇒ λc < αc) ⇒

T7(H)(x) ≤ αc ⇒ α + T7(H)(x) ≤ 1⇒ x∈ (T7(H))[α]. It follows that (T7(H))[α] ⊆ H(α).
Therefore (T7(H))[α] ⊆ H(α) ⊆ (T7(H))[α].

(2) By
(
T7(
⋃
γ∈Γ Hγ )

)
[λ]
=
⋂
α>λ(

⋃
γ∈Γ Hγ )(α) =

⋂
α>λ

⋂
γ∈Γ Hγ (α) =

⋂
γ∈Γ

⋂
α>λ Hγ (α) =

⋂
γ∈Γ

(
T7(Hγ )

)
[λ]
=(⋂

γ∈Γ T7(Hγ )
)
[λ]
, we have T7(

⋃
γ∈Γ Hγ ) =

⋂
γ∈Γ T7(Hγ ).

By
(
T7(
⋂
γ∈Γ Hγ )

)
[λ]
=
⋃
α<λ(

⋂
γ∈Γ Hγ )(α) =

⋃
α<λ

⋃
γ∈Γ Hγ (α) =

⋃
γ∈Γ

⋃
α<λ Hγ (α) =

⋃
γ∈Γ

(
T7(Hγ )

)
[λ]
=(⋃

γ∈Γ T7(Hγ )
)
[λ]
, we have T7(

⋂
γ∈Γ Hγ ) =

⋃
γ∈Γ T7(Hγ ).

By (T7(Hc))[λ] =
⋃
α<λ H

c(α) =
⋃
α<λ (H(1− α))

c
=
(⋂

1−α>1−λ H(1− α)
)c
=
(
(T7(H))[1−λ]

)c
= (T7(H)c)[λ], we

have T7(Hc) = T7(H)c .
The proof of i = 8 is similar. �

5. Extension principles

5.1. Extension principles of a single variable

Let f : X → Y be a mapping. Then f can be extended as four mappings from P (X) to P (Y ):

fi : P (X)→ P (Y ), A 7→ fi(A) (i = 1, 2, 3, 4)

where

f1(A) = {f (a)|a ∈ A} , f (A) (1)

f2(A) = {f (a)|a∈A} , f (Ac) (2)

f3(A) = (f (A))c (3)

f4(A) = (f (Ac))c . (4)

Theorem 5.1 ([10]). Let f : X → Y be a mapping. If we put

f1 : F (X)→ F (Y ), A 7→ f1(A) ,
⋃
λ∈I

λf (Aλ)

then f1(A)(y) =
∨
f (x)=y A(x) for any y ∈ Y .

f1(A) is denoted as f (A), which is the extension principle of Zadeh [13] and is the extension of (1).
Clearly, we have the following extension principles:

Theorem 5.2. Let f : X → Y be a mapping. If we write

f2 : F (X)→ F (Y ), A 7→ f2(A) ,
⋃
λ∈I

λf (A[λ])

then f2(A)(y) =
∨
f (x)=y A

c(x) for any y ∈ Y .
(Denoted by f2(A) = fc(A), which is the extension of (2)).

Theorem 5.3. Let f : X → Y be a mapping. If we write

f3 : F (X)→ F (Y ), A 7→ f3(A) ,
⋃
λ∈I

λ · f (A[λ])

then f3(A)(y) =
∧
f (x)=y A

c(x) for any y ∈ Y .
(Denoted by f3(A) = f c(A), which is the extension of (3)).

Theorem 5.4. Let f : X → Y be a mapping. If we write

f4 : F (X)→ F (Y ), A 7→ f4(A) ,
⋃
λ∈I

λ · f (Aλ)

then f4(A)(y) =
∧
f (x)=y A(x) for any y ∈ Y .

(Denoted by f4(A) = f cc (A), which is the extension of (4)).
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Fig. 1. Products of fuzzy sets.

5.2. Products of fuzzy sets

Definition 5.1. Let A ∈ F (X), B ∈ F (Y ).
(1) If (A× B)(x, y) = A(x) ∧ B(y),∀x ∈ X,∀y ∈ Y , then A× B is called inner product A and B.
(2) If (A⊗ B)(x, y) = A(x) ∨ B(y),∀x ∈ X,∀y ∈ Y , then A⊗ B is called outer product of A and B.
(3) If (A×c B)(x, y) = Ac(x) ∨ Bc(y),∀x ∈ X,∀y ∈ Y , then A×c B is called inner complementary product of A and B.
(4) If (A⊗c B)(x, y) = Ac(x) ∧ Bc(y),∀x ∈ X,∀y ∈ Y , then A⊗c B is called outer complementary product of A and B.

Remark 5.1. (1)A×B, A⊗B, A×c B andA⊗c B are fuzzy relations fromX toY . (2)WhenA andB are classical sets,A⊗B, A×c B
and A⊗c B can be explained by Fig. 1.

It is easy to prove the following result:

Theorem 5.5. (1) A×B =
⋃
λ∈I λ(Aλ×Bλ); (2) A⊗B =

⋂
λ∈I λ · (A

λ
×Bλ); (3) A×c B =

⋂
λ∈I λ · (A[λ]×B[λ]); (4) A⊗c B =⋃

λ∈I λ(A
[λ]
× B[λ]).

5.3. Extension principles of n-variables

Let X = X1 × X2 × · · · × Xn, Y = Y1 × Y2 × · · · × Ym, and f : X → Y be a mapping, then we have

Theorem 5.6. Let fi : F (X1)× F (X2)× · · · × F (Xn)→ F (Y ), where for Ai ∈ F (Xi)(1 6 i 6 n),
f1(A1, . . . , An) =

⋃
λ∈I λf ((A1)λ × · · · × (An)λ),

f2(A1, . . . , An) =
⋃
λ∈I λf

(
A[λ]1 × · · · × A

[λ]
n

)
,

f3(A1, . . . , An) =
⋂
λ∈I λ · f

(
Aλ1 × · · · × A

λ
n

)
,

f4(A1, . . . , An) =
⋂
λ∈I λ · f

(
(A1)[λ] × · · · × (An)[λ]

)
,

f5(A1, . . . , An) =
⋃
λ∈I λf ((A1)λ ⊗ · · · ⊗ (An)λ),

f6(A1, . . . , An) =
⋃
λ∈I λf

(
A[λ]1 ⊗ · · · ⊗ A

[λ]
n

)
,

f7(A1, . . . , An) =
⋂
λ∈I λ · f

(
Aλ1 ⊗ · · · ⊗ A

λ
n

)
,

f8(A1, . . . , An) =
⋂
λ∈I λ · f

(
(A1)[λ] ⊗ · · · ⊗ (An)[λ]

)
.

Then
f1(A1, . . . , An)(y) =

∨
f (x1,...,xn)=y

∧n
i=1 Ai(xi),

f2(A1, . . . , An)(y) =
∨
f (x1,...,xn)=y

∧n
i=1 A

c
i (xi),

f3(A1, . . . , An)(y) =
∧
f (x1,...,xn)=y

∨n
i=1 Ai(xi),

f4(A1, . . . , An)(y) =
∧
f (x1,...,xn)=y

∨n
i=1 A

c
i (xi),

f5(A1, . . . , An)(y) =
∨
f (x1,...,xn)=y

∨n
i=1 Ai(xi),

f6(A1, . . . , An)(y) =
∨
f (x1,...,xn)=y

∨n
i=1 A

c
i (xi),

f7(A1, . . . , An)(y) =
∧
f (x1,...,xn)=y

∧n
i=1 Ai(xi),

f8(A1, . . . , An)(y) =
∧
f (x1,...,xn)=y

∧n
i=1 A

c
i (xi).

Theorem 5.6 is called the extension principles of n-variable.

6. Explanation of extension principles based on category theory

In [14], Wang explained extension principle of Zadeh by using the category theory. In this section, we will explain other
extension principles by using the category theory.
Let FSeti (i = 1, 2, 3, 4) be a category, where its object is (X,F (X)), and X is a set, i.e. |FSeti| = {(X,F (X)) | X is a set};

an i-morphism from object (X,F (X)) to object (Y ,F (Y )) is a mapping fi : F (X) → F (Y ) and satisfies condition:
there exists a mapping f : X → Y such that f1(A) = f (A), f2(A) = fc(A), f3(A) = f c(A) and f4(A) = f cc (A), i.e.
Mori ((X,F (X)) , (Y ,F (Y ))) = {fi | fi is an i-morphism from (X,F (X)) to (Y ,F (Y ))}.
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i-Identity: identity from (X,F (X)) to (X,F (X)) is a mapping Idi : F (X)→ F (X) satisfying that Id1(A) = Id4(A) = A
and Id2(A) = Id3(A) = Ac .
i-Composition: For i = 1, (g1 M f1)(A) , g (f (A)) = (g ◦ f )(A), where g ◦ f is a composition of mappings f and g; for

i = 2, (g2 M f2)(A) = (g ◦ f )c(A), for i = 3, (g3 M f3)(A) = (g ◦ f )c(A), for i = 4, (g4 M f4)(A) = (g ◦ f )cc(A). Clearly, the
compositions defined as above satisfies associativity. Thus FSet i is a category (i = 1, 2, 3, 4).

Theorem 6.1. If Set is a category of classical sets, then category FSet i is an isomorphism with category Set (i = 1, 2, 3, 4).

Proof. Let i ∈ {1, 2, 3, 4} and

Fi : Set→ FSeti, X → (X,F (X)) , f → Fi(f ) = fi.

Then Fi is an isomorphism functor (i = 1, 2, 3, 4). Therefore category FSeti is an isomorphism with category Set (i =
1, 2, 3, 4). �

7. Fuzzy linear mappings

Definition 7.1. Let T : F (X)→ F (Y ), λr ∈ I and Ar ∈ F (X)(r ∈ Γ ).
(1) If T (

⋃
r∈Γ λrAr) =

⋃
r∈Γ λrT (Ar), then T is called a (

∨
,
∧
)-fuzzy linear mapping.

(2) If T (
⋂
r∈Γ λr ◦ Ar) =

⋂
r∈Γ λr ◦ T (Ar), then T is called a (

∧
,
∨
)-fuzzy linear mapping.

(3) If T (
⋃
r∈Γ λrAr) =

⋂
r∈Γ λ

c
r ◦ T (Ar), then T is called a (

∧
,
∨c
)-fuzzy linear mapping.

(4) If T (
⋂
r∈Γ λr ◦ Ar) =

⋃
r∈Γ λ

c
rT (Ar), then T is called a (

∨
,
∧c
)-fuzzy linear mapping.

Theorem 7.1. Let T : F (X)→ F (Y ) be a (
∧
,
∨
)-fuzzy linear mapping, then there is only a fuzzy relation RT such that

T (A)(y) , (A� R)(y) =
∧
x∈X

(
A(x)

∨
RT (x, y)

)
. (5)

Conversely, for any fuzzy relation R ∈ F (X × Y ), there is only a (
∧
,
∨
)-fuzzy linear mapping TR : F (X) → F (Y ) such that

TR(A) = A� R.

Proof. Let T be a (
∧
,
∨
)-fuzzy linear mapping and let

fT : X → F (Y ), x 7→ fT (x) , T
(
{x}c

)
.

If we put λx = A(x),∀x ∈ X , then

A =
⋂
x∈X

λx ◦ {x}c .

Let RT (x, y) = fT (x)(y),∀x ∈ X,∀y ∈ Y , then

T (A) = T

(⋂
x∈X

λx ◦ {x}c
)
=

⋂
x∈X

λx ◦ fT (x).

It follows that

T (A)(y) =
∧
x∈X

(
A(x)

∨
fT (x)(y)

)
=

∧
x∈X

(
A(x)

∨
RT (x, y)

)
= (A� RT )(y).

Let R be another fuzzy relation satisfying (5), then

RT (x′, y′) = T
(
{x′}c

)
(y′) =

∧
x∈X

(
{x′}c(x)

∨
R(x, y′)

)
= R(x′, y′), ∀(x′, y′) ∈ X × Y .

So R = RT , i.e. RT satisfying (5) is unique.
Conversely, let R ∈ F (X × Y ) and

TR : F (X)→ F (Y ), A 7→ TR(A) = A� R.

Then

TR

(⋂
r∈Γ

λr ◦ Ar

)
(y) =

∧
x∈X

((⋂
r∈Γ

λr ◦ Ar

)
(x)
∨
R(x, y)

)

=

∧
x∈X

(∧
r∈Γ

(
λr
∨
Ar(x)

∨
R(x, y)

))
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=

∧
r∈Γ

∧
x∈X

(
λr
∨
Ar(x)

∨
R(x, y)

)
=

∧
r∈Γ

(
λr
∨(∧

x∈X

(Ar(x)
∨
R(x, y))

))
=

⋂
r∈Γ

λr ◦ TR(Ar)(y).

Hence TR(
⋂
r∈Γ λr ◦ Ar) =

⋂
r∈Γ λr ◦ TR(Ar), i.e., TR is a (

∧
,
∨
)-fuzzy linear mapping. �

Similarly, we have

Theorem 7.2. If T is a (
∧
,
∨c)-fuzzy mapping, then there is only a fuzzy relation RT such that T (A)(y) , (Ac � RT )(y) =∧

x∈X

(
Ac(x)

∨
RT (x, y)

)
.

Conversely, for any fuzzy relation R ∈ F (X × Y ), there is only a (
∧
,
∨c
)-fuzzy linear mapping TR : F (X) → F (Y ) such

that TR(A) = Ac � R.

Theorem 7.3. If T is a (
∨
,
∧c)-fuzzy linear mapping, then there is only a fuzzy relation RT such that T (A)(y) , (Ac ◦ R)(y) =∨

x∈X

(
Ac(x)

∧
RT (x, y)

)
.

Conversely, for any fuzzy relation R ∈ F (X × Y ), there is only a (
∨
,
∧c)-fuzzy linear mapping TR : F (X) → F (Y ) such

that TR(A) = Ac ◦ R.

Remark 7.1. Let f : X → Y be a mapping, and Ti : F (X) → F (Y ) satisfy T1(A) = f (A), T2(A) = f cc (A), T3(A) = f
c(A)

and T4(A) = fc(A). Then T1, T2, T3 and T4 are (
∨
,
∧
)-, (

∧
,
∨
)−, (

∨
,
∧c
)−, (

∧
,
∨c
)-fuzzy linear respectively. Therefore

Definition 7.1 is a generalization of Extension Principles.

8. Generalized extension principle

8.1. Inner project of fuzzy relation

Definition 8.1. Let R ∈ F (X × Y ) and RX ∈ F (X) satisfying

(RX )(x) =
∧
y∈Y

R(x, y).

Then RX is called a inner project of R over X . If RX ∈ F (X) satisfies

(RX )(x) =
∨
y∈Y

R(x, y)

then RX is called a outer project of R over X .

In the same way, we can define RY and RY .
By the use of concepts of inner project and outer project, we can explain extension principle of a single variable as

following:

Theorem 8.1. If f : X → Y is a mapping, then

(1) f (A) =
(
(A× Y ) ∩ Rf

)
Y ,

(2) fc(A) =
(
(Ac × Y ) ∩ Rf

)
Y ,

(3) f c(A) =
(
(Ac × Y ) ∪ Rcf

)Y ,
(4) f cc (A) =

(
(A× Y ) ∪ Rcf

)Y ,
where A ∈ F (X), Rf = {(x, f (x)) | x ∈ X} , Rcf is complementary set of Rf in X × Y .

8.2. Generalized extension principle

Definition 8.2. Let f : X → F (Y ) be a fuzzy mapping. If we put

fλ(x) = (f (x))λ , Tfλ(Aλ) =
(
(Aλ × Y ) ∪ Rfλ

)Y
, ∀λ ∈ I,
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where Rfλ(x, y) = fλ(x)(y) and

Tf : F (X)→ F (Y ), Tf (A) =
⋂
λ∈I

λ ◦ Tfλ(Aλ),

then Tf is called a fuzzy inner mapping from X to Y induced by f .

Theorem 8.2. If f : X → F (Y ) is a fuzzy mapping, Rf (x, y) = f (x)(y) and Tf is a fuzzy inner mapping from X to Y induced by
f , then Tf (A) =

(
(A× Y ) ∪ Rf

)Y
,∀A ∈ F (X).

Proof. Tf (A)(y) =
∧
λ∈I

(
λ ∨ Tfλ(Aλ)(y)

)
=
∧
λ∈I

(
λ ∨

(∧
x∈X (Aλ(x) ∨ fλ(x)(y))

))
=
∧
λ∈I
∧
x∈X

(
λ
∨
Aλ(x)

∨
fλ(x)(y)

)
=∧

x∈X
∧
λ∈I

(
λ
∨
Aλ(x)

∨
fλ(x)(y)

)
.

We only need to prove that

∧
λ∈I

(λ ∨ Aλ(x) ∨ fλ(x)(y)) =

(∧
λ∈I

(λ ∨ Aλ(x))

)∨(∧
λ∈I

(λ ∨ fλ(x)(y))

)
. (6)

Assume that there is a α ∈ I such that∧
λ∈I

(λ ∨ Aλ(x) ∨ fλ(x)(y)) > α >

(∧
λ∈I

(λ ∨ Aλ(x))

)∨(∧
λ∈I

(λ ∨ fλ(x)(y))

)
.

Then
∧
λ∈I (λ ∨ Aλ(x)) < α and

∧
λ∈I (λ ∨ fλ(x)(y)) < α, so there exists λ1, λ2 ∈ I such that λ1 ∨ Aλ1(x) < α and

λ2 ∨ Aλ2(y) < α.
We let λ1 6 λ2, then it follows that λ2 ∨ Aλ2(x) ∨ fλ2(x)(y) < α from Aλ1 ⊇ Aλ2 , and consequently∧
λ∈I (λ ∨ Aλ(x) ∨ fλ(x)(y)) 6 α.
This is a contradiction. Therefore expression (6) holds. Thus

Tf (A)(y) =
∧
x∈X

((∧
λ∈I

(λ ∨ Aλ(x))

)
∨

(∧
λ∈I

(λ ∨ fλ(x)(y))

))
=

∧
x∈I

(A(x) ∨ f (x)(y)) =
∧
x∈X

(
A(x) ∨ Rf (x, y)

)
=
(
(A× Y ) ∪ Rf

)Y
. �

Definition 8.3. Let S ∈ F (X × Y ), R ∈ F (Y × X). Let

(S � R)(x, z) =
∧
y∈Y

(S(x, y) ∨ R(y, z)) , ∀(x, z) ∈ X × Z .

S � R is called the inner composition of S and R.

By the use of generalized extension principle, we can explain inner composition of fuzzy relation S and R as follows.

Theorem 8.3. Let f : Y → F (Z) be a fuzzy mapping. If

Tf : F (X × Y )→ F (X × Z)

S 7→ Tf (S) =
(
(S × Z) ∪ (X × Rf )

)X×Z
,

then Tf (S) = S � Rf .
The proof of Theorem 8.3 is obvious.

By the use of Theorem 8.3, inner composition of fuzzy relation S ∈ F (X × Y ) and R ∈ F (Y × Z) can be divided into the
following process.
(1) Extension: to make fuzzy sets of X × Y × Z : S × Z and X × R.
(2) Union: to make fuzzy sets of X × Y × Z : (S × Z) ∪ (X × R).
(3) Inner project: S � R = ((S × Z) ∪ (X × R))X×Z ∈ F (X × Z).

9. The axiomatic descriptions for different cut sets

From Properties 2.1–2.4, we have known that each cut set of fuzzy sets has the similar properties. In this section, we shall
give a general definition of cut set of a fuzzy set. We shall present the axiomatic descriptions for different cut sets and show
the three most intrinsic properties for each cut set.
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Definition 9.1. Let f : [0, 1] × F (X)→ P (X) be a mapping. Then f (λ, A) is called a f -cut set of fuzzy set A.

Theorem 9.1. If the mapping f : [0, 1] × F (X)→ P (X) satisfies the following conditions:

(1) f (λ,
⋃
t∈T At) =

⋃
t∈T f (λ, At);

(2) When A ∈ P (X) and λ < 1, we have f (λ, A) = A;
(3) f (λ, αA) =

{
∅, α 6 λ
f (λ, A), α > λ ,∀A ∈ F (X), α, λ ∈ [0, 1].

Then f (λ, A) = Aλ for any λ ∈ I and A ∈ F (X).

Proof. When λ < 1, f (λ, A) = f (λ,
⋃
α∈I αAα) =

⋃
α∈I f (λ, αAα) =

⋃
α>λ f (λ, Aα) =

⋃
α>λ Aα = Aλ;When λ = 1, we let

α = 1, then f (λ, A) = ∅ = A1.

Therefore, f (λ, A) = Aλ,∀λ ∈ I, A ∈ F (X).

Theorem 9.2. If the mapping f : [0, 1] × F (X)→ P (X) satisfies the following conditions:

(1) f (λ,
⋂
t∈T At) =

⋂
t∈T f (λ, At);

(2) When λ > 0 and A ∈ P (X), we have f (λ, A) = A;
(3) f (λ, α ◦ A) =

{
X, α > λ
f (λ, A), α < λ ,∀A ∈ F (X), α, λ ∈ I .

Then f (λ, A) = Aλ for any λ ∈ I and A ∈ F (X).

Proof. When λ > 0, f (λ, A) = f (λ,
⋂
α∈I α ◦ Aα) =

⋂
α∈I f (λ, α ◦ Aα) =

⋂
α<λ f (λ, Aα) =

⋂
α<λ Aα = Aλ;When λ = 0,

we let α = 0, then f (λ, A) = f (λ, α ◦ A) = X = A0. �

Therefore, f (λ, A) = Aλ,∀λ ∈ I, A ∈ F (X).

Theorem 9.3. If the mapping f : [0, 1] × F (X)→ P (X) satisfies the following conditions:

(1) f (λ,
⋃
t∈T At) =

⋃
t∈T f (λ, At);

(2) When λ > 0 and A ∈ P (X), we have f (λ, A) = A;
(3) f (λ, αA) =

{
∅, α + λ 6 1
f (λ, A), α + λ > 1 ,∀A ∈ F (X), α, λ ∈ I .

Then f (λ, A) = A[λ] for any λ ∈ I and A ∈ F (X).

Proof. When λ > 0, f (λ, A) = f (λ,
⋃
α∈I α

cA[α]) =
⋃
α∈I f (λ, α

cA[α]) =
⋃
αc+λ>1 f (λ, A[α]) =

⋃
λ>α A[α] = A[λ];When

λ = 0, we let α = 1, then f (λ, A) = ∅ = A[0]. �

Therefore, f (λ, A) = A[λ],∀λ ∈ I, A ∈ F (X).

Theorem 9.4. If the mapping f : [0, 1] × F (X)→ P (X) satisfies the following conditions:

(1) f (λ,
⋂
t∈T At) =

⋂
t∈T f (λ, At);

(2) When λ < 1 and A ∈ P (X), we have f (λ, A) = A;
(3) f (λ, α ◦ A) =

{
X, λ+ α > 1
f (λ, A), λ+ α < 1 ,∀A ∈ F (X), α, λ ∈ I .

Then f (λ, A) = A[λ] for any λ ∈ I and A ∈ F (X).

Proof. when λ < 1, f (λ, A) = f (λ,
⋂
α∈I α

c
◦A[α]) =

⋂
α∈I f (λ, α

c
◦A[α]) =

⋂
λ+αc<1 f (λ, A[α]) =

⋂
λ<α A[α] = A[λ];When

λ = 1, we let α = 0, then f (λ, A) = f (λ, α ◦ A) = X = A[λ]. �

Therefore, f (λ, A) = A[λ],∀λ ∈ I, A ∈ F (X).

Theorem 9.5. If the mapping f : [0, 1] × F (X)→ P (X) satisfies the following conditions:

(1) f (λ,
⋂
t∈T At) =

⋃
t∈T f (λ, At);

(2) When λ > 0 and A ∈ P (X), we have f (λ, A) = Ac ;
(3) f (λ, α · A) =

{
∅, α > λ
f (λ, Ac ), α < λ

,∀A ∈ F (X), α, λ ∈ I .

Then f (λ, A) = Aλ for any λ ∈ I and A ∈ F (X).

Proof. When λ > 0, f (λ, A) = f (λ,
⋂
α∈I α · A

α) =
⋃
α∈I f (λ, α · A

α) =
⋃
α<λ f (λ, (A

α)c) =
⋂
α<λ A

α
= Aλ;When λ = 0,

we let α = 0, then f (λ, A) = f (λ, α · Ac) = ∅ = Aλ. �

Therefore, f (λ, A) = Aλ,∀λ ∈ I, A ∈ F (X).

Theorem 9.6. If the mapping f : [0, 1] × F (X)→ P (X) satisfies the following conditions:

(1) f (λ,
⋃
t∈T At) =

⋂
t∈T f (λ, At);



X.-h. Yuan et al. / Computers and Mathematics with Applications 57 (2009) 691–701 701

(2) When λ < 1 and A ∈ P (X), we have f (λ, A) = Ac ;
(3) f (λ, α � A) =

{
X, α 6 λ
f (λ, Ac ), α > λ

,∀A ∈ F (X), α, λ ∈ I .

Then f (λ, A) = Aλ for any λ ∈ I and A ∈ F (X).

Proof. When λ < 1, f (λ, A) = f (λ,
⋃
α∈I α �A

α) =
⋂
α∈I f (λ, α �A

α) =
⋂
α>λ f (λ, (A

α)c) =
⋂
α>λ A

α
= Aλ;When λ = 1,

we let α = 1, then f (λ, A) = f (λ, 1 � Ac) = X = A1. �

Therefore, f (λ, A) = Aλ,∀λ ∈ I, A ∈ F (X).

Theorem 9.7. If the mapping f : [0, 1] × F (X)→ P (X) satisfies the following conditions:

(1) f (λ,
⋂
t∈T At) =

⋃
t∈T f (λ, At);

(2) When λ < 1 and A ∈ P (X), we have f (λ, A) = Ac ;
(3) f (λ, α · A) =

{
∅, λ+ α > 1
f (λ, Ac ), λ+ α < 1 ,∀A ∈ F (X), α, λ ∈ I .

Then f (λ, A) = A[λ] for any λ ∈ I and A ∈ F (X).

Proof. When λ < 1, f (λ, A) = f (λ,
⋂
α∈I α

c
· A[α]) =

⋃
α∈I f (λ, α

c
· A[α]) =

⋃
λ+αc<1 f (λ, (A

[α])c) =
⋃
λ<α A

[α]
= A[λ];

When λ = 1, we let α = 0, then f (λ, A) = f (λ, 0 · Ac) = ∅ = A[λ]. �

Therefore, f (λ, A) = A[λ],∀λ ∈ I, A ∈ F (X).

Theorem 9.8. If the mapping f : [0, 1] × F (X)→ P (X) satisfies the following conditions:

(1) f (λ,
⋃
t∈T At) =

⋂
t∈T f (λ, At);

(2) When λ > 0 and A ∈ P (X), we have f (λ, A) = Ac ;
(3) f (λ, α � A) =

{
X, λ+ α 6 1
f (λ, Ac ), λ+ α > 1 ,∀A ∈ F (X), α, λ ∈ I .

Then f (λ, A) = A[λ] for any λ ∈ I and A ∈ F (X).

Proof. When λ > 0, f (λ, A) = f (λ,
⋃
α∈I α

c
� Ac) =

⋂
α∈I f (λ, α

c
� Ac) =

⋂
λ+αc>1 f (λ, (A

[α])c) =
⋂
λ>α A

[α]
= A[λ];

When λ = 0, we let α = 1, then f (λ, A) = f (λ, 1 � Ac) = X = A[0].
Therefore, f (λ, A) = A[λ],∀λ ∈ I, A ∈ F (X). �

10. Conclusions

In this paper, three new cut sets of fuzzy sets are presented and their properties are discussed. Based on those cut sets
of fuzzy sets, new decomposition theorems, new representation theorems, new extension principles and new fuzzy linear
mappings are established. These discussions extended the theories of fuzzy sets.
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