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Abstract

We give a new form of the Ascoli theorem for functions onRN tending to some given close
subsetZ of a complete metric spaceE at infinity. For instance, whenE is a normed space an
Z = {0}, the usual uniform decay requirement is replaced by the assumption that the 0 functio
only continuous function produced by some limiting process. This formulation, which has sign
practical value in concrete applications, is described in its general form, but with emphasis
case whenZ is totally disconnected. Variants in Sobolev spaces and the properness of no
ordinary differential operators are discussed.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Let E be a complete metric space with distanced and letCb(RN ;E) be the (met-
ric) space ofE-valued bounded continuous functions onRN , equipped with the dis
tanced∞(u, v) := supx∈RN d(u(x), v(x)). Given a nonempty subsetZ ⊂ E, we denote by
CZ(RN ;E) the closed subspace ofCb(RN ;E) of those functions tending toZ at infinity:

CZ

(
RN ;E)= {

u ∈Cb

(
RN ;E)

: lim|x|→∞d
(
u(x),Z

)= 0
}
. (1)

By collapsingZ to a pointz (“zero”), the functions ofCZ(RN ;E) may be viewed as
functions vanishing at infinity. In fact, whenZ = {z} is a single point and withSN+1 �
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RN ∪ {∞} being the unit sphere ofRN+1, the spaceC{z}(RN ;E) is isometrically iso-
morphic to the closed subspace ofC(SN+1;E) of those functionsu such thatu(∞)= z.
Therefore, Ascoli’s theorem forC(SN+1;E) has an immediate corollary forC{z}(RN ;E),
given below for future reference.

Theorem 1 (Ascoli; classical form).Let E be a complete metric space andz ∈ E be a
given point. A subsetH⊂ C{z}(RN ;E) is relatively compact if and only if

(a) for everyx ∈RN , the setH(x) is relatively compact inE,
(b) H is equicontinuous,
(c) H tends uniformly toz at infinity, i.e.,d(u(x), z) can be made arbitrarily small, uni

formly inu ∈H, for |x| large enough.

Condition (c) of Theorem 1 merely reflects the equicontinuity ofH at∞ ∈ SN+1. In
practice, checking condition (c) requires having some knowledge of the collective
wise asymptotic behavior of the members ofH, which is not always directly accessible.

This paper elaborates on a version of Theorem 1, given in Theorem 2, in which c
tion (c) is replaced by the requirement that the only functionũ ∈ Cb(RN ;E) produced by
some pointwise limiting process is the constant functionũ= z. While slight modifications
of (a) and (b) are also needed, the net result remains a necessary and sufficient co
for relative compactness inC{z}(RN ;E).

Although its proof is technically simple, this form of Ascoli’s theorem has prove
have a considerable practical value, because it relies on a condition aboutcontinuous func-
tionsũ. Whatever additional property these functions inherit from being involved in a g
problem may be instrumental in showing that, indeed,ũ= z, as required by the theorem
In contrast, condition (c) of Theorem 1, which amounts to limn→∞ d(un(xn), z) = 0 for
all sequences(un)⊂H and(xn) ⊂ RN with |xn| →∞, leaves no limiting mathematica
object to examine in the light of problem-dependent features.

For instance, in many concrete applications, it is possible to characterizeũ above as a
solution of some known equation, thereby reducing the compactness question to s
that this equation has no solution other thanu= z (i.e., no nontrivial solution whenz= 0).
This is useful, directly or in a more subtle way, to establish the properness of severa
of operators in various functional frameworks: Elliptic operators onRN , systems of ODEs
on the line or half-line, convolution operators, etc. In such problems, other technical a
incorporated to Theorem 2 are needed to consider, say, problems withN -periodic rather
than constant, coefficients.

Whether Theorem 2 can be generalized whenH ⊂ CZ(RN ;E) andZ is a nonempty
closed subset ofE depends upon the size ofZ from a topological point of view: IfZ is
compact and totally disconnected, the answer is positive (Corollary 6), which, incide
yields a useful generalization of Theorem 2 forC{z}(RN ;E) (Corollary 7). Otherwise
only a weaker form is true (Theorem 5), which gives a relative compactness criter
the compact-open topology ofCZ(RN ;E). Still, this is not trivial since the uniform con
vergence on compact subsets alone ensures only that the limit points are inCb(RN ;E),
notCZ(RN ;E).

Generalizations whenRN is replaced by a locally compact topological group are
investigated, but variants in Sobolev spaces are discussed in Section 4 whenE = RM ,
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or more generally a reflexive Banach space, andZ = {0}. Whenmp > N , these variants
yield a simple characterization of the bounded subsets ofWm,p(RN) which are relatively
compact inC{0}(RN) := C{0}(RN ;R). In particular, this characterization shows that,
bounded subsets ofWm,p(RN) with mp >N , relative compactness inC{0}(RN) is equiv-
alent to relative compactness inLq(RN) for any q ∈ (p,∞) and weaker than relativ
compactness inLp(RN) (Corollary 10).

In a different direction, the results of Section 4 also provide an important first st
establishing the compactness of some subsets in Sobolev spaces, as exemplifie
proof of Theorem 14. Indeed, in spite of its resemblance with Ascoli’s theorem, it doe
appear that the classical criterion for compactness inLp(RN) can be reformulated in a
equally convenient way.

The line of argument for the proof of Theorem 2 was first introduced in Rabier
Stuart [16], to investigate the Fredholmness and properness of nonlinear second o
liptic operators inW2,p(RN), p > N . However, that work does not make a connect
with a general, problem-independent, compactness property in Sobolev spaces, le
with the more remote theorem of Ascoli. This paper is the result of an attempt to id
the principles really involved in the procedure of [16].

In [19], Secchi and Stuart used the approach of [16], this time inW1,2(R;R2M), to
obtain basic functional properties for the proof of the bifurcation of homoclinic solu
in nonlinear Hamiltonian systems. As an application of Theorems 2 and 9, we revis
expand the properness results of [19] (Section 5). The example of ODE systems
whole line is simpler to describe and was chosen here for precisely that reason,
already mentioned, there are numerous other applications in the same spirit.

ForR > 0,BR ⊂RN is the open ball with center 0 and radiusR andB̃R the complemen
of BR in RN . Givenξ ∈RN , we callτξ the translation operatorτξu := u(ξ +·), whereu is
any function defined onRN . We shall also need the concept ofδ-net inRN (δ � 0). This is
simply a subsetS ⊂ RN such that dist(x, S) � δ for everyx ∈ RN . For instance,S = RN

is aδ-net for everyδ � 0 whileS = ZN is aδ-net if δ �
√
N/2.

2. Relative compactness in C{z}(RN;E)

As in the Introduction,E is a metric space with distanced , the pointz ∈ E is chosen
once and for all andd∞ denotes the corresponding distance onCb(RN ;E)⊃ C{z}(RN ;E).

Theorem 2 (Ascoli; new form).Let E be a metric space,z ∈ E be a given point and le
S ⊂RN be any chosenδ-net. For a subsetH⊂ C{z}(RN ;E), the following statements ar
equivalent:

(i) H is relatively compact inC{z}(RN ;E).
(ii) H(RN) is relatively compact inE, H is uniformly equicontinuous and if̃u ∈

Cb(RN ;E)1 and there are sequences(un)⊂H and (ξn)⊂ S with limn→∞ |ξn| =∞
such thatũn := τξnun→ ũ pointwise onRN , thenũ= z.

1 It is not enough to assume thatũ ∈C{z}(RN ;E).
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Proof. (i) ⇒ (ii) We begin with the relative compactness ofH(RN) in E. As in the
Introduction, identifyC{z}(RN ;E) with a closed subspace ofC(SN+1;E), so thatH is
relatively compact inC(SN+1;E). Since the evaluation mape(x,u) := u(x) is contin-
uous fromSN+1 × C(SN+1;E) to E andSN+1 is compact, it follows thatH(SN+1) =
e(SN+1×H) is relatively compact inE, so thatH(RN)⊂H(SN+1) is relatively compac
in E.

Next, the equicontinuity ofH on SN+1 implies its uniform equicontinuity onSN+1

sinceSN+1 is compact. It is readily checked that the stereographic projection trans
a ball with radiusr > 0 in SN+1 into a subset ofRN containing a ball with radiusr ′ > 0
depending only uponr, which shows thatH is uniformly equicontinuous onRN .

Lastly, with ũ, (un) ⊂H and(ξn) ⊂ S as in part (ii), we turn to the proof thatũ = z.
SinceH is relatively compact inC{z}(RN ;E), there areu ∈ C{z}(RN ;E) and a subse
quence(unk ) such thatd∞(unk , u)→ 0. Thus,d∞(ũnk , τξnk u)→ 0 since translations d

not changed∞. Clearly,τξnk u→ z pointwise onRN since limn→∞ |ξn| =∞ andu tends

to z at infinity. Since alsõunk → ũ pointwise onRN by hypothesis, it follows that̃u= z.
(ii) ⇒ (i) It suffices to show that if(un) ⊂H and if (xn) ⊂ RN satisfies limn→∞ |xn|

=∞, then limn→∞ d(un(xn), z)= 0. Indeed, if so, the conclusion follows from Theorem
since a straightforward contradiction argument shows that condition (c) of that the
holds (and stronger variants of (a) and (b) are assumed in (ii)).

By contradiction, assume that there are(un) ⊂ H and (xn) ⊂ RN with limn→∞ |xn|
= ∞ such thatd(un(xn), z) does not tend to 0. After replacing(un) and(xn) by subse-
quences, we may assume that there isε > 0 such thatd(un(xn), z) � ε for all indicesn.
By definition of aδ-net, letξn ∈ S andyn ∈Bδ be such thatxn = ξn + yn, so that

d
(
ũn(yn), z

)
� ε, ∀n ∈N, (2)

whereũn := τξnun. Let (ynk ) be a subsequence such thatynk → y ∈ Bδ .
Since(unk )⊂H andH is uniformly equicontinuous, the sequence(ũnk ) is equicontin-

uous. Furthermore,(ũnk (x))⊂H(RN) for everyx ∈RN andH(RN) is relatively compac
by hypothesis, so that(ũnk (x)) is relatively compact inE. It thus follows from the Arens–
Myers generalization of Ascoli’s theorem in the compact-open topology [3,11] that
areũ ∈ C(RN ;E) and a subsequence(ũnk# ) such that̃unk# → ũ uniformly on the compac

subsets ofRN . Also, ũ(x) ∈H(RN) for everyx ∈ RN , so thatũ ∈ Cb(RN ;E) and hence
ũ= z from the assumptions made in (ii).

On the other hand, sinceynk → y ∈ Bδ , it follows from (2) and the uniform convergen
of (ũnk# ) to ũ onBδ thatd(ũ(y), z) � ε, which contradicts̃u= z. ✷
Remark 3. If the setH is a sequence(un), the above proof shows that it suffices to consi
the sequence(un) in part (ii) of Theorem 2, rather than every sequence(un(k)). This can
also be seen by a contradiction argument. (The issue is not entirely trivial because
arbitrary shifts involved in condition (ii).)

To see how condition (ii) breaks down in simple cases whenH is not relatively compact
let u ∈ C{0}(R;R)\{0} be a given function with compact support and letH= (τnu). Here,
H(R) = u(R) is compact inR andH is uniformly equicontinuous, but ifξn = −n, then
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τ−nτnu= u is not pointwise convergent to 0, so that condition (ii) withS = RN andδ = 0
does not hold. It is only slightly less trivial to show that condition (ii) also fails whenS is
any otherδ-net.

Theorem 2 is still true whenRN is replaced by a closed convex coneK or even by
more general unbounded closed subsetsK ⊂ RN , invariant under some set of translatio
T and hence having some “periodic” structure. For instance,K =K0+ T whereT is any
(unbounded) subset ofZN . A δ-netS ⊂K can be obtained in the formS = S0+ T where
S0 is someδ-net inK0, possibly a single point ifK0 is bounded (and thenδ is the diameter
of K0). This includes cylindersω × [0,∞) whereω is a bounded open subset ofRN−1:
Just takeK0= ω× [0,1] andT= {0} ×N.

3. Relative compactness in CZ(RN ;E)

This section is devoted to a partial extension of Theorem 2 when the singleton{z} is
replaced by a nonempty closed subsetZ ⊂ E, which yields a genuine extension if alsoZ
is compact and totally disconnected. Some preliminary discussion is needed.

LetE be a complete metric space andZ ⊂E be a nonempty subset. We denote byE/Z

the set of equivalence classes for the relation

a ∼ b ⇔ a = b or a ∈ Z, b ∈Z (3)

and equipE/Z with the quotient topology, that is,U ⊂E/Z is open if and only ifπ−1(U)

is open inE, whereπ :E→E/Z is the projection. In general,E/Z is not a metric space
even ifZ is closed inE (a simple counterexample whenE/Z is not first countable is give
in Kelley [9, p. 104]). However, ifE is compact, the following lemma, whose proof
given for completeness, is essentially a special case of a well-known result [9, p. 14

Lemma 4. If E is compact andZ is closed inE, thenE/Z is a compact metric space. Fu
thermore, ifU ⊂E/Z is an open neighborhood of2 π(Z) in E/Z, thenπ−1(U) contains
someε-neighborhoodWε := {a ∈E: d(a,Z) < ε} of Z in E (ε > 0).

Proof. ThatE/Z is compact follows from the continuity ofπ . We begin with the “further-
more” part. LetU ⊂ E/Z be an open neighborhood ofπ(Z) in E/Z. By the continuity
of π , π−1(U) is an open subset ofE containingZ. CoverZ by finitely many open balls
B(bi, εi)⊂ π−1(U), bi ∈ Z, and letε > 0 be a Lebesgue number for the covering. Th
Wε =⋃

b∈Z B(b, ε)⊂ π−1(U).
To prove the metrizability ofE/Z, we rely on Urysohn’s metrization theorem (see [9

It suffices to show that points are closed inE/Z and thatE/Z is second countable.
That points are closed follows at once from the remark thatZ is closed inE andπ

is a bijection ofE\Z onto (E/Z)\π(Z). A countable basis for the topology ofE/Z is
obtained as follows: SinceE is compact, it is separable and henceE\Z is open inE and
separable. Let then(Vn) be a countable basis for the topology ofE\Z and, form ∈N, set

2 In this statement and elsewhere, we implicitly identify the singletonπ(Z) with the unique point in it.
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Wm := {a ∈ E: d(a,Z) < 1/m}, an open subset ofE containingZ. Note thatπ(Vn) and
π(Wm) are open inE/Z sinceπ−1(π(Vn))= Vn andπ−1(π(Wm))=Wm.

If now U ⊂E/Z is open, then eitherπ(Z) /∈ U or π(Z) ∈U . In the first case,π−1(U)

is contained inE\Z and hence is the union of some of theVn. In the second,π−1(U)

containsZ, so thatWm ⊂ π−1(U) for somem by the first part of the proof. It follows tha
π−1(U)=Wm ∪ (π−1(U)\Z). Sinceπ−1(U)\Z is open inE\Z,π−1(U) is the union of
Wm and some of theVn. This shows that(π(Vn))∪ (π(Wm)) is a basis for the topology o
E/Z.

Theorem 5. Let E be a complete metric space andZ ⊂ E be a nonempty closed subs
LetS ⊂RN be someδ-net and letH⊂ CZ(RN ;E) satisfy the following conditions:

(i) H is uniformly equicontinuous,
(ii) H(RN) is relatively compact inE,
(iii) If ũ ∈ Cb(RN ;E) and there are sequences(un)⊂H and(ξn)⊂ S with limn→∞ |ξn|

=∞ such thatũn := τξnun→ ũ pointwise onRN , thenũ(RN)⊂Z.

Then,H is relatively compact inCZ(RN ;E) for the compact-open topology. Fu
thermore, the following(stronger) property holds: Every sequence(un) ⊂ H contains a
subsequence(unk ) converging uniformly to someu ∈ CZ(RN ;E) on the compact subse
of RN and tending uniformly toZ at infinity (i.e., for everyε > 0, there arek0 ∈ N and
R > 0 such thatd(unk (x),Z) < ε wheneverk > k0 and|x|>R).

Proof. There is no loss of generality in replacingE by H(RN) andZ by Z ∩ H(RN)

and hence, by (ii), we may assume thatE andZ are compact. If so,E/Z is a (compact)
metric space by Lemma 4. We now check that (ii)⇒ (i) in Theorem 2 can be used wit
π ◦H⊂ Cπ(Z)(RN ;E/Z), where of courseπ ◦H := {π ◦ u: u ∈H}.

First, to see that the inclusionπ ◦ H ⊂ Cπ(Z)(RN ;E/Z) holds, letu ∈ H be given
and letU be an open neighborhood ofπ(Z) in E/Z. By Lemma 4,π−1(U) contains
Wε := {a ∈E: d(a,Z) < ε} for someε > 0, andu(x) ∈Wε for |x| large enough sinceu ∈
CZ(RN ;E). Thus,π ◦ u(x) ∈U for |x| large enough, which means thatπ ◦ u(x)→ π(Z)

as|x|→∞ and hence thatπ ◦ u ∈ Cπ(Z)(RN ;E/Z).
It follows from (ii) and the continuity ofπ thatπ ◦H(RN) is relatively compact inE/Z.

Next, sinceE andE/Z are compact metric spaces,π is uniformly continuous. Togethe
with (i), this yields thatπ ◦H is uniformly equicontinuous. Lastly, let(π ◦ un) ⊂ π ◦H
and(ξn) ⊂ S be sequences such that limn→∞ |ξn| = ∞ and thatṽn := τξn(π ◦ un) tends
pointwise toṽ ∈Cb(RN ;E/Z), so thatṽ(x)= limn→∞ π ◦ un(ξn + x) for everyx ∈RN .

We claim thatṽ = π ◦ ũ, whereũ ∈ Cb(RN ;E). Indeed, as in the proof of Theorem
it follows from (i) that(ũn) := (τξnun) is equicontinuous and then, by (ii) and the Aren
Meyers version of Ascoli’s theorem, there areũ ∈ C(RN ;E) and a subsequence(ũnk )
such thatũnk → ũ uniformly on the compact subsets ofRN . Thatũ ∈ Cb(RN ;E) follows

from (ii) and fromũ(RN) ⊂H(RN), while π ◦ ũnk → π ◦ ũ pointwise by the continuity
of π . Thus,ṽ = π ◦ ũ, as claimed. But then,̃v = π(Z) since, by (iii),ũ(x) ∈ Z for every
x ∈RN .
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From the above and Theorem 2, it follows thatπ ◦ H is relatively compact in
Cπ(Z)(RN ;E/Z). We now show that this implies thatH is relatively compact in
CZ(RN ;E) (and not merelyCb(RN ;E)) for the compact-open topology. By the loc
compactness ofRN , the compact-open topology is metrizable sinceE is metric and the
problem reduces to showing that every sequence(un)⊂H has a subsequence(unk ) con-
verging to someu ∈CZ(RN ;E), uniformly on the compact subsets ofRN .

Once again by (i), (ii) and the Arens–Myers–Ascoli theorem, there areu ∈ Cb(RN ;E)

and(unk ) such thatunk → u uniformly on the compact subsets ofRN . The only issue is to
show that lim|x|→∞ d(u(x),Z)= 0. Since, from the above,π ◦H is relatively compact in
Cπ(Z)(RN ;E/Z), we may and will assume with no loss of generality thatπ ◦ unk tends to
π ◦ u in Cπ(Z)(RN ;E/Z).

Let ε > 0 be given. WithWε := {a ∈ E: d(a,Z) < ε}, we haveπ−1(π(Wε)) = Wε

and hence thatπ(Wε) is an open neighborhood ofπ(Z) in E/Z. By (c) of Theorem 1 for
π ◦H, there arek0 ∈ N andR > 0 such thatπ ◦ unk (x) ∈ π(Wε) if k > k0 and|x|> R.
Hence,unk (x) ∈ π−1(π(Wε))=Wε , i.e.,d(unk (x),Z) < ε, for k > k0 and|x|> R. With
x ∈RN now fixed such that|x|>R and by lettingk→∞, it follows from the convergenc
of unk (x) to u(x) in E that d(u(x),Z) � ε, which is the desired property sinceε > 0 is
arbitrary. That(unk ) tends uniformly toZ at infinity is contained in the statement abo
thatunk (x) ∈Wε for k > k0 and|x|>R. ✷

While the conditions (i) and (ii) of Theorem 5 yield the relative compactness oH
in Cb(RN ;E) for the compact-open topology, (iii) is needed to ensure that the limi
convergent sequences tend toZ at infinity. On the other hand, Theorem 5 does not im
the existence of a subsequence converging uniformly onRN , even ifZ is compact. Indeed
for large enoughk and|x|, bothunk (x) andu(x) must be close toZ, but not necessaril
to the same point ofZ. Therefore, Theorem 5 gives a result stronger than convergen
the compact subsets ofRN but weaker than uniform convergence onRN . UnlessZ = {z}
is a singleton, for then Theorem 5 implies condition (c) of Theorem 1 for(unk ) and hence
is equivalent to Theorem 2. As it turns out,Z = {z} is not the only case when unifor
convergence onRN is true.

Recall that a topological spaceZ is said to betotally disconnectedif, given a, b ∈ Z

with a �= b, there are disjoint open (and hence closed) neighborhoodsVa andVb of a andb,
respectively, such thatVa ∪Vb =Z. Examples include discrete sets, convergent seque
and their limit in Hausdorff spaces, Cantor sets, etc. IfZ is compact metric, thenVa and
Vb are compact subsets ofZ, whenced(Va,Vb) > 0. In particular, ifZ is a compact subse
of a metric spaceE, there are disjoint open neighborhoodsUa andUb of a andb in E such
thatZ ⊂Ua ∪Ub (just letUa andUb beε-neighborhoods ofVa andVb in E, respectively,
with ε < d(Va,Vb)/2).

Corollary 6. Let E be a complete metric space andZ ⊂ E be a nonempty, compac3

and totally disconnected subset. LetS ⊂ RN be any chosenδ-net. For a subsetH ⊂
CZ(RN ;E), the following statements are equivalent:

3 From the given proof, (ii)⇒ (i) remains true ifZ is closed; the same thing is true of (i)⇒ (ii) if E is locally
compact.
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(i) H is relatively compact inCZ(RN ;E).
(ii) H(RN) is relatively compact inE, H is uniformly equicontinuous and, if̃u ∈

Cb(RN ;E) and there are sequences(un)⊂H and (ξn)⊂ S with limn→∞ |ξn| =∞
such thatũn := τξnun→ ũ pointwise onRN , thenũ(RN)⊂Z.4

Proof. (i) ⇒ (ii) We begin with the remark that, ifN � 2, everyu ∈ CZ(RN ;E) has a
well defined limita ∈Z at infinity. Indeed, otherwise, there are sequences(xn)⊂ RN and
(yn) ⊂ RN with limn→∞ |xn| = limn→∞ |yn| = ∞ such that(u(xn)) and(u(yn)) tend to
two distinct pointsa andb ofZ. SinceZ is compact and totally disconnected, letUa andUb

be disjoint open neighborhoods ofa andb in E, respectively, such thatZ ⊂Ua ∪Ub. From
Lemma 4,u(B̃R)⊂Ua ∪Ub for R > 0 large enough and, sincẽBR is connected andUa ∩
Ub = ∅, it follows that eitheru(B̃R) ⊂ Ua or u(B̃R) ⊂ Ub. In both cases a contradictio
arises with the fact thatxn, yn ∈ B̃R for n large enough whileu(xn) ∈Ua andu(yn) ∈Ub.

We continue the proof assumingN � 2. Let (un) ⊂ H and (xn) ⊂ RN be arbitrary
sequences. SinceH is relatively compact inCZ(RN ;E), there are subsequences(unk )

tending uniformly tou ∈ CZ(RN ;E) on RN and(xnk ) such that eitherxnk → x0 in RN or
|xnk | →∞. In the first case,(unk (xnk )) tends tou(x0) and in the second,(unk (xnk )) tends
to a ∈ Z, wherea := lim|x|→∞ u(x), whose existence was established at the beginnin
the proof. Thus,H(RN) is relatively compact inE.

To show thatH is uniformly equicontinuous, we argue by contradiction, thereby
suming that there areε > 0 and sequences(un)⊂H, (xn)⊂RN and(yn)⊂RN such that
|xn− yn| → 0 butd(un(xn), un(yn)) � ε. After passing to a subsequence, we may ass
that(un) tends uniformly tou ∈CZ(RN ;E) onRN and either thatxn→ x0 in RN , whence
yn→ x0, or that|xn| →∞, whence|yn| →∞. In both cases,(un(xn)) and(un(yn)) have
the same limit, namely,u(x0) in the first case anda := lim|x|→∞ u(x) ∈ Z in the second
Thus,d(un(xn), un(yn))→ 0, in contradiction withd(un(xn), un(yn)) � ε.

Lastly, if ũ ∈ Cb(RN ;E) and there are sequences(un) ⊂ H and (ξn) ⊂ S with
limn→∞ |ξn| =∞ such thatũn := τξnun→ ũ pointwise onRN , then, after replacing(un)
by a subsequence, we may assume that(un) tends uniformly tou ∈ CZ(RN ;E) onRN . As
a result,ũ(x0)= limn→∞ un(ξn + x0)= a := lim|x|→∞ u(x) ∈ Z irrespective ofx0 ∈RN .
Thus,ũ= a and, in particular,̃u(RN)⊂Z.

This completes the proof of (i)⇒ (ii) when N � 2. If N = 1, the only modification
is that, now,u ∈ CZ(R;E) has well defined limitsa∓ ∈ Z at∓∞. The same argumen
as above can then be used, with the only extra step of considering limits at∞ and−∞
separately.

(ii) ⇒ (i). We begin with the remark that, as in the proof of Theorem 5, it is not res
tive to assume thatE is compact (by replacingE byH(RN) andZ by Z ∩H(RN); thatZ
is compact and totally disconnected is not affected by this operation).

It follows from Theorem 5 that every sequence(un)⊂H contains a subsequence(unk )
converging uniformly tou ∈ CZ(RN ;E) on the compact subsets ofRN , with the additional
property that, for everyε > 0, there arek0 ∈N andR > 0 such that{

k > k0, |x|>R
} ⇒ d

(
unk (x),Z

)
< ε. (4)

4 And ũ is constant since the points ofZ are its connected components.
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Claim. If N � 2, there area ∈ Z and a subsequence(unk# ) tending uniformly toa at
infinity.

Choose a sequence(xk)⊂ RN such that|xk| →∞. By (4) and the compactness ofZ,
we obtaina ∈ Z and subsequences(unk# ) and(xk#) such thatd(unk# (xk#), a)→ 0. To sim-
plify the notation, assumed(unk (xk), a)→ 0, with no prejudice to (4). By contradiction
if (unk ) does not tend toa uniformly at infinity, there are a subsequence(unk#

) and a se-

quence(y#)⊂RN with |y#| →∞ such thatd(unk# (y#), a) is bounded away from 0. Afte
extracting another subsequence and sinced(unk#

(y#),Z)→ 0 by (4) andZ is compact, we
may assume that there isb ∈ Z, b �= a, such thatd(unk# (y#), b)→ 0.

SinceZ is compact and totally disconnected, there are disjoint open neighbor
Ua andUb of a andb in E, respectively, such thatZ ⊂ Ua ∪ Ub. By (4) and Lemma 4
unk#

(B̃R)⊂ Ua ∪Ub if R > 0 and# are large enough. SinceN � 2, B̃R is connected and

henceunk# (B̃R)⊂ Ua sinceunk# (xk#) ∈ Ua for # large enough. Evidently, a contradictio

arises with the fact thaty# ∈ B̃R andunk# (y#) ∈ Ub for large#. Thus,(unk ) tends toa uni-
formly at infinity. Since(unk ) stands for a subsequence in this statement, we have obt
(unk# ) with the property that, for everyε > 0, there are#0 > 0 andR > 0 such that

{
# > #0, |x|>R

} ⇒ d
(
unk#

(x), a
)
< ε. (5)

Since(unk ) tends tou pointwise, it follows, by letting#→∞ in (5), thatd(u(x), a)�
ε if |x| > R. But then,d(unk# (x), u(x)) < 2ε if |x| > R and# > #0. Since(unk ) tends

uniformly tou onBR , we infer thatd(unk# (x), u(x)) < 2ε if |x|� R and# is large enough

whenced(unk# (x), u(x)) < 2ε for all x ∈ RN and# large enough. This shows that(unk#
)

tends uniformly tou on RN , which completes the proof whenN � 2.
If N = 1, the above procedure yields, in place of (5), two pointsa∓ ∈ Z such that

{# > #0, x > R} ⇒ d(unk#
(x), a+) < ε and that{# > #0, x <−R} ⇒ d(unk#

(x), a−) < ε.
The proof can then be completed by the same argument as in the caseN � 2. ✷

As a corollary, we obtain a generalization of Theorem 2, in which the condition “ũ= z”
in part (ii) is relaxed.

Corollary 7. LetE be a complete metric space,z ∈E be a given point and letS ⊂RN be
any chosenδ-net. For a subsetH⊂ C{z}(RN ;E), the following statements are equivale:

(i) H is relatively compact inC{z}(RN ;E).
(ii) H(RN) is relatively compact inE, H is uniformly equicontinuous and there is

compact and totally disconnected subsetZ ⊂ E with the following property: If ũ ∈
Cb(RN ;E) and there are sequences(un) ⊂H and (ξn) ⊂ S with limn→∞ |ξn| = ∞
such thatũn := τξnun→ ũ pointwise onRN , thenũ(RN)⊂Z.

Proof. Observe thatz ∈ Z in (ii) (chooseun = u ∈ H) and thatC{z}(RN ;E) is closed
in CZ(RN ;E), so that the relative compactness ofH in C{z}(RN ;E) is equivalent to its
relative compactness inCZ(RN ;E). Then, use Corollary 6. ✷
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From Theorem 2,Z = {z} works in (ii) of Corollary 7. That other setsZ may replace
{z} is useful when onlỹu(RN)⊂Z with a setZ larger than{z} can be established a prio
For a concrete application, see Theorem 13 and subsequent examples.

4. Application to Sobolev spaces

If m ∈ N, p ∈ [1,∞) and mp > N , then Wm,p(RN) embeds inC{0}(RN) :=
C{0}(RN ;R), but the embedding is not compact. Equivalently, the unit ball ofWm,p(RN)

is not relatively compact inC{0}(RN). Thus, the question arises to characterize the bou
subsets ofWm,p(RN) which are relatively compact inC{0}(RN). A simple answer will be
derived from Theorem 2.

By arguing componentwise, the results of this section remain valid as stated
Wm,p(RN) is replaced byWm,p(RN ;RM) and will be used in this form in the next sectio
With appropriate modifications, they can also be generalized toWm,p(RN ;E) whereE is
a reflexive Banach space, but since a convenient reference for all the needed pro
of the spacesWm,p(RN ;E) seems to be lacking, this case is only discussed in the
comments. WhenE =R, see Adams [1].

Part (iii) of Lemma 8 below uses the well-known and easily checked fact
Wm,∞(RN) is isomorphic to a weak* closed subspace of(L∞(RN))N

m+···+1. Thus,
Wm,∞(RN) can be equipped with the weak* topology of(L∞(RN))N

m+···+1 and the
closed unit ball ofWm,∞(RN) is compact for this weak* topology.

Lemma 8. Letm ∈ N andp ∈ [1,∞] be such thatmp >N and letH⊂Wm,p(RN) be a
bounded subset. The following properties hold:

(i) H is uniformly equicontinuous andH(RN) is relatively compact.
(ii) If p ∈ (1,∞), a sequence(un) ⊂ H has a pointwise limitu if and only if u ∈

Wm,p(RN) andun
w
⇀ u in Wm,p(RN).

(iii) If p =∞, a sequence(un)⊂H has a pointwise limitu if and only ifu ∈Wm,∞(RN)

andun
w∗
⇀u in Wm,∞(RN).

Proof. (i) Sincemp > N , there isσ ∈ (0,1] such thatWm,p(RN) ↪→ C0,σ (RN), so that
|u(x) − u(y)| � M‖u‖m,p,RN |x − y|σ for all u ∈ Wm,p(RN) and allx, y ∈ RN , where
M > 0 is independent ofx, y andu. This shows thatH is uniformly equicontinuous. Tha
H(RN) is relatively compact follows from the boundedness ofH in C{0}(RN).

(ii) If (un) ⊂ Wm,p(RN) andun
w
⇀ u in Wm,p(RN), then, givenR > 0, unk

w
⇀ u in

C(BR) since the embeddingWm,p(RN) ↪→ C(BR) is continuous. In particular,un → u

pointwise onBR (hence onRN ) since the point evaluations are continuous onC(BR).5

Conversely, suppose that(un)⊂H has a pointwise limitu. Sincep ∈ (1,∞), the space
Wm,p(RN) is reflexive and hence there arev ∈Wm,p(RN) and a subsequence(unk ) such

5 We purposely ignored the fact that the embeddingWm,p(RN) ↪→ C(BR) is compact, since this is no longe
true in infinite dimensional vector-valued generalizations.
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w
⇀ v in Wm,p(RN). From the above,unk → v pointwise onRN . This shows tha

u = v ∈Wm,p(RN) and thatu is the only cluster point of(un) in the weak topology o

Wm,p(RN), so thatun
w
⇀ u in Wm,p(RN).

(iii) Modify the proof of (ii) as follows: First, if (un) ⊂ Wm,∞(RN) andun
w∗
⇀ u in

Wm,∞(RN), thenunk → u uniformly onBR and hence pointwise onRN by the compact
ness of the embeddingWm,∞(RN) ↪→ C(BR). For the converse part, use the fact tha
bounded sequence inWm,∞(RN) has a weak* convergent subsequence.✷
Theorem 9. Letm ∈N andp ∈ (1,∞) be such thatmp >N and letS ⊂RN be any chosen
δ-net. For a bounded subsetH⊂Wm,p(RN), the following statements are equivalent:

(i) H is relatively compact inC{0}(RN).
(ii) If ũ ∈Wm,p(RN) and there are sequences(un)⊂H and (ξn)⊂ S with limn→∞ |ξn|

=∞ such thatũn := τξnun
w
⇀ ũ in Wm,p(RN), thenũ= 0.

Proof. This follows readily from Lemma 8(i) and (ii) and Theorem 2 withE = R and
z= 0. ✷

If H is a bounded subset ofWm,p(RN) with mp > N andH is relatively compact in
Lq(RN) for someq � p, then it is trivial thatH is also relatively compact inLr(RN) for
everyr ∈ [q,∞) (use the boundedness ofH in C{0}(RN)). It is less trivial that this remain
true forr =∞:

Corollary 10. Letm ∈N andp ∈ (1,∞) be such thatmp >N and letH⊂Wm,p(RN) be
a bounded subset. IfH is relatively compact inLq(RN) for someq ∈ [p,∞), thenH is
also relatively compact inC{0}(RN).6

Proof. We use (ii)⇒ (i) in Theorem 9 withS =RN . Let thenũ ∈Wm,p(RN) be such tha

there are sequences(un)⊂H and(ξn)⊂RN with limn→∞ |ξn| =∞ andũn := τξnun
w
⇀ ũ

in Wm,p(RN). Evidently, ũn
w
⇀ ũ in Lq(RN). On the other hand, letu ∈ Lq(RN) and

(unk ) be such that‖unk − u‖0,q,RN → 0, so that‖ũnk − τξnk u‖0,q,RN → 0 by translation

invariance. It is straightforward to check thatτξnk u
w
⇀ 0 in Lq(RN), so thatũnk

w
⇀ 0 in

Lq(RN) and hencẽu= 0. ✷
For instance, it follows from Corollary 10 and Lions’ embedding theorem [10] tha

embeddingW1,p
radial(R

N) ↪→ C{0}(RN) is compact ifp >N .
Corollary 6 is relevant in the following variant of Theorem 9 whenp =∞. The proof

follows at once from Corollary 6 and Lemma 8(i) and (iii).

Theorem 11. LetZ ⊂ R be a totally disconnected compact subset and letS ⊂RN be any
chosenδ-net. For a bounded subsetH ⊂ Wm,∞(RN) ∩ CZ(RN), m ∈ N, the following
statements are equivalent:

6 It is readily checked that the converse is true ifq ∈ (p,∞), but not ifq = p.
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(i) H is relatively compact inCZ(RN).
(ii) If ũ ∈Wm,∞(RN) and there are sequences(un)⊂H and(ξn)⊂ S with limn→∞ |ξn| =

∞ such thatũn := τξnun
w∗
⇀ ũ in Wm,∞(RN), thenũ(RN)⊂Z.

By Corollary 7, Theorem 11(ii) also characterizes the relatively compact subsetsH of
Wm,∞(RN)∩C{z}(RN) for everyz ∈ Z.

Theorems 9 and 11 still hold ifRN is replaced by an unbounded open subsetΩ ⊂RN

with Lipschitz continuous boundary (so thatWm,p(Ω) ↪→ C{0}(Ω)), provided thatK =Ω

satisfies the conditions described at the end of Section 2. More generally, when a c
ous (linear or not) extension operatorΛ :Wm,p(Ω)→Wm,p(RN) is available, a subsetH
of Wm,p(Ω) is relatively compact inC{0}(Ω) if and only if Λ(H) is relatively compact in
C{0}(RN), which reduces the problem to the case discussed above.

We now sketch the generalization of Theorem 9 whenR is replaced by a Banac
spaceE. The uniform equicontinuity in part (i) of Lemma 8 relies on the embedd
Wm,p(RN) ↪→ C0,σ (RN) for someσ ∈ (0,1] whenmp > N . This is proved by induc
tion onm (starting withm = 1, p > N ) by using the embeddingW1,p(RN) ↪→ Lq(RN)

for q ∈ [p,p/(N − p)) if p ∈ [1,N]. The same procedure works withWm,p(RN ;E):
ThatW1,p(RN ;E) ↪→ C0,σ (RN ;E) whenp > N can be seen by the same proof as wh
E = R and the embeddingW1,p(RN ;E) ↪→ Lq(RN ;E) for q ∈ [p,p∗) if p ∈ [1,N] fol-
lows fromu ∈W1,p(RN ;E)⇒‖u‖ ∈W1,p(RN) [12, Theorem 1.1 and Corollary 1.1].

If E is reflexive andp ∈ (1,∞), thenLp(RN ;E) is reflexive (Edwards [5]) and henc
Wm,p(RN ;E) is reflexive. As a result, part (ii) of Lemma 8 remains true with “pointw
limit” replaced by “pointwise weak limit”. Therefore, it remains true as stated ifH(RN) is
relatively compact inE, for then a pointwise weak limit inE is also a pointwise limit in
norm. It follows that ifE is reflexive andH(RN) is relatively compact inE (which now
must be assumed), Theorem 9 continues to hold withWm,p(RN) andC{0}(RN) replaced
by Wm,p(RN ;E) andC{0}(RN ;E), respectively.

Theorem 11 can also be generalized to the case whenE is reflexive, but the proo
of part (iii) of Lemma 8 does not go through since the embeddingWm,∞(RN ;E) ↪→
C(BR;E) is not compact in general and there are a few additional technicalities. We
the details.

5. Application to the properness of ordinary differential operators

As a concrete application, we discuss the properness of a differential operator

u #→ u̇− F(u), (6)

where u̇ = du
dt and F is the Nemytskii operator associated with a continuous map

F : RM →RM , that is,

F(u)(t) := F
(
u(t)

)
, (7)

for every functionu : R → RM . WhenF also depends upont , as will occasionally be
assumed later, then

F(u)(t) := F
(
t, u(t)

)
. (8)
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It is understood that whenF(u) (respectively,F(u)) is used, thenu ∈ RM (respectively,
u is a function oft with values inRM ).

There are two distinct aspects to properness: properness on the closed bounded
and existence of a priori bounds. The latter is not related to the theme of this pap
will not be addressed. Also, properness on the closed bounded subsets is not an i
operators that can be written, or recast, after some suitable transformation, as comp
turbations of linear isomorphisms. However, differential operators onunboundeddomains
are generally not of this type inCk , Hölder, or classical Sobolev spaces. In particular,
is true of d

dt − F on the real line.
Properness is especially important for Fredholm operators of index 0. Indeed,

the Leray–Schauder degree can only be used with compact perturbations of linear i
phisms, many other degree theories have been worked out for various classes ofproper
Fredholm mappings of index 0 (see the discussion in [7]). For instance, the degree
oped in [13], superseding theC2 theory in [6], covers most other special cases and ma
used in existence or bifurcation questions in much the same way as the Leray–Sc
degree. The discussion of such issues would take us too far afield, but they should
in the direct perspective of the contents of this section.

We now turn to the properness properties ofd
dt − F. Our goal is to illustrate the us

of the previous results while minimizing the extraneous difficulties as much as pos
Accordingly, we shall focus on the simpler problems and merely comment on some
more general ones.

We denote byZ = F−1(0)⊂RM the zero set ofF , assumed to benonempty, and set

C1
b

(
R;RM

) := {
u ∈ C1(R;RM

)
: u, u̇ ∈ Cb

(
R;RM

)}
, (9)

equipped with the product metric, that is, with theW1,∞(R;RM) norm. We introduce the
space

C1
Z

(
R;RM

) := {
u ∈C1

b

(
R;RM

)
: u ∈ CZ

(
R;RM

)
, u̇ ∈C{0}

(
R;RM

)}
, (10)

a subspace ofC1
b(R;RM). In what follows, both spacesCZ(R;RM) andC{0}(R;RM) are

equipped with the distanced∞, here induced by theL∞(R;RM) norm.
It is obvious thatd

dt mapsC1
Z(R;RM) continuously intoC{0}(R;RM), but perhaps les

obvious thatF does the same thing. This and other preliminary items are collected in

Lemma 12. The Nemytskii operatorF has the following properties:

(i) It maps continuouslyCZ(R;RM) into C{0}(R;RM). (In particular, d
dt − F maps con-

tinuouslyC1
Z(R;RM) into C{0}(R;RM).)

(ii) It is sequentially weak* continuous fromW1,∞(R;RM) into L∞(R;RM).

Proof. (i) If u ∈ CZ(R;RM), thenu is bounded and henceu(R) ⊂ B(0, r) (ball in RM )
for somer > 0. Let ε > 0 be given. SinceF is uniformly continuous on the compact s
Z ∩ B(0,2r) andF = 0 on Z, there isδ > 0 such that|F(ξ)| < ε wheneverd(ξ,Z ∩
B(0,2r)) < δ. With no loss of generality, assume thatδ < r. Sinceu tends toZ at infinity,
it follows thatd(u(t),Z) < δ for |t| large enough. For any sucht , let z(t) ∈ Z be such tha
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|u(t)− z(t)| < δ < r, so thatz(t) ∈ Z ∩ B(0,2r). As a result,d(u(t),Z ∩ B(0,2r)) < δ

and, from the above,|F(u(t))|< ε. This shows thatF(u) ∈C{0}(R;RM).
For the continuity ofF, let (un) ⊂ CZ(R;RM) be such that(un) tends tou in

CZ(R;RM). Then, there isr > 0 such thatun(t), u(t) ∈ B(0, r) for all t ∈ R and all in-
dicesn. ThatF(un) tends toF(u) in C{0}(R;RM) now follows from the uniform continuity
of F onB(0, r) and the uniform convergence of(un) to u on R.

(ii) If (vn) ⊂ W1,∞(R;RM) and vn
w∗
⇀ v in W1,∞(R;RM), then, once again b

Lemma 8(iii),(vn) tends pointwise tov and hence(F(vn)) tends pointwise toF(v) on R.
Since (F(vn)) is bounded inL∞(R;RM), it follows (by dominated convergence) th

F(vn)
w∗
⇀ F(v) in L∞(R;RM). ✷

Theorem 13. Assume thatZ = F−1(0) is nonempty and totally disconnected and that
only solutionsu ∈ C1

b (R;RM) of the equatioṅu− F(u)= 0 are constant functions. Then:

(i) The operator d
dt − F :C1

Z(R;RM)→ C{0}(R;RM) is proper on the closed bounde
subsets ofC1

Z(R;RM).
(ii) For everyz ∈ Z, the operator d

dt − F :C1{z}(R;RM)→ C{0}(R;RM) is proper on the

closed bounded subsets ofC1{z}(R;RM).

Proof. (i) Since the continuity ofddt − F was established in Lemma 12(i), we must o
show that a bounded sequence(un) ⊂ C1

Z(R;RM) such thatfn := u̇n − F(un)→ f in
C{0}(R;RM), has a norm-convergent subsequence inC1

Z(R;RM). The main part of the
proof consists in showing that (ii)⇒ (i) in Corollary 6, which requires only the closedne
of Z, can be used withH= (un).

Indeed, by Remark 3, this yieldsu ∈ CZ(R;RM) and a subsequence(unk ) such that
unk → u in CZ(R;RM). Then,F(unk )→ F(u) in C{0}(R;RM) by the continuity ofF,

whereasu ∈ W1,∞(R;RM) and unk
w∗
⇀ u in W1,∞(R;RM) by Lemma 8(iii). Thus,

u̇nk = F(unk ) + fnk → F(u) + f in C{0}(R;RM) and F(u) + f = u̇ since u̇nk
w∗
⇀ u̇ in

L∞(R;RM). This shows thaṫu ∈ C{0}(R;RM) (so thatu ∈ C1
Z(R;RM)) and thatu̇nk → u̇

in C{0}(R;RM), whenceunk → u in C1
Z(R;RM).

To complete the proof, we check that the conditions required in part (ii) of C
lary 6 hold withH = (un). Evidently,Z = F−1(0) is closed. Since(un) is bounded in
C1
Z(R;RM), i.e., inW1,∞(R;RM), Lemma 8(i) shows thatH is uniformly equicontinu-

ous and thatH(R) is relatively compact inRM .
It remains to check the third condition for someδ-netS ⊂R. We simply chooseS = R

andδ = 0. Let then(ξn)⊂ R be a sequence such that limn→∞ |ξn| =∞. Setũn := τξnun,
so that(ũn) is bounded inC1

Z(R;RM), i.e., inW1,∞(R;RM), and suppose that(ũn) has

a pointwise limit ũ ∈ Cb(R;RM). By Lemma 8(iii), ũ ∈ W1,∞(R;RM) and ũn
w∗
⇀ ũ in

W1,∞(R;RM), so that

˙̃un w∗
⇀ ˙̃u in L∞

(
R;RM

)
. (11)
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From (11) and Lemma 12(ii),

˙̃un − F(ũn)
w∗
⇀ ˙̃u− F(ũ) in L∞

(
R;RM

)
. (12)

On the other hand, sincefn := u̇n−F(un)→ f in C{0}(R;RM) and withf̃n := τξnfn, it

is obvious that‖f̃n− τξnf ‖∞,RN = ‖fn−f ‖∞,RN → 0 and thatτξnf
w∗
⇀ 0 inL∞(R;RM)

(becausef tends to 0 at infinity), whencẽfn
w∗
⇀ 0 in L∞(R;RM). Since differentiation

and translation commute, we havef̃n = ˙̃un−F(ũn) and hencė̃u−F(ũ)= 0 by (12). Since
ũ ∈ Cb(R;RM) andF is continuous, it follows that̃u ∈ C1

b (R;RM). Thus,ũ = c since
the equatioṅu− F(u) = 0 has no other solution inC1

b (R;RM) by hypothesis. But then
c ∈Z = F−1(0) and hencẽu(RN)⊂Z. This completes the proof of (i).

(ii) This follows from (i) and the closedness ofC1{z}(R;RM) in C1
Z(R;RM) or, alterna-

tively, by using Corollary 7 instead of Corollary 6 in the proof of (i) above.✷
SinceF mapsRM to RM , the assumption thatF−1(0) is totally disconnected is little

restrictive in practice. Thaṫu− F(u) = 0 has no nonconstant solution inC1
b (R;RM) can

be proved under various conditions, the simplest one beingF(u) · u > 0 for everyu ∈
RM\{0}, a case whenZ = {0}. (If u ∈ C1(R;RM)\{0} and u̇ − F(u) = 0, then|u|2 is
strictly increasing. But then,F(u(t)) ·u(t) is bounded away from 0 by a positive constanα

for t � 0, so thatd|u|
2

dt � 2α in [0,∞) andu is not bounded.)
Other simple cases arise whenF =∇Φ is a gradient andZ = {z} is a singleton, or when

M = 1 and 1/F is integrable. For example,F(u)= |P(u)|α whereα ∈ (0,1) andP is a
polynomial with degP > α−1 and simple real roots (and at least one such root to en
Z �= ∅). If so,Z = P−1(0) is finite.

A scalar second order example, thus corresponding to a first order 2× 2 system, is

v̈ − g(v)= 0, (13)

with g � 0 (vanishing at least at one point). Every solution is convex, and a bou
convex function onR is constant. Here,Z = g−1(0)× {0} is totally disconnected if an
only if g−1(0) is totally disconnected. InRM now, if G(v) · v � 0 for everyv ∈RM and

v̈ −G(v)= 0, (14)

then|v|2 is convex, hence constant ifv is bounded. If so,d
2|v|2
dt2

= 0, that is,v̈ ·v+|v̇|2= 0,

so thatG(v) · v + |v̇|2= 0 and hencėv = 0, i.e.,v is constant.
Theorem 13 can be extended to the case whenF = F(t, u) is continuous,T -periodic int

andZ := {u ∈RN : F(t, u)= 0, ∀t ∈R} �= ∅. The arguments are similar, but now choos
S = {mT : m ∈ Z} instead ofS =R since only the translationsτmT commute withF. This
shows that the option of using aδ-netS �=R is needed to handle some applications.

In Theorem 13, the condition thatZ = F−1(0) is totally disconnected is nearly op
timal, for d

dt − F is not proper on the closed bounded subsets ofC1
Z(R;RM) if Z con-

tains a nontrivialC1 curve. Indeed, it is easily seen that this yields the existenc
u ∈ C1(R;RM) such thatu(t) = z is constant for|t| � 1, u(0) = z0 �= z andu(R) ⊂ Z

(so thatu ∈ C1
Z(R;RM) andF(u)= 0). Then,un(t) := u(t/n) is bounded inC1

Z(R;RM)

and u̇n − F(un) = u̇n → 0 in C{0}(R;RM). Yet, (un) has no convergent subsequence
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Z(R;RM) because(un) converges pointwise to the constant functionz0 while un(t) =

z �= z0 for |t|� n.
A counterexample to Theorem 13(ii) of a different nature is given by the linear se

order problem

v̈ + v = 0. (15)

Given ϕ ∈ C∞0 (R), it is readily checked that ifvn(t) := ϕ(t/n)sint , then(vn, v̇n) is
bounded inC1{0}(R;R2) andv̈n + vn→ 0 in C{0}(R), but (vn, v̇n) has no convergent sub

sequence inC1{0}(R;R2). Here,Z = {0} but of coursëv + v = 0 has bounded nonconsta
solutions.

In Theorem 14 below, we prove a variant of Theorem 13 in theW1,p − Lp setting,
based on Theorem 9. However, there are a few extra subtleties and different assum
are involved. Once again,F is t-independent for simplicity but, in contrast to Theorem
no condition beyond 0∈ F−1(0) is explicitly required ofF−1(0).

Theorem 14. Assume thatF ∈ C1(RM ;RM) and thatF(0) = 0. If p ∈ (1,∞) and the
operator d

dt −F :W1,p(R;RM)→ Lp(R;RM) is Fredholm, then it is proper on the close
bounded subsets ofW1,p(R;RM) if and only if the equatioṅu− F(u)= 0 has no solution
in W1,p(R;RM)\{0}.

Proof. For the necessity, observe that, ifu ∈W1,p(R;RM)\{0} and u̇− F(u) = 0, then
τsu= u(s + ·) ∈W1,p(R;RM)\{0} has the same norm asu, but (τsu)s∈R is certainly not
relatively compact inW1,p(R;RM).

We now address the sufficiency. A repetition, with suitable modifications, of the p
of Theorem 13, shows that if(un) ⊂W1,p(R;RM) is bounded andfn := u̇n − F(un) is
norm-convergent inLp(R;RM), then(un) is relatively compact inC{0}(R;RM). The mod-
ifications include using (theRM -valued variant of) Theorem 9 instead of Corollary 6 a
showing thatF mapsW1,p(R;RM) intoLp(R;RM) and is sequentially weakly continuo
(see Remark 15 below).

In the remainder of the proof, we establish the relative compactness of(un) in
W1,p(R;RM) rather than justC{0}(R;RM). After replacing(un) by a subsequence,
suffices to show that ifun → u in C{0}(R;RM), then some subsequence(unk ) is norm-
convergent inW1,p(R;RM). Since(un) is bounded inW1,p(R;RM), it is not restrictive

to assume thatun
w
⇀ u in W1,p(R;RM). Forv ∈RM , we have

F(v)=DF(0)v +G(v)v, (16)

whereG(v) := ∫ 1
0 (DF(sv)−DF(0))ds, so thatG(0)= 0 andG : RM →L(RM) is con-

tinuous.

Claim. G(un)un→ G(u)u in Lp(R;RM), whereG is the Nemytskii operator associate
with G.

To see this, writeG(un)un − G(u)u = (G(un) − G(u))un + G(u)(un − u). Since
u ∈ C{0}(R;RM) andG(0) = 0, it follows that G(u) ∈ C{0}(R;L(RM)) and the decay
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of G(u) at infinity implies that the multiplication byG(u) is a compactoperator from

W1,p(R;RM) to Lp(R;RM).7 As a result, sinceun
w
⇀ u in W1,p(R;RM), it follows that

G(u)(un − u)→ 0 in Lp(R;RM).
Next,G(un)−G(u)→ 0 inL∞(R;L(RM)) sinceun→ u in C{0}(R;RM) andG is uni-

formly continuous on the compact subsets ofRM . Since(un) is bounded inW1,p(R;RM)

and hence inLp(R;RM), this shows that(G(un) − G(u))un → 0 in Lp(R;RM). This
proves the claim.

By (16),fn := u̇n−F(un)= u̇n−DF(0)un −G(un)un. From the above claim, the a
sumption that(fn) is norm-convergent inLp(R;RM) thus implies thaṫun −DF(0)un =
fn + G(un)un is norm-convergent inLp(R;RM). But d

dt − DF(0) is Fredholm from
W1,p(R;RM) to Lp(R;RM) by hypothesis, andlinear Fredholm operators are prop
on closed bounded subsets. This is Yood’s criterion (see Deimling [4]), which state
properness on closed bounded subsets characterizes the linear semi-Fredholm ope
indexν <∞ (including−∞). It follows that(un) does contain a norm-convergent sub
quence inW1,p(R;RM) and the proof is complete.✷
Remark 15. To see thatF :W1,p(R;RM)→ Lp(R;RM) is well defined and sequential
weakly continuous (used above), note first that ifv ∈ W1,p(R;RM), then DF(0)v ∈
Lp(R;RM) and G(v) ∈ L∞(R;L(RM)), so that, by (16),F(v) = DF(0)v + G(v)v ∈
Lp(R;RM). Next, let vn

w
⇀ v in W1,p(R;RM). Since F(vn) = DF(0)vn + G(vn)vn

and DF(0) acts linearly and continuously fromW1,p(R;RM) to Lp(R;RM), it suf-

fices to show thatG(vn)vn
w
⇀ G(v)v in Lp(R;RM). If ϕ ∈ C∞0 (R;RM), it is clear that∫

R G(vn)vn · ϕ →
∫

R G(v)v · ϕ since(vn) tends tov uniformly on the compact subse
of R. Thus, it remains only to check that(G(vn)vn) is bounded inLp(R;RM). This follows
from the boundedness of(vn) in W1,p(R;RM), hence inC{0}(R;RM) (so that(G(vn)) is
bounded inL∞(R;L(RM))) and inLp(R;RM).

Like Theorem 13, Theorem 14 is still true whenF is periodic int andF(·,0)= 0. That
u̇ − F(u) = 0 has no solution inW1,p(R;RM)\{0} holds whenever there is no solutio
homoclinic to 0. For instance ifF =∇Φ is a gradient (in particular,M = 1), irrespective
of F−1(0).

Of course, no solution homoclinic to 0 exists ifDF(0) is positive or negative defi
nite, which also ensures thatd

dt − F is Fredholm (see below). The nonexistence issue
also been investigated, with a very different motivation, in more challenging prob
that do not comply with general criteria; see Amick and McLeod [2] (traveling wave
Hayashi [8] (neural networks), among others. On the other hand, the second orde
equation

v̈ − v + v3= 0, (17)

7 But u #→ G(u)u is not compact fromW1,p(R;RM) to Lp(R;RM); the proof thatG(un)un →G(u)u in
Lp(R;RM) will use thatun tends uniformly tou, which is not true for an arbitrary weakly convergent seque
in W1,p(R;RM). This is why the information provided by Theorem 9 is crucial.
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(equivalent to a first order system) has the nonzero solutionv ∈W2,p(R) given by

v(t)=
√

2

cosht
(18)

and hence the corresponding operator is not proper on the closed bounded sub
W2,p(R). Problems of this sort may have peculiar properties; see [14,15].

A sufficient condition for the Fredholmness ofd
dt − F, required in Theorem 14, is tha

DF(0) ∈ L(RM) has no imaginary eigenvalue. If so, the index is 0; see Sacker [18]
or [17,19]. WhenF is C1, the same spectral condition ensures thatd

dt − F is Fredholm
of index 0 betweenC1{0}(R;RM) andC{0}(R;RM). It is satisfied by the counterexamp

v̈ − v+ v3 above, but not bÿv + v, discussed earlier.
The case whenF = F(t, u) is only “asymptotically” periodic is discussed in [19] whe

p = 2 and the system is Hamiltonian. Roughly speaking, asymptotic periodicity m
that F(t, u) looks like some limiting operatorF∞(t, u) or F−∞(t, u) when t →∞ or
t→−∞, respectively, where bothF∞ andF−∞ are periodic int , with possibly different
periods. Theorems 13 and 14 can be extended to this case as well. What now matter
the limiting equationṡu− F∞(u)= 0 andu̇− F−∞(u)= 0 have no nontrivial solutions.

In [17], Theorem 14 is used whenp = 2 to prove properness for boundary value op
ators onW1,p(R+;RM) (half-line), which, together with a priori bounds, yields existen
results by degree arguments. Interestingly, even for problems on the half-line, the
criterion for properness remains thatu̇− F(u)= 0 has no nontrivial solution on thewhole
line.

References

[1] R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
[2] C.J. Amick, J.B. McLeod, A singular perturbation problem in water waves, Stability Appl. Anal. Co

Media 1 (1991) 127–148.
[3] R.F. Arens, A topology for spaces of transformations, Ann. of Math. 47 (1946) 480–495.
[4] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
[5] R.E. Edwards, Functional Analysis, Theory and Applications, in: Holt, Rinehart & Winston, New Y

1965.
[6] P.M. Fitzpatrick, J. Pejsachowicz, P.J. Rabier, The degree of properC2 Fredholm mappings, I, J. Rein

Angew. Math. 427 (1992) 1–33.
[7] P.M. Fitzpatrick, J. Pejsachowicz, P.J. Rabier, Orientability of Fredholm families and topological deg

orientable nonlinear Fredholm mappings, J. Funct. Anal. 124 (1994) 1–39.
[8] M. Hayashi, Non-existence of homoclinic orbits and global asymptotic stability of FitzHugh–Nagumo

tem, Vietnam J. Math. 27 (1999) 335–343.
[9] J.L. Kelley, General Topology, Van Nostrand, Toronto, 1955.

[10] P.-L. Lions, Symétrie et compacité dans les espaces de Sobolev, J. Funct. Anal. 49 (1982) 315–334
[11] S.B. Myers, Equicontinuous sets of mappings, Ann. of Math. 47 (1946) 496–502.
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