Three new cut sets of fuzzy sets and new theories of fuzzy sets ${ }^{\star}$

Xue-hai Yuan ${ }^{\text {a }}$, Hongxing Li ${ }^{\text {a }}$, E. Stanley Lee ${ }^{\text {b,* }}$
${ }^{\text {a }}$ School of Electronic and Information Engineering, Dalian University of Technology, Dalian 116024, PR China
${ }^{\mathrm{b}}$ Department of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, KS 66506, USA

A R T I C L E I N F O

Article history:

Received 8 May 2008
Accepted 27 May 2008

Keywords:

Cut set
Set embedding
Order set embedding
Decomposition theorem
Representation theorem
Extension principle
Category
Fuzzy linear mapping

Abstract

Three new cut sets are introduced from the view points of neighborhood and Qneighborhood in fuzzy topology and their properties are discussed. By the use of these cut sets, new decomposition theorems, new representation theorems, new extension principles and new fuzzy linear mappings are obtained. Then inner project of fuzzy relations, generalized extension principle and new composition rule of fuzzy relations are given. In the end, we present axiomatic descriptions for different cut sets and show the three most intrinsic properties for each cut set.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Let X be a set and $\mathcal{F}(X)=\{A \mid A: X \rightarrow[0,1]$ is a mapping $\}$. For $A \in \mathcal{F}(X)$ and $\lambda \in[0,1], A_{\lambda}=\{x \mid x \in X, A(x) \geq \lambda\}$ and $A_{\underline{\lambda}}=\{x \mid x \in X, A(x)>\lambda\}$ are called λ-cut set and λ-strong cut set of fuzzy set A respectively [1]. The concept of cut sets plays an important role in fuzzy topology [2], fuzzy algebra [3,4], fuzzy measure [5-7] and fuzzy reasoning [8,9]. In fuzzy topology, a fuzzy point x_{λ} is said to be contained in a fuzzy set A or to belong to A, denoted by $x_{\lambda} \in A$, iff $A(x) \geq \lambda$. From the point of neighborhood, λ-cut set A_{λ} of A satisfies: $A_{\lambda}=\left\{x \mid x \in X, x_{\lambda} \in A\right\}$. Prof. Luo has even introduced the concept of strong neighborhood [10]. According to his view point, a fuzzy point $x_{\lambda}(0<\lambda<1)$ is said to strongly belong to A, denoted by $x_{\lambda} \in A$, iff $A(x)>\lambda$. λ-strong cut set $A_{\underline{\lambda}}$ of A satisfies: $A_{\underline{\lambda}}=\left\{x \mid x \in X, x_{\lambda} \in A\right\}$.

It is well known that Q-neighborhood plays an important role in fuzzy topology. According to [11], a fuzzy point x_{λ} is said to be (strong) quasi-coincident with A, denoted by $x_{\lambda} \underline{G}_{q} A$, iff $\lambda+A(x)>\lambda$. Thus, a fuzzy point x_{λ} and a fuzzy set A have the following relations:
(1) x_{λ} belongs to A, denoted by $x_{\lambda} \in A$, iff $A(x) \geq \lambda$;
x_{λ} strongly belongs to A, denoted by $x_{\lambda} \in A$, iff $A(x)>\lambda$;
(2) x_{λ} is strong quasi-coincident with A, denoted by $x_{\lambda} \in_{q} A$, iff $\lambda+A(x)>1$;
x_{λ} is quasi-coincident with A, denoted by $x_{\lambda} \in_{q} A$, iff $\lambda+A(x) \geq 1$;
(3) x_{λ} does not strongly belong to A, denoted by $x_{\lambda} \bar{\in} A$, iff $A(x) \leq \lambda$;
x_{λ} does not belong to A, denoted by $x_{\lambda} \bar{\in}$, iff $A(x)<\lambda$;
(4) x_{λ} is not strong quasi-coincident with A, denoted by $x_{\lambda} \in^{q} A$, iff $\lambda+A(x) \leq 1 ; x_{\lambda}$ is not quasi-coincident with A, denoted by $x_{\lambda} \underline{E}^{q} A$, iff $\lambda+A(x)<1$;

[^0]Based on the relations as above, we can define three new kinds of cut sets of fuzzy sets A.
(i) $A_{\lambda}=\left\{x \mid x \in X, x_{\lambda} \in A\right\}$ and $A_{\underline{\lambda}}=\left\{x \mid x \in X, x_{\lambda} \underline{A}\right\}$ are called λ-upper cut set and λ-strong upper cut set of fuzzy set A respectively.
(ii) $A^{\lambda}=\left\{x \mid x \in X, x_{\lambda} \underline{\bar{\in}} A\right\}=\{x \mid x \in X, A(x) \leq \lambda\}$ and $A^{\lambda}=\left\{x \mid x \in X, x_{\lambda} \bar{\in} A\right\}=\{x \mid x \in X, A(x)<\lambda\}$ are called λ-lower cut set and λ-strong lower cut set of fuzzy set A respectively.
(iii) $A_{[\lambda]}=\left\{x \mid x \in X, x_{\lambda} \in_{q} A\right\}=\{x \mid x \in X, \lambda+A(x) \geq 1\}$ and $A_{\underline{[\lambda]}}=\left\{x \mid x \in X, x_{\lambda} \underline{E}_{q} A\right\}=\{x \mid x \in X, \lambda+A(x)>1\}$ are called λ-lower Q-cut set and λ-strong lower Q-cut set of fuzzy set \bar{A} respectively.
(iv) $A^{[\lambda]}=\left\{x \mid x \in X, x_{\lambda} \in^{q} A\right\}=\{x \mid x \in X, \lambda+A(x) \leq 1\}$ and $A \underline{[\lambda]}=\left\{x \mid x \in X, x_{\lambda} \underline{\epsilon}^{q} A\right\}=\{x \mid x \in X, \lambda+A(x)<1\}$ are called λ-upper Q-cut set and λ-strong upper Q-cut set of fuzzy set A respectively.

In this paper,we shall discuss some properties of these cut sets in Section 2, and give new decomposition theorems, new representation theorems and new extension principles (in Sections 3-5 respectively). In Section 6, we shall explain extension principles by using theories of category. New fuzzy linear mappings are obtained in Section 7. In Section 8, we shall give the definition of inner project of fuzzy relation, generalized extension principle and new composition rule of fuzzy relations. In Section 9, we present axiomatic descriptions for different cut sets and show the three most intrinsic properties for each cut set.

2. Properties of cut set

Let $A, A^{t}(t \in T), B \in \mathcal{F}(X)=\{C \mid C: X \rightarrow[0,1]$ is a mapping $\}, \lambda, \lambda_{1}, \lambda_{2}, \alpha_{t} \in I=[0,1],(t \in T)$ and $a=\bigvee_{t \in T} \alpha_{t}, b=\bigwedge_{t \in T} \alpha_{t}$. Then the following properties are clear.

Property 2.1. (1) $(A \bigcup B)_{\lambda}=A_{\lambda} \bigcup B_{\lambda},(A \bigcup B)_{\underline{\lambda}}=A_{\underline{\lambda}} \bigcup B_{\underline{\lambda}},(A \bigcap B)_{\lambda}=A_{\lambda} \bigcap B_{\lambda},(A \bigcap B)_{\underline{\lambda}}=A_{\underline{\lambda}} \cap B_{\underline{\lambda}}$;
(2) $\lambda_{1}<\lambda_{2} \Rightarrow A_{\lambda_{1}} \supseteq A_{\lambda_{2}}, A_{\underline{\lambda_{1}}} \supseteq A_{\underline{\lambda_{2}}}, A_{\lambda_{1}} \supseteq A_{\underline{\lambda_{1}}}, A_{\underline{\lambda_{1}}} \supseteq A_{\lambda_{2}}$;
(3) $\left(\bigcup_{t \in T} A^{t}\right)_{\lambda} \supseteq \bigcup_{t \in T} A_{\lambda}^{t},\left(\bigcup_{t \in T} A^{t}\right)_{\underline{\lambda}}=\bigcup_{t \in T} A_{\underline{\lambda}}^{t},\left(\bigcap_{t \in T} A^{t}\right)_{\lambda}=\bigcap_{t \in T} A_{\lambda}^{t},\left(\bigcap_{t \in T} A^{t}\right)_{\underline{\lambda}} \subseteq \bigcap_{t \in T} A_{\underline{\lambda}}^{t}$;
(4) $\left(A^{c}\right)_{\lambda}=\left(A_{\underline{1-\lambda}}\right)^{c}$, $\left(A^{c}\right)_{\underline{\lambda}}=\left(A_{1-\lambda}\right)^{c}$;
(5) $A_{a}=\bigcap_{t \in T} \overline{A_{\alpha \underline{t}}}, A_{b} \supseteq \bigcup_{t \in T} A_{\alpha_{t}}, A_{\underline{a}} \subseteq \bigcap_{t \in T} A_{\underline{\alpha_{t}}}, A_{\underline{b}}=\bigcup_{t \in T} A_{\underline{\alpha_{t}}}$.

Property 2.2. (1) $(A \bigcup B)^{\lambda}=A^{\lambda} \bigcap B^{\lambda},(A \bigcup B)^{\lambda}=A^{\lambda} \bigcap B^{\lambda}$, $(A \bigcap B)^{\lambda}=A^{\lambda} \bigcup B^{\lambda},(A \bigcap B)^{\lambda}=A^{\lambda} \bigcup B^{\lambda}$;
(2) $\lambda_{1}<\lambda_{2} \Rightarrow A^{\lambda_{1}} \subseteq A^{\lambda_{2}}, A^{\lambda_{1}} \subseteq A^{\lambda_{2}}, A^{\lambda_{1}} \supseteq A^{\lambda_{1}}, A^{\lambda_{1}} \subseteq A^{\lambda_{2}}$;
(3) $\left(\bigcup_{t \in T} A_{t}\right)^{\lambda}=\bigcap_{t \in T} A_{t}^{\lambda},\left(\bigcup_{t \in T} A_{t}\right)^{\lambda} \subseteq \bigcap_{t \in T} A_{t}^{\lambda},\left(\bigcap_{t \in T} A_{t}\right)^{\lambda} \supseteq \bigcup_{t \in T} A_{t}^{\lambda},\left(\bigcap_{t \in T} A_{t}\right)^{\lambda}=\bigcup_{t \in T} A_{t}^{\frac{\lambda}{\lambda}}$;
(4) $\left(A^{c}\right)^{\lambda}=\left(A^{1-\lambda}\right)^{c},\left(A^{c}\right)^{\lambda}=\left(A^{1-\lambda}\right)^{c}$;
(5) $A^{a} \supseteq \bigcup_{t \in T} A^{\alpha_{t}}, A^{b}=\bigcap_{t \in T} A^{\alpha_{t}}, A^{\underline{a}}=\bigcup_{t \in T} A^{\alpha_{t}}, A^{\underline{b}} \subseteq \bigcap_{t \in T} A^{\alpha_{t}}$.

Property 2.3. (1) $(A \cup B)_{[\lambda]}=A_{[\lambda]} \bigcup B_{[\lambda]},(A \bigcup B)_{\underline{[\lambda]}}=A_{\underline{[\lambda]}} \cup B_{\underline{[\lambda]}},(A \bigcap B)_{[\lambda]}=A_{[\lambda]} \cap B_{[\lambda]},(A \cap B)_{\underline{[\lambda]}}=A_{\underline{[\lambda]}} \cap B_{\underline{[\lambda]}}$;
(2) $\lambda_{1}<\lambda_{2} \Rightarrow A_{\left[\lambda_{1}\right]} \subseteq A_{\left[\lambda_{2}\right]}, A_{\underline{\left[\lambda_{1}\right]}} \subseteq A_{\left[\underline{\left[\lambda_{2}\right]}\right.}, A_{\left[\lambda_{1}\right]} \subseteq \overline{A_{\left[\lambda_{2}\right]}}, \overline{A_{\left[\lambda_{1}\right]}} \subseteq \overline{A_{\left[\lambda_{2}\right]}}$;
(3) $\left(\bigcup_{t \in T} A^{t}\right)_{[\lambda]} \supseteq \bigcup_{t \in T} A_{[\lambda]}^{t},\left(\bigcup_{t \in T} A^{t}\right)_{\underline{[\lambda]}}=\bigcup_{t \in T} A_{\underline{[\lambda]}}^{t},\left(\bigcap_{t \in T} A^{t}\right)_{[\lambda]}=\bigcap_{t \in T} A_{[\lambda]}^{t},\left(\bigcap_{t \in T} A^{t}\right)_{\underline{[\lambda]}} \subseteq \bigcap_{t \in T} A_{\underline{[\lambda]}}^{t}$;
(4) $\left(A^{c}\right)_{[\lambda]}=\left(A_{[1-\lambda]}\right)^{c},\left(A^{c}\right)_{\underline{[\lambda]}}=\left(A_{[1-\lambda]}\right)^{c}$;
(5) $A_{[a]} \supseteq \bigcup_{t \in T} \overline{A_{\left[\alpha_{t}\right]}}, A_{[b]}=\bigcap_{t \in T} A_{\left[\alpha_{t}\right]}, A_{\underline{[a]}}=\bigcup_{t \in T} A_{\underline{\left[\alpha_{t}\right]}}, A_{\underline{[b]}} \subseteq \bigcap_{t \in T} A_{\underline{\left[\alpha_{t}\right]}}$.

(2) $\lambda_{1}<\lambda_{2} \Rightarrow A^{\left[\lambda_{1}\right]} \supseteq A^{\left[\lambda_{2}\right]}, A^{\left[\lambda_{1}\right]} \supseteq A^{\left[\underline{\left[\lambda_{2}\right]}\right.}, A^{\left[\lambda_{1}\right]} \supseteq A^{\left[\underline{\left[\lambda_{1}\right]}\right.}, A^{\left[\lambda_{1}\right]} \supseteq A^{\left[\lambda_{2}\right]}$;
(3) $\left(\bigcup_{t \in T} A_{t}\right)^{[\lambda]}=\bigcap_{t \in T} A_{t}^{[\lambda]},\left(\bigcup_{t \in T} A_{t}\right) \stackrel{[\lambda]}{\subseteq} \subseteq \bigcap_{t \in T} A_{t}^{[\lambda]},\left(\bigcap_{t \in T} A_{t}\right)^{[\lambda]} \supseteq \bigcup_{t \in T} A_{t}^{[\lambda]},\left(\bigcap_{t \in T} A_{t}\right) \underline{[\lambda]}=\bigcup_{t \in T} A_{t}^{[\lambda]}$,
(4) $\left(A^{c}\right)^{[\lambda]}=\left(A^{[1-\lambda]}\right)^{c},\left(A^{c}\right)^{[\lambda]}=\left(A^{[1-\lambda]}\right)^{c}$;
(5) $A^{[a]}=\bigcap_{t \in T} A^{\left[\alpha_{t}\right]}, A^{[a]} \subseteq \bigcap_{t \in T} A^{\left[\alpha_{t}\right]}, A^{[b]} \supseteq \bigcup_{t \in T} A^{\left[\alpha_{t}\right]}, A^{[b]}=\bigcup_{t \in T} A^{\left[\alpha_{t}\right]}$.

3. Decomposition theorems

Let $\mathcal{P}(X)$ be power set of set X and $I=[0,1]$. For $\lambda \in I$ and $B \in \mathcal{P}(X)$, we define $\lambda B, \lambda \cdot B, \lambda \circ B, \lambda \diamond B$ as fuzzy subsets of X respectively and

$$
\begin{aligned}
& (\lambda B)(x)=\left\{\begin{array}{ll}
\lambda, & \text { if } x \in B \\
0, & \text { if } x \in B
\end{array},\right. \\
& (\lambda \circ B)(x)=\left\{\begin{array}{ll}
1, & \text { if } x \in B \\
\lambda, & \text { if } x \in B
\end{array},\right.
\end{aligned}(\lambda \diamond B)(x)=\left\{\begin{array}{ll}
\lambda, & \text { if } x \in B \\
1, & \text { if } x \bar{\in} \overline{0,}
\end{array}\right] \text { if } x \in B, \begin{array}{ll}
\lambda, & \text { if } x \in B .
\end{array}
$$

Clearly, we have the following decomposition theorem:
Theorem 3.1. (1) $A=\bigcup_{\lambda \in I} \lambda A_{\lambda}, A=\bigcap_{\lambda \in I} \lambda \circ A_{\lambda}, A^{c}=\bigcap_{\lambda \in I} \lambda^{c} \cdot A_{\lambda}, A^{c}=\bigcup_{\lambda \in I} \lambda^{c} \diamond A_{\lambda}$;
(2) $A=\bigcup_{\lambda \in I} \lambda A_{\underline{\lambda}}, A=\bigcap_{\lambda \in I} \lambda \circ A_{\underline{\lambda}}, A^{c}=\bigcap_{\lambda \in I} \lambda^{c} \cdot A_{\underline{\lambda}}, A^{c} \xlongequal{=} \bigcup_{\lambda \in I} \lambda^{c} \diamond A_{\underline{\lambda}}$;
(3) Let $H: I \rightarrow \mathcal{P}(X)$ satisfying $A_{\lambda} \subseteq H(\lambda) \subseteq A_{\lambda}$ for any $\lambda \in I$. Then
(i) $A=\bigcup_{\lambda \in I} \lambda H(\lambda), A=\bigcap_{\lambda \in I} \lambda \circ H(\lambda), A^{c}=\bigcap_{\lambda \in I} \lambda^{c} \cdot H(\lambda), A^{c}=\bigcup_{\lambda \in I} \lambda^{c} \diamond H(\lambda)$;
(ii) $\lambda_{1}<\lambda_{2} \Rightarrow H\left(\lambda_{1}\right) \supseteq H\left(\lambda_{2}\right)$;
(iii) $A_{\lambda}=\bigcap_{\alpha<\lambda} H(\alpha), A_{\underline{\lambda}}=\bigcup_{\alpha>\lambda} H(\alpha)$.

Theorem 3.2. (1) $A=\bigcap_{\lambda \in I} \lambda \cdot A^{\lambda}, A=\bigcup_{\lambda \in I} \lambda \diamond A^{\lambda}, A^{c}=\bigcup_{\lambda \in I} \lambda^{c} A^{\lambda}, A^{c}=\bigcap_{\lambda \in I} \lambda^{c} \circ A^{\lambda}$;
(2) $A=\bigcap_{\lambda \in I} \lambda \cdot A^{\lambda}, A=\bigcup_{\lambda \in I} \lambda \diamond A^{\lambda}, A^{c}=\bigcup_{\lambda \in I} \lambda^{c} A^{\lambda}, A^{c}=\bigcap_{\lambda \in I} \lambda^{c} \circ A^{\lambda}$;
(3) Let $H: I \rightarrow \mathcal{P}(X)$ satisfying $A^{\lambda} \subseteq H(\lambda) \subseteq A^{\lambda}$ for any $\lambda \in I$. Then
(i) $A=\bigcap_{\lambda \in I} \lambda \cdot H(\lambda), A=\bigcup_{\lambda \in I} \lambda \diamond H(\lambda), A^{c}=\bigcup_{\lambda \in I} \lambda^{c} H(\lambda), A^{c}=\bigcap_{\lambda \in I} \lambda^{c} \circ H(\lambda)$;
(ii) $\lambda_{1}<\lambda_{2} \Rightarrow H\left(\lambda_{1}\right) \subseteq H\left(\lambda_{2}\right)$;
(iii) $A^{\lambda}=\bigcap_{\alpha>\lambda} H(\alpha), A^{\lambda}=\bigcup_{\alpha<\lambda} H(\alpha)$.

Theorem 3.3. (1) $A=\bigcup_{\lambda \in I} \lambda^{c} A_{[\lambda]}, A=\bigcap_{\lambda \in I} \lambda^{c} \circ A_{[\lambda]}, A^{c}=\bigcap_{\lambda \in I} \lambda \cdot A_{[\lambda]}, A^{c}=\bigcup_{\lambda \in I} \lambda \diamond A_{[\lambda]}$;
(2) $A=\bigcup_{\lambda \in I} \lambda^{c} A_{[\underline{[\lambda]}}, A=\bigcap_{\lambda \in I} \lambda^{c} \circ A_{\underline{[\lambda]}}, A^{c}=\bigcap_{\lambda \in I} \lambda \cdot A_{\underline{[\lambda]}}, A^{c}=\bigcup_{\lambda \in I} \lambda \diamond A_{\underline{[\lambda]}}$;
(3) Let $H: I \rightarrow \mathcal{P}(X)$ satisfying $A_{[\lambda]} \subseteq H(\lambda) \subseteq A_{[\lambda]}$ for any $\lambda \in I$. Then
(i) $A=\bigcup_{\lambda \in I} \lambda^{c} H(\lambda), A=\bigcap_{\lambda \in I} \lambda^{c} \circ H(\lambda), A^{c}=\bigcap_{\lambda \in I} \lambda \cdot H(\lambda), A^{c}=\bigcup_{\lambda \in I} \lambda \diamond H(\lambda)$;
(ii) $\lambda_{1}<\lambda_{2} \Rightarrow H\left(\lambda_{1}\right) \subseteq H\left(\lambda_{2}\right)$;
(iii) $A_{[\lambda]}=\bigcap_{\alpha>\lambda} H(\alpha), A_{\underline{[\lambda]}}=\bigcup_{\alpha<\lambda} H(\alpha)$.

Theorem 3.4. (1) $A=\bigcap_{\lambda \in I} \lambda^{c} \cdot A^{[\lambda]}, A=\bigcup_{\lambda \in I} \lambda^{c} \diamond A^{[\lambda]}, A^{c}=\bigcup_{\lambda \in I} \lambda A^{[\lambda]}, A^{c}=\bigcap_{\lambda \in I} \lambda \circ A^{[\lambda]}$;
(2) $A=\bigcap_{\lambda \in I} \lambda^{c} \cdot A^{[\lambda]}, A=\bigcup_{\lambda \in I} \lambda^{c} \diamond A^{[\lambda]}, A^{c}=\bigcup_{\lambda \in I} \lambda A^{[\lambda]}, A^{c}=\bigcap_{\lambda \in I} \lambda \circ A^{[\underline{\lambda]}}$;
(3) Let $H: I \rightarrow \mathcal{P}(X)$ satisfying $A \underline{[\lambda]} \subseteq H(\lambda) \subseteq A^{[\lambda]}$ for any $\lambda \in I$. Then
(i) $A=\bigcap_{\lambda \in I} \lambda^{c} \cdot H(\lambda), A=\bigcup_{\lambda \in I} \lambda^{c} \diamond H(\lambda), A^{c}=\bigcup_{\lambda \in I} \lambda H(\lambda), A^{c}=\bigcap_{\lambda \in I} \lambda \circ H(\lambda)$;
(ii) $\lambda_{1}<\lambda_{2} \Rightarrow H\left(\lambda_{1}\right) \supseteq H\left(\lambda_{2}\right)$;
(iii) $A^{[\lambda]}=\bigcap_{\alpha<\lambda} H(\alpha), A^{[\lambda]}=\bigcup_{\alpha>\lambda} H(\alpha)$.

4. Representation theorems

Definition $4.1([10,12])$. Let mapping $H: I \rightarrow \mathcal{P}(X)$ satisfy: $\lambda_{1}<\lambda_{2} \Rightarrow H\left(\lambda_{1}\right) \supseteq H\left(\lambda_{2}\right)$. Then H is called a set embedding over X.

For example, $H(\lambda)=A_{\lambda}\left(H(\lambda)=A_{\underline{\lambda}}, H(\lambda)=A^{[\lambda]}, H(\lambda)=A_{\underline{[\lambda]}}\right.$ respectively) is a set embedding over X.
Let $\mathcal{U}(X)$ be a set of all set embedding over X. In $\mathcal{U}(X)$, we define:

$$
\begin{aligned}
& \bigcup_{\gamma \in \Gamma} H_{\gamma}:\left(\bigcup_{\gamma \in \Gamma} H_{\gamma}\right)(\lambda)=\bigcup_{\gamma \in \Gamma} H_{\gamma}(\lambda), \\
& \bigcap_{\gamma \in \Gamma} H_{\gamma}:\left(\bigcap_{\gamma \in \Gamma} H_{\gamma}\right)(\lambda)=\bigcap_{\gamma \in \Gamma} H_{\gamma}(\lambda),
\end{aligned}
$$

$$
H^{c}: H^{c}(\lambda)=(H(1-\lambda))^{c} .
$$

Then $(U(X), \bigcup, \bigcap, c)$ is a De Morgan lattice.
Let $H \in \mathcal{U}(X)$ and $T_{1}(H)=\bigcup_{\lambda \in I} \lambda H(\lambda), T_{2}(H)=\bigcap_{\lambda \in I} \lambda \circ H(\lambda), T_{3}(H)=\bigcap_{\lambda \in I} \lambda^{c} \cdot H(\lambda), T_{4}(H)=\bigcup_{\lambda \in I} \lambda^{c} \diamond H(\lambda)$.
Theorem 4.1. From above $T_{i}: \mathcal{U}(X) \rightarrow \mathcal{F}(X), H \mapsto T_{i}(H)(i=1,2)$, we have
(1) $\left(T_{i}(H)\right)_{\underline{\alpha}} \subseteq H(\alpha) \subseteq\left(T_{i}(H)\right)_{\alpha}$ for any $\alpha \in I$;
(2) $T_{i}\left(\bigcup_{\gamma \in \Gamma} H_{\gamma}\right)=\bigcup_{\gamma \in \Gamma} T_{i}\left(H_{\gamma}\right), T_{i}\left(\bigcap_{\gamma \in \Gamma} H_{\gamma}\right)=\bigcap_{\gamma \in \Gamma} T_{i}\left(H_{\gamma}\right), T_{i}\left(H^{c}\right)=\left(T_{i}(H)\right)^{c}$.

Proof. When $i=1$, please see [10].
When $i=2, T_{2}(H)=\bigcap_{\lambda \in I} \lambda \circ H(\lambda)$, then $T_{2}(H)(x)=\bigwedge\{\lambda \mid x \bar{\in} H(\lambda)\}$ for any $x \in X$. Then
$x \in H(\alpha) \Rightarrow x \in H(\lambda)$ for any $\lambda \leq \alpha \Rightarrow(x \bar{\in} H(\lambda) \Rightarrow \lambda>\alpha) \Rightarrow T_{2}(H)(x) \geq \alpha \Rightarrow x \in\left(T_{2}(H)\right)_{\alpha}$. It follows that $H(\alpha) \subseteq\left(T_{2}(H)\right)_{\alpha}$.

On the other hand, $x \bar{\in} H(\alpha) \Rightarrow T_{2}(H)(x)=\bigwedge\{\lambda \mid x \bar{\in} H(\lambda)\} \leq \alpha \Rightarrow x \bar{\in}\left(T_{2}(H)\right)_{\underline{\alpha}}$. It follows that $\left(T_{2}(H)\right)_{\underline{\alpha}} \subseteq H(\alpha)$.
Therefore $\left(T_{2}(H)\right)_{\alpha} \subseteq H(\alpha) \subseteq\left(T_{2}(H)\right)_{\alpha}$.
(2) Please see [10].

Theorem 4.2. For above $T_{i}: U(X) \rightarrow \mathcal{F}(X), H \mapsto T_{i}(H)(i=3,4)$, we have
(1) $\left(T_{i}(H)\right) \stackrel{[\alpha]}{ } \subseteq H(\alpha) \subseteq\left(T_{i}(H)\right)^{[\alpha]}$ for any $\alpha \in I$;
(2) $T_{i}\left(\bigcup_{\gamma \in \Gamma} H_{\gamma}\right)=\bigcap_{\gamma \in \Gamma} T_{i}\left(H_{\gamma}\right), T_{i}\left(\bigcap_{\gamma \in \Gamma} H_{\gamma}\right)=\bigcup_{\gamma \in \Gamma} T_{i}\left(H_{\gamma}\right), T_{i}\left(H^{c}\right)=\left(T_{i}(H)\right)^{c}$.

Proof. When $i=3, T_{3}(H)=\bigcap_{\lambda \in I} \lambda^{c} \cdot H(\lambda)$, then $T_{3}(H)(x)=\bigwedge\left\{\lambda^{c} \mid x \in H(\lambda)\right\}$ for any $x \in X$. Then
(1) $x \in H(\alpha) \Rightarrow T_{3}(H)(x) \leq \alpha^{c}=1-\alpha \Rightarrow \alpha+T_{3}(H)(x) \leq 1 \Rightarrow x \in\left(T_{3}(H)\right)^{[\alpha]}$. It follows that $H(\alpha) \subseteq\left(T_{3}(H)\right)^{[\alpha]}$.

On the other hand, $x \bar{\in} H(\alpha) \Rightarrow x \bar{\in} H(\lambda)$ for any $\lambda \geq \alpha \Rightarrow(x \in H(\lambda) \Rightarrow \lambda<\alpha) \Rightarrow\left(x \in H(\lambda) \Rightarrow \lambda^{c}>\alpha^{c}\right) \Rightarrow$ $T_{3}(H)(x) \geq \alpha^{c} \Rightarrow \alpha+T_{3}(H)(x) \geq 1 \Rightarrow x \bar{\in}\left(T_{3}(H)\right)^{[\alpha]}$. It follows that $\left(T_{3}(H)\right)^{[\alpha]} \subseteq H(\alpha)$.

Therefore $\left(T_{3}(H)\right)^{[\alpha]} \subseteq H(\alpha) \subseteq\left(T_{3}(H)\right)^{[\alpha]}$.
(2) $\operatorname{By}\left(T_{3}\left(\bigcup_{\gamma \in \Gamma} H_{\gamma}\right)\right)^{\underline{[\lambda]}}=\bigcup_{\alpha>\lambda}\left(\bigcup_{\gamma \in \Gamma} H_{\gamma}\right)(\alpha)=\bigcup_{\alpha>\lambda} \bigcup_{\gamma \in \Gamma} H_{\gamma}(\alpha)=\bigcup_{\gamma \in \Gamma} \bigcup_{\alpha>\lambda} H_{\gamma}(\alpha)=\bigcup_{\gamma \in \Gamma}\left(T_{3}\left(H_{\gamma}\right)\right)^{\underline{[\lambda]}}=$ $\left(\bigcap_{\gamma \in \Gamma} T_{3}\left(H_{\gamma}\right)\right)^{\underline{[\lambda]}}$, we have $T_{3}\left(\bigcup_{\gamma \in \Gamma} H_{\gamma}\right)=\bigcap_{\gamma \in \Gamma} T_{3}\left(H_{\gamma}\right)$.
$\operatorname{By}\left(T_{3}\left(\bigcap_{\gamma \in \Gamma} H_{\gamma}\right)\right)^{[\lambda]}=\bigcap_{\alpha<\lambda}\left(\bigcap_{\gamma \in \Gamma} H_{\gamma}\right)(\alpha)=\bigcap_{\alpha<\lambda} \bigcap_{\gamma \in \Gamma} H_{\gamma}(\alpha)=\bigcap_{\gamma \in \Gamma} \bigcap_{\alpha<\lambda} H_{\gamma}(\alpha)=\bigcap_{\gamma \in \Gamma}\left(T_{3}\left(H_{\gamma}\right)\right)^{[\lambda]}=$ $\left(\bigcup_{\gamma \in \Gamma} T_{3}\left(H_{\gamma}\right)\right)^{[\lambda]}$, we have $T_{3}\left(\bigcap_{\gamma \in \Gamma} H_{\gamma}\right)=\bigcup_{\gamma \in \Gamma} T_{3}\left(H_{\gamma}\right)$.
$\left.\operatorname{By}\left(T_{3}\left(H^{c}\right)\right)\right)^{[\lambda]}=\bigcup_{\alpha>\lambda} H^{c}(\alpha)=\bigcup_{\alpha>\lambda}(H(1-\alpha))^{c}=\left(\bigcap_{1-\alpha<1-\lambda} H(1-\alpha)\right)^{c}=\left(\left(T_{3}(H)\right)^{[1-\lambda]}\right)^{c}=\left(T_{3}(H)^{c}\right)$ [ג] , we have $T_{3}\left(H^{c}\right)=T_{3}(H)^{c}$.

The proof of $i=4$ is similar.
Definition 4.2. Let mapping $H: I \rightarrow \mathcal{P}(X)$ satisfy: $\lambda_{1}<\lambda_{2} \Rightarrow H\left(\lambda_{1}\right) \subseteq H\left(\lambda_{2}\right)$. Then H is called an order set embedding over X.

For example, $H(\lambda)=A^{\lambda}\left(H(\lambda)=A^{\lambda}, H(\lambda)=A_{[\lambda]}, H(\lambda)=A_{\underline{[\lambda]}}\right.$ respectively) is an order set embedding over X.
Let $\mathcal{V}(X)$ be a set of all order set embedding over X. In $\mathcal{V}(X)$, we define:

$$
\begin{aligned}
& \bigcup_{\gamma \in \Gamma} H_{\gamma}:\left(\bigcup_{\gamma \in \Gamma} H_{\gamma}\right)(\lambda)=\bigcap_{\gamma \in \Gamma} H_{\gamma}(\lambda), \\
& \bigcap_{\gamma \in \Gamma} H_{\gamma}:\left(\bigcap_{\gamma \in \Gamma} H_{\gamma}\right)(\lambda)=\bigcup_{\gamma \in \Gamma} H_{\gamma}(\lambda), \\
& H^{c}: H^{c}(\lambda)=(H(1-\lambda))^{c} .
\end{aligned}
$$

Then $(\mathcal{V}(X), \bigcup, \bigcap, c)$ is a De Morgan lattice.
Let $H \in \mathcal{V}(X)$ and $T_{5}(H)=\bigcap_{\lambda \in I} \lambda \cdot H(\lambda), T_{6}(H)=\bigcup_{\lambda \in I} \lambda \diamond H(\lambda), T_{7}(H)=\bigcup_{\lambda \in I} \lambda^{c} H(\lambda), T_{8}(H)=\bigcap_{\lambda \in I} \lambda^{c} \circ H(\lambda)$.
Theorem 4.3. From above $T_{i}: \mathcal{V}(X) \rightarrow \mathcal{F}(X), H \mapsto T_{i}(H)(i=5$, 6), we have
(1) $\left(T_{i}(H)\right)^{\alpha} \subseteq H(\alpha) \subseteq\left(T_{i}(H)\right)^{\alpha}$ for any $\alpha \in I$;
(2) $T_{i}\left(\bigcup_{\gamma \in \Gamma} H_{\gamma}\right)=\bigcup_{\gamma \in \Gamma} T_{i}\left(H_{\gamma}\right), T_{i}\left(\bigcap_{\gamma \in \Gamma} H_{\gamma}\right)=\bigcap_{\gamma \in \Gamma} T_{i}\left(H_{\gamma}\right), T_{i}\left(H^{c}\right)=\left(T_{i}(H)\right)^{c}$.

Proof. When $i=5, T_{5}(H)=\bigcap_{\lambda \in I} \lambda \cdot H(\lambda)$, then $T_{5}(H)(x)=\bigwedge\{\lambda \mid x \in H(\lambda)\}$ for any $x \in X$. Then
(1) $x \bar{\in} H(\alpha) \Rightarrow x \bar{\in} H(\lambda)$ for any $\lambda \leq \alpha \Rightarrow(x \in H(\lambda) \Rightarrow \lambda>\alpha) \Rightarrow T_{5}(H)(x) \geq \alpha \Rightarrow x \bar{\in}\left(T_{5}(H)\right)^{\underline{\alpha}}$. It follows that $H(\alpha) \supseteq\left(T_{5}(H)\right)^{\underline{\alpha}}$.

On the other hand, $x \in H(\alpha) \Rightarrow T_{5}(H)(x)=\bigwedge\{\lambda \mid x \in H(\lambda)\} \leq \alpha \Rightarrow x \in\left(T_{5}(H)\right)^{\alpha}$. It follows that $\left(T_{5}(H)\right)^{\alpha} \supseteq H(\alpha)$.
Therefore $\left(T_{5}(H)\right)^{\alpha} \subseteq H(\alpha) \subseteq\left(T_{5}(H)\right)^{\alpha}$.
(2) By $\left(T_{5}\left(\bigcup_{\gamma \in \Gamma} H_{\gamma}\right)\right)^{\lambda}=\bigcap_{\alpha>\lambda}\left(\bigcup_{\gamma \in \Gamma} H_{\gamma}\right)(\alpha)=\bigcap_{\alpha>\lambda} \bigcap_{\gamma \in \Gamma} H_{\gamma}(\alpha)=\bigcap_{\gamma \in \Gamma} \bigcap_{\alpha>\lambda} H_{\gamma}(\alpha)=\bigcap_{\gamma \in \Gamma}\left(T_{5}\left(H_{\gamma}\right)\right)^{\lambda}=$ $\left(\bigcup_{\gamma \in \Gamma} T_{5}\left(H_{\gamma}\right)\right)^{\lambda}$, we have $T_{5}\left(\bigcup_{\gamma \in \Gamma} H_{\gamma}\right)=\bigcup_{\gamma \in \Gamma} T_{5}\left(H_{\gamma}\right)$.
$\operatorname{By}\left(T_{5}\left(\bigcap_{\gamma \in \Gamma} H_{\gamma}\right)\right)^{\underline{\lambda}}=\bigcup_{\alpha<\lambda}\left(\bigcap_{\gamma \in \Gamma} H_{\gamma}\right)(\alpha)=\bigcup_{\alpha<\lambda} \bigcup_{\gamma \in \Gamma} H_{\gamma}(\alpha)=\bigcup_{\gamma \in \Gamma} \bigcup_{\alpha<\lambda} H_{\gamma}(\alpha)=\bigcup_{\gamma \in \Gamma}\left(T_{5}\left(H_{\gamma}\right)\right)^{\lambda}=$ $\left(\bigcap_{\gamma \in \Gamma} T_{5}\left(H_{\gamma}\right)\right)^{\underline{\lambda}}$, we have $T_{5}\left(\bigcap_{\gamma \in \Gamma} H_{\gamma}\right)=\bigcap_{\gamma \in \Gamma} T_{5}\left(H_{\gamma}\right)$.
$\operatorname{By}\left(T_{5}\left(H^{c}\right)\right)^{\lambda}=\bigcup_{\alpha<\lambda} H^{c}(\alpha)=\bigcup_{\alpha<\lambda}(H(1-\alpha))^{c}=\left(\bigcap_{1-\alpha>1-\lambda} H(1-\alpha)\right)^{c}=\left(\left(T_{5}(H)\right)^{1-\lambda}\right)^{c}=\left(T_{5}(H)^{c}\right)^{\lambda}$, we have $T_{5}\left(H^{c}\right)=T_{5}(H)^{c}$.

The proof of $i=6$ is similar.
Theorem 4.4. Let $T_{i}: \mathcal{V}(X) \rightarrow \mathcal{F}(X), H \mapsto T_{i}(H)(i=7,8)$, we have
(1) $\left(T_{i}(H)\right)_{\underline{[\alpha]}} \subseteq H(\alpha) \subseteq\left(T_{i}(H)\right)_{[\alpha]}$ for any $\alpha \in I$;
(2) $T_{i}\left(\bigcup_{\gamma \in \Gamma} H_{\gamma}\right)=\bigcap_{\gamma \in \Gamma} T_{i}\left(H_{\gamma}\right), T_{i}\left(\bigcap_{\gamma \in \Gamma} H_{\gamma}\right)=\bigcup_{\gamma \in \Gamma} T_{i}\left(H_{\gamma}\right), T_{i}\left(H^{c}\right)=\left(T_{i}(H)\right)^{c}$.

Proof. When $i=7, T_{7}(H)=\bigcup_{\lambda \in I} \lambda^{c} H(\lambda)$, then $T_{7}(H)(x)=\bigvee\left\{\lambda^{c} \mid x \in H(\lambda)\right\}$ for any $x \in X$. Then
(1) $x \in H(\alpha) \Rightarrow T_{7}(H)(x) \geq \alpha^{c}=1-\alpha \Rightarrow \alpha+T_{7}(H)(x) \geq 1 \Rightarrow x \in\left(T_{7}(H)\right)_{[\alpha]}$. It follows that $H(\alpha) \subseteq\left(T_{7}(H)\right)_{[\alpha]}$.

On the other hand, $x \bar{\in} H(\alpha) \Rightarrow x \bar{\in} H(\lambda)$ for any $\lambda \leq \alpha \Rightarrow(x \in H(\lambda) \Rightarrow \lambda>\alpha) \Rightarrow\left(x \in H(\lambda) \Rightarrow \lambda^{c}<\alpha^{c}\right) \Rightarrow$ $T_{7}(H)(x) \leq \alpha^{c} \Rightarrow \alpha+T_{7}(H)(x) \leq 1 \Rightarrow x \bar{\in}\left(T_{7}(H)\right)_{\underline{[\alpha]}}$. It follows that $\left(T_{7}(H)\right)_{\underline{[\alpha]}} \subseteq H(\alpha)$.

Therefore $\left(T_{7}(H)\right)_{\underline{[\alpha]}} \subseteq H(\alpha) \subseteq\left(T_{7}(H)\right)_{[\alpha]}$.
(2) $\operatorname{By}\left(T_{7}\left(\bigcup_{\gamma \in \Gamma} H_{\gamma}\right)\right)_{[\lambda]}=\bigcap_{\alpha>\lambda}\left(\bigcup_{\gamma \in \Gamma} H_{\gamma}\right)(\alpha)=\bigcap_{\alpha>\lambda} \bigcap_{\gamma \in \Gamma} H_{\gamma}(\alpha)=\bigcap_{\gamma \in \Gamma} \bigcap_{\alpha>\lambda} H_{\gamma}(\alpha)=\bigcap_{\gamma \in \Gamma}\left(T_{7}\left(H_{\gamma}\right)\right)_{[\lambda]}=$ $\left(\bigcap_{\gamma \in \Gamma} T_{7}\left(H_{\gamma}\right)\right)_{[\lambda]}$, we have $T_{7}\left(\bigcup_{\gamma \in \Gamma} H_{\gamma}\right)=\bigcap_{\gamma \in \Gamma} T_{7}\left(H_{\gamma}\right)$.
$\operatorname{By}\left(T_{7}\left(\bigcap_{\gamma \in \Gamma} H_{\gamma}\right)\right)_{\underline{[\lambda]}}=\bigcup_{\alpha<\lambda}\left(\bigcap_{\gamma \in \Gamma} H_{\gamma}\right)(\alpha)=\bigcup_{\alpha<\lambda} \bigcup_{\gamma \in \Gamma} H_{\gamma}(\alpha)=\bigcup_{\gamma \in \Gamma} \bigcup_{\alpha<\lambda} H_{\gamma}(\alpha)=\bigcup_{\gamma \in \Gamma}\left(T_{7}\left(H_{\gamma}\right)\right)_{\underline{[\lambda]}}=$ $\left(\bigcup_{\gamma \in \Gamma} T_{7}\left(H_{\gamma}\right)\right)_{\underline{[\lambda]}}$, we have $T_{7}\left(\bigcap_{\gamma \in \Gamma} H_{\gamma}\right)=\bigcup_{\gamma \in \Gamma} T_{7}\left(H_{\gamma}\right)$.
$\operatorname{By}\left(T_{7}\left(H^{c}\right)\right)_{\underline{[\lambda]}}=\bigcup_{\alpha<\lambda} H^{c}(\alpha)=\bigcup_{\alpha<\lambda}(H(1-\alpha))^{c}=\left(\bigcap_{1-\alpha>1-\lambda} H(1-\alpha)\right)^{c}=\left(\left(T_{7}(H)\right)_{[1-\lambda]}\right)^{c}=\left(T_{7}(H)^{c}\right)_{\underline{[\lambda]}}$, we have $T_{7}\left(H^{c}\right)=\overline{T_{7}}(H)^{c}$.

The proof of $i=8$ is similar.

5. Extension principles

5.1. Extension principles of a single variable

Let $f: X \rightarrow Y$ be a mapping. Then f can be extended as four mappings from $\mathcal{P}(X)$ to $\mathcal{P}(Y)$:

$$
f_{i}: \mathcal{P}(X) \rightarrow \mathcal{P}(Y), A \mapsto f_{i}(A) \quad(i=1,2,3,4)
$$

where

$$
\begin{align*}
& f_{1}(A)=\{f(a) \mid a \in A\} \triangleq f(A) \tag{1}\\
& f_{2}(A)=\left\{f(a) \mid a \overline{\in A\}} \triangleq f\left(A^{c}\right)\right. \tag{2}\\
& f_{3}(A)=(f(A))^{c} \tag{3}\\
& f_{4}(A)=\left(f\left(A^{c}\right)\right)^{c} . \tag{4}
\end{align*}
$$

Theorem 5.1 ([10]). Let $f: X \rightarrow Y$ be a mapping. If we put

$$
f_{1}: \mathcal{F}(X) \rightarrow \mathcal{F}(Y), \quad A \mapsto f_{1}(A) \triangleq \bigcup_{\lambda \in I} \lambda f\left(A_{\lambda}\right)
$$

then $f_{1}(A)(y)=\bigvee_{f(x)=y} A(x)$ for any $y \in Y$.
$f_{1}(A)$ is denoted as $f(A)$, which is the extension principle of Zadeh [13] and is the extension of (1).
Clearly, we have the following extension principles:
Theorem 5.2. Let $f: X \rightarrow Y$ be a mapping. If we write

$$
f_{2}: \mathcal{F}(X) \rightarrow \mathcal{F}(Y), \quad A \mapsto f_{2}(A) \triangleq \bigcup_{\lambda \in I} \lambda f\left(A^{[\lambda]}\right)
$$

then $f_{2}(A)(y)=\bigvee_{f(x)=y} A^{c}(x)$ for any $y \in Y$.
(Denoted by $f_{2}(A)=f_{c}(A)$, which is the extension of (2)).
Theorem 5.3. Let $f: X \rightarrow Y$ be a mapping. If we write

$$
f_{3}: \mathcal{F}(X) \rightarrow \mathcal{F}(Y), \quad A \mapsto f_{3}(A) \triangleq \bigcup_{\lambda \in I} \lambda \cdot f\left(A_{[\lambda]}\right)
$$

then $f_{3}(A)(y)=\bigwedge_{f(x)=y} A^{c}(x)$ for any $y \in Y$.
(Denoted by $f_{3}(A)=f^{c}(A)$, which is the extension of (3)).
Theorem 5.4. Let $f: X \rightarrow Y$ be a mapping. If we write

$$
f_{4}: \mathcal{F}(X) \rightarrow \mathcal{F}(Y), \quad A \mapsto f_{4}(A) \triangleq \bigcup_{\lambda \in I} \lambda \cdot f\left(A^{\lambda}\right)
$$

then $f_{4}(A)(y)=\bigwedge_{f(x)=y} A(x)$ for any $y \in Y$.
(Denoted by $f_{4}(A)=f_{c}^{c}(A)$, which is the extension of (4)).

Fig. 1. Products of fuzzy sets.

5.2. Products of fuzzy sets

Definition 5.1. Let $A \in \mathcal{F}(X), B \in \mathcal{F}(Y)$.
(1) If $(A \times B)(x, y)=A(x) \wedge B(y), \forall x \in X, \forall y \in Y$, then $A \times B$ is called inner product A and B.
(2) If $(A \otimes B)(x, y)=A(x) \vee B(y), \forall x \in X, \forall y \in Y$, then $A \otimes B$ is called outer product of A and B.
(3) If $\left(A \times_{c} B\right)(x, y)=A^{c}(x) \vee B^{c}(y), \forall x \in X, \forall y \in Y$, then $A \times_{c} B$ is called inner complementary product of A and B.
(4) If $\left(A \otimes_{c} B\right)(x, y)=A^{c}(x) \wedge B^{c}(y), \forall x \in X, \forall y \in Y$, then $A \otimes_{c} B$ is called outer complementary product of A and B.

Remark 5.1. (1) $A \times B, A \otimes B, A \times{ }_{c} B$ and $A \otimes_{c} B$ are fuzzy relations from X to Y. (2) When A and B are classical sets, $A \otimes B, A \times{ }_{c} B$ and $A \otimes_{c} B$ can be explained by Fig. 1.

It is easy to prove the following result:
Theorem 5.5. (1) $A \times B=\bigcup_{\lambda \in I} \lambda\left(A_{\lambda} \times B_{\lambda}\right)$; (2) $A \otimes B=\bigcap_{\lambda \in I} \lambda \cdot\left(A^{\lambda} \times B^{\lambda}\right)$; (3) $A \times_{c} B=\bigcap_{\lambda \in I} \lambda \cdot\left(A_{[\lambda]} \times B_{[\lambda]}\right) ;(4) A \otimes_{c} B=$ $\bigcup_{\lambda \in I} \lambda\left(A^{[\lambda]} \times B^{[\lambda]}\right)$.

5.3. Extension principles of n-variables

Let $X=X_{1} \times X_{2} \times \cdots \times X_{n}, Y=Y_{1} \times Y_{2} \times \cdots \times Y_{m}$, and $f: X \rightarrow Y$ be a mapping, then we have
Theorem 5.6. Let $f_{i}: \mathcal{F}\left(X_{1}\right) \times \mathcal{F}\left(X_{2}\right) \times \cdots \times \mathcal{F}\left(X_{n}\right) \rightarrow \mathcal{F}(Y)$, where for $A_{i} \in \mathcal{F}\left(X_{i}\right)(1 \leqslant i \leqslant n)$,
$f_{1}\left(A_{1}, \ldots, A_{n}\right)=\bigcup_{\lambda \in I} \lambda f\left(\left(A_{1}\right)_{\lambda} \times \cdots \times\left(A_{n}\right)_{\lambda}\right)$,
$f_{2}\left(A_{1}, \ldots, A_{n}\right)=\bigcup_{\lambda \in I} \lambda f\left(A_{1}^{[\lambda]} \times \cdots \times A_{n}^{[\lambda]}\right)$,
$f_{3}\left(A_{1}, \ldots, A_{n}\right)=\bigcap_{\lambda \in I} \lambda \cdot f\left(A_{1}^{\lambda} \times \cdots \times A_{n}^{\lambda}\right)$,
$f_{4}\left(A_{1}, \ldots, A_{n}\right)=\bigcap_{\lambda \in I} \lambda \cdot f\left(\left(A_{1}\right)_{[\lambda]} \times \cdots \times\left(A_{n}\right)_{[\lambda]}\right)$,
$f_{5}\left(A_{1}, \ldots, A_{n}\right)=\bigcup_{\lambda \in I} \lambda f\left(\left(A_{1}\right)_{\lambda} \otimes \cdots \otimes\left(A_{n}\right)_{\lambda}\right)$,
$f_{6}\left(A_{1}, \ldots, A_{n}\right)=\bigcup_{\lambda \in I} \lambda f\left(A_{1}^{[\lambda]} \otimes \cdots \otimes A_{n}^{[\lambda]}\right)$,
$f_{7}\left(A_{1}, \ldots, A_{n}\right)=\bigcap_{\lambda \in I} \lambda \cdot f\left(A_{1}^{\lambda} \otimes \cdots \otimes A_{n}^{\lambda}\right)$,
$f_{8}\left(A_{1}, \ldots, A_{n}\right)=\bigcap_{\lambda \in I} \lambda \cdot f\left(\left(A_{1}\right)_{[\lambda]} \otimes \cdots \otimes\left(A_{n}\right)_{[\lambda]}\right)$.
Then
$f_{1}\left(A_{1}, \ldots, A_{n}\right)(y)=\bigvee_{f\left(x_{1}, \ldots, x_{n}\right)=y} \bigwedge_{i=1}^{n} A_{i}\left(x_{i}\right)$,
$f_{2}\left(A_{1}, \ldots, A_{n}\right)(y)=\bigvee_{f\left(x_{1}, \ldots, x_{n}\right)=y} \bigwedge_{i=1}^{n} A_{i}^{c}\left(x_{i}\right)$,
$f_{3}\left(A_{1}, \ldots, A_{n}\right)(y)=\bigwedge_{f\left(x_{1}, \ldots, x_{n}\right)=y} \bigvee_{i=1}^{n} A_{i}\left(x_{i}\right)$,
$f_{4}\left(A_{1}, \ldots, A_{n}\right)(y)=\bigwedge_{f\left(x_{1}, \ldots, x_{n}\right)=y} \bigvee_{i=1}^{n} A_{i}^{c}\left(x_{i}\right)$,
$f_{5}\left(A_{1}, \ldots, A_{n}\right)(y)=\bigvee_{f\left(x_{1}, \ldots, x_{n}\right)=y} \bigvee_{i=1}^{n} A_{i}\left(x_{i}\right)$,
$f_{6}\left(A_{1}, \ldots, A_{n}\right)(y)=\bigvee_{f\left(x_{1}, \ldots, x_{n}\right)=y} \bigvee_{i=1}^{n} A_{i}^{c}\left(x_{i}\right)$,
$f_{7}\left(A_{1}, \ldots, A_{n}\right)(y)=\bigwedge_{f\left(x_{1}, \ldots, x_{n}\right)=y} \bigwedge_{i=1}^{n} A_{i}\left(x_{i}\right)$,
$f_{8}\left(A_{1}, \ldots, A_{n}\right)(y)=\bigwedge_{f\left(x_{1}, \ldots, x_{n}\right)=y} \bigwedge_{i=1}^{n} A_{i}^{c}\left(x_{i}\right)$.
Theorem 5.6 is called the extension principles of n-variable.

6. Explanation of extension principles based on category theory

In [14], Wang explained extension principle of Zadeh by using the category theory. In this section, we will explain other extension principles by using the category theory.

Let $\mathbf{F S e t}_{i}(i=1,2,3,4)$ be a category, where its object is $(X, \mathcal{F}(X))$, and X is a set, i.e. $\left|\mathbf{F S e t}_{i}\right|=\{(X, \mathcal{F}(X)) \mid X$ is a set $\}$; an i-morphism from object $(X, \mathcal{F}(X))$ to object $(Y, \mathcal{F}(Y))$ is a mapping $f_{i}: \mathcal{F}(X) \rightarrow \mathcal{F}(Y)$ and satisfies condition: there exists a mapping $f: X \rightarrow Y$ such that $f_{1}(A)=f(A), f_{2}(A)=f_{c}(A), f_{3}(A)=f^{c}(A)$ and $f_{4}(A)=f_{c}^{c}(A)$, i.e. $\operatorname{Mor}_{i}((X, \mathcal{F}(X)),(Y, \mathcal{F}(Y)))=\left\{f_{i} \mid f_{i}\right.$ is an i-morphism from $(X, \mathcal{F}(X))$ to $\left.(Y, \mathcal{F}(Y))\right\}$.
i-Identity: identity from $(X, \mathcal{F}(X))$ to $(X, \mathcal{F}(X))$ is a mapping $\mathrm{Id}_{i}: \mathcal{F}(X) \rightarrow \mathcal{F}(X)$ satisfying that $\mathrm{Id}_{1}(A)=\operatorname{Id}_{4}(A)=A$ and $\operatorname{Id}_{2}(A)=\operatorname{Id}_{3}(A)=A^{C}$.
i-Composition: For $i=1,\left(g_{1} \Delta f_{1}\right)(A) \triangleq g(f(A))=(g \circ f)(A)$, where $g \circ f$ is a composition of mappings f and g; for $i=2,\left(g_{2} \Delta f_{2}\right)(A)=(g \circ f)_{c}(A)$, for $i=3,\left(g_{3} \Delta f_{3}\right)(A)=(g \circ f)^{c}(A)$, for $i=4,\left(g_{4} \Delta f_{4}\right)(A)=(g \circ f)_{c}^{c}(A)$. Clearly, the compositions defined as above satisfies associativity. Thus $\mathbf{F S e t}_{i}$ is a category $(i=1,2,3,4)$.

Theorem 6.1. If Set is a category of classical sets, then category $\boldsymbol{F S e t}_{i}$ is an isomorphism with category $\boldsymbol{\operatorname { S e t }}$ ($i=1,2,3,4$).
Proof. Let $i \in\{1,2,3,4\}$ and

$$
F_{i}: \text { Set } \rightarrow \mathbf{F S e t}_{i}, X \rightarrow(X, \mathcal{F}(X)), f \rightarrow F_{i}(f)=f_{i} .
$$

Then F_{i} is an isomorphism functor ($i=1,2,3,4$). Therefore category $\mathbf{F S e t}_{i}$ is an isomorphism with category Set $(i=$ $1,2,3,4$).

7. Fuzzy linear mappings

Definition 7.1. Let $T: \mathcal{F}(X) \rightarrow \mathcal{F}(Y), \lambda_{r} \in I$ and $A_{r} \in \mathcal{F}(X)(r \in \Gamma)$.
(1) If $T\left(\bigcup_{r \in \Gamma} \lambda_{r} A_{r}\right)=\bigcup_{r \in \Gamma} \lambda_{r} T\left(A_{r}\right)$, then T is called a (\bigvee, \wedge)-fuzzy linear mapping.
(2) If $T\left(\bigcap_{r \in \Gamma} \lambda_{r} \circ A_{r}\right)=\bigcap_{r \in \Gamma} \lambda_{r} \circ T\left(A_{r}\right)$, then T is called a (\bigwedge, \bigvee)-fuzzy linear mapping.
(3) If $T\left(\bigcup_{r \in \Gamma} \lambda_{r} A_{r}\right)=\bigcap_{r \in \Gamma} \lambda_{r}^{c} \circ T\left(A_{r}\right)$, then T is called a $\left(\bigwedge, \bigvee^{c}\right)$-fuzzy linear mapping.
(4) If $T\left(\bigcap_{r \in \Gamma} \lambda_{r} \circ A_{r}\right)=\bigcup_{r \in \Gamma} \lambda_{r}^{c} T\left(A_{r}\right)$, then T is called a $\left(\bigvee, \bigwedge^{c}\right)$-fuzzy linear mapping.

Theorem 7.1. Let $T: \mathcal{F}(X) \rightarrow \mathcal{F}(Y)$ be a (\bigwedge, \bigvee)-fuzzy linear mapping, then there is only a fuzzy relation R_{T} such that

$$
\begin{equation*}
T(A)(y) \triangleq(A \odot R)(y)=\bigwedge_{x \in X}\left(A(x) \bigvee R_{T}(x, y)\right) \tag{5}
\end{equation*}
$$

Conversely, for any fuzzy relation $R \in \mathcal{F}(X \times Y)$, there is only a (\bigwedge, \bigvee)-fuzzy linear mapping $T_{R}: \mathcal{F}(X) \rightarrow \mathcal{F}(Y)$ such that $T_{R}(A)=A \odot R$.
Proof. Let T be a (\bigwedge, \bigvee)-fuzzy linear mapping and let

$$
f_{T}: X \rightarrow \mathcal{F}(Y), x \mapsto f_{T}(x) \triangleq T\left(\{x\}^{c}\right) .
$$

If we put $\lambda_{x}=A(x), \forall x \in X$, then

$$
A=\bigcap_{x \in X} \lambda_{x} \circ\{x\}^{c} .
$$

Let $R_{T}(x, y)=f_{T}(x)(y), \forall x \in X, \forall y \in Y$, then

$$
T(A)=T\left(\bigcap_{x \in X} \lambda_{x} \circ\{x\}^{c}\right)=\bigcap_{x \in X} \lambda_{x} \circ f_{T}(x) .
$$

It follows that

$$
T(A)(y)=\bigwedge_{x \in X}\left(A(x) \bigvee f_{T}(x)(y)\right)=\bigwedge_{x \in X}\left(A(x) \bigvee R_{T}(x, y)\right)=\left(A \odot R_{T}\right)(y) .
$$

Let R be another fuzzy relation satisfying (5), then

$$
R_{T}\left(x^{\prime}, y^{\prime}\right)=T\left(\left\{x^{\prime}\right\}^{c}\right)\left(y^{\prime}\right)=\bigwedge_{x \in X}\left(\left\{x^{\prime}\right\}^{c}(x) \bigvee R\left(x, y^{\prime}\right)\right)=R\left(x^{\prime}, y^{\prime}\right), \quad \forall\left(x^{\prime}, y^{\prime}\right) \in X \times Y
$$

So $R=R_{T}$, i.e. R_{T} satisfying (5) is unique.
Conversely, let $R \in \mathcal{F}(X \times Y)$ and

$$
T_{R}: \mathcal{F}(X) \rightarrow \mathcal{F}(Y), \quad A \mapsto T_{R}(A)=A \odot R
$$

Then

$$
\begin{aligned}
T_{R}\left(\bigcap_{r \in \Gamma} \lambda_{r} \circ A_{r}\right)(y) & =\bigwedge_{x \in X}\left(\left(\bigcap_{r \in \Gamma} \lambda_{r} \circ A_{r}\right)(x) \bigvee R(x, y)\right) \\
& =\bigwedge_{x \in X}\left(\bigwedge_{r \in \Gamma}\left(\lambda_{r} \bigvee A_{r}(x) \bigvee R(x, y)\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\bigwedge_{r \in \Gamma} \bigwedge_{x \in X}\left(\lambda_{r} \bigvee A_{r}(x) \bigvee R(x, y)\right) \\
& =\bigwedge_{r \in \Gamma}\left(\lambda_{r} \bigvee\left(\bigwedge_{x \in X}\left(A_{r}(x) \bigvee R(x, y)\right)\right)\right) \\
& =\bigcap_{r \in \Gamma} \lambda_{r} \circ T_{R}\left(A_{r}\right)(y) .
\end{aligned}
$$

Hence $T_{R}\left(\bigcap_{r \in \Gamma} \lambda_{r} \circ A_{r}\right)=\bigcap_{r \in \Gamma} \lambda_{r} \circ T_{R}\left(A_{r}\right)$, i.e., T_{R} is a $(\bigwedge, ~ \bigvee)$-fuzzy linear mapping.
Similarly, we have
Theorem 7.2. If T is a $\left(\bigwedge, \bigvee^{c}\right)$-fuzzy mapping, then there is only a fuzzy relation R_{T} such that $T(A)(y) \triangleq\left(A^{c} \odot R_{T}\right)(y)=$ $\bigwedge_{x \in X}\left(A^{c}(x) \bigvee R_{T}(x, y)\right)$.

Conversely, for any fuzzy relation $R \in \mathcal{F}(X \times Y)$, there is only a $\left(\bigwedge, \bigvee^{c}\right)$-fuzzy linear mapping $T_{R}: \mathcal{F}(X) \rightarrow \mathcal{F}(Y)$ such that $T_{R}(A)=A^{c} \odot R$.

Theorem 7.3. If T is $a\left(\bigvee, \bigwedge^{c}\right)$-fuzzy linear mapping, then there is only a fuzzy relation R_{T} such that $T(A)(y) \triangleq\left(A^{c} \circ R\right)(y)=$ $\bigvee_{x \in X}\left(A^{c}(x) \wedge R_{T}(x, y)\right)$.

Conversely, for any fuzzy relation $R \in \mathcal{F}(X \times Y)$, there is only a $\left(\bigvee, \bigwedge^{c}\right)$-fuzzy linear mapping $T_{R}: \mathcal{F}(X) \rightarrow \mathcal{F}(Y)$ such that $T_{R}(A)=A^{c} \circ R$.

Remark 7.1. Let $f: X \rightarrow Y$ be a mapping, and $T_{i}: \mathcal{F}(X) \rightarrow \mathcal{F}(Y)$ satisfy $T_{1}(A)=f(A), T_{2}(A)=f_{c}^{c}(A), T_{3}(A)=f^{c}(A)$ and $T_{4}(A)=f_{c}(A)$. Then T_{1}, T_{2}, T_{3} and T_{4} are (\bigvee, \wedge)-, $(\Lambda, \bigvee)-,\left(\bigvee, \bigwedge^{c}\right)-,\left(\Lambda, \bigvee^{c}\right)$-fuzzy linear respectively. Therefore Definition 7.1 is a generalization of Extension Principles.

8. Generalized extension principle

8.1. Inner project of fuzzy relation

Definition 8.1. Let $R \in \mathcal{F}(X \times Y)$ and $R^{X} \in \mathcal{F}(X)$ satisfying

$$
\left(R^{X}\right)(x)=\bigwedge_{y \in Y} R(x, y)
$$

Then R^{X} is called a inner project of R over X. If $R_{X} \in \mathcal{F}(X)$ satisfies

$$
\left(R_{X}\right)(x)=\bigvee_{y \in Y} R(x, y)
$$

then R_{X} is called a outer project of R over X.
In the same way, we can define R^{Y} and R_{Y}.
By the use of concepts of inner project and outer project, we can explain extension principle of a single variable as following:

Theorem 8.1. If $f: X \rightarrow Y$ is a mapping, then
(1) $f(A)=\left((A \times Y) \cap R_{f}\right)_{Y}$,
(2) $f_{c}(A)=\left(\left(A^{c} \times Y\right) \cap R_{f}\right)_{Y}$,
(3) $f^{c}(A)=\left(\left(A^{c} \times Y\right) \cup R_{f}^{c}\right)^{Y}$,
(4) $f_{c}^{c}(A)=\left((A \times Y) \cup R_{f}^{c}\right)^{Y}$,
where $A \in \mathcal{F}(X), R_{f}=\{(x, f(x)) \mid x \in X\}, R_{f}^{c}$ is complementary set of R_{f} in $X \times Y$.

8.2. Generalized extension principle

Definition 8.2. Let $f: X \rightarrow \mathcal{F}(Y)$ be a fuzzy mapping. If we put

$$
f_{\lambda}(x)=(f(x))_{\lambda}, T_{f_{\lambda}}\left(A_{\lambda}\right)=\left(\left(A_{\lambda} \times Y\right) \cup R_{f_{\lambda}}\right)^{Y}, \quad \forall \lambda \in I,
$$

where $R_{f_{\lambda}}(x, y)=f_{\lambda}(x)(y)$ and

$$
T_{f}: \mathcal{F}(X) \rightarrow \mathcal{F}(Y), \quad T_{f}(A)=\bigcap_{\lambda \in I} \lambda \circ T_{f_{\lambda}}\left(A_{\lambda}\right)
$$

then T_{f} is called a fuzzy inner mapping from X to Y induced by f.
Theorem 8.2. If $f: X \rightarrow \mathcal{F}(Y)$ is a fuzzy mapping, $R_{f}(x, y)=f(x)(y)$ and T_{f} is a fuzzy inner mapping from X to Y induced by f, then $T_{f}(A)=\left((A \times Y) \cup R_{f}\right)^{Y}, \forall A \in \mathcal{F}(X)$.

Proof. $T_{f}(A)(y)=\bigwedge_{\lambda \in I}\left(\lambda \vee T_{f_{\lambda}}\left(A_{\lambda}\right)(y)\right)=\bigwedge_{\lambda \in I}\left(\lambda \vee\left(\bigwedge_{x \in X}\left(A_{\lambda}(x) \vee f_{\lambda}(x)(y)\right)\right)\right)=\bigwedge_{\lambda \in I} \bigwedge_{x \in X}\left(\lambda \bigvee A_{\lambda}(x) \bigvee f_{\lambda}(x)(y)\right)=$ $\bigwedge_{x \in X} \bigwedge_{\lambda \in I}\left(\lambda \bigvee A_{\lambda}(x) \bigvee f_{\lambda}(x)(y)\right)$.

We only need to prove that

$$
\begin{equation*}
\bigwedge_{\lambda \in I}\left(\lambda \vee A_{\lambda}(x) \vee f_{\lambda}(x)(y)\right)=\left(\bigwedge_{\lambda \in I}\left(\lambda \vee A_{\lambda}(x)\right)\right) \bigvee\left(\bigwedge_{\lambda \in I}\left(\lambda \vee f_{\lambda}(x)(y)\right)\right) . \tag{6}
\end{equation*}
$$

Assume that there is a $\alpha \in I$ such that

$$
\bigwedge_{\lambda \in I}\left(\lambda \vee A_{\lambda}(x) \vee f_{\lambda}(x)(y)\right)>\alpha>\left(\bigwedge_{\lambda \in I}\left(\lambda \vee A_{\lambda}(x)\right)\right) \bigvee\left(\bigwedge_{\lambda \in I}\left(\lambda \vee f_{\lambda}(x)(y)\right)\right) .
$$

Then $\bigwedge_{\lambda \in I}\left(\lambda \vee A_{\lambda}(x)\right)<\alpha$ and $\bigwedge_{\lambda \in I}\left(\lambda \vee f_{\lambda}(x)(y)\right)<\alpha$, so there exists $\lambda_{1}, \lambda_{2} \in I$ such that $\lambda_{1} \vee A_{\lambda_{1}}(x)<\alpha$ and $\lambda_{2} \vee A_{\lambda_{2}}(y)<\alpha$.

We let $\lambda_{1} \leqslant \lambda_{2}$, then it follows that $\lambda_{2} \vee A_{\lambda_{2}}(x) \vee f_{\lambda_{2}}(x)(y)<\alpha$ from $A_{\lambda_{1}} \supseteq A_{\lambda_{2}}$, and consequently $\bigwedge_{\lambda \in I}\left(\lambda \vee A_{\lambda}(x) \vee f_{\lambda}(x)(y)\right) \leqslant \alpha$.

This is a contradiction. Therefore expression (6) holds. Thus

$$
\begin{aligned}
T_{f}(A)(y) & =\bigwedge_{x \in X}\left(\left(\bigwedge_{\lambda \in I}\left(\lambda \vee A_{\lambda}(x)\right)\right) \vee\left(\bigwedge_{\lambda \in I}\left(\lambda \vee f_{\lambda}(x)(y)\right)\right)\right) \\
& =\bigwedge_{x \in I}(A(x) \vee f(x)(y))=\bigwedge_{x \in X}\left(A(x) \vee R_{f}(x, y)\right)=\left((A \times Y) \cup R_{f}\right)^{Y} .
\end{aligned}
$$

Definition 8.3. Let $S \in \mathcal{F}(X \times Y), R \in \mathcal{F}(Y \times X)$. Let

$$
(S \odot R)(x, z)=\bigwedge_{y \in Y}(S(x, y) \vee R(y, z)), \quad \forall(x, z) \in X \times Z
$$

$S \odot R$ is called the inner composition of S and R.
By the use of generalized extension principle, we can explain inner composition of fuzzy relation S and R as follows.
Theorem 8.3. Let $f: Y \rightarrow \mathcal{F}(Z)$ be a fuzzy mapping. If

$$
\begin{aligned}
& T_{f}: \mathcal{F}(X \times Y) \rightarrow \mathcal{F}(X \times Z) \\
& S \mapsto T_{f}(S)=\left((S \times Z) \cup\left(X \times R_{f}\right)\right)^{X \times Z}
\end{aligned}
$$

then $T_{f}(S)=S \odot R_{f}$.
The proof of Theorem 8.3 is obvious.
By the use of Theorem 8.3, inner composition of fuzzy relation $S \in \mathcal{F}(X \times Y)$ and $R \in \mathcal{F}(Y \times Z)$ can be divided into the following process.
(1) Extension: to make fuzzy sets of $X \times Y \times Z: S \times Z$ and $X \times R$.
(2) Union: to make fuzzy sets of $X \times Y \times Z:(S \times Z) \cup(X \times R)$.
(3) Inner project: $S \odot R=((S \times Z) \cup(X \times R))^{X \times Z} \in \mathcal{F}(X \times Z)$.

9. The axiomatic descriptions for different cut sets

From Properties 2.1-2.4, we have known that each cut set of fuzzy sets has the similar properties. In this section, we shall give a general definition of cut set of a fuzzy set. We shall present the axiomatic descriptions for different cut sets and show the three most intrinsic properties for each cut set.

Definition 9.1. Let $f:[0,1] \times \mathcal{F}(X) \rightarrow \mathcal{P}(X)$ be a mapping. Then $f(\lambda, A)$ is called a f-cut set of fuzzy set A.
Theorem 9.1. If the mapping $f:[0,1] \times \mathcal{F}(X) \rightarrow \mathcal{P}(X)$ satisfies the following conditions:
(1) $f\left(\lambda, \bigcup_{t \in T} A_{t}\right)=\bigcup_{t \in T} f\left(\lambda, A_{t}\right)$;
(2) When $A \in \mathcal{P}(X)$ and $\lambda<1$, we have $f(\lambda, A)=A$;
(3) $f(\lambda, \alpha A)=\left\{\begin{array}{ll}\emptyset, & \alpha \leqslant \lambda \\ f(\lambda, A), & \alpha>\lambda\end{array}, \forall A \in \mathcal{F}(X), \alpha, \lambda \in[0,1]\right.$.

Then $f(\lambda, A)=A_{\underline{\lambda}}$ for any $\lambda \in I$ and $A \in \mathcal{F}(X)$.
Proof. When $\lambda<1, f(\lambda, A)=f\left(\lambda, \bigcup_{\alpha \in I} \alpha A_{\underline{\alpha}}\right)=\bigcup_{\alpha \in I} f\left(\lambda, \alpha A_{\underline{\alpha}}\right)=\bigcup_{\alpha>\lambda} f\left(\lambda, A_{\underline{\alpha}}\right)=\bigcup_{\alpha>\lambda} A_{\underline{\alpha}}=A_{\underline{\lambda}}$; When $\lambda=1$, we let $\alpha=1$, then $f(\lambda, A)=\emptyset=A_{\underline{1}}$.

Therefore, $f(\lambda, A)=A_{\underline{\lambda}}, \forall \lambda \in I, A \in \mathcal{F}(X)$.
Theorem 9.2. If the mapping $f:[0,1] \times \mathcal{F}(X) \rightarrow \mathcal{P}(X)$ satisfies the following conditions:
(1) $f\left(\lambda, \bigcap_{t \in T} A_{t}\right)=\bigcap_{t \in T} f\left(\lambda, A_{t}\right)$;
(2) When $\lambda>0$ and $A \in \mathscr{P}(X)$, we have $f(\lambda, A)=A$;
(3) $f(\lambda, \alpha \circ A)=\left\{\begin{array}{ll}X, \\ f(\lambda, A), & \alpha \geqslant \lambda \\ \alpha<\lambda\end{array}, \forall A \in \mathcal{F}(X), \alpha, \lambda \in I\right.$.

Then $f(\lambda, A)=A_{\lambda}$ for any $\lambda \in I$ and $A \in \mathcal{F}(X)$.
Proof. When $\lambda>0, f(\lambda, A)=f\left(\lambda, \bigcap_{\alpha \in I} \alpha \circ A_{\alpha}\right)=\bigcap_{\alpha \in I} f\left(\lambda, \alpha \circ A_{\alpha}\right)=\bigcap_{\alpha<\lambda} f\left(\lambda, A_{\alpha}\right)=\bigcap_{\alpha<\lambda} A_{\alpha}=A_{\lambda}$; When $\lambda=0$, we let $\alpha=0$, then $f(\lambda, A)=f(\lambda, \alpha \circ A)=X=A_{0}$.

Therefore, $f(\lambda, A)=A_{\lambda}, \forall \lambda \in I, A \in \mathcal{F}(X)$.
Theorem 9.3. If the mapping $f:[0,1] \times \mathcal{F}(X) \rightarrow \mathcal{P}(X)$ satisfies the following conditions:
(1) $f\left(\lambda, \bigcup_{t \in T} A_{t}\right)=\bigcup_{t \in T} f\left(\lambda, A_{t}\right)$;
(2) When $\lambda>0$ and $A \in \mathscr{P}(X)$, we have $f(\lambda, A)=A$;
(3) $f(\lambda, \alpha A)=\left\{\begin{array}{ll}\emptyset, & \alpha+\lambda \leqslant 1 \\ f(\lambda, A), & \alpha+\lambda>1\end{array}, \forall A \in \mathcal{F}(X), \alpha, \lambda \in I\right.$.

Then $f(\lambda, A)=A_{[\lambda]}$ for any $\lambda \in I$ and $A \in \mathcal{F}(X)$.
Proof. When $\lambda>0, f(\lambda, A)=f\left(\lambda, \bigcup_{\alpha \in I} \alpha^{c} A_{[\underline{\alpha}]}\right)=\bigcup_{\alpha \in I} f\left(\lambda, \alpha^{c} A_{[\underline{\alpha}]}\right)=\bigcup_{\alpha^{c}+\lambda>1} f\left(\lambda, A_{[\underline{\alpha}]}\right)=\bigcup_{\lambda>\alpha} A_{[\underline{\alpha}]}=A_{[\underline{\lambda}]}$; When $\lambda=0$, we let $\alpha=1$, then $f(\lambda, A)=\emptyset=A_{[0]}$.
Therefore, $f(\lambda, A)=A_{[\underline{\lambda}]}, \forall \lambda \in I, A \in \mathcal{F}(X)$.
Theorem 9.4. If the mapping $f:[0,1] \times \mathcal{F}(X) \rightarrow \mathcal{P}(X)$ satisfies the following conditions:
(1) $f\left(\lambda, \bigcap_{t \in T} A_{t}\right)=\bigcap_{t \in T} f\left(\lambda, A_{t}\right)$;
(2) When $\lambda<1$ and $A \in \mathcal{P}(X)$, we have $f(\lambda, A)=A$;
(3) $f(\lambda, \alpha \circ A)=\left\{\begin{array}{ll}X, & \lambda+\alpha \geqslant 1 \\ f(\lambda, A), & \lambda+\alpha<1\end{array}, \forall A \in \mathcal{F}(X), \alpha, \lambda \in I\right.$.

Then $f(\lambda, A)=A_{[\lambda]}$ for any $\lambda \in I$ and $A \in \mathcal{F}(X)$.
Proof. when $\lambda<1, f(\lambda, A)=f\left(\lambda, \bigcap_{\alpha \in I} \alpha^{c} \circ A_{[\alpha]}\right)=\bigcap_{\alpha \in I} f\left(\lambda, \alpha^{c} \circ A_{[\alpha]}\right)=\bigcap_{\lambda+\alpha^{c}<1} f\left(\lambda, A_{[\alpha]}\right)=\bigcap_{\lambda<\alpha} A_{[\alpha]}=A_{[\lambda]}$; When $\lambda=1$, we let $\alpha=0$, then $f(\lambda, A)=f(\lambda, \alpha \circ A)=X=A_{[\lambda]}$.
Therefore, $f(\lambda, A)=A_{[\lambda]}, \forall \lambda \in I, A \in \mathcal{F}(X)$.
Theorem 9.5. If the mapping $f:[0,1] \times \mathcal{F}(X) \rightarrow \mathcal{P}(X)$ satisfies the following conditions:
(1) $f\left(\lambda, \bigcap_{t \in T} A_{t}\right)=\bigcup_{t \in T} f\left(\lambda, A_{t}\right)$;
(2) When $\lambda>0$ and $A \in \mathscr{P}(X)$, we have $f(\lambda, A)=A^{c}$;
(3) $f(\lambda, \alpha \cdot A)=\left\{\begin{array}{ll}\emptyset, & \alpha \geqslant \lambda \\ f\left(\lambda, A^{c}\right), & \alpha<\lambda\end{array}, \forall A \in \mathcal{F}(X), \alpha, \lambda \in I\right.$.

Then $f(\lambda, A)=A^{\lambda}$ for any $\lambda \in I$ and $A \in \mathcal{F}(X)$.
Proof. When $\lambda>0, f(\lambda, A)=f\left(\lambda, \bigcap_{\alpha \in I} \alpha \cdot A^{\underline{\alpha}}\right)=\bigcup_{\alpha \in I} f\left(\lambda, \alpha \cdot A^{\underline{\alpha}}\right)=\bigcup_{\alpha<\lambda} f\left(\lambda,\left(A^{\alpha}\right)^{c}\right)=\bigcap_{\alpha<\lambda} A^{\underline{\alpha}}=A^{\lambda}$; When $\lambda=0$, we let $\alpha=0$, then $f(\lambda, A)=f\left(\lambda, \alpha \cdot A^{c}\right)=\emptyset=A^{\lambda}$.

Therefore, $f(\lambda, A)=A^{\lambda}, \forall \lambda \in I, A \in \mathcal{F}(X)$.
Theorem 9.6. If the mapping $f:[0,1] \times \mathcal{F}(X) \rightarrow \mathcal{P}(X)$ satisfies the following conditions:
(1) $f\left(\lambda, \bigcup_{t \in T} A_{t}\right)=\bigcap_{t \in T} f\left(\lambda, A_{t}\right)$;
(2) When $\lambda<1$ and $A \in \mathcal{P}(X)$, we have $f(\lambda, A)=A^{c}$;
(3) $f(\lambda, \alpha \diamond A)=\left\{\begin{array}{ll}X, & \alpha \leqslant \lambda \\ f\left(\lambda, A^{c}\right), & \alpha>\lambda\end{array}, \forall A \in \mathcal{F}(X), \alpha, \lambda \in I\right.$.

Then $f(\lambda, A)=A^{\lambda}$ for any $\lambda \in I$ and $A \in \mathcal{F}(X)$.
Proof. When $\lambda<1, f(\lambda, A)=f\left(\lambda, \bigcup_{\alpha \in I} \alpha \diamond A^{\alpha}\right)=\bigcap_{\alpha \in I} f\left(\lambda, \alpha \diamond A^{\alpha}\right)=\bigcap_{\alpha>\lambda} f\left(\lambda,\left(A^{\alpha}\right)^{c}\right)=\bigcap_{\alpha>\lambda} A^{\alpha}=A^{\lambda}$; When $\lambda=1$, we let $\alpha=1$, then $f(\lambda, A)=f\left(\lambda, 1 \diamond A^{c}\right)=X=A^{1}$.
Therefore, $f(\lambda, A)=A^{\lambda}, \forall \lambda \in I, A \in \mathcal{F}(X)$.
Theorem 9.7. If the mapping $f:[0,1] \times \mathcal{F}(X) \rightarrow \mathcal{P}(X)$ satisfies the following conditions:
(1) $f\left(\lambda, \bigcap_{t \in T} A_{t}\right)=\bigcup_{t \in T} f\left(\lambda, A_{t}\right)$;
(2) When $\lambda<1$ and $A \in \mathscr{P}(X)$, we have $f(\lambda, A)=A^{c}$;
(3) $f(\lambda, \alpha \cdot A)=\left\{\begin{array}{ll}\emptyset, & \lambda+\alpha \geqslant 1 \\ f\left(\lambda, A^{c}\right), & \lambda+\alpha<1\end{array}, \forall A \in \mathcal{F}(X), \alpha, \lambda \in I\right.$.

Then $f(\lambda, A)=A^{[\lambda]}$ for any $\lambda \in I$ and $A \in \mathcal{F}(X)$.
Proof. When $\lambda<1, f(\lambda, A)=f\left(\lambda, \bigcap_{\alpha \in I} \alpha^{c} \cdot A^{[\underline{\alpha}]}\right)=\bigcup_{\alpha \in I} f\left(\lambda, \alpha^{c} \cdot A^{[\alpha]}\right)=\bigcup_{\lambda+\alpha^{c}<1} f\left(\lambda,\left(A^{[\alpha]}\right)^{c}\right)=\bigcup_{\lambda<\alpha} A^{[\underline{\alpha}]}=A^{[\lambda]}$; When $\lambda=1$, we let $\alpha=0$, then $f(\lambda, A)=f\left(\lambda, 0 \cdot A^{c}\right)=\emptyset=A^{[\lambda]}$.
Therefore, $f(\lambda, A)=A^{[\lambda]}, \forall \lambda \in I, A \in \mathcal{F}(X)$.
Theorem 9.8. If the mapping $f:[0,1] \times \mathcal{F}(X) \rightarrow \mathcal{P}(X)$ satisfies the following conditions:
(1) $f\left(\lambda, \bigcup_{t \in T} A_{t}\right)=\bigcap_{t \in T} f\left(\lambda, A_{t}\right)$;
(2) When $\lambda>0$ and $A \in \mathscr{P}(X)$, we have $f(\lambda, A)=A^{c}$;
(3) $f(\lambda, \alpha \diamond A)=\left\{\begin{array}{ll}X, & \lambda+\alpha \leqslant 1 \\ f\left(\lambda, A^{c}\right), & \lambda+\alpha>1\end{array}, \forall A \in \mathcal{F}(X), \alpha, \lambda \in I\right.$.

Then $f(\lambda, A)=A^{[\lambda]}$ for any $\lambda \in I$ and $A \in \mathcal{F}(X)$.
Proof. When $\lambda>0, f(\lambda, A)=f\left(\lambda, \bigcup_{\alpha \in I} \alpha^{c} \diamond A^{c}\right)=\bigcap_{\alpha \in I} f\left(\lambda, \alpha^{c} \diamond A^{c}\right)=\bigcap_{\lambda+\alpha^{c}>1} f\left(\lambda,\left(A^{[\alpha]}\right)^{c}\right)=\bigcap_{\lambda>\alpha} A^{[\alpha]}=A^{[\lambda]}$; When $\lambda=0$, we let $\alpha=1$, then $f(\lambda, A)=f\left(\lambda, 1 \diamond A^{c}\right)=X=A^{[0]}$.

Therefore, $f(\lambda, A)=A^{[\lambda]}, \forall \lambda \in I, A \in \mathcal{F}(X)$.

10. Conclusions

In this paper, three new cut sets of fuzzy sets are presented and their properties are discussed. Based on those cut sets of fuzzy sets, new decomposition theorems, new representation theorems, new extension principles and new fuzzy linear mappings are established. These discussions extended the theories of fuzzy sets.

References

[1] D. Dubois, H. Prade, Fuzzy Sets and Systems, Academic Press, New York, 1980.
[2] Y.M. Liu, M.K. Luo, Fuzzy Topology, World Scientific Publishing, Singapore, 1990.
[3] J.N. Mordeson, D.S. Malik, Fuzzy Commutative Algebra, World Scientific Publishing, Singapore, 1998.
[4] J.N. Mordeson, K.R. Bhutani, A. Rosenfeld, Fuzzy Group Theory, Springer, New York, 2005.
[5] C. Bertoluzza, M. Solci, M.L. Caodieci, Measure of a fuzzy set: The α-cut approach in the finite case, Fuzzy Sets and Systems 123 (2001) $93-102$.
[6] J.N. Garcia, Z. Kutalik, K.H. Cho, O. Wolkenhauer, Level sets and the minimum volume sets of probability density function, International Journal of Approximate Reasoning 34 (2003) 25-47.
[7] E. Pap, D. Surla, Lebesgue measure of α-cuts approach for finding the height of the membership function, Fuzzy Sets and Systems 111 (2000) $341-350$.
[8] C.Z. Luo, Z.P. Wang, Representation of fuzzy reasoning, Fuzzy Sets and Systems 36 (1990) 77-81.
[9] D. Dubois, E. Hullermeier, H. Prade, On the representation of fuzzy rules in terms of crisp rules, Information Sciences 151 (2003) $301-326$.
[10] C.Z. Luo, Introduction to Fuzzy Sets I, II, Beijing Normal University Press, 1989.
[11] P.M. Pu, Y.M. Liu, Fuzzy topology I: Neighborhood structure of a fuzzy point and Moore-smith convergence, Journal of Mathematical Analysis and Applications 97 (1980) 571-599.
[12] J.A. Herencia, Graded sets and points: A stratified approach to fuzzy sets and points, Fuzzy Sets and Systems 77 (1996) 191-202.
[13] L.A. Zadah, The Concept of a Linguistic Variable and its Application to Approximate Reasoning, American Elsevier Publishing Company INC, 1975.
[14] P.Z. Wang, Fuzzy sets and categories of fuzzy sets, Advances in Mathematics 11 (1982) 1-17 (in Chinese).

[^0]: This paper was supported by the National Natural Science Foundation of China (60774049).

 * Corresponding author.

 E-mail address: eslee@ksu.edu (E.S. Lee).

