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Abstract

We give a new form of the Ascoli theorem for functions B tending to some given closed
subsetZ of a complete metric spacg at infinity. For instance, wheit is a normed space and
Z = {0}, the usual uniform decay requirement is replaced by the assumption that the O function is the
only continuous function produced by some limiting process. This formulation, which has significant
practical value in concrete applications, is described in its general form, but with emphasis on the
case wherZ is totally disconnected. Variants in Sobolev spaces and the properness of nonlinear
ordinary differential operators are discussed.
0 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Let £ be a complete metric space with distant@nd letC,(RY; E) be the (met-
ric) space ofE-valued bounded continuous functions BY, equipped with the dis-
tancedso (u, v) 1= sup.cgw d(u(x), v(x)). Given a nonempty subsgtC E, we denote by
Cz(RY; E) the closed subspace 6f,(R"; E) of those functions tending t8 at infinity:

Cz(RY: E) = {ue Cy(RY: E): Jim d(u(), 7) =0}. 1)

By collapsingZ to a pointz (“zero”), the functions ofCz(RY; E) may be viewed as
functions vanishing at infinity. In fact, whes = {z} is a single point and witlgV 1 ~
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RN U {oo} being the unit sphere ®RV*1, the spaceC(,)(RY; E) is isometrically iso-
morphic to the closed subspace®(S"+1; E) of those functions: such that(co) = z.
Therefore, Ascoli’s theorem faf (SV*1; E) has an immediate corollary faﬁ‘{z}(RN; E),
given below for future reference.

Theorem 1 (Ascoli; classical form)Let E be a complete metric space apc&k E be a
given point. A subsét C C{Z}(RN; E) is relatively compact if and only if

(a) for everyx € RV, the setH(x) is relatively compact ir,

(b) 'H is equicontinuous,

(c) H tends uniformly ta at infinity, i.e.,d(u(x), z) can be made arbitrarily small, uni-
formly inu € H, for |x| large enough.

Condition (c) of Theorem 1 merely reflects the equicontinuityoat co € SV 1. In
practice, checking condition (c) requires having some knowledge of the collective point-
wise asymptotic behavior of the membergrofwhich is not always directly accessible.

This paper elaborates on a version of Theorem 1, given in Theorem 2, in which condi-
tion (c) is replaced by the requirement that the only functianC, (R ; E) produced by
some pointwise limiting process is the constant funcfieaz. While slight modifications
of (a) and (b) are also needed, the net result remains a necessary and sufficient condition
for relative compactness ifi;; (RY; E).

Although its proof is technically simple, this form of Ascoli’s theorem has proved to
have a considerable practical value, because it relies on a conditioncaimbintuous func-
tionsi. Whatever additional property these functions inherit from being involved in a given
problem may be instrumental in showing that, indeee; z, as required by the theorem.

In contrast, condition (c) of Theorem 1, which amounts to,limg, d (u,, (x,), z) = 0 for
all sequencesu,) C H and(x,) C RV with |x,| — oo, leaves no limiting mathematical
object to examine in the light of problem-dependent features.

For instance, in many concrete applications, it is possible to characiedheve as a
solution of some known equation, thereby reducing the compactness question to showing
that this equation has no solution other thas 7 (i.e., no nontrivial solution when= 0).

This is useful, directly or in a more subtle way, to establish the properness of several types
of operators in various functional frameworks: Elliptic operator®dn systems of ODEs

on the line or half-line, convolution operators, etc. In such problems, other technical aspects
incorporated to Theorem 2 are needed to consider, say, problemsvwptriodic rather

than constant, coefficients.

Whether Theorem 2 can be generalized wherr Cz(RY; E) and Z is a nonempty
closed subset of depends upon the size &f from a topological point of view: IZ is
compact and totally disconnected, the answer is positive (Corollary 6), which, incidentally,
yields a useful generalization of Theorem 2 f6,;(R"; E) (Corollary 7). Otherwise,
only a weaker form is true (Theorem 5), which gives a relative compactness criterion in
the compact-open topology 6z (R ; E). Still, this is not trivial since the uniform con-
vergence on compact subsets alone ensures only that the limit points @s€Rf; E),
notCz(R": E).

Generalizations wheRY is replaced by a locally compact topological group are not
investigated, but variants in Sobolev spaces are discussed in Section 4EamaeRM
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or more generally a reflexive Banach space, @nd {0}. Whenmp > N, these variants
yield a simple characterization of the bounded subse®’8f# (RY) which are relatively
compact inC{o}(RN) = C{o}(RN; R). In particular, this characterization shows that, for
bounded subsets 6¢" 7 (RY) with mp > N, relative compactness kﬁ{o}(RN) is equiv-
alent to relative compactness itf (RY) for any ¢ € (p, oo) and weaker than relative
compactness i’ (RV) (Corollary 10).

In a different direction, the results of Section 4 also provide an important first step in
establishing the compactness of some subsets in Sobolev spaces, as exemplified by the
proof of Theorem 14. Indeed, in spite of its resemblance with Ascoli’s theorem, it does not
appear that the classical criterion for compactnessAtR”Y) can be reformulated in an
equally convenient way.

The line of argument for the proof of Theorem 2 was first introduced in Rabier and
Stuart [16], to investigate the Fredholmness and properness of nonlinear second order el-
liptic operators inW??(RY), p > N. However, that work does not make a connection
with a general, problem-independent, compactness property in Sobolev spaces, let alone
with the more remote theorem of Ascoli. This paper is the result of an attempt to identify
the principles really involved in the procedure of [16].

In [19], Secchi and Stuart used the approach of [16], this tim&#?(R; RZM), to
obtain basic functional properties for the proof of the bifurcation of homoclinic solutions
in nonlinear Hamiltonian systems. As an application of Theorems 2 and 9, we revisit and
expand the properness results of [19] (Section 5). The example of ODE systems on the
whole line is simpler to describe and was chosen here for precisely that reason, but, as
already mentioned, there are numerous other applications in the same spirit.

ForR > 0, Bz C RY is the open ball with center 0 and radilasandﬁR the complement
of Bg inRY. Giveng € RV, we callt¢ the translation operatatu := u(& + -), whereu is
any function defined oR”™ . We shall also need the concep#efet inR" (§ > 0). This is
simply a subses ¢ RY such that digtx, S) < § for everyx € RY. For instance$S = RV
is as-net for everys > 0 while S = ZV is as-netif § > /N /2.

2. Relative compactnessin Cy;(RY; E)

As in the IntroductionE is a metric space with distanek the pointz € E is chosen
once and for all and, denotes the corresponding distanca®R"; E) > Ciy (RN E).

Theorem 2 (Ascoli; new form).Let E be a metric space; € E be a given point and let
S ¢ RY be any chosef-net. For a subset! C C(;;(RY; E), the following statements are
equivalent

(i) H is relatively compact irC,;(RY; E).

(i) H(RYN) is relatively compact inE, H is uniformly equicontinuous and ii €
Cp(RY; E)! and there are sequenceés,) C H and (£,) C S with lim,_ |£,| = o0
such thati, := tz,u, — i pointwise orR”", thenii = z.

L Itis not enough to assume thae C{Z}(RN; E).
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Proof. (i) = (ii) We begin with the relative compactness Bf(R"Y) in E. As in the
Introduction, identifyC,;(RY; E) with a closed subspace 6f(SV*1; E), so thatH is
relatively compact inC(SV*1; E). Since the evaluation mag(x, u) := u(x) is contin-
uous fromsSN*+1 x ¢(SV*1: E) to E andSV+1 is compact, it follows that¢(SV*1) =
e(SV*1 x ‘H) is relatively compact irE, so thatH(RV) c H(SV*1) is relatively compact
in E.

Next, the equicontinuity of¢ on S¥*+1 implies its uniform equicontinuity orgV**
sinceS¥+! is compact. It is readily checked that the stereographic projection transforms
a ball with radius- > 0 in S¥*1 into a subset oR" containing a ball with radius’ > 0
depending only upon, which shows that{ is uniformly equicontinuous oR" .

Lastly, with i, (u,) C H and(&,) C S as in part (ii), we turn to the proof that= z.
Since’H is relatively compact inC(;;(RY; E), there areu € C(;;(RY; E) and a subse-
quence(uy, ) such thatde (uy, , u) — 0. Thus,d (it p, , ‘L’Enku) — 0 since translations do

not changel. Clearly,r&ku — z pointwise onRY since lim,_ o |&:| = oo andu tends

to z at infinity. Since alsai,, — @ pointwise onR" by hypothesis, it follows thai = z.

(i) = (i) It suffices to show that ifu,) C H and if (x,) c RV satisfies lim_ o |x,|
= oo, thenlim,_, oo d(u,(x,), z) = 0. Indeed, if so, the conclusion follows from Theorem 1
since a straightforward contradiction argument shows that condition (c) of that theorem
holds (and stronger variants of (a) and (b) are assumed in (ii)).

By contradiction, assume that there arg) c H and (x,) € RY with lim,_ s |x,|
= oo such thatd (u, (x,), z) does not tend to 0. After replacing,) and (x,) by subse-
guences, we may assume that there is 0 such that/(u, (x,), z) > ¢ for all indicesn.
By definition of as-net, letg, € S andy, € B;s be such that, = &, + y,, so that

d(itn(yn),2) =6, VneN, (2)

wherei, := t¢,u,. Let (y,,) be a subsequence such thgt — y € Bs.

Since(u,,) C H andH is uniformly equicontinuous, the sequen@g, ) is equicontin-
uous. Furthermoréii,,, (x)) C H(RN) for everyx e RN andH(R") is relatively compact
by hypothesis, so thdfi,, (x)) is relatively compact irE. It thus follows from the Arens—
Myers generalization of Ascoli’'s theorem in the compact-open topology [3,11] that there
areiie C(RV; Eyand a subsequen(:énk[) such thaﬁnk[ — 1 uniformly on the compact

subsets oRY. Also, ii(x) € H(RN) for everyx € RY, so thati € C,(R": E) and hence
i = z from the assumptions made in (ii).

On the other hand, singg, — y € Bs, it follows from (2) and the uniform convergence
of (ity,,) to @ on Bs thatd (ii(y), z) > €, which contradictsi = z. O

Remark 3. If the setH is a sequence:,), the above proof shows that it suffices to consider
the sequenceé,,) in part (ii) of Theorem 2, rather than every sequetggy)). This can

also be seen by a contradiction argument. (The issue is not entirely trivial because of the
arbitrary shifts involved in condition (ii).)

To see how condition (ii) breaks down in simple cases wHés not relatively compact,
letu € Ci0y(R; R)\{O} be a given function with compact support andiet= (t,u). Here,
H(R) = u(R) is compact inR andH is uniformly equicontinuous, but §, = —n, then
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T_,T,u = u iS NOt pointwise convergent to 0, so that condition (ii) wite= RY ands =0
does not hold. It is only slightly less trivial to show that condition (ii) also fails wles
any others-net.

Theorem 2 is still true wheR" is replaced by a closed convex cokeor even by
more general unbounded closed subgéts RY, invariant under some set of translations
¥ and hence having some “periodic” structure. For instakce; Ko + T where¥ is any
(unbounded) subset @". A §-netS c K can be obtained in the fori= So + ¥ where
So is somes-net in Ko, possibly a single point iKg is bounded (and thehis the diameter
of Kp). This includes cylinder® x [0, co) wherew is a bounded open subsetRf' —1:
Just takeKp = @ x [0, 1] and¥ = {0} x N.

3. Relative compactnessin Cz(RY; E)

This section is devoted to a partial extension of Theorem 2 when the singlgtis
replaced by a nonempty closed subZet E, which yields a genuine extension if algo
is compact and totally disconnected. Some preliminary discussion is heeded.

Let E be a complete metric space afid- E be a nonempty subset. We denoteRy)Z
the set of equivalence classes for the relation

a~b & a=boracZ, beZ 3)

and equipE /Z with the quotient topology, that i§] ¢ E/Z is open if and only ifr ~1(U)

is open inE, wherer : E — E/Z is the projection. In generak / Z is not a metric space,
evenifZ is closed inE (a simple counterexample whéfy Z is not first countable is given
in Kelley [9, p. 104]). However, ifE is compact, the following lemma, whose proof is
given for completeness, is essentially a special case of a well-known result [9, p. 149].

Lemmad4. If E is compact and is closed inE, thenE /Z is a compact metric space. Fur-
thermore, ifU C E/Z is an open neighborhood &fr(Z) in E/Z, thenz~1(U) contains
someg-neighborhoodV, :={a € E: d(a,Z) <e}of Zin E (¢ > 0).

Proof. ThatE/Z is compact follows from the continuity af. We begin with the “further-
more” part. LetU C E/Z be an open neighborhood 6fZ) in E/Z. By the continuity
of 7, 7~1(U) is an open subset df containingZ. CoverZ by finitely many open balls
B(b;,ei) Cc n~YU), b; € Z, and lete > 0 be a Lebesgue number for the covering. Then,
We = Upez B(b, &) C n~ ().

To prove the metrizability o/ Z, we rely on Urysohn’s metrization theorem (see [9]).
It suffices to show that points are closedAriZ and thatE/Z is second countable.

That points are closed follows at once from the remark #has closed inE andn
is a bijection of E\Z onto (E/Z)\x(Z). A countable basis for the topology &f/Z is
obtained as follows: Sincg is compact, it is separable and heri¢eZ is open inE and
separable. Let the(¥V,,) be a countable basis for the topologyl{Z and, form € N, set

2 In this statement and elsewhere, we implicitly identify the singleto#) with the unique point in it.
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W, :={a € E: d(a, Z) < 1/m}, an open subset df containingZ. Note thatr(V,,) and
7 (W,,) are open ink/Z sincer ~1((V,,)) = V,, andz ~L(w (W) = W,,.

If now U C E/Z is open, then either (Z) ¢ U or 7(Z) € U. In the first caseg ~1(U)
is contained inE\Z and hence is the union of some of thg. In the secondx ~1(U)
containsZ, so thatw,, c w~1(U) for somem by the first part of the proof. It follows that
7Y U) =W, U (L (U)\Z). Sincer ~1(U)\Z is open inE\Z, 7 ~1(U) is the union of
W,, and some of th&,,. This shows thatr (V,,)) U (x(W,,)) is a basis for the topology of
E/Z.

Theorem 5. Let E be a complete metric space a@dc E be a honempty closed subset.
LetS c R be somé-net and letH c Cz(R"; E) satisfy the following conditions

(i) H is uniformly equicontinuous,
(i) H(RYN) is relatively compact irk,
(i) If 7 € C»(RY; E) and there are sequenceés,) C H and (&,) C S with lim,_ « |£,|
= oo such thatii, := t¢,u, — it pointwise orR", thena(RY) C Z.

Then, X is relatively compact inCz(R"; E) for the compact-open topology. Fur-
thermore, the followingstrongep property holds Every sequencé:,) C H contains a
subsequence:,, ) converging uniformly to some e Cz(RY; E) on the compact subsets
of RN and tending uniformly t&Z at infinity (i.e., for everys > 0, there areko € N and
R > 0such thatd (u,, (x), Z) < ¢ whenevek > kg and|x| > R).

Proof. There is no loss of generality in replacidgyby H(R") and Z by Z N H(RN)
and hence, by (ii), we may assume tliaand Z are compact. If SOE/Z is a (compact)
metric space by Lemma 4. We now check that£#) (i) in Theorem 2 can be used with
7 oH C Crz)(RN; E/Z), where of courser o H := {w ou: u € H}.

First, to see that the inclusiom o H C Cn(z)(RN; E/Z) holds, letu € H be given
and letU be an open neighborhood af(Z) in E/Z. By Lemma 4,7 —1(U) contains
We:={a € E: d(a, Z) < ¢} for somee > 0, andu(x) € W, for |x| large enough since €
Cz(RN; E). Thus,m ou(x) € U for |x| large enough, which means thab u(x) — 7 (Z)
as|x| — oo and hence that o u € C,(z)(RY; E/Z).

It follows from (ii) and the continuity ofr thatr o H(RY) is relatively compactirk/ Z.
Next, sinceE and E/Z are compact metric spaces,is uniformly continuous. Together
with (i), this yields thatr o H is uniformly equicontinuous. Lastly, It o u,) C 7w o H
and(&,) C S be sequences such that Jim |£€,| = co and thatv, := g, (7 o u,) tends
pointwise tot € C,(RY; E/Z), so thatd (x) = lim,,_, oo 7 0 u, (€, + x) for everyx e RV,

We claim thati = 7 o ii, whereii € C,(R"Y; E). Indeed, as in the proof of Theorem 2,
it follows from (i) that (it,,) := (tg,u,) is equicontinuous and then, by (ii) and the Arens—
Meyers version of Ascoli’s theorem, there are= C(RV; E) and a subsequencé,, )
such thati,, — @ uniformly on the compact subsetsRf'. Thatii € C,(RY; E) follows
from (i) and fromi(RY) c H(RV), while 7 o ii,, — 7 o @i pointwise by the continuity
of 7. Thus,v = 7 o i1, as claimed. But then, = 7 (Z) since, by (iii),u(x) € Z for every
x RV,
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From the above and Theorem 2, it follows thato H is relatively compact in
C,,(Z)(RN; E/Z). We now show that this implies thek is relatively compact in
Cz(RN; E) (and not merelyC,(R"; E)) for the compact-open topology. By the local
compactness dR”, the compact-open topology is metrizable sieés metric and the
problem reduces to showing that every sequenge C H has a subsequence,,) con-
verging to somer € Cz(RY; E), uniformly on the compact subsetsRft .

Once again by (i), (i) and the Arens—Myers—Ascoli theorem, there @€, (RY; E)
and(uy, ) such thatt,, — u uniformly on the compact subsetsRf'. The only issue is to
show that limy |-« d(u(x), Z) = 0. Since, from the above, o H is relatively compact in
Cn(z)(RN; E/Z), we may and will assume with no loss of generality thatu,, tends to
mouin Cyzy(RY; E/2Z).

Let ¢ > 0 be given. WithW, := {a € E: d(a, Z) < &}, we haver ~1(z(W,)) = W,
and hence that (W,) is an open neighborhood af(Z) in E/Z. By (c) of Theorem 1 for
7 o H, there arékg € N and R > 0 such thatr o u,, (x) € 7(W;) if k > ko and|x| > R.
Henceuy, (x) € 71w (We)) = W, i.e.,d (uy, (x), Z) < &, for k > ko and|x| > R. With
x € RY now fixed such thar| > R and by lettingt — oo, it follows from the convergence
of up, (x) to u(x) in E thatd(u(x), Z) < &, which is the desired property sinee> 0 is
arbitrary. That(u,, ) tends uniformly toZ at infinity is contained in the statement above
thatu,, (x) € W for k > kg and|x| > R. O

While the conditions (i) and (ii) of Theorem 5 yield the relative compactnes¥ of
in C»(RY; E) for the compact-open topology, (iii) is needed to ensure that the limits of
convergent sequences tend4at infinity. On the other hand, Theorem 5 does not imply
the existence of a subsequence converging uniformi¥neven ifZ is compact. Indeed,
for large enougtt and|x|, bothu,, (x) andu(x) must be close t&, but not necessarily
to the same point of . Therefore, Theorem 5 gives a result stronger than convergence on
the compact subsets B but weaker than uniform convergenceRf. UnlessZ = {z}
is a singleton, for then Theorem 5 implies condition (c) of Theorem Lifgy) and hence
is equivalent to Theorem 2. As it turns oWt,= {z} is not the only case when uniform
convergence oR" is true.

Recall that a topological spacgé is said to beotally disconnectedf, givena,b € Z
with a £ b, there are disjoint open (and hence closed) neighborhdpdadV,, of a andb,
respectively, such that, U V,, = Z. Examples include discrete sets, convergent sequences
and their limit in Hausdorff spaces, Cantor sets, et& s compact metric, thefw, and
Vj, are compact subsets @f whencel(V,, V) > 0. In particular, ifZ is a compact subset
of a metric spacé, there are disjoint open neighborhoddsandU, of « andb in E such
thatZ c U, U U, (just letU, andU, bee-neighborhoods oV, andVj, in E, respectively,
with ¢ < d(V,, V3)/2).

Corollary 6. Let E be a complete metric space adlc E be a nonempty, compact
and totally disconnected subset. L&tc RY be any chosefd-net. For a subset{ C
Cz(RY; E), the following statements are equivalent

3 From the given proof, (ii= (i) remains true ifZ is closed; the same thing is true of &) (ii) if E is locally
compact.
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(i) H is relatively compactirCz(RY; E).

(i) H(RY) is relatively compact inE, H is uniformly equicontinuous and, i €
Cy»(RY; E) and there are sequencés,) C H and (&,) C S with lim,,_, o |&,] = o0
such thati, := t¢,u, — @ pointwise orRY, theni(RV) c 2.4

Proof. (i) = (ii) We begin with the remark that, iV > 2, everyu € Cz(R"; E) has a
well defined limita € Z at infinity. Indeed, otherwise, there are sequeriggsc RY and
(yn) C€ RN with lim,,_, o0 [x,] = liM,,_ o0 |yn| = 0o such that(u(x,)) and (u(y,)) tend to
two distinct points: andb of Z. SinceZ is compact and totally disconnected,l&tandU,
be disjoint open neighborhoods@fandb in E, respectively, such that C U, U Up. From
Lemma 4u(Bg) C U, UU, for R > 0 large enough and, sind is connected and, N
U, = 0, it follows that e|theru(BR) cu, or u(BR) C Up. In both cases a contradiction
arises with the fact that,, y, € Bg forn large enough whila (x,,) € U, andu(y,) € Up.

We continue the proof assuming > 2. Let (u,) C ‘H and (x,) C RN be arbitrary
sequences. SincH is relatively compact inCz(RY; E), there are subsequences,, )
tending uniformly tox € Cz(RY; E) onR" and(x,,) such that eithex,, — xo in RN or
|x4, | = o0o. In the first case(u,, (x,,)) tends tou(xg) and in the secondy,, (x,,)) tends
to a € Z, wherea :=lim| | o u(x), Wwhose existence was established at the beginning of
the proof. ThusH(RY) is relatively compact irE.

To show thatH is uniformly equicontinuous, we argue by contradiction, thereby as-
suming that there are> 0 and sequences,) C H, (x,) C RY and(y,) c RY such that
|xn — yn| = O butd(u,(x,), u,(yn)) > €. After passing to a subsequence, we may assume
that(u,) tends uniformly ta: € Cz(R"; E) onR" and either that,, — xoin R, whence
yn — X0, Or that|x,| — oo, whencey, | — oo. In both casesu, (x,)) and(u, (y,)) have
the same limit, namely; (xo) in the first case and := lim ;.o u(x) € Z in the second.
Thus,d (u, (x,), u, (yn)) — 0, in contradiction withd (u,, (x;,), u, (yn)) > €.

Lastly, if # € C,(RY; E) and there are sequencés,) C H and (£,) C S with
lim,,— o |€:| = 0o such thati, := t¢,u, — i pointwise onRY, then, after replacingu,,)
by a subsequence, we may assume (gt tends uniformly ta: € Cz(RY; E) onRY. As
a result,ii(xo) = liM,— 00 tn (&, + x0) = a := lim |00 u(x) € Z irrespective ofcg € RY.
Thus,i = a and, in particulari(RV) c Z.

This completes the proof of (& (i) when N > 2. If N = 1, the only modification
is that, nowu € Cz(R; E) has well defined limitgi- € Z at Foo. The same arguments
as above can then be used, with the only extra step of considering lintitsatd —oco
separately.

(ii) = (i). We begin with the remark that, as in the proof of Theorem 5, it is not restric-
tive to assume that is compact (by replacing by H(RV) andZ by Z N H(RN); thatZ
is compact and totally disconnected is not affected by this operation).

It follows from Theorem 5 that every sequen@g) C H contains a subsequengs;, )
converging uniformly tac € Cz(RY; E) on the compact subsetsR{', with the additional
property that, for every > 0, there aréo € N andR > 0 such that

{k>ko, |x|>R} = d(unk(x),Z)<8. 4)

4 And @i is constant since the points @fare its connected components.
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Claim. If N > 2, there area € Z and a subsequend@nk{) tending uniformly toa at
infinity.

Choose a sequencg;) c RY such thatx;| — oo. By (4) and the compactness 8f
we obtainz € Z and subsequenceas,w) and(x,) such thati(unké (xx,),a) — 0. To sim-
plify the notation, assumé(u,, (xx), a) — 0, with no prejudice to (4). By contradiction,
if (u,,) does not tend ta uniformly at infinity, there are a subsequer(aek{) and a se-
quence(ye) ¢ RY with |y,| — oo such thati(u,,ke (y¢), a) is bounded away from 0. After
extracting another subsequence and s&f(@@ke (y¢), Z) — 0 by (4) andZ is compact, we
may assume that thereliss Z, b # a, such thati(u,,ke (ye¢), b) — 0.

Since Z is compact and totally disconnected, there are disjoint open neighborhoods
U, andU, of a andb in E, respectively, such that c U, U U,. By (4) and Lemma 4,
lny, (Bg) C U, U U, if R > 0 and¢ are large enough. Singé > 2, B is connected and
henceu,,,% (ER) cUu, sinceunk{ (xx,) € U, for £ large enough. Evidently, a contradiction

arises with the fact that, € ER andunke (ye¢) € Uy for larget. Thus,(u,, ) tends toz uni-
formly at infinity. Since(u,, ) stands for a subsequence in this statement, we have obtained
(tny,) with the property that, for every > 0, there arég > 0 andR > 0 such that

{¢>¢o, Ix|>R} = d(unke(x),a)<£. (5)

Since(uy, ) tends tou pointwise, it follows, by letting — oo in (5), thatd (u(x), a) <
¢ if |x| > R. But then,d(u,,ke (x),u(x)) < 2¢ if |x| > R and{ > £g. Since(u,,) tends
uniformly toux on B, we inferthatd(u,lkz (x),u(x)) < 2¢if |x| < R and¢ is large enough,
Whenced(u,,k{ (x), u(x)) < 2¢ for all x e RN and¢ large enough. This shows thatnké)
tends uniformly tax on RY, which completes the proof whevi > 2.

If N =1, the above procedure yields, in place of (5), two pointse Z such that
{€ >y, x >R} = d(unk/Z (x),ay) < e and that{¢ > ¢g,x < —R} = d(unk/Z x),a_) <e.
The proof can then be completed by the same argument as in th&case O

As a corollary, we obtain a generalization of Theorem 2, in which the condifiea?”
in part (i) is relaxed.

Corollary 7. Let E be a complete metric spacee E be a given point and leS ¢ R" be
any chosem-net. For a subsett! C C(,;(RY; E), the following statements are equivalent

(i) H is relatively compact irC;;(RY; E).

(i) H(RYN) is relatively compact inE, H is uniformly equicontinuous and there is a
compact and totally disconnected subZet E with the following propertylf i €
Cp(RY; E) and there are sequencés,) C H and (&,) C S with lim,, . |&,| = oo
such thati, := t¢,u, — i pointwise orR", theni(RY) C Z.

Proof. Observe that € Z in (ii) (chooseu, = u € H) and thatC{Z}(RN; E) is closed
in Cz(RY; E), so that the relative compactness?éfin C(;;(R"; E) is equivalent to its
relative compactness ifiz(RY; E). Then, use Corollary 6. O
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From Theorem 2Z = {z} works in (ii) of Corollary 7. That other setd may replace
{z} is useful when onlyi(RY) c Z with a setZ larger than(z} can be established a priori.
For a concrete application, see Theorem 13 and subsequent examples.

4. Application to Sobolev spaces

If m eN, pello0) andmp > N, then W™PRN) embeds inCig(R") :=
Ci01(RY; R), but the embedding is not compact. Equivalently, the unit baWaf? (RV)
is not relatively compact i€, (RM). Thus, the question arises to characterize the bounded
subsets o7 (RV) which are relatively compact iﬁ{o}(RN). A simple answer will be
derived from Theorem 2.

By arguing componentwise, the results of this section remain valid as stated when
wm-P (RN is replaced by 7 (RN ; RM) and will be used in this form in the next section.
With appropriate modifications, they can also be generalizédtd (RY; E) whereE is
a reflexive Banach space, but since a convenient reference for all the needed properties
of the spacesv™?(RY; E) seems to be lacking, this case is only discussed in the final
comments. Whet =R, see Adams [1].

Part (iii) of Lemma 8 below uses the well-known and easily checked fact that
w™>(RN) is isomorphic to a weak* closed subspace (6P (RV))N"++1 Thus,

W™ (RN) can be equipped with the weak* topology a£>®(RV))N"+*1 and the
closed unit ball o™ >°(RV) is compact for this weak* topology.

Lemma 8. Letm € N and p € [1, o] be such thainp > N and letH ¢ W”™?(RV) be a
bounded subset. The following properties hold

(i) H is uniformly equicontinuous aril(R") is relatively compact.
(i) If p e (1,00), a sequencdu,) C ‘H has a pointwise limit: if and only ifu €
WP (RN) andu, — u in WP (RN).
(iii) If p =00, a sequencéu,) C H has a pointwise limit: if and only ifu € W™ (RV)
andu, “uin W (RN,

Proof. (i) Sincemp > N, there iso € (0, 1] such thatW”?(RN) — %2 (R"), so that
lu(x) —u(y)| < Mllull,,, , rylx — y|° forall u e wmP(RN) and allx, y e RV, where
M > 0 is independent of, y andu. This shows that{ is uniformly equicontinuous. That
H(RY) is relatively compact follows from the boundednesgfin Cio;(RY).

(i) If (up) € WP RNy andu, — u in W™?(RN), then, givenR > 0, u,, — u in
C(Bg) since the embedding/”-?(RY) — C(By) is continuous. In particulay,, — u
pointwise onB (hence orR") since the point evaluations are continuousum ).°

Conversely, suppose that,) C H has a pointwise limitz. Sincep € (1, c0), the space
wm-P(RN) is reflexive and hence there aree W7 (RV) and a subsequence,,) such

5 wWe purposely ignored the fact that the embeddi:” (RY) < C(Bg) is compact, since this is no longer
true in infinite dimensional vector-valued generalizations.
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thatu,, X vin wmP(RN). From the abovey,, — v pointwise onR". This shows that
u=ve Wm"PRYN) and thatu is the only cluster point ofu,) in the weak topology of
WP (RN, so thatu, — u in WP (RV).

(iii) Modify the proof of (ii) as follows: First, if (u,) C W (RN) andu, = u in
w2 (RN), thenu,, — u uniformly on Bg and hence pointwise dR" by the compact-
ness of the embedding”™ > (R") < C(Bg). For the converse part, use the fact that a
bounded sequence "> (RY) has a weak* convergent subsequence.

Theorem 9. Letm € Nandp e (1, o) be such thatip > N and letS ¢ RY be any chosen
8-net. For a bounded subsgt ¢ W7 (R"), the following statements are equivalent

(i) H is relatively compact irC(g(RY).
(i) If & e w™P(RN) and there are sequenceés,) C H and (&,) C S with lim,,_, o |&,]
= oo such thati, := 7z, u, X i in wmr(RN), thenii = 0.

Proof. This follows readily from Lemma 8(i) and (ii) and Theorem 2 with= R and
z=0. O

If H is a bounded subset ¢ (RY) with mp > N and is relatively compact in
L4(R") for someg > p, then it is trivial thatH{ is also relatively compact ii” (RV) for
everyr € [¢g, oo) (use the boundednessHfin C{o}(RN)). Itis less trivial that this remains
true forr = oc:

Corollary 10. Letm e N and p € (1, o) be such thatp > N and letH ¢ w7 (RV) be
a bounded subset. # is relatively compact ir.4 (R") for someg € [p, o0), then™ is
also relatively compact i€ oy (RV).5

Proof. We use (ii)= (i) in Theorem 9 withs = R" . Let thenii € W7 (R") be such that
there are sequences,) C H and(&,) c RY with lim,,_, « |£,| = oo andii, := Tg, Un gy
in WP (RN). Evidently, ii, — i in LI(R"). On the other hand, lat € L9(R") and
(up,) be such thafluy, —ullg, rv — 0O, so that|i,, — 7e, Ullo.g,RV = 0 by translation
invariance. It is straightforward to check thQ;ku X0in L1(RY), so thatii,,, X0in
L4(RN)and henc& =0. O

For instance, it follows from Corollary 10 and Lions’ embedding theorem [10] that the
embeddingvéé’ial(RN) — C0}(R") is compactifp > N.
Corollary 6 is relevant in the following variant of Theorem 9 when:- co. The proof

follows at once from Corollary 6 and Lemma 8(i) and (iii).
Theorem 11. Let Z C R be a totally disconnected compact subset and letR" be any

chosens-net. For a bounded subsét ¢ W™>*°(R") N Cz(RY), m e N, the following
statements are equivalent

6 1tis readily checked that the converse is trug i (p, c0), but not ifg = p.
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(i) H is relatively compactirCz(R").
(i) If i e W™ (RY) andthere are sequences,) C H and(&,) C Swithlim,_ o |&,| =
oo such thati, := g, u, “iin wmoo(RN) thena(RV) c Z.

By Corollary 7, Theorem 11(ii) also characterizes the relatively compact subisets
wm2 RNy N C,) (RY) for everyz € Z.

Theorems 9 and 11 still hold RY is replaced by an unbounded open sulsget RY
with Lipschitz continuous boundary (so th&t"™ ” (£2) < C{o}(S_Z)), provided thatk = 2
satisfies the conditions described at the end of Section 2. More generally, when a continu-
ous (linear or not) extension operator W7 (£2) — W™ (RN) is available, a subsét
of WP (£2) is relatively compact irC{o}(.(_Z) if and only if A(H) is relatively compact in
Ci01(R"), which reduces the problem to the case discussed above.

We now sketch the generalization of Theorem 9 wifers replaced by a Banach
spaceE. The uniform equicontinuity in part (i) of Lemma 8 relies on the embedding
wmP(RN) — %9 (RN) for someo € (0, 1] whenmp > N. This is proved by induc-
tion onm (starting withm = 1, p > N) by using the embedding/>?(RY) — L4(RN)
for g € [p, p/(N — p)) if p € [1, N]. The same procedure works with”?(RV; E):
ThatwlP(RN; E) — C%9(RN; E) whenp > N can be seen by the same proof as when
E =R and the embedding/>?(R"; E) < L4(RN; E) for ¢ € [p, p*) if p € [1, N] fol-
lows fromu € WHP(RY; E) = ||lu|| € WP (RN) [12, Theorem 1.1 and Corollary 1.1].

If E is reflexive andp € (1, 00), thenL?(RY; E) is reflexive (Edwards [5]) and hence
wmP(RN; E) is reflexive. As a result, part (i) of Lemma 8 remains true with “pointwise
limit” replaced by “pointwise weak limit”. Therefore, it remains true as statéd(R" ) is
relatively compact ing, for then a pointwise weak limit itE is also a pointwise limit in
norm. It follows that if E is reflexive andH (RY) is relatively compact irk (which now
must be assumed), Theorem 9 continues to hold With? (RY) and Cjo;(R") replaced
by W™P(RY; E) andC(g(R"; E), respectively.

Theorem 11 can also be generalized to the case whés reflexive, but the proof
of part (iii) of Lemma 8 does not go through since the embeddifig>(R"; E) —
C(Bg; E) is not compact in general and there are a few additional technicalities. We omit
the detalils.

5. Application to the properness of ordinary differential operators

As a concrete application, we discuss the properness of a differential operator
ur—u—F)), (6)

wheresd = g—‘; and F is the Nemytskii operator associated with a continuous mapping

F:RM  RM thatis,
Fu)(1) == F(u()), @)

for every functionu:R — RM. When F also depends upon as will occasionally be
assumed later, then

Fu)(t) = F(t,u(t)). 8)
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It is understood that wheR (1) (respectivelyF(x)) is used, them € RM (respectively,
u is a function oft with values inR™).

There are two distinct aspects to properness: properness on the closed bounded subsets
and existence of a priori bounds. The latter is not related to the theme of this paper and
will not be addressed. Also, properness on the closed bounded subsets is not an issue for
operators that can be written, or recast, after some suitable transformation, as compact per-
turbations of linear isomorphisms. However, differential operatonsnroundediomains
are generally not of this type i, Hélder, or classical Sobolev spaces. In particular, this
is true of & — F on the real line.

Properness is especially important for Fredholm operators of index 0. Indeed, while
the Leray—Schauder degree can only be used with compact perturbations of linear isomor-
phisms, many other degree theories have been worked out for various clagsepesf
Fredholm mappings of index 0 (see the discussion in [7]). For instance, the degree devel-
oped in [13], superseding th& theory in [6], covers most other special cases and may be
used in existence or bifurcation questions in much the same way as the Leray—Schauder
degree. The discussion of such issues would take us too far afield, but they should be put
in the direct perspective of the contents of this section.

We now turn to the properness properties%f— F. Our goal is to illustrate the use
of the previous results while minimizing the extraneous difficulties as much as possible.
Accordingly, we shall focus on the simpler problems and merely comment on some of the
more general ones.

We denote byZ = F~1(0) ¢ RM the zero set of”, assumed to bronemptyand set

Cr(R;RM) := {u e C*(R; RM): u, i € C,(R; RM)}, (9)

equipped with the product metric, that is, with thé->°(R; R™) norm. We introduce the
space

C%(R:RM):={u e C}(R; RM): u e Cz(R; RM), it e Ciq(R; RM)}, (10)

a subspace af}(R; RM). In what follows, both spaceSz (R; RM) andC(q)(R; RM) are
equipped with the distanek,, here induced by the>(R; RM) norm.

Itis obviousthatd—dt mapsC1(R; RM) continuously intoCoy(R; RM), but perhaps less
obvious that does the same thing. This and other preliminary items are collected in

Lemma 12. The Nemytskii operatdf has the following properties

(i) It maps continuousl¢z (R; RY) into Cio(R; RM). (In particular, % — F maps con-
tinuouslyCL (R; RM) into Cyg)(R; RM).)
(ii) Itis sequentially weak* continuous froi>°(R; RM) into L>®(R; RM).

Proof. (i) If u € Cz(R; RM), thenu is bounded and henegR) c B(0, r) (ball in R™)
for somer > 0. Lete > 0 be given. Sinc& is uniformly continuous on the compact set
Z N B(0,2r) and F =0 on Z, there is§ > 0 such that F(¢)| < ¢ wheneverd (¢, Z N
B(0, 2r)) < 8. With no loss of generality, assume tldat r. Sinceu tends toZ at infinity,

it follows thatd (u(z), Z) < é for |¢| large enough. For any suchlet z(¢) € Z be such that
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lu(t) — z(t)| <8 < r, so thatz(r) € Z N B(0, 2r). As a resultd(u(t), Z N B(0, 2r)) < §
and, from the aboveF (u(r))| < e. This shows thaF (u) € Cig)(R; RM).

For the continuity ofF, let (u,) C Cz(R;R™) be such that(u,) tends tou in
Cz(R; RM). Then, there i > 0 such that, (), u(t) € B(0,r) for all r € R and all in-
dicesn. ThatF(u,) tends toF () in Cioy(R; RM) now follows from the uniform continuity
of F on B(0, r) and the uniform convergence of,,) to u onR.

(i) If (vy) € WE®(R; RM) and v, = v in WH®(R; RM), then, once again by
Lemma 8(iii), (v,) tends pointwise t@ and hencéF(v,,)) tends pointwise té(v) onR.
Since (F(v,)) is bounded inL>(R; RM), it follows (by dominated convergence) that

Fu) X F)in L*(R;RM). O

Theorem 13. Assume thaZ = F~1(0) is nonempty and totally disconnected and that the
only solutions: € Cl}(R; RM) of the equation: — F(x) = 0 are constant functions. Then

() The operator% — F:CL(R;RM) — C(g(R; RM) is proper on the closed bounded
subsets o€ (R; RM).

(i) Foreveryz e Z, the operator% —F: C{lz}(R; RM) — C0y(R; RM) is proper on the
closed bounded subsets(bﬂ‘z}(R; RM).

Proof. (i) Since the continuity of(% — F was established in Lemma 12(i), we must only
show that a bounded sequengg) C C%(R; RM) such thatf, := i, — F(u,) — f in
Cioy(R; RM), has a norm-convergent subsequencé?llﬂR; RM). The main part of the
proof consists in showing that (i (i) in Corollary 6, which requires only the closedness
of Z, can be used with{ = (u,).

Indeed, by Remark 3, this yieldse Cz(R; RM) and a subsequenge,,) such that
Up, — u in Cz(R; RM). Then,F(u,,) — F(u) in Cij(R; RM) by the continuity ofF,
whereasu € WL°(R; RM) and u,, =X u in W3°(R; R™) by Lemma 8(ii)). Thus,
lin, = F(itn) + fo, = F) + £ in Cio(R: RM) and F(u) 4 f = it sinceii,, — & in
L>®(R; RM). This shows that € Cjg)(R; RM) (so that € C1(R; RM)) and thati,,, — i
in C(o)(R; RM), whenceu,, — u in C1(R; RM).

To complete the proof, we check that the conditions required in part (ii) of Corol-
lary 6 hold with’H = (u,,). Evidently,Z = F~1(0) is closed. Sincéu,) is bounded in
CL(R;RM), i.e., in WL(R; RM), Lemma 8(i) shows thak( is uniformly equicontinu-
ous and that{(R) is relatively compact ilRY .

It remains to check the third condition for sodwmetS c R. We simply choos& = R
ands = 0. Let then(§,) C R be a sequence such that imy |&,| = co. Seti, := ¢, uy,
so that(ii,) is bounded inC1(R; RM), i.e., in Wh>(R; RM), and suppose thafi,) has
a pointwise limitii € C,(R; RM). By Lemma 8(iii), i € W2 (R; RM) and i, — & in
wloo(R; RM), so that

iin =i in L®(R; RM), (11)
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From (11) and Lemma 12(ii),
tin — F(iy) = it — F(@) in L®(R; RM). (12)
On the other hand, singg := i, — F(u,) — f in Cjo(R; RM) and with f,, := t, f,,, it
is obvious that| f,, — T, [ lloo.rN = I1fn — flloo, RN — O andthatr, f " 0in L>®(R; RM)

(becausef tends to O at infinity), whenc@*,, “0oin L*(R; RM) Since differentiation
and translation commute, we haye= u, — F(ii,) and henceé — F() =0 by (12). Since
ii € Cp(R;RM) and F is continuous, it follows thafi € C1(R; RM). Thus,ii = ¢ since
the equation: — F(u) = 0 has no other solution in?l}(R; RM) by hypothesis. But then,
c e Z= F~1(0) and hencé(R") c Z. This completes the proof of (i).

(ii) This follows from (i) and the closedness 6t (R; RM) in C%(R; RM) or, alterna-
tively, by using Corollary 7 instead of Corollary 6 in the proof of (i) above

Since F mapsR™ to RM, the assumption that ~1(0) is totally disconnected is little
restrictive in practice. That — F(u) = 0 has no nonconstant solution drj(R; RM) can
be proved under various conditions, the simplest one bé&iag - u > 0 for everyu €
RM\{0}, a case wherZ = {0}. (If u € CY(R; RM)\{0} and i — F(x) = 0, then|u|? is
strictly increasing. But therf (u(¢)) - u(¢) is bounded away from O by a positive constant

fort >0, so thatd'”‘ > 2 in [0, 00) andu is not bounded.)

Other simple cases arise when= V@ is a gradientan@ = {z} is a singleton, or when
M =1 and Y F is integrable. For exampleé; () = | P(u)|* wherea € (0,1) and P is a
polynomial with degP > «—* and simple real roots (and at least one such root to ensure
Z #+9). Ifso, Z = P~1(0) is finite.

A scalar second order example, thus corresponding to a first ordé@ &/stem, is

—gv) = 0, (13)

with g > 0 (vanishing at least at one point). Every solution is convex, and a bounded
convex function orR is constant. HereZ = g~1(0) x {0} is totally disconnected if and
only if g71(0) is totally disconnected. IRM now, if G(v) - v > 0 for everyv e RM and

i —G(v) = (14)

then|v|? is convex, hence constantifis bounded. Ifso,dz =0, thatis;i-v+ 0% =

so thatG(v) - v + |0]2 = 0 and hence =0, i.e.,v is constant.

Theorem 13 can be extended to the case whenF (¢, u) is continuous? -periodic int

andZ :={u e RN: F(t,u) =0, Vt € R} # #. The arguments are similar, but now choosing
={mT: m € Z} instead ofS = R since only the translations,; commute withF. This
shows that the option of usingéanetS # R is needed to handle some applications.

In Theorem 13, the condition that = F~1(0) is totally disconnected is nearly op-
timal, for d% — F is not proper on the closed bounded subsetsﬁétR; RM) if Z con-
tains a nontrivialC curve. Indeed, it is easily seen that this yields the existence of
u € CY(R; RM) such thatu(r) = z is constant foriz| > 1, u(0) = zg # z andu(R) C Z
(so thatu € C1(R; RM) andF(u) = 0). Then,u,(t) := u(t/n) is bounded inC1(R; RM)
andu, — F(u,) =1, — 0in Cigy(R; RM). Yet, (u,) has no convergent subsequence in
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C%(R; RM) becausedu,) converges pointwise to the constant functigrwhile u,, (1) =
z # zo for |t| > n.

A counterexample to Theorem 13(ii) of a different nature is given by the linear second
order problem

i+v=0. (15)

Giveng € C3°(R), it is readily checked that if, () := ¢(¢/n) sint, then (v,, v,) is
bounded inc{lo}(R; R?) andij, + v, — 0 in C(g(R), but (v, 7,) has no convergent sub-
sequence im,“{lo}(R; R?). Here,Z = {0} but of courséj + v = 0 has bounded nonconstant
solutions.

In Theorem 14 below, we prove a variant of Theorem 13 inthe” — L? setting,
based on Theorem 9. However, there are a few extra subtleties and different assumptions
are involved. Once agailf, is t-independent for simplicity but, in contrast to Theorem 13,
no condition beyond @ F~1(0) is explicitly required ofF ~1(0).

Theorem 14. Assume that¥ € C1(R™; R™) and thatF(0) = 0. If p € (1, 00) and the
operatord% —F:wtP(R; RM) — LP(R; RM) is Fredholm, then it is proper on the closed
bounded subsets & 17 (R; RM) if and only if the equationt — F(x) = 0 has no solution
in WP (R; RM)\{0}.

Proof. For the necessity, observe thatuie W17 (R; RM)\{0} andi — F(x) = 0, then
tou =u(s +-) € WhP(R; RM)\ {0} has the same norm as but (z,u),cR is certainly not
relatively compact ir-7 (R; RM).

We now address the sufficiency. A repetition, with suitable modifications, of the proof
of Theorem 13, shows that {f;,) ¢ W1?(R; RM) is bounded and;, := i, — F(u,) is
norm-convergentil.” (R; RM), then(u,,) is relatively compact iCo(R; RM). The mod-
ifications include using (th&" -valued variant of) Theorem 9 instead of Corollary 6 and
showing thaF mapsw®7(R; R¥) into L? (R; RM) and is sequentially weakly continuous
(see Remark 15 below).

In the remainder of the proof, we establish the relative compactnesg,0fin
wLP(R; RM) rather than jusCio (R; RM). After replacing(u,) by a subsequence, it
suffices to show that if, — u in Cig)(R; RM), then some subsequengs,, ) is norm-
convergent inW1?(R; RM). Since(u,) is bounded inw17(R; RM), it is not restrictive
to assume that,, — u in W-?(R; RM). Forv € R, we have

F()=DFQOuv+ G()v, (16)
whereG (v) := [Ol(DF(sv) — DF(0))ds, so thatG(0) =0 andG :RM™ — £(RM) is con-

tinuous.

Claim. G(u,)u, — G)u in L?(R; RM), whereG is the Nemytskii operator associated
with G.

To see this, writeG(u,)u, — Gw)u = (G(u,) — G(w)u,, + G(u)(u, — u). Since
u € Ciop(R; RM) and G(0) = 0, it follows thatG(u) € Cioy(R; L(RM)) and the decay
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of G(u) at infinity implies that the multiplication b¥s(x) is a compactoperator from
wir(R; RM)to LP(R; RM).” As a result, since, — « in W3?(R; RM), it follows that
G@w)(un —u) — 0in LP(R; RM),

Next,G(u,) —G(u) — 0in L*®(R; L(RM)) sinceu, — u in Cioy(R; RM) andG is uni-
formly continuous on the compact subset®Rdf. Since(u,,) is bounded i1 7 (R; RM)
and hence inL?(R; RM), this shows thatG(u,) — Gu))u, — 0 in L?(R; R™). This
proves the claim.

By (16), f, :=u, — F(u,) = tt, — DF(O)u,, — G(u,)u,. From the above claim, the as-
sumption that f,) is norm-convergentid.” (R; RM) thus implies thati, — DF (Q)u, =
fn + G(un)u, is norm-convergent ir.” (R; RM). But % — DF(0) is Fredholm from
wir(R;RM) to L?(R; RM) by hypothesis, andinear Fredholm operators are proper
on closed bounded subsets. This is Yood's criterion (see Deimling [4]), which states that
properness on closed bounded subsets characterizes the linear semi-Fredholm operators of
indexv < oo (including —oo). It follows that («,,) does contain a norm-convergent subse-
quence inWL-? (R; RM) and the proof is complete.O

Remark 15. To see thaF: W17(R; R®) — L?(R; RM) is well defined and sequentially
weakly continuous (used above), note first thavi€ W?(R; RM), then DF(O)v
L?(R; RM) and G(v) € L>®(R; L(RM)), so that, by (16)F(v) = DF(O)v + G(v)v €
LP(R: RM). Next, let v, — v in WP(R; RM). Since F(v,) = DF(O)v, + G(vy)vn
and DF(0) acts linearly and continuously froi¥1-?(R; R®) to L?(R; RM), it suf-
fices to show thaG(v,)v, — G(v)v in LP(R; RM). If ¢ € CF(R; RM), it is clear that
fR Gp)vy - ¢ — fR G(v)v - ¢ since(v,) tends tov uniformly on the compact subsets
of R. Thus, it remains only to check thé® (v,)v,) is bounded in.” (R; RM). This follows
from the boundedness of,,) in W17 (R; RY), hence inCg;(R; RM) (so that(G(v,)) is
bounded inL*>°(R; £L(RM))) and inL?(R; RM).

Like Theorem 13, Theorem 14 is still true whéris periodic int and F (-, 0) = 0. That
it — F(u) = 0 has no solution iw1?(R; RM)\{0} holds whenever there is no solution
homoclinic to 0. For instance if = V@ is a gradient (in particulaly = 1), irrespective
of F~1(0).

Of course, no solution homoclinic to 0 existsfifF(0) is positive or negative defi-
nite, which also ensures thét — F is Fredholm (see below). The nonexistence issue has
also been investigated, with a very different motivation, in more challenging problems
that do not comply with general criteria; see Amick and McLeod [2] (traveling waves) or
Hayashi [8] (neural networks), among others. On the other hand, the second order scalar
equation

i—v+0v3=0, (17)
7 But u — G(u)u is not compact fromwL-?(R; RM) to L? (R; RM); the proof thatG (u,)un — Gu)u in

LP(R; RM) will use thatu,, tends uniformly ta:, which is not true for an arbitrary weakly convergent sequence
in wlP(R; RM). This is why the information provided by Theorem 9 is crucial.
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(equivalent to a first order system) has the nonzero solutiof2? (R) given by

v
"~ cosh

and hence the corresponding operator is not proper on the closed bounded subsets of
W2 (R). Problems of this sort may have peculiar properties; see [14,15].

A sufficient condition for the Fredholmness §f— F, required in Theorem 14, is that
DF(0) € L(RM) has no imaginary eigenvalue. If so, the index issee Sacker [18],
or [17,19]. WhenF is C%, the same spectral condition ensures tg—}ap F is Fredholm
of index 0 bet\NeerC{lo}(R; RM) and Cioy(R; RM). It is satisfied by the counterexample

i — v + v3 above, but not by + v, discussed earlier.

The case whellr = F(t, u) is only “asymptotically” periodic is discussed in [19] when
p = 2 and the system is Hamiltonian. Roughly speaking, asymptotic periodicity means
that F (¢, u) looks like some limiting operatofF (¢, u) or F~°°(t,u) whent — oo or
t — —oo, respectively, where both> and F~—*° are periodic irr, with possibly different
periods. Theorems 13 and 14 can be extended to this case as well. What now matters is that
the limiting equations — F*° (1) = 0 andit — F~°°(x) = 0 have no nontrivial solutions.

In [17], Theorem 14 is used whenh= 2 to prove properness for boundary value oper-
ators onwL7 (R, ; RM) (half-line), which, together with a priori bounds, yields existence
results by degree arguments. Interestingly, even for problems on the half-line, the useful
criterion for properness remains that F(xz) = 0 has no nontrivial solution on thehole
line.

() (18)
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