
Time Separation of Events:
An Inverse Method

Emmanuelle Encrenaz 1 Laurent Fribourg a,2

a LSV, ENS de Cachan & CNRS
Paris, France

Abstract

The problem of “time separation” can be stated as follows: Given a system made of several connected
components, each one entailing a local delay known with uncertainty, what is the maximum time for
traversing the global system? This problem is useful, e.g. in the domain of digital circuits, for determining
the global traversal time of a signal from the knowledge of bounds on the component propagation delays.
The uncertainty on each component delay is given under the form of an interval. The general problem is
NP-complete. We focus here on the inverse problem: we seek intervals for component delays for which the
global traversal time is guaranteed to be no greater than a specified maximum. We give a polynomial time
method to solve it. As a typical application, we show how to use the method in order to relax some specified
local delays while preserving the maximum traversal time. This is especially useful, in the area of digital
circuits, for optimizing “setup” timings of input signals (minimum timings required for stability).

Keywords: Execution time analysis, Timing constraints, Time separation problem, Inverse method

1 Introduction

As said in [5]: “The behavior of asynchronous and concurrent systems is naturally
described in terms of events and their interactions. A fundamental problem in ana-
lyzing such systems is to determine bounds on the time separation of events. Stated
informally, we seek answers to questions such as: “How late can event i occur after
event j?” for arbitrary events i and j. The problem of computing time separation
bounds is compounded in practice by statistical variations in manufacturing and op-
erating conditions that introduce uncertainties in component delays. Consequently,
finding bounds on time separation of events in the presence of uncertain component
delays is an important practical problem.”

The uncertainty on each component delay is given under the form of an interval.
The general problem of finding the exact bound on the time separation between two

1 Email: emmanuelle.encrenaz@lsv.ens-cachan.fr
2 Email: fribourg@lsv.ens-cachan.fr

Electronic Notes in Theoretical Computer Science 209 (2008) 135–148

1571-0661 © 2008 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.04.008
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82140433?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:emmanuelle.encrenaz@lsv.ens-cachan.fr 
mailto:fribourg@lsv.ens-cachan.fr
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


given events i and j is NP-complete ([12]). We focus here on the inverse problem: we
seek intervals for the component delays, so that the time separation between i and
j is guaranteed to be no greater than a specified bound. We give a polynomial time
method to solve it, and explain how it is useful for relaxing some bounds associated
to some component delays while preserving the global separation time from i to j.

Related Work.
The direct problem of time separation of events has received considerable atten-
tion in the literature (see, e.g. [5] for an extensive survey). Even in the case of
acyclic timing constraint graphs, the direct problem is NP-complete [12]. Many
researchers have thus proposed polynomial-time approximating algorithms, which
give an upper approximation of the maximal separation time. In contrast here,
the time generated will be guaranteed to be the exact maximal time (for a pos-
sibly restricted domain of component delays, however). Other researchers have
replaced some of the bound values by parameters, then have computed the exact
solution space using exponential-time procedures (e.g., Fourier-Motzkin elimination
or Presburger-based procedures [2])). A variant of this approach has been proposed
using additional techniques of abstract interpretation [9] or parametric reachability
analysis [8].

In this paper we focus on the inverse problem. To our knowledge, such an inverse
problem has been rarely tackled in the literature. An exception is [6]. Its goal is
there to compute safe bounds on some timing constraints (typically, setup timings),
in the sense that, when satisfied, these constraints guarantee “correct” operation of
the circuit. In their context, “correct” means that the circuit has no hazard, i.e.,
roughly speaking, that the output signal changes at most once. Such a guarantee
is complementary to ours, since what we guarantee, in this context, is that the
first change of the output signal occurs before a specified lapse of time. Also, their
analysis does not take place in the framework of separation of events, but in the
framework of “multi-value signal algebra”, which is well-suited to the problem of
hazard-detection. Another work, which can be viewed as an inverse method, is by
[4]: they pose the problem as a min-max linear programming problem and use it
for computing optimal clock schedules in synchronous circuits, but their method is
exponential.

2 Time Separation of Events

The Direct Problem.
Formally, the system can be represented under the form of a “timing constraint
graph” [7]. The graph is oriented: vertices (or nodes) represent events and directed
edges represent causal dependencies between them. Let {0, ..., N − 1} be the set of
vertices. Each event is labeled with a min, max or delay operator specifying how
the time of occurrence of event q, denoted tq, depends on those of its predecessors
in the timing constraint graph. A delay node q is either a source event (no incoming
edge), or has a unique predecessor, say p, in the graph, and the edge from event p

E. Encrenaz, L. Fribourg / Electronic Notes in Theoretical Computer Science 209 (2008) 135–148136



to event q is labeled with symbol δp,q representing the (non-negative) delay in the
propagation of event p to event q. For any vertex q, let preds(q) denote the set of
its predecessor vertices. We have the system 3 :

- for each delay-node q, distinct from the source, of (unique) predecessor p:
tq = tp + δp,q (1)

- for each min-node q:
tq = minp∈preds(q) tp (2)

- for each max-node q:
tq = maxp∈preds(q) tp (3)

In the following, we restrict our analysis to acyclic timing constraint graphs,
with a unique source (event with no incoming edge). The delay-edges are the edges
linking a node p to a delay-node q. Note that, for a given vector of values d for δ,
system (1)-(2)-(3) has a unique solution in t0, ..., tN−1.

For all delay-edge from p to q, the associated delay δp,q is constrained to fall
within fixed (nonnegative) lower and upper bounds lp,q and up,q. That is:

lp,q ≤ δp,q ≤ up,q.

Let δ be the vector of the δp,qs, where q is a delay-node (distinct from the source).
Let l and u be the vectors of lp,qs and up,qs respectively. Note that all these vectors
have r−1 components, where r is the number of delay-nodes (including the source). 4

Let Δ = (l, u) be the zone delimited by intervals (lp,q, up,q). Henceforth, the set of
inequations {lp,q ≤ δp,q ≤ up,q} will appear under the form l ≤ δ ≤ u or δ ∈ Δ.
The direct problem is posed as one of finding the maximum achievable separation
max(tj − ti) between two events i and j under the considered system of timing
constraints. We will assume here that the time of source event is null, and coincides
with vertex i (ti = 0). In the direct problem, one seeks therefore the maximal value
of tj , denoted by MAXj :

MAXj = maxδ∈(l,u) tj .
As usual, a path πp from the source to event p is a sequence of adjacent edges going
from the source to p. The delay of a path π is the sum of the delays of its edge
components,

∑
(p,q)∈π δp,q, which will be abbreviated as

∑
π δ.

Henceforth, we assume given a Time Separation of Events system with an acyclic
timing constraint graph with a unique source (node i), a set of vertices {0, ..., N−1},
a domain Δ = (l, u), and an associated set of equations (1)-(2)-(3) (together with
implicit equation ti = 0).

Example 2.1 This example concerns SPSMALL, an embedded memory designed
by STMicroelectronics which has been presented in [8]. The constraint timing graph

3 In the original formulation of the problem, there is no delay-nodes, but one allows min-nodes of the
form tq = min(tp + δp,q , tr + δr,q) (and similarly for max-nodes). Such a timing constraint graph can be
transformed into an equivalent form as above, at the price of introducing new intermediate nodes on each
edge. This adds to the original graph at most n × K new vertices, where n is the number of vertices of the
original graph, and K the maximum number of predecessors of any vertex. (Usually K is a small constant,
and in any case bounded by n.)
4 It is convenient to assume that all the other edges (to min/max nodes q) have delays δp,q which are null
(i.e., lp,q = up,q = 0 for min/max node q).

E. Encrenaz, L. Fribourg / Electronic Notes in Theoretical Computer Science 209 (2008) 135–148 137



max node

Dup WENdn

eDup

b0up

b3up

CKup

CKdn

2

10

b1up b14dn

11

CKup

min node
tHI

tLO

b3dn

13

dDup

1

7 5

b13dn

4

9

8

3

0

tsD tsWEN

qDup

o5up

o15dn

18

20

21

o8dn

b8dn

b16dn

o16dn

CKdn

17

tLO

b5up

b3dn + b15dn

QupCKup

b7up

delay node

15 19

25

b3up + b2up

b3dn + b2dn

12

16

eDdn

dWdn

qWdn

eWdn

eWup

tHI

24

26

23

22

6

14

Fig. 1. Timing Constraint Graph for SPSMALL (δ0,1 stands for δHI + δLO − δsetupD , and δ0,2 stands for
δHI + δLO − δsetupW )

(for the write operation) is made of 27 event nodes (see Fig. 1). For the sake of
homogeneity with presentation of [8], we proceed to cosmetic changes with respect
to the presentation of timing constraint graphs given above. Thus, events are not
only numbered but also denoted by symbols corresponding to those used in [8]; for
example event 20 is also denoted by o↓16.

5 Also, delays δp,q between events p and q

are allowed to appear as an algebraic sum of more elementary delays: for example,
δ0,1 corresponds to δHI + δLO − δsetupD , δ3,6 to δ↑3 + δ↑2 ,... . The separation time of
interest is here tQ↑ (≡ t23). The delay δHI (resp. δLO) corresponds to the high-level
(resp. low-level) period of the clock of the circuit. These delays are specific, as they
are assumed to be fixed: the bounds lHI and uHI of δHI are equal to a common
value denoted by dHI , and similarly for δLO. Henceforth, δHI and δLO will appear
under the form dHI and dLO respectively. The expression δ ∈ (l, u) (where l and u

correspond to implementation SP1 of [8]) is given componentwise as follows:

5 The symbols ↑ and ↓ indicate the rising or falling nature of the edges of the corresponding signal.

E. Encrenaz, L. Fribourg / Electronic Notes in Theoretical Computer Science 209 (2008) 135–148138



δ↑0 ∈ (94, 95), δ↓0 ∈ (65, 66), δ↑1 ∈ (13, 14), δ↓1 ∈ (17, 18), δ↑2 ∈ (23, 24), δ↓2 ∈ (29, 30), δ↑3 ∈ (5, 5), δ↓3 ∈ (2, 2),

δ↑5 ∈ (21, 22), δ↓5 ∈ (44, 45), δ↑7 ∈ (20, 21), δ↓7 ∈ (19, 20), δ↑8 ∈ (0, 0), δ↓8 ∈ (21, 22), δ↑13 ∈ (10, 11), δ↓13 ∈ (8, 8),

δ↑14 ∈ (21, 22), δ↓14 ∈ (21, 22), δ↑15 ∈ (13, 14), δ↓15 ∈ (10, 11), δ↑16 ∈ (23, 24), δ↓16 ∈ (0, 0), dHI = 36, dLO = 74,

δsetupD ∈ (108, ?), δsetupW ∈ (48, ?). 6

Besides: MAX23 ≡ MAXQ↑ = 56 (+dHI +dLO). All these values have been found
by the manufacturer via electrical simulation (at the transistor level). Decreasing
values lsetupD = 108 and lsetupW = 48 would lower the cost of the circuit, but this
should not alter the maximal response time MAX23 = 56 (see [8]). Our inverse
method will show that this can be safely done.

Interest of the Inverse Problem.
Before giving the inverse method, let us explain why the resolution of the inverse
problem can help to relax the bounds assigned to the component delays of the
system.
In the direct problem, we have:

- as an input: Δ = (l, u),
- as an output: MAXj , a value such that tj ≤ MAXj for all δ ∈ Δ.

In the inverse problem, we will have:
- as an input: a specific value d

0 for δ,
- as outputs: a domain Δ∗ = (l∗, u∗), and a value MAX∗

j , such that
tj ≤ MAX∗

j for all δ ∈ Δ∗.
In a “good situation”, we will have for MAX∗

j and Δ∗ the following:
1. MAX∗

j ≤ MAXj ,

2. Δ∗ = (l∗, u∗) ⊃ Δ = (l, u) (i.e: l
∗ ≤ l and u ≤ u∗).

In this case, we can safely relax the original bounds l and u to l
∗ and u∗, and still

guarantee an upper bound (no greater than) MAXj . As illustrated in Example 1,
the method is useful, in the area of digital circuits, for optimizing “setup” timings
of input signals (i.e., for minimizing the stability period of an input signal required
before the circuit clock changes). Even if the second item does not hold for all its
components, i.e.: l∗k > lk or uk > u∗

k for some events k, the knowledge of Δ∗ may
be instructive: it allows in particular to identify certain sets of “key” parameters k,
which, when ranging over a restricted interval, enables the relaxation of the bounds
of the other parameters (see Appendix 2).

3 Inverse Method

Let us now describe our inverse method.

Definition 3.1 We say that O is a canonical order on the events if O is of the
form tk1 ≤ · · · ≤ tkr , where k1, ..., kr are the delay-nodes of the timing constraint
graph, and k1 corresponds to source node i (hence: tk1 = 0).

6 The maximal values of δsetupD and δsetupW are unspecified. (The values of interest are the minimal
values, which correspond to optimal behavior of the circuit.)

E. Encrenaz, L. Fribourg / Electronic Notes in Theoretical Computer Science 209 (2008) 135–148 139



Given two delay-nodes p1 and p2, we say that p1 is O-earlier (resp. O-later)
than p2 if tp1 ≤ tp2 (resp. tp2 ≤ tp1) according to O.

Definition 3.2 Let O ≡ tk1 ≤ · · · ≤ tkr be a canonical order. For all event q, the
representative delay-node of q (or the delay-node representing q) under O, denoted
by q∗, is defined recursively as follows:

- if q is a delay-node then q∗ = q.
- if q is a min-node (resp. max-node) then q∗ is the O-earliest (resp. O-latest)

node among the delay-nodes representing the predecessors of q (i.e. among {p∗ | p ∈
preds(q)}).

For all event q of representative delay-node q∗, it follows from (1)-(2)-(3) that
tq = tq∗ .

Consider a vector of (nonnegative real) values d for the delay-edges. When d is
assigned to δ, each time tp (0 ≤ p ≤ N − 1) takes a unique value, say Dp, according
to (1)-(2)-(3). Let us order the delay-nodes by non-decreasing values of D (in case
there are two delay-nodes p and q with Dp = Dq, we order them in an arbitrary
way). This yields a non-decreasing sequence of the form tk1 ≤ tk2 ≤ · · · ≤ tkr . Such
an order is said to be a canonical order induced by d.

Example 3.3 Consider Example 2.1. As for particular value d
0 of δ, we take the

maximal values u of the specification. (Note that, for δ0,1 and δ0,2, this corresponds
to the minimal values of δsetupD and δsetupW respectively, since δ0,1 = dHI + dLO −
δsetupD , and similarly for δ0,2.) For d

0, the time of each event is: t0 = 0, t1 =
2, t3 = 36, t4 = 41, t2 = 62, t6 = 65, t5 = t10 = 70, t11 = t19 = t20 = 92, t7 =
t12 = 97, t8 = 110, t14 = t15 = 111, t9 = 112, t18 = t21 = 123, t16 = 133, t13 =
142, t22 = t25 = 145, t17 = 146, t23 = 166, t24 = t26 = 220. This induces the
following order O0:

t0 ≤ t1 ≤ t3 ≤ t4 ≤ t2 ≤ t6 ≤ t5 ≤ t19 ≤ t20 ≤ t7 ≤ t8 ≤ t15 ≤ t9 ≤ t18 ≤ t16 ≤
t13 ≤ t25 ≤ t17 ≤ t23 ≤ t24.
The representative nodes q∗ of min/max nodes q under O0 are given by:

10∗ = 5, 11∗ = 19, 12∗ = 7, 14∗ = 15, 21∗ = 18, 22∗ = 25 and 26∗ = 23.

Definition 3.4 Let O be a canonical order of the form tk1 ≤ · · · ≤ tkr . For all event
q, the representative path to q associated to O, and denoted by π∗

q , is recursively
defined as follows:

- if q is the source node, then π∗
q is the empty path.

- if q is a delay-node (distinct from the source) then π∗
q = π∗

p ∪ (p, q), where p is
the unique predecessor of q, and π∗

p the representative path of p for O.
- if q is a min-node (resp. max-node) then π∗

q = π∗
q∗ , where q∗ is the delay-node

representing q.

Example 3.5 For ordering O0 (see Example 3.3), the representative path π∗
23 to

event 23 (≡ Q↑) is {(0, 3), (3, 8)(8, 18)(21, 25), (22, 23)}, whose support is drawn in
bold font on Fig. 1.

Definition 3.6 Let O ≡ tk1 ≤ · · · ≤ tkr be a canonical order for the considered

E. Encrenaz, L. Fribourg / Electronic Notes in Theoretical Computer Science 209 (2008) 135–148140



system, and π∗
ks

the representative path of ks (1 ≤ s ≤ r). We call δ-constraints
associated to O the set I∗ = {Ik1 , ..., Ikr} with, for all 1 ≤ s ≤ r:

Iks ≡ ∑
π′

s
δ ≤ ∑

π′
s+1

δ,
where π′

s and π′
s+1 are the disjoint parts of π∗

ks
and π∗

ks+1
respectively

(i.e. π′
s = π∗

ks
\ π∗

ks+1
and π′

s+1 = π∗
ks+1

\ π∗
ks

).

Example 3.7 Consider in O0 inequation t17 ≤ t23, and let us give the associated
inequality, say I18. For path π∗

23 associated to event 23, we have (see Example 3.5):
∑

π∗
23

δ = dHI + dLO + δ↓3 + δ↓15 + δ↓8 + δ↑7 .
Likewise, for event 17 ≡ ck↓, the representative path π∗

17 goes from 0 to 17 through
vertices 3 and 8. We have:

∑
π∗
17

δ = 2dHI + dLO.

Therefore t17 ≤ t23 corresponds (after elimination of the delay dHI +dLO associated
to the common sub-path of π∗

17 and π∗
23) to

I18 ≡ ∑
π′
17

δ ≤ ∑
π′
23

δ, i.e.: dHI ≤ δ↓3 + δ↓15 + δ↓8 + δ↑7 .
The other inequalities of I∗

0 associated to O0 are given in Appendix 1.

Proposition 3.8 Let O ≡ tk1 ≤ · · · ≤ tkr be a canonical order, π∗
p the representa-

tive path of event p (0 ≤ p ≤ N − 1) associated to O, and I∗ ≡ {Ik1 , ..., Ikr} the set
of δ-constraints associated to O.
If d is a value of δ satisfying I∗, then we have (under (1)-(2)-(3)), for δ = d:

tp =
∑

π∗
p
d, for all event p.

Proof. Suppose that d is a value of δ satisfying I∗. Let us prove: tp =
∑

π∗
p
d, for

all event p. The proof proceeds by induction on the depth of event p in the timing
constraint graph. The proof of the base case is trivial. Let us prove the induction
step. Node p is either a min/max node or a delay-node. Suppose first that p is a
min/max-node, say a min-node (the case of a max-node is similar). Then p is the
sink of a “min/max subgraph”, i.e. the smallest (directed) subgraph of sink p having
only delay-nodes, say p1, ..., pm, as sources (All the non-source nodes are min/max
nodes). By induction hypothesis on pk (1 ≤ k ≤ m), we have: tpk

=
∑

π∗
pk

d.

Furthermore, since d is a solution of I∗, the values (
∑

π∗
pk

d)1≤k≤m are ordered as
(tpk

)1≤k≤m in O. It follows that all the nodes v of the min/max subgraph are such
that tv =

∑
π∗

v
d. In particular for the sink p: tp =

∑
π∗

p
d.

Suppose now that p is a delay-node. Then p has p1 as a unique predecessor
and tp = δp1,p + tp1 . Now, by induction hypothesis, tp1 =

∑
π∗

p1
d. Therefore:

tp = δp1,p +
∑

π∗
p1

d =
∑

π∗
p
d.

In both cases, tp =
∑

π∗
p
d. This achieves the proof of the induction step. �

Definition 3.9 Let O ≡ tk1 ≤ · · · ≤ tkr be a canonical order, and π∗
ks

the repre-
sentative path of πks (1 ≤ s ≤ r). Let I∗ ≡ {Ik1 , ..., Ikr}, be the set of δ-constraints
associated to O. We call y≤x-constraints associated to O the set J ∗ = {Jk1 , ..., Jkr},
where Jks (1 ≤ s ≤ r) is obtained by replacing every δp,q of the left (resp. right)
side of inequality Iks by a new variable yp,q (resp. xp,q), i.e:

E. Encrenaz, L. Fribourg / Electronic Notes in Theoretical Computer Science 209 (2008) 135–148 141



Jks ≡ ∑
π′

s
y ≤ ∑

π′
s+1

x,
where π′

s and π′
s+1 are the disjoint parts of π∗

ks
and π∗

ks+1
respectively.

Example 3.10 Let us consider I∗
0 associated to the ordering O0 for SPSMALL

Example (see Appendix 1). By substituting each δp,q of the left (resp. right) side of
I∗

0 by yp,q (resp. xp,q), we obtain the following system J ∗
0 (after having discarded

trivial inequalities 0 ≤ δ↑3 and 0 ≤ δ↓k for k = 14, 15, 16):
1. ysetupD ≤ dHI + dLO

2. dLO ≤ xsetupD

3. y↑
3 + ysetupW ≤ dLO

4. dLO ≤ x↑
3 + x↑

2 + xsetupW

5. y↑
3 + y↑

2 + ysetupW ≤ dLO + x↓
13

6. y↓
13 + y↓

14 + y↓
16 + ysetupD ≤ xsetupW + x↑

0

7. y↑
0 ≤ xsetupD

8. ysetupD ≤ x↑
0 + x↑

1

9. y↑
0 + y↑

1 ≤ xsetupD + x↓
3

10. y↓
3 + y↓

15 + ysetupD ≤ x↑
0 + x↑

1 + x↑
5

11. y↑
0 + y↑

1 + y↑
5 ≤ x↓

3 + x↓
2 + xsetupD

12. y↓
2 ≤ x↓

15 + x↓
8

13. y↓
3 + y↓

15 + y↓
8 ≤ dHI

14, dHI ≤ x↓
3 + x↓

15 + x↓
8 + x↑

7

15. y↓
3 + y↓

15 + y↓
8 + y↑

7 ≤ dHI + dLO

Theorem 3.11 Let O be a canonical order of events, π∗
j the representative path of

event j, and J ∗ the associated set of y≤x-constraints.
Let l

∗ and u∗ be solutions of J ∗for x and y respectively, and let Δ∗ = (l∗, u∗).
Then, under (1)-(2)-(3), the representative path π∗

j is such that:
MAX∗

j ≡ maxδ∈Δ∗ tj =
∑

π∗
j
u∗.

Proof. Since l
∗ and u∗ are solutions of J ∗, we have:

∑
π′

ks
u∗ ≤ ∑

π′
ks+1

l
∗, for all

1 ≤ s ≤ r. Hence, for all d with l
∗ ≤ d ≤ u∗:

∑
π′

ks
d ≤ ∑

π′
ks+1

d. It follows that, for

all d with l
∗ ≤ d ≤ u∗, d is a solution of I∗. Therefore, under (1)-(2)-(3), for all event

p associated to δ = d, we have by Prop. 3.8: tp =
∑

π∗
p
d ≤ ∑

π∗
p
u∗. In particular,

for δ = u∗, we have: tp =
∑

π∗
p
u∗. It follows: MAX∗

p ≡ maxδ∈Δ∗ tp =
∑

π∗
p
u∗.

This is true in particular for p = j. �

The system J ∗ is a linear system of r inequalities with r unknowns xp,q and r

unknowns yp,q, where r is the number of delay-nodes (r is less than or equal to the
number N of events). The problem now reduces to find solutions l

∗ and u∗ which
delimit a domain of interest Δ∗ as large as possible. This problem can be seen as an
optimization problem in linear programming, which is solvable in polynomial time
in N .

Example 3.12 Let us consider system J ∗ generated for SPSMALL system (see
Example 3.10). In order to find optimal values for xsetupD , ysetupD , xsetupW , ysetupW ,

E. Encrenaz, L. Fribourg / Electronic Notes in Theoretical Computer Science 209 (2008) 135–148142



we instantiate the other components of x and y with the corresponding values of l

and u respectively (see Example 2.1). In other terms, we have l
∗ = l and u∗ = u,

for each component distinct from setupD and setupW . J ∗ then reduces to:
ysetupD ≤ 110 (from: ysetupD ≤ dHI + dLO)
107 ≤ xsetupD (from: y↑0 + y↑1 ≤ xsetupD + x↓

3)
ysetupW ≤ 53 (from: y↑3 + y↑2 + ysetupW ≤ dLO + x↓

13)
46 ≤ xsetupW (from: dLO ≤ x↑

3 + x↑
2 + xsetupW )

ysetupD ≤ xsetupW + 64 (from: y↓13 + y↓14 + y↓16 + ysetupD ≤ xsetupW + x↑
0)

Therefore, optimal (i.e., least) solutions are:
l∗setupD

= 107, u∗
setupD

= 110, l∗setupW
= 46, u∗

setupW
= 53.

On Δ∗, we have: MAX∗
Q↑ ≡ maxδ∈Δ∗ tQ↑ = (dHI + dLO+) u↓

3 + u↓
15 + u↓

8 + u↑
7.

This gives: MAX∗
Q↑ = 56 (+dHI + dLO). Therefore: MAX∗

Q↑ = MAXQ↑ , where
MAXQ↑ is the original value of the specification. Besides, the value 107 of l∗setupD

is (slightly) relaxed with respect to the value lsetupD = 108 of the specification, as
well as the value 46 of l∗setupW

with respect to lsetupW = 48. Therefore Δ∗ ⊃ Δ. We
are thus in the “good situation” described in Sect. 4. The lower bound l∗setupD

can
however been further optimized (from 107 to 100), using an enhancement of the
method described in Sect. 4.

4 Complexity and Enhancements

The inverse method described in Sect. 3 can be recapitulated as follows:
- find an order O induced by a specific point d0

- construct the associated set of δ-constraints J ∗

- find an optimal solution (l∗, u∗) of the associated system J ∗.
We have already mentioned that the last step can be seen as an optimization problem
of linear programming, and, as such, is polynomial in N . It is easy to see that the
two first steps are also polynomial in N (actually, respectively quadratic and linear).
It follows:

Proposition 4.1 Given a system of time separation of events with N events, with
an acyclic timing constraint graph of unique source and j an event of interest, the
complexity of finding the domain Δ∗ = (l∗, u∗) and the maximal separation time
MAX∗

j by the inverse method is polynomial in N .

Let us recall that the number N of edges of the timing constraint graph is at
most quadratic in the number n of vertices of the original graph (see footnote of
Sect. 2).

Let us now focus on a possible enhancement of the method. In order to have
a domain Δ∗ as large as possible, it is of great interest to be allowed to remove
inequalities from I∗, hence from J ∗, as much as possible. Intuitively, in order to
guarantee that the representative path π∗

j is still critical, we need to check that the
removal of an inequality of I∗, does not entail any new path to j of separation time
greater than

∑
π∗

j
δ
∗. Formally:

E. Encrenaz, L. Fribourg / Electronic Notes in Theoretical Computer Science 209 (2008) 135–148 143



Proposition 4.2 Let O be a canonical order of events, π∗
j the representative path

of j, I∗ and J ∗ the associated sets of δ-constraints and y≤x-constraints respectively.
Let I be an inequation of I∗, and J its counterpart in system J ∗.
Suppose that the system

I∗ − {I} ∪ {(1-2-3)} ∪ {tj >
∑

π∗
j
δ} (4)

has no solution in δ. Then, for all solutions l
∗∗, u∗∗ of J ∗ −{J} in x, y resp., and

Δ∗∗ = (l∗∗, u∗∗), we have: MAX∗∗
j ≡ maxδ∈Δ∗∗ tj =

∑
π∗

j
u∗∗.

Note that checking the unsatisfiability of system (4) is exponential in the num-
ber N of events, due to the presence of min and max constraints in (2)-(3) (The
general problem is indeed NP-complete; see, e.g. [4]). We loose therefore the
polynomial-time complexity result of the basic method. Still, this enhancement
turns out to be useful in practice.

Example 4.3 In order to decrease the lower bound of δsetupD , we have to remove
the “restrictive” inequality, say J , of J ∗

0 : y↑0 + y↑1 ≤ xsetupD + x↓
3. This inequality

originates itself from inequality, say I, of I∗
0 : δ↑0 + δ↑1 ≤ δsetupD + δ↓3 . Let us consider

system I∗
0 − {I} ∪ {(1-2-3)} ∪ {t23 >

∑
π∗
23

δ ≡ dHI + dLO + δ↓3 + δ↓15 + δ↓8 + δ↑7}.
It can be checked that such a system has no solution in δ. Hence J can be safely
removed from J ∗

0 . After instantiation of x, y with l, u respectively, for components
distinct from setupD and setupW , J ∗

0 − {J} then reduces to:
ysetupD ≤ 110 (from: ysetupD ≤ dHI + dLO)

100 ≤ xsetupD (from: y↑
0 + y↑

1 + y↑
5 ≤ x↓

3 + x↓
2 + xsetupD )

ysetupW ≤ 53 (from: y↑
3 + y↑

2 + ysetupW ≤ dLO + x↓
13)

46 ≤ xsetupW (from: dLO ≤ x↑
3 + x↑

2 + xsetupW )

ysetupD ≤ xsetupW + 64 (from: y↓
13 + y↓

14 + y↓
16 + ysetupD ≤ xsetupW + x↑

0)

Accordingly, solutions are now:
l∗∗setupD

= 100, u∗∗
setupD

= 110, l∗∗setupW
= 46, u∗∗

setupW
= 53,

for which MAX∗∗
23 ≡ maxδ∈Δ∗∗ t23 is still equal to 56 (+dHI + dLO).

Similar results were obtained in [8] by addressing the direct problem, but it required
the decomposition of the system into three smaller parts, and heavily relied on
heuristics (via the repeated integration of the negation of “suspect” inequalities).

In case the space of solutions S of system (4) (see Prop. 4.2) is non empty,
one can still remove (the counterpart of) inequality I: This requires the integra-
tion of the negation of an inequality delimiting the convex hull of S (cf. Appendix 2).

Implementation. Rather than a direct implementation of the inverse method, we
transform the given timing constraint graph into a synchronized product of timed
automata [1], then used the facilities of HYTECH [11]. Basically, each node of
the timing constraint graph corresponds to a timed automaton and each edge as a
synchronized transition. It is then easy to infer the order O induced by a particular
point d

0, then to generate, via parametric reachability analysis, the associated set
I∗ of δ-constraints. The test of unsatisfiability for removing inequalities is also done
using HYTECH. Apart from the two examples given here, we tried other examples

E. Encrenaz, L. Fribourg / Electronic Notes in Theoretical Computer Science 209 (2008) 135–148144



(SP2 from [8], buffer from [7]). They all took less than 5 minutes (on 1GHz PowerPC
G4 with 512 MB of memory).

5 Final Remarks

The main advantage of the inverse method, compared with the direct method, is
that the method gives an exact maximal separation time, which can be computed
in a polynomial time (at least without the enhancement of inequality removal). A
drawback is that the range of some component delays may have to be tightened with
respect to the original interval. On the other hand, many other intervals may be
relaxed substantially. Results obtained with the inverse method thus give a useful
complementary information.

The inverse method basically relies on the choice of the input point d
0 of the

component delays. Intuitively, this point corresponds to a point of “good behavior”,
and the method infers a (rectangular) domain for points that behave similarly. Such
a method is similar in spirit to a common engineering practice, where the parameters
of the systems are tuned around a typical point of good behavior. Note also that
the “critical path” (the representative path to the output event j) is often known
in the area of digital circuits, when the system is designed in a top-down manner
by assembling portions of circuit around this crucial path (see, e.g., [10]). Such
a critical path induces a partial order on events that may be useful to infer the
complete order O (instead of starting from d

0).
Finally, let us note that timing constraint graphs correspond to unconditional

systems like “free-choice” Petri nets [3]. The inverse method can be extended to
more general systems (timed Petri nets or timed automata) in a natural manner.

References

[1] R. Alur and D.L. Dill. A theory of timed automata. TCS 126, 1994.

[2] T. Amon, G. Borriello, T. Hu, and J. Liu. Symbolic timing verification of timing diagrams using
Presburger formulas. In Proc. 34th DAC, 1997.

[3] W. Belluomini and C. Myers. Timed state space exploration using posets. IEEE Transactions on
Computer-Aided Design of Integrated Circuits, 19(5), 2000.

[4] T. Burks and K. Sakallah. Min-max linear programming and the timing analysis of digital circuits. In
Proc. of ICCAD, pages 152–155, 1993.

[5] S. Chakraborty, D. Dill, and K. Yun. Efficient algorithms for approximate time separation of events.
Sadhana, 27(2):129–162, 2002.

[6] S. Chakraborty, D. Dill, K. Yun, and K. Chang. Practical timing analysis of asynchronous circuits
using time separation of events. In Proc. of IEEE Custom Integrated Circuits Conference, 1998, 1998.

[7] S. Chakraborty, P. Subrahmanyam, and D. Dill. Approximate time separation of events in practice. In
Proc. of 5th ACM/IEEE Int. Workshop TAU, 1997.

[8] R. Chevallier, E. Encrenaz-Tiphène, L. Fribourg, and W. Xu. Verification of the generic architecture
of a memory circuit using parametric timed automata. In Proc. FORMATS’06, volume 4202 of LNCS,
pages 113–127. Springer, 2006.

[9] R. Clariso and J. Cortadella. Verification of timed circuits with symbolic delays. In Proc. ASP-DAC,
pages 628–633, 2004.

E. Encrenaz, L. Fribourg / Electronic Notes in Theoretical Computer Science 209 (2008) 135–148 145



[10] J. Cortadella, M. Kishinevsky, S. Burns, A. Kondratyev, L. Lavagno, K. Stevens, A. Taubin, and
A. Yakovlev. Lazy transition systems and asynchronous circuit synthesis with relative timing
assumptions. IEEE Trans. on CADICS 21:2, 2002.

[11] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. A User Guide to HYTECH. In TACAS’95, volume 1019
of LNCS, pages 41–71. Springer, 1995.

[12] K. McMillan and D. Dill. Algorithms for interface timing specification. In Proc. of the IEEE Int. Conf.
on Computer Design (ICCD), pages 48–51, 1992.

Appendix 1: System I∗
0 associated to O0 for SPSMALL

(i) 0 ≤ dHI + dLO − δsetupD (t0 ≤ t1)

(ii) dLO − δsetupD ≤ 0 (t1 ≤ t3 after elim. of dHI)

(iii) 0 ≤ δ↑3 (t3 ≤ t4 after elim. of dHI)

(iv) δ↑3 ≤ dLO − δsetupW (t4 ≤ t2 after elim. of dHI)

(v) dLO − δsetupW ≤ δ↑3 + δ↑2 (t2 ≤ t6 after elim. of dHI)

(vi) δ↑3 + δ↑2 ≤ dLO − δsetupW + δ↓13 (t6 ≤ t5 after elim. of dHI)

(vii) 0 ≤ δ↓14 (t5 ≤ t19 after elim. of dHI + dLO − δsetupW )

(viii) 0 ≤ δ↓16 (t19 ≤ t20 after elim. of dHI + dLO − δsetupW + δ↓13 + δ↓14)

(ix) −δsetupW + δ↓13 + δ↓14 + δ↓16 ≤ −δsetupD + δ↑0 (t20≤t7 after elim. dHI + dLO)

(x) −δsetupD + δ↑0 ≤ 0 (t7 ≤ t8 after elim. of dHI + dLO)

(xi) 0 ≤ −δsetupD + δ↑0 + δ↑1 (t8 ≤ t15 after elim. of dHI + dLO)

(xii) [−δsetupD + δ↑0 + δ↑1 ≤ δ↓3 ] (t15 ≤ t9 after elim. of dHI + dLO)

(xiii) 0 ≤ δ↓15 (t9 ≤ t18 after elim. of dHI + dLO + δ↓3)

(xiv) δ↓3 + δ↓15 ≤ −δsetupD + δ↑0 + δ↑1 + δ↑5 (t18 ≤ t16 after elim. of dHI + dLO)

(xv) −δsetupD + δ↑0 + δ↑1 + δ↑5 ≤ δ↓3 + δ↓2 (t16 ≤ t13 after elim. of dHI + dLO)

(xvi) δ↓2 ≤ δ↓15 + δ↓8 (t13 ≤ t25 after elim. of dHI + dLO + δ↓3)

(xvii) δ↓3 + δ↓15 + δ↓8 ≤ dHI (t25 ≤ t17 after elim. of dHI + dLO)

(xviii) dHI ≤ δ↓3 + δ↓15 + δ↓8 + δ↑7 (t17 ≤ t23 after elim. of dHI + dLO)

(xix) δ↓3 + δ↓15 + δ↓8 + δ↑7 ≤ dHI + dLO (t23 ≤ t24 after elim. of dHI + dLO)

Appendix 2: A system of concurrent processors
In [7], a multiprocessor system is evaluated by solving the direct problem. The
timing constraint graph is depicted in Fig.2. The separation time of interest is here
t19. The set of inequations δ ∈ (l, u) is here of the form: δ0,1 ∈ (5, 10), δ0,2 ∈ (5, 10),

δ4,5 ∈ (3, 5), δ7,8 ∈ (3, 5), δ6,9 ∈ (6, 12), δ8,10 ∈ (5, 10), δ8,11 ∈ (5, 10), δ9,15 ∈ (6, 12), δ13,14 ∈ (3, 5),

δ15,18 ∈ (6, 12), δ16,17 ∈ (3, 5), δ18,19 ∈ (6, 12). As for d
0, take the middle of each interval

(i.e.: δpq = �upq−lpq

2 	). This yields O:

E. Encrenaz, L. Fribourg / Electronic Notes in Theoretical Computer Science 209 (2008) 135–148146



d_0_1 d_0_2

s5

s2

s4s3

s1

s0

d_4_5

min node

max node

delay node

s7

s8

s15

s9

s14

s13

s11

s12

s10
d_8_11

d_7_8

d_9_15

s18

s19

s16

s17

d_15_18

s15b

s18b

d_18_19

d_8_10

d_13_14

d_16_17

s6

d_5_6

Fig. 2. Timing constraint graph for the system of concurrent processors

t0 ≤ t1 ≤ t2 ≤ t5 ≤ t6 ≤ t8 ≤ t10 ≤ t11 ≤ t14 ≤ t15 ≤ t17 ≤ t18 ≤ t19

The delay-nodes representing the min/max nodes are given by:
3∗ = 2, 4∗ = 1, 7∗ = 5, 9∗ = 6, 12∗ = 11, 13∗ = 10, 15′∗ = 15, 16∗ = 14, 18′∗ = 18.

The support of the representative path to 19 is in bold font in Fig. 2. The system I∗

is:

(i) δ0,1 ≤ δ0,2 (t1 ≤ t2)

(ii) δ0,2 ≤ δ0,1 + δ4,5 (t2 ≤ t5)

(iii) δ7,8 ≤ δ5,6 (t8 ≤ t9)

(iv) [δ5,6 ≤ δ7,8 + δ8,10] (t9 ≤ t10)

(v) δ8,10 ≤ δ8,11 (t10 ≤ t11)

(vi) [δ8,11 ≤ δ8,10 + δ13,14] (t11 ≤ t14)

(vii) δ7,8 + δ8,10 + δ13,14 ≤ δ5,6 + δ9,15 (t14 ≤ t15)

(viii) [δ5,6 + δ9,15 ≤ δ7,8 + δ8,10 + δ13,14 + δ16,17] (t15 ≤ t17)

(ix) δ7,8 + δ8,10 + δ13,14 + δ16,17 ≤ δ5,6 + δ9,15 + δ15,18 (t17 ≤ t18)

We can remove the 4th, 6th and 8th inequalities (under brackets), using the
enhancement of removal of inequalities (see Sect. 4). Further restrictive inequalities
δ0,1 ≤ δ0,2 and δ8,10 ≤ δ8,11 can be also removed, but this requires the addition of
new inequalities (obtained by negating constraints delimiting the hull of solutions
of system (4)). This yields the set I∗∗:

(i) δ0,2 ≤ δ0,1 + δ4,5

(ii) δ0,1 ≤ δ0,2 + δ4,5 (added for removing δ0,1 ≤ δ0,2)

E. Encrenaz, L. Fribourg / Electronic Notes in Theoretical Computer Science 209 (2008) 135–148 147



(iii) δ7,8 ≤ δ5,6

(iv) δ7,8 + δ8,10 + δ13,14 ≤ δ5,6 + δ9,15

(v) δ7,8 + δ8,11 + δ13,14 ≤ δ5,6 + δ9,15 (added for removing δ8,10 ≤ δ8,11)

(vi) δ7,8 + δ8,10 + δ13,14 + δ16,17 ≤ δ5,6 + δ9,15 + δ15,18

(vii) δ7,8 + δ8,11 + δ13,14 + δ16,17 ≤ δ5,6 + δ9,15 + δ15,18 (added for removing δ8,10 ≤ δ8,11)

Possible solutions of the associated system J ∗∗ are:

l∗∗5,6 = l∗∗9,15 = 10, l∗∗4,5 = 5, l∗∗0,1 = l∗∗0,2 = 5, l∗∗15,18 = 5, l∗∗p,q = 0,
for all other (p, q).

The lower bounds of δ5,6 and δ9,15 are thus increased (from 6 to 10), as well as
the lower bound of δ4,5 (from 3 to 5). This is a restriction of their original domain.
The set {δ4,5, δ5,6, δ9,15} is thus a set of “key-parameters” whose tightening allows
to extend the domain of all the other δp,qs (smaller lower bounds). Besides, we have:

MAX∗∗
19 = maxδ∈Δ∗∗ t19 = u0,1 + u4,5 + u5,6 + u9,15 + u15,18 + u18,19

= 10 + 5 + 12 + 12 + 12 + 12 = 63.

This coincides with the upper bound value obtained in [7].

E. Encrenaz, L. Fribourg / Electronic Notes in Theoretical Computer Science 209 (2008) 135–148148


	Introduction
	Time Separation of Events
	Inverse Method
	Complexity and Enhancements
	Final Remarks
	References

