
lable at ScienceDirect

J Ginseng Res 39 (2015) 314e321

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists avai
Journal of Ginseng Research

journal homepage: http: / /www.ginsengres.org
Research article
Ginsenoside Re inhibits pacemaker potentials via adenosine
triphosphate-sensitive potassium channels and the cyclic guanosine
monophosphate/nitric oxide-dependent pathway in cultured
interstitial cells of Cajal from mouse small intestine

Noo Ri Hong 1,2, Hyun Soo Park 1,2, Tae Seok Ahn 1,2, Hyun Jung Kim1,2, Ki-Tae Ha 2,3,
Byung Joo Kim 1,2,*

1Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, Korea
2Healthy Aging Korean Medical Research Center, Pusan National University School of Korean Medicine, Yangsan, Korea
3Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, Korea
a r t i c l e i n f o

Article history:
Received 8 December 2014
Received in Revised form
19 January 2015
Accepted 25 February 2015
Available online 6 March 2015

Keywords:
gastrointestinal tract
ginsenoside Re
interstitial cells of Cajal
patch clamp configuration
* Corresponding author. Division of Longevity and
Yangsan, Gyeongsangnamdo 626-870, Korea. Tel.: +82

E-mail address: vision@pusan.ac.kr (B.J. Kim).

p1226-8453 e2093-4947/$ e see front matter Copyrig
ND license (http://creativecommons.org/licenses/by-n
http://dx.doi.org/10.1016/j.jgr.2015.02.004
a b s t r a c t

Background: Ginseng belongs to the genus Panax. Its main active ingredients are the ginsenosides.
Interstitial cells of Cajal (ICCs) are the pacemaker cells of the gastrointestinal (GI) tract. To understand the
effects of ginsenoside Re (GRe) on GI motility, the authors investigated its effects on the pacemaker
activity of ICCs of the murine small intestine.
Methods: Interstitial cells of Cajal were dissociated from mouse small intestines by enzymatic digestion.
The whole-cell patch clamp configuration was used to record pacemaker potentials in cultured ICCs.
Changes in cyclic guanosine monophosphate (cGMP) content induced by GRe were investigated.
Results: Ginsenoside Re (20e40mM) decreased the amplitude and frequency of ICC pacemaker activity in
a concentration-dependent manner. This action was blocked by guanosine 50-[b-thio]diphosphate [a
guanosine-5’-triphosphate (GTP)-binding protein inhibitor] and by glibenclamide [an adenosine
triphosphate (ATP)-sensitive Kþ channel blocker]. To study the GRe-induced signaling pathway in ICCs,
the effects of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (a guanylate cyclase inhibitor) and RP-8-CPT-
cGMPS (a protein kinase G inhibitor) were examined. Both inhibitors blocked the inhibitory effect of GRe
on ICC pacemaker activity. L-NG-nitroarginine methyl ester (100mM), which is a nonselective nitric oxide
synthase (NOS) inhibitor, blocked the effects of GRe on ICC pacemaker activity and GRe-stimulated cGMP
production in ICCs.
Conclusion: In cultured murine ICCs, GRe inhibits the pacemaker activity of ICCs via the ATP-sensitive
potassium (Kþ) channel and the cGMP/NO-dependent pathway. Ginsenoside Re may be a basis for
developing novel spasmolytic agents to prevent or alleviate GI motility dysfunction.
Copyright � 2015, The Korean Society of Ginseng, Published by Elsevier Ltd. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Ginseng belongs to the genus Panax, and its main active in-
gredients, the ginsenosides, are derivatives of the triterpenoid
dammarane [1]. Ginsenosides have a four-ring, steroid-like struc-
ture with pendant sugar moieties. Approximately 30 ginsenosides
have been isolated from Panax ginseng roots [2,3]. Many reports
have shown that the ginsenosides have wide-ranging biological
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effects, and they influence the central and peripheral nervous
systems and the cardiovascular and immune systems [4e6].
Furthermore, ginsenosides affect the gastrointestinal (GI) tract.
Ginseng increases mouse intestinal movement and promotes the
relaxation of circular muscles in the gastric body [7]. In isolated
guinea pig GI tract tissues, ginseng increases longitudinal muscle
contraction in the ileum and distal colon [8]. In the rabbit intestine,
ginseng stimulates intestinal motility [9]. Ginsenoside Re (GRe) is a
ational University School of Korean Medicine, 49 Busandaehakro, Mulgeum-eup,
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Fig. 1. Cultured ICCs from the murine small intestine. The tunica muscularis of the
small bowel was digested with collagenase, and the dispersed cells were cultured for
12 h. The confocal microscope image shows the Kit-immunopositive ICC network in
the culture. The scale bar represents 50 mm. GRe, ginsenoside Re; ICC, interstitial cells
of Cajal.
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major ginsenoside that has diverse effects. For example, it enhances
small-conductance calcium (Ca2þ)-activated potassium (Kþ) cur-
rents in human coronary artery endothelial cells [10], protects
against the formation of acute gastric mucosal lesions induced by
compound 48/80 [11], enhances the immune response to inacti-
vated rabies virus vaccine in mice [12], and exhibits anticarcino-
genic effects in human gastric cancer cells [13].

Interstitial cells of Cajal (ICCs) are the GI pacemaker cells that
generate rhythmic oscillations in membrane potentials that are
known as “slowwaves.” [14,15]. The loss of ICCs has been implicated
in severalmotility disorders,which suggests theyhave an important
role in regulating GI motility [16]. The pacemaker mechanism in-
volves rhythmic oscillations in intracellular calcium concentrations
and Ca2þ release from D-myo-inositol 1,4,5-trisphosphate (IP3)
receptor-operated stores [17]. In the murine small intestine, in-
creases in the pacemaker activity of ICCs primarily result from pe-
riodic activation of nonselective cation channels (NSCCs) [17,18] or
chloride (Cl�) channels [19e21]. Kim et al [16] suggest that transient
receptor potential melastatin 7 (TRPM 7) is required for ICC pace-
maker activity in the murine small intestine, and that a Ca2þ-acti-
vated Cl� channel (CaCC) is involved in the slowwaves generated by
ICCs; this Cl� channel was later identified as transmembrane pro-
tein 16A, which is also called anoctamin-1 (ANO1) [20]. Kim et al [2]
suggest that ginseng total saponins (GTS) modulate ICC pacemaker
activity in the GI tract.We recently reported that in culturedmurine
ICCs, gintinin, a ginseng-derived G protein-coupled lysophosphati-
dic acid (LPA) receptor [22,23], increased the membrane depolari-
zation associatedwith pacemaker activity, and that ANO1 activation
was coupled to the stimulation of GI contractility via LPA1/3 re-
ceptor pathways [24]. However, it remains unclear how GRe exerts
its pharmacologic and physiologic effects on GI motility. In the
present study, we examined whether GRe regulates the electrical
properties of cultured ICC clusters derived from murine small in-
testine, and we characterized GRe-mediated signaling pathways.

2. Materials and methods

2.1. Preparation of cells and cell cultures

Animal care and experiments were conducted in accordancewith
the guidelines issued by the Ethics Committee of the Pusan National
University (Yangsan, Republic of Korea). BALB/c mice were used
throughout the study. Small intestines were excised (from 1 cm
below the pyloric ring to the cecum) and opened along the mesen-
teric border. Luminal contents were removed using KrebseRinger
bicarbonate solution, and the tissues were pinned to the bases of
Sylgard dishes. The mucosae were removed by sharp dissection.
Small tissue strips of intestine muscle (which consisted of circular
and longitudinal muscles) were equilibrated for 30 min in Ca2þ-free
Hank’s solution, which contained the following: potassium
chloride (KCl), 5.36mM; sodium chloride (NaCl), 125mM; sodium
hydroxide (NaOH), 0.34mM; sodium bicarbonate (Na2HCO3),
0.44mM; glucose, 10mM; sucrose, 2.9mM; and 4-(2-hydroxyethyl)-
1-piperazineethanesulfonic acid (HEPES), 11mM; pH 7.4). Cells were
then dispersed in an enzyme solution containing collagenase (Wor-
thington Biochemical, Lakewood, NJ, USA; 1.3mg/mL), bovine serum
albumin (BSA; Sigma-Aldrich, St. Louis, MO, USA; 2 mg/mL), trypsin
inhibitor (Sigma-Aldrich; 2 mg/mL), and ATP (0.27 mg/mL). The cells
were plated onto sterile glass coverslips coatedwithmurine collagen
(2.5 mg/mL; Falcon/BD, Franklin Lakes, NJ, USA) in 35 mm culture
dishes. The cells were then cultured at 37�C in a 95% oxygene5%
carbon dioxide incubator in a smooth muscle growth medium
(Clonetics, San Diego, CA, USA) supplemented with 2% antibiotics/
antimycotics (Gibco, Grand Island, NY, USA) and murine stem cell
factor (5ng/mL; Sigma-Aldrich). All experiments on ICC clusterswere
performed after theywere cultured for 12 h. The ICCswere identified
immunologically using an anti-c-Kit antibody, phycoerythrin-
conjugated rat anti-mouse c-Kit monoclonal antibody (eBioscience,
San Diego, CA, USA), at a dilution of 1:50 for 20 min (Fig. 1). Because
themorphologyof the ICCsdiffers fromother cell types in the culture,
it was possible to identify them under a phase contrast microscope
after incubation with the anti-c-Kit antibody.

2.2. Patch clamp experiments

Physiological salt solution was used to bathe cultured ICC clus-
ters (Naþ-Tyrode) and contained the following: KCl, 5mM; NaCl,
135mM; calcium chloride (CaCl2), 2mM; glucose, 10mM; magne-
sium chloride (MgCl2), 1.2mM; and HEPES, 10mM (adjusted to pH
7.4 with NaOH). The pipette solution used to examine pacemaker
activity contained the following: KCl, 140mM; MgCl2, 5mM; dipo-
tassium ATP (K2ATP), 2.7mM; sodium GTP (NaGTP), 0.1mM; crea-
tine phosphate disodium, 2.5mM; HEPES, 5mM; and ethylene
glycol tetra-acetic acid, 0.1mM (adjusted to pH 7.2 with potassium
hydroxide). Patch clamp techniques were conducted in whole-cell
configuration to record the membrane currents (i.e., voltage
clamp mode) and the potentials (i.e., current-clamp mode) from
cultured ICCs using Axopatch I-D and Axopatch 200B amplifiers
(Axon Instruments, Foster, CA, USA). Command pulses were applied
using an IBM-compatible personal computer (Compaq; Houston,
TX, USA) and pClamp software (versions 6.1 and 10.0; Axon
Instruments). Data were filtered at 5 kHz and displayed on an
oscilloscope, a computer monitor, and/or a pen recorder (Gould
2200; Gould, Valley View, OH, USA). Results were analyzed using
pClamp and Origin software (version 6.0, Microcal, Northampton,
MA, USA). All experiments were performed at 30e33�C.

2.3. The cGMP assay

Interstitial cells of Cajal were preincubated with 100mM IBMX
(Sigma-Aldrich, St. Louis, MO, USA) for 30 min at 37�C to inhibit
cGMP degradation, and then incubated with GRe (100mM) for
10 min. After homogenization in a buffer containing 4mM EDTA to
prevent the degradation of enzymatic cGMP, the homogenates were
heated for 5 min in a boiling water bath to coagulate the proteins,
and then centrifuged at 3950 � g for 5 min. The supernatants thus
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obtained were transferred to new tubes and stored at 4�C. Samples
were assayed for cGMP using cGMP enzyme-linked immunosor-
bent assay kits (Enzo Life Science, Farmingdale, NY, USA).

2.4. Drugs

Ginsenoside Re was purchased from LKT Laboratories (St. Paul,
MN, USA). All other drugs were obtained from Sigma-Aldrich (St.
Louis, MO, USA). Stock solutions were prepared and stored in
accordance with the manufacturers’ instructions. Chemicals were
dissolved in Naþ-Tyrode solution to their final concentrations
immediately before use.

2.5. Statistical analysis

The results are expressed as the mean � the standard deviation.
Statistical analysis was performed using the Student t test or by
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Fig. 2. The effect of GRe on the pacemaker activity of cultured ICC clusters. (AeD) The pa
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USA); values of p < 0.05 were considered statistically significant.
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3. Results

3.1. Effects of GRe on the pacemaker activity of cultured ICCs

The ICCs formed network-like structures in the culture (12 h).
Spontaneous rhythms were routinely recorded from cultured ICCs
under current-clamp conditions. The ICCs within the networks
displayed more robust electrical rhythms. Tissue-like spontaneous
slowwaves have been previously recorded from these cells [25,26].
In the present study, cultured ICC clusters had a mean resting
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membrane potential of �52.2 � 3.3 mV and produced electrical
pacemaker activity at a frequency of 17.3 � 2.3 cycles/min and an
amplitude of 26.5 � 2.2 mV (n ¼ 55) at 30�C in the current-clamp
mode (Fig. 2A). Ginsenoside Re (20e40mM) decreased the ampli-
tude and the frequency of pacemaker activity in a concentration-
dependent manner (Fig. 2Be2D). In the presence of GRe, pace-
maker amplitudes were 26.1 � 1.5 mV (n ¼ 6) at 10mM;
14.5 � 1.0 mV (n ¼ 5) at 20mM; 11.2 � 1.3 mV (n ¼ 7) at 30mM; and
1.3 � 0.5 mV (n ¼ 8) at 40mM (Fig. 2E). The corresponding fre-
quencies were 16.5 �1.2 cycles/min, 11.7 � 1.1 cycles/min, 8.4 � 0.7
cycles/min, and 1.2 � 0.4 cycles/min (Fig. 2F). These results suggest
that GRe inhibits the pacemaker activity of ICCs in a dose-
dependent manner.

3.2. The effect of potassium channel blockers on pacemaker activity
inhibition by GRe

Various types of potassium channel blockers were used to
identify the potassium channels that mediate GRe-induced
pacemaker activity inhibition. Treatment of ICCs with the Ca2þ-
activated Kþ channel blocker tetraethylammonium chloride (TEA;
10mM) had no effect on pacemaker activity. In the presence of
TEA, GRe continued to inhibit pacemaker activity (n ¼ 6; Fig. 3A).
In addition, treatment with the transient voltage-dependent Kþ

channel blocker 4-aminopyridine (5mM) or the Ca2þ-activated Kþ

channel blocker apamin (1 mM) had no effect on pacemaker
activity. Ginsenoside Re inhibited pacemaker activity when co-
treated with 4-aminopyridine or apamin (n ¼ 6 for each; Fig. 3B
and 3C, respectively). However, the ATP-sensitive Kþ channel
blocker glibenclamide (10mM) blocked pacemaker inhibition by
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activity. These results suggest GRe activates ATP-sensitive Kþ

channels in ICCs.

3.3. Involvement of G proteins in pacemaker activity inhibition by
GRe

To investigate the signaling mechanisms involved and the role
of G proteins during pacemaker activity inhibition by GRe, we
added a nonhydrolysable guanosine 50-diphosphate analogue,
guanosine 50-[b-thio]diphosphate (GDPbS; 1mM), which perma-
nently inactivates GTP-binding proteins [27,28], to the patch
pipette solution. We found that GDPbS prevented pacemaker ac-
tivity inhibition by GRe (n ¼ 6; Fig. 4A); the pacemaker amplitudes
were 26.3�1.4 mV in the presence of GDPbS and 1.3� 0.5 mV in its
absence (Fig. 4B). These results suggest that G proteins are involved
in the inhibition of pacemaker activity by GRe.

3.4. The involvement of guanylate cyclase, protein kinase G, and
nitric oxide in the inhibition of pacemaker activity by GRe

To determine whether pacemaker activity inhibition by GRe is
mediated by a cyclic nucleotide-dependent pathway, we adminis-
tered the adenylate cyclase inhibitor SQ-22536 and the guanylate
cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one
(ODQ) to the ICCs. Preincubation with SQ-22536 (100mM) for
10 min had no effect on pacemaker activity. In the presence of SQ-
22536, GRe (40mM) still inhibited pacemaker activity (n ¼ 6;
Fig. 5A). However, ODQ (100mM) blocked pacemaker activity inhi-
bition by GRe (n ¼ 5; Fig. 5B).
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To determinewhether pacemaker activity inhibition by GRewas
mediated by cGMP-dependent protein kinase G (PKG), we exam-
ined the effects of the PKG inhibitor RP-8-CPT-cGMPS. Pre-
incubation of ICCs with RP-8-CPT-cGMPS (10mM) had no effect on
ICC pacemaker activity. However, in the presence of RP-8-CPT-
cGMPS, GRe failed to inhibit pacemaker activity (n ¼ 5; Fig. 5C).

Nitric oxide (NO) activates soluble guanylyl cyclase, which re-
sults in the formation of cGMP and the activation of PKG [29]. Thus,
to investigate whether pacemaker activity inhibition by GRe is
mediated by NO, we treated ICCs with the nonselective nitric oxide
synthase (NOS) inhibitor L-NG-nitroarginine methyl ester (L-
NAME; 100mM).We found that L-NAME blocked pacemaker activity
inhibition by GRe (n ¼ 6; Fig. 5D). In addition, intracellular cGMP
contents were measured under basal and GRe-stimulated condi-
tions. Ginsenoside Re stimulated cGMP production (Fig. 6; control
11.8 � 0.9 pmol/mg protein vs. ginsenoside Re at 14.5 � 0.8 pmol/
mg protein). These results suggest that cyclic GMP, PKG, and NO
have roles in the inhibition of pacemaker activity by GRe.
4. Discussion

This study was undertaken to determine the effect of GRe on GI
motility by examining its effects on the pacemaker activity of ICCs
of the murine small intestine. In these cells, GRe inhibited the
pacemaker activity of ICCs via the ATP-sensitive Kþ channel and the
cGMP/NO-dependent pathway, which suggests that GRe may be a
basis for developing novel spasmolytic agents intended to prevent
or alleviate GI motility dysfunctions.

Ginsenoside Re has a variety of biological effects. For example, it
regulates the intracellular redox state in C6 glioma cells [30], en-
hances serum specific immunoglobulin (Ig)G, IgG1, IgG2a, and
IgG2b responses, and stimulates lymphocyte proliferation re-
sponses and the secretions of IFN-gamma and IL-5 [31]. In addition,
its neurotrophic and neuroprotective effects enhance memory and
learning [32]. Ginsenoside Re-induced intestinal regulation de-
pends on the jejunal contractile state. The stimulatory effects of
GRe on jejunal contractility are associated with cholinergic stimu-
lation, but its inhibitory effects are associated with adrenergic
activation and NO relaxing mechanisms [33]. Intestinal smooth
muscles exhibit different tones, characterized by sustained rhyth-
mic contractions driven by cycles of slow waves [34] that originate
in the ICC network in the intestinal tract. Furthermore, ICCs express
c-Kit, a tyrosine kinase receptor, which is possibly needed for
spontaneous contraction [35,36]. Xiong et al [37] report that
imatinib, a potent inhibitor of c-Kit [38], blocks the GRe-induced
regulation of jejunal contractility, which suggests that ICCs are
required for GRe-induced intestinal regulation. In the present
study, we examined for the first time, the effects of GRe on the
pacemaker activity of the ICCs of the murine small intestine.

The ICCs act as the pacemaker cells of the GI tract by generating
spontaneous pacemaker potentials and conducting slowwaves into
smooth muscle syncytium via electrical couplings to neighboring
smooth muscle cells [16,17,19], which respond to slow wave de-
polarization by activating L-type Ca2þ channels [39]. Furthermore,
the smooth muscle response is regulated by neural inputs, and
excitatory and inhibitory enteric motor neurons are both closely
associated with ICCs [15]. Thus, ICCs have an important role in the
determination and regulation of GI motility [24].

In a previous study, ginseng total saponin depolarized ICC
membranes in the current-clamp mode, and this depolarization
was dependent on nonselective cation channels, external and in-
ternal Ca2þ, and the phospholipase C (PLC) pathway [2]. In another
study, the ginsenosides Rb1 and Rg3 had no effect on pacemaker
activity, although ginsenoside Rf caused membrane depolariza-
tion. Application of a flufenamic acid nonselective cation channel
blocker or a chloride channel blocker inhibited Rf-induced mem-
brane depolarization, which indicated the involvement of internal
or external Ca2þ and the phospholipase C (PLC) pathway in Rf-
induced membrane depolarization. However, Rf-induced mem-
brane depolarization was independent of G protein and protein
kinase C [3]. Gintonin isolated from ginseng was recently found to
activate ginseng-derived G protein-coupled (LPA) receptors
[22,23]. Furthermore, endogenous and exogenous gintonin acti-
vate LPA receptors in neuronal and non-neuronal cells; this acti-
vation affects cell survival, proliferation, migration, and induces
morphological changes [23]. In addition, gintonin [24] was
recently found to cause ICC membrane depolarization in the
current-clamp mode, but this effect was blocked by Ki16425 (an
LPA1/3 receptor antagonist) and by exogenous GDPbS. These ef-
fects of gintonin were dependent on PLC, the protein kinase C
pathway, and on internal or external Ca2þ regulation. Furthermore,
gintonin activated ANO1 channels, but not TRPM7 channels, and
in vivo (at concentrations of 10e100 mg/kg, p.o.) significantly
increased the intestinal transit rate in normal mice; it also
increased GI motility in streptozotocin-induced diabetic mice in a
dose-dependent manner [24].

The pacemaker activity of ICCs in the murine small intestine
occurs primarily because of periodic activations of TRPM7 [16] or
ANO1 channels [20]. Ginsenoside Rf has no effects on TRPM7 or
ANO1 channels [3], but GTS and ginsenoside Rg3 block TRPM7
channels [40,41]. However, the specific details of ion channel
involvement during the upstroke and plateau phases of pacemaker
potentials in the presence of GRe have not been elucidated. Thus,
additional studies are required to identify which ion channels are
involved and to determine more precisely the effects of GRe on
pacemaker activity. In addition, GRe activated large-conductance
Ca2þ-activated Kþ channels in the arterial smooth muscle cell line
A10 in a dose-dependent manner. This GRe effect was inhibited by
L-NIO, an endothelial NOS (eNOS) inhibitor. Nakaya et al [33] found
SH-6 (an Akt inhibitor) and wortmannin (a PI3-kinase inhibitor)
completely blocked the activation of large-conductance Ca2þ-acti-
vated Kþ channels by GRe, which suggests that GRe activates eNOS
via a PI3-kinase/Akt-dependent mechanism. It is accordingly our
intention to examine the relevance of this PI3-kinase/Akt-depen-
dent mechanism with regard to ICC pacemaking activity.

In conclusion, we found that GRe reduced the amplitude and the
frequency of the pacemaker activity of ICCs in a G protein-, cGMP-,
PKG-, and NO-dependent manner via ATP-sensitive Kþ channel
activation. Our findings suggest that GRe is a drug development
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candidate for the treatment of GI spasms, pain, and transit distur-
bances associated with GI motility disorders
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