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1. INTRODUCTION 

Anderson and Duffin [l] h ave recently introduced the concept of parallel 
sum of a pair of matrices and established interesting and important properties 
of this operation when the matrices concerned are nonnegative definite 
(n.n.d.). Applications of this concept in Electrical Network Theory were 
discussed by the same authors and in some statistical problems connected 
with the estimation of parameters in a dynamic linear system by Anderson 
et al. [3]. The concept of parallel sum was extended and its elegance further 
demonstrated by Rao and Mitra [7], who showed that most of the properties 
proved by Anderson and Duffin [l] are indeed true for a much wider class 
of pairs of matrices designated by these authors as “parallel summable.” 
The object of the present paper is to explore additional properties of the 
parallel sum to obtain the condition for consistency together with the complete 
class of solutions (X) of the parallel sum equation 

ATX=C. - 

A special case of this problem (when A, C and X are n.n.d.) was recently 
solved in [2], [4] and [5]. 

We shall be primarily concerned with complex matrices, though most of 
the results will remain valid with trivial modifications for matrices over a 
more general field. For a matrix A, &‘(A), M(A), R(A) and A* denote 
its column space, null space, rank, and conjugate transpose, respectively. 
A generalized inverse A- satisfies the equation AA-A = A, while the Moore 
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Penrose inverse A+ is the unique solution to ,4rZ~rZ = A, ,;l+AA+ = A+, 
9Af = P, ) r3+A = PA* where PA and PA* are the orthogonal projectors 
onto A!(A) and &(A*). Unless explicitly stated otherwise, the norms 
involved are assumed to be those induced by the inner product (x, y) = y*.v 
where x and y are column vectors of appropriate dimension. Matrices -4 and 
B of like order are said to be disjoint if .&(A) and A(B) are virtually disjoint, 
that is, have only the null vector in common and so are &(,4*) and A(B*j. 

2. PARALLEL SUM OF MATRICES 

DEFINITION. Matrices A and B of order m x n each are said to be parallel 
summable (p.s.) [7] if A(A + B)- B . is invariant under the choice of the 
generalized inverse (A + B)-. If A and B are p.s. -4 z B = A(9 + B)- B 
is called the parallel sum of A and B. 

Theorem 2.1, due to Rao and Mitra [7], is easy to establish. 

THEOREM 2. I. A and B are p.s. zfl 

-@(A) CA(A + B), &‘(A*) C M(A* + B*), 

or equivalently 

d(B) C -,@(A + B), &‘(B*) C &(A* + B”). 

Theorem 2.2 lists certain known properties of the parallel sum (see [l, 71). 

THEOREM 2.2. If A and B are p.s. matrices of order m x n each, then 

(a) A z B = B ? A, 

(b) A* and B* are also p.s. and A* z B* = (A s B)*, 

(c) A S_ B is n.n.d., when m = n and A, B are n.n.d., 

(d) for a matrix C of order p x m and rank m, CA and CB are p.s. and 

CA s CB = C(A z B), 

(e) A- + B- is one choice of (A 3 B)- and conversely every g-inverse of 
,4 z B is expressible as A- + B-for suitable choices of A- and B-, 

(f) &(A - B) = d(A) r-~ A(B), 

(g) If P, is the orthogonal projector onto J!(A*) n &!(B*) and P is the 
orthogonalprojector onto M(A) n d(B), 

(A i B)+ = P,(.4- f B-) P, 
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(h) (A z B) z C = A 5 (B z C), if all the parallel sum operations 
are defked, 

(i) ;f PA and Pe are the orthogonal projectors onto A(A) and &Y(B), 
the orthogonal projector P onto d(A) n M(B) is given by 

P = Z(P.4 z PB). 

We shall prove the following. 

THEOREM 2.3. Let A and B be p.s. matrices of order m x n each and 
ATB=C.Then 

(a) any one of (i) J?(B) C.&(A) or (ii) &(B*) C &(A*) implies the 
other and 

R(A - C) = R(A), 

(b) R(A - C) = R(A) implies A and -C are p.s. and 

B=--[Az(-C)]+W 

where W and A are disjoint matrices. 

Proof of (a). Since A and B are p.s., &(A) C.M(A + B). 
(i) z- R(A + B) = R(A) z= (ii). Also observe that 

A-C=A(A+B)-A 

and that (i) * B = AU for some U 
+A=A(A+B)-(A+B)=(A--)(I+ U) 
z- R(A - C) = R(A). 

The other part of (a) is similar. 

Proof of (b). S ince d(C) C A(A) and J’Y(C*) C &(A*), 

R(A - C) = R(A) =z- M(A) CM(A - C), uk(A*) C ./&(A* 
5 A and -Care p.s. 

Write 
B, = -[A E (-C)] = A(A - C)- C, 

check that A + B,, = A(A - C)- A and that 

R(A + B,) = R[A(A - C)- (A - C)] = R(A). 

(2.1) 

Hence, 

c*> 

(2.2) 

This shows A and B,, are p.s. By direct multiplication it is seen that 
A-(A - C) A- is one choice of (A + B,)- and that 

AzB,=A(A+B,,)-B, 

= A[A-(A - C) A-] A(A - C)- C = C. 
(2.3) 
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(2.2) and (2.3) 3 A(4 + B)- -4 = A(4 + B& A 

5 every g-inverse of A + B is ag-inverse of A + B, 

5A+B=A+B,+W, 

where W and A + B, are disjoint matrices [6, Lemma 2.71. This completes 
the proof of Theorem 2.3. 

Note I. When R(A - C) = R(A), d(C) C d(A) and d(C*) C &(A*), 
A(4 - C)- C is the unique solution (X) of the equation A 3 X = C with 
row and column spaces contained in those of A. In such cases, therefore, 
A(4 - C)- C may be legitimately called the parallel difference of A and C 
and denoted by the symbol A = C. 

Note 2. When A and B are n.n.d. and A 5 B = C, d - C is n.n.d. with 
rank equal to R(A). This shows that when iz and C are n.n.d. and so is A - C, 
the equation d ? X = C has a n.n.d. solution X iff R(A - C) = R(A). 
When this condition is satisfied, Theorem 2.3 provides an alternative method 
for solving A ? X = C, and a general n.n.d. solution is seen to be 

A(tZ - C)- c + w, 

where A and Ware disjoint matrices and W is n.n.d. (see [2], [4] and [5] in 
this connection). 

THEOREM 2.4. (a) Let A and B be p.s. matrices of order m x n and 
C=AEB.Then 

R(A - C) 3 2R(A) - R(A + B). (2.4) 

Conversely, (b) let A and C be matrices of order m x n each such that (i) 
.M(C) C&(A), .M(C*) C &(A*) and (ii) R(A - C) > 2R(A) - min(m, n). 
Then there exists a matrix X of order m x n such that A and X are p.s. and 

AtX=C. - (2.5) 

Proof of (a). Let R(A + B) = p and A + B = LR be a rank factoriza- 
tion of A + B. Since A and B are p.s. it follows that A = LDR where 
R(D) = R(A) 

e-B =L(I- D)R 

3 C=LD(I- D)R 

*A-C=LD2R 

a R(A - C) = R(P). 

An application of Frobenius inequality now leads to (2.4). 
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Proof of (b). Let R(A) = r and A = L,R, be a rank factorization of A. 
Write 

A - C = L,d,R, . 

Clearly R(A - C) = R&4,) = 4 (say). Let the integer p be such that 
p < min(m, n) and R(A - C) > 2R(,4) - p. Let F be a matrix of order 
p x r and rank r and E of order r x p and rank Y be such that ([6], 

EF=A,. 

For F with A&*) C k!(F*) one choice of E is AIF- + UV where U is a 
matrix of order r x (r - 4) and rank(r - q), such that R(A, i U) = 
R(4) + R(U) = r and V a matrix formed by (Y - 9) independent rows 
of (I - FF-). 

Let L and R be matrices of full rank similarly obtained such that LF = L, 
ER = R, . Then 

A = L,R, = L(FE) R and A - C = L,A,R, = L(FE)2 R. 

Check that X = LR - A satisfies the equation 

ArX=C. - 

Note. Arbitrary choices of E, F, L and R in the proof of (b) given above 
lead to a general solution of (2.5). 

THEOREM 2.5. (a) Let A = A, + A, and B = B, + B, be p.s. matrices 
of order m x n such that (i) Ai and Bi arep.s., (i = 1, 2), (ii) (A, + B,) and 
(A, + B,) are pairwise disjoint. Then 

A ? B = (A, 3 B,) + (A, i B,). 

Conversely, (b) let A = A, + A, and C = C, + C, be matrices of order 
m x n each such that 4, and A, are pairwise disjoint, k’(CJ C.M(AJ, 
A(C,*) C &(Ai*), i = 1,2. Then if A ? B = C, B can be expressed as 
B = B, + B, such that (A, + B,) and (A, f B,) are pairwise disjoikt and 

Ai z Bi = Ci . 

Proof of (a). Write Ei = (Ai + Bi) and check that 

Gi = (E,*E, + E,*E,)- EjiEiEi”(E,El’ + E,E,*)- 

is a g-inverse of Ei such that 

EiGi = 0, GiEi = 0 
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whenever i # j. This shows G, + G, is a g-inverse of E1 + E2 = A + B and 

A tB=A(G,+G,)B 

= A,G,B, + A,G,B, 

= (A, - B,) + (A, z B,). 

Proof of (b). Let A + B = LR be a rank factorization of A + B and 
A,==LDiR,i=1,2.WeputD==D,+D,. 

and 

A - C = (Al - C,) -+ (A, - c,) 

&(Ai - CJ C &(A,), d(Ai* - Ci*) C &(Ai*) =+ D,D, = DzD, = 0. 

This implies the existence of a non singular T such that 

4 0 T-‘D,T = o o , ( ) 
0 0 

T-1D2T = 0 A2 . ( ) 
Let 

T = (TI ; T,) and 

be the corresponding partitions of T and T-l. Put Bi = LT,(I - AJ U,R 
and check that B, and B, satisfy (b). 
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